
Published as a conference paper at ICLR 2025

LEARNING TO SELECT NODES IN BRANCH AND
BOUND WITH SUFFICIENT TREE REPRESENTATION

Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu ∗, Xiang-Yang Li ∗

School of Computer Science and Technology, University of Science and Technology of China
{sxzsj,zengshuli0130,lishaoa}@mail.ustc.edu.cn
{wufeng02,xiangyangli}@ustc.edu.cn

ABSTRACT

Branch-and-bound methods are pivotal in solving Mixed Integer Linear Program-
ming (MILP), where the challenge of node selection arises, necessitating the pri-
oritization of different regions of the space for subsequent exploration. While ma-
chine learning techniques have been proposed to address this, two crucial prob-
lems concerning (P1) how to sufficiently extract features from the branch-and-
bound tree, and (P2) how to assess the node quality comprehensively based on the
features remain open. To tackle these challenges, we propose to tackle the node
selection problem employing a novel Tripartite graph representation and Rein-
forcement learning with a Graph Neural Network model (TRGNN). The tripartite
graph is theoretically proved to encompass sufficient information for tree repre-
sentation in information theory. We learn node selection via reinforcement learn-
ing for learning delay rewards and give more comprehensive node metrics. Exper-
iments show that TRGNN significantly improves the efficiency of solving MILPs
compared to human-designed and learning-based node selection methods on both
synthetic and large-scale real-world MILPs. Moreover, experiments demonstrate
that TRGNN well generalizes to MILPs that are significantly larger than those
seen during training.

1 INTRODUCTION

Mixed-integer linear programming (MILP) is a general optimization formulation for a wide range
of important real-world applications (Zhang et al., 2023), such as industrial process schedul-
ing (Floudas & Lin, 2005), resources allocation (Ren & Gao, 2010), and logistic operations (Paschos,
2014), etc. Modern MILP solvers (Gurobi Optimization, LLC, 2023; Bestuzheva et al., 2021) rely on
the branch-and-bound (B&B) algorithm (Land & Doig, 1960), which recursively divides the search
space into a tree, solving relaxations of the problem until an integral solution is found and proven
optimal. Throughout this procedure, numerous decisions must be repeatedly made (Linderoth &
Savelsbergh, 1999), including node selection, and branching variable selection, etc. These decisions
often dramatically impact the overall performance (Kianfar, 2010). Traditionally, these would be
made according to hard-coded expert heuristics implemented in solvers. To further improve the
efficiency of MILP solvers, more and more attention is given to statistical learning approaches for
replacing and improving upon those heuristics (Bengio et al., 2021).

Here, we focus on the node selection problem, which has a significant impact on the overall solver
performance (Achterberg, 2007). Current machine learning-based node selection methods (He et al.,
2014; Song et al., 2018; Yilmaz & Yorke-Smith, 2020; Labassi et al., 2022) predominantly extract
features from a subset of candidate nodes, supplemented by manually extracted global tree features
such as global upper and lower bounds. These methods primarily employ imitation learning to
mimic an oracle which prioritizes a node if it contains the optimal solution.

However, the existing learning-based node selection methods (Labassi et al., 2022; Yilmaz & Yorke-
Smith, 2020; He et al., 2014; Song et al., 2018) suffer from two limitations. Firstly, while indi-
vidual MILP problems can be effectively represented using bipartite graphs (Gasse et al., 2019;

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

Ding et al., 2020; Nair et al., 2020; Gupta et al., 2020; Paulus et al., 2022; Khalil et al., 2022;
Shen et al., 2021; Labassi et al., 2022), node selection problem requires more than just represent-
ing a single MILP problem. It necessitates the representation of the entire branch-and-bound tree,
which includes numerous nodes, each of which can be considered an individual MILP problem.

Table 1: Comparison between the expert
strategies and SCIP in GISP(n ∈ [70, 80]).

Method Time(s) Wins Nodes

SCIP 7.54 ± 1.39 26/50 397.46 ± 2.59
Expert 7.82 ± 1.44 24/50 276.71 ± 2.82

However, representing all nodes in the tree as a bi-
partite graph is not feasible for large-scale problems
due to the exponential increase in node count. For in-
stance, the “Anonymous” dataset, rooted in a large-
scale industrial context (Gasse et al., 2022), necessi-
tates that SCIP handle upwards of 50,000 nodes. The
previous work compares the nodes among the candi-
date nodes two by two to select the optimal node.
They only represent the two currently selected nodes to be compared as a bipartite graph, supple-
mented by manually extracted global features, such as global upper and lower bounds and the depth
of nodes. However, these manually extracted features do not fully capture the solving process of
the branch-and-bound tree. Secondly, the recent work (Labassi et al., 2022; Yilmaz & Yorke-Smith,
2020; He et al., 2014; Song et al., 2018), which is based on the imitation learning approach, is
limited by the performance of the expert itself. However, the oracle sometimes fails to outperform
SCIP, as observed in datasets like GISP (Colombi et al., 2017), as shown in Table 1. If the expert
does not beat a baseline, imitating it is unlikely to bring gains.

To overcome the aforementioned challenges, we propose to tackle the node selection problem em-
ploying a Tripartite graph representation and Reinforcement learning with a Graph Neural Network
model (TRGNN). Firstly, we propose a tripartite graph to represent the branch-and-bound tree,
which is theoretically proved to be sufficient in information theory. Secondly, we introduce a re-
inforcement learning framework for learning delay rewards in the branch-and-bound process and
give more comprehensive node metrics. These metrics include the global gap, the node potential
and the overhead of path switching, which is the transition between the current node and the subse-
quent selected one.

We evaluate our approach on six NP-hard MILP problem benchmarks, which consist of three clas-
sical synthetic MILP problems and three real-world MILP problems from diverse application ar-
eas. Experiments show that TRGNN significantly outperforms human-designed and learning-based
node selection methods in terms of solving time. We achieve up to 31.44% reduction on synthetic
instances and up to 59.42% reduction on real-world instances. Notably, TRGNN is the only known
learning-based node selection method to surpass the default SCIP across all of the six datasets in
terms of solving time. Moreover, experiments show that TRGNN can well generalize to MILPs that
are significantly larger than those seen during training.

2 RELATED WORK

He et al. (2014) were the first to explore node selection heuristics in branch-and-bound by applying
imitation learning. They trained a support vector machine (SVM) to replicate the decisions of an or-
acle that selects nodes along the optimal solution path. Their model leveraged hand-crafted features,
including node-specific attributes and global metrics like the number of solutions found and the cur-
rent global bounds. However, their approach primarily focused on combining node selection with a
learned pruning model, which aimed to cut off unpromising branches in the branch-and-bound tree.
Their strategy was more akin to a primal heuristic, emphasizing the quick discovery of high-quality
feasible solutions rather than guaranteeing optimality. They reported improvements in the optimality
gap against SCIP under a time limit and Gurobi under a node limit on four benchmarks.

Song et al. (2018) proposed a RankNet model combined with a novel retrospective imitation learn-
ing method. In contrast to He et al. (2014), they focused solely on node selection without an
additional pruning operator. They retrospectively correct the node selection trajectory into a short-
est path to the best solution found. When the solver runs until optimality, the trajectory mirrors
those generated by a diving oracle. They generated these trajectories using Gurobi and trained the
model with the DAGGER (Ross et al., 2011) and SMILe (Ross & Bagnell, 2010) imitation learn-
ing algorithms. Their method demonstrated significant improvements in the optimality gap under
a node limit on path planning integer programs. However, they reported less favorable results on

2

Published as a conference paper at ICLR 2025

more challenging benchmarks, such as combinatorial auctions, indicating limitations in the model’s
generalizability to more complex problems.

Yilmaz & Yorke-Smith (2020) extended the work of He et al. (2014) by proposing a neural network-
based node selection operator for branch-and-bound. Their method can be viewed as a refinement
of Song et al. (2018)’s neural network node selector, with the key difference being that it only
evaluates children of the current node and defaults to depth-first search otherwise. Using the state
encoding from Gasse et al. (2019), they trained their model to mimic an oracle that prioritizes nodes
leading to one of the top k solutions, essentially generalizing He et al. (2014)’s oracle. On three
benchmarks, they reported improvements in both time and number of nodes, and in some cases,
reduced node counts compared to SCIP. However, their approach still lagged behind SCIP in terms
of solving time, showing limitations in overall efficiency despite the node count improvements.

Inspired by the work of Gasse et al. (2019) for variable selection in branch-and-bound, Labassi
et al. (2022) considered a node selection strategy that compared nodes in the candidate queue pair
by pair to identify the optimal node. They represented only the two currently selected nodes as
bipartite graphs, supplemented by manually extracted global features such as the global upper and
lower bounds and the nodes’ depth. On three benchmarks, they reported reductions in the node
counts of the branch-and-bound tree and demonstrated time improvements over SCIP on one dataset.
However, like earlier efforts, their method underperformed on other datasets in terms of solving time.
Notably, even the oracle failed to outperform SCIP’s default rule on certain datasets. Consequently,
it is unsurprising that no other machine learning approach was able to surpass SCIP in these cases.

Some works have sought to provide a full tree representation. Scavuzzo et al. (2022) address
the variable selection problem by proposing tree Markov Decision Processes that offers a more
suitable framework for learning to branch. On the other hand, Mattick & Mutschler (2023) focus on
node selection, addressing the complexity of batching variable and constraint structures. Instead of
creating k vertices for k variables, they represent variable values as a distribution with 10 buckets.
This method allows for scaling to much larger instances than typically possible, although it sacrifices
some detail in representation, thus leaving room for optimization and fine-tuning.

3 PRELIMINARIES

3.1 MIXED INTEGER LINEAR PROGRAMMING

A general MILP problem is defined by a set of decision variables, where a subset or all variables
are required to be integers. The objective is to maximize a linear function under a series of linear
constraints, as formulated below:

max c⊤x, s.t. Ax ≥ b,x ∈ Rl, xj ∈ Z,∀j ∈ I, (1)

For simplicity, we assume that the objective of our MILP problems is to seek the maximum value.

An MILP problem can be effectively represented as a weighted bipartite graph G = (V ∪C,E) (Nair
et al., 2020; Gasse et al., 2019). Each vertex in V corresponds to a variable of the MILP, and each
vertex in C represents a constraint. An edge (vi, cj) connects a variable vertex vi with a constraint
vertex cj if the variable is involved in the constraint. The edge set E ∈ Rl×m×e represents the edge
features, where l and m denote the number of variables and constraints, respectively, and e indicates
the dimension of the edge attributes.

3.2 BRANCH AND BOUND

The branch and bound (Land & Doig, 1960) algorithm can be described as follows. At every node,
the linear program (LP) relaxation is solved, where all variables are treated as continuous. If the
LP relaxation solution xNs

of the selected node Ns violates the original integrality constraints, the
problem “branches” into two sub-MILPs (child nodes) by adding constraints that force a fractional
variable to round up or down. Specifically, the leaf node is added with constraints xi ≤ ⌊(xNs

)i⌋
and xi ≥ ⌈(xNs

)i⌉, respectively, where xi denotes the i-th variable, (xNs
)i denotes the i-th variable

of the LP relaxation solution xNs
. If the solution xNs

is integer (and feasible for the original MILP
as per Equation 1), and its objective value surpasses the current best integer feasible solution, it is
designated as the new global lower bound. If the objective value f(xNs

) (i.e., the node upper bound)
is lower than the global lower bound, or if the LP problem is infeasible, the node is pruned.

3

Published as a conference paper at ICLR 2025

Constraint
vertices

Variable
vertices

3

3

ℎ!"

ℎ#"

5

ℎ!$

ℎ#$

𝑦 ≤ 1 𝑦 ≥ 2

𝑥 =
5
2 , 𝑦 =

3
2 ,	

𝑠𝑜𝑙 =
13
2

𝑥 =
5
3
, 𝑦 = 1,	

𝑠𝑜𝑙 =
13
3

𝑥 ≤ 1 𝑥 ≥ 2

unexplored node

explored node

root node

Leaf node
vertices

𝑒!
𝑒" 𝑒! = (−∞, 1),

e# = (2, +∞),

𝑒% = −∞, 1 ,

𝑒& = (−∞, 1),

𝑒' = (2, +∞).

ℎ!" = (≤, 0)
ℎ#" = (≤, 15)

ℎ!$ = (0, +∞,−2)

ℎ#$ = (0, +∞,−1)

	𝑒#

𝑒$

	𝑒%

-5

Figure 1: Example of tripartite graph representation. The root node (red) is conceptualized as a
bipartite graph, consisting of variable and constraint vertices, while the leaf nodes (grey) embody
sets of added branching constraints. The features of the edges, which connect the variable vertices
to the node constraint vertices, delineate the constraint space of the leaf nodes.

3.3 INFORMATION THEORY

In information theory (Reza, 1994), mutual information I(X;Y) is the amount of uncertainty in X
due to the knowledge of Y . Mathematically, mutual information is defined as

I(X;Y) =
∑
x,y

p(x, y) log(
p(x, y)

p(x)p(y)
) (2)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y) are the
marginal probability distribution functions for X and Y . We can also say

I(X;Y) = H(X)−H(X|Y) (3)
where H(X) is the marginal entropy, H(X|Y) is the conditional entropy. If H(X) represents
the measure of uncertainty about a random variable, then H(X|Y) measures what Y does not say
about X. This is the amount of uncertainty in X after knowing Y and this substantiates the intuitive
meaning of mutual information as the amount of information that knowing either variable provides
about the other.

4 TRIPARTITE GRAPH REPRESENTATION OF BRANCH AND BOUND TREE

While a sufficient representation of every node within a branch-and-bound tree T would theoretically
capture the entire scope of tree information, such an approach is not feasible for large-scale problems
due to the exponential increase in node count. For instance, the Anonymous dataset (Gasse et al.,
2022), rooted in a large-scale industrial context, necessitates that SCIP handle upwards of 50,000
nodes. We define the complete tree feature vector, F =

⊕
N∈T JN , by aggregating features JN ∈ J

for each node N . This raises a critical question: Which node features within F are essential and
should be selectively represented to effectively model the tree? Addressing this, we introduce a
tripartite graph structure for tree representation in Section 4.1.

In order to judge whether a tree representation effectively can capture all relevant node features
necessary for node quality assessment, we first need to define what a sufficient tree representation
is. Let ϕ(·) denote a feature extraction function, which depends on the specific methods employed
for tree representation. The feature vector, ϕ(F), is derived from the tree complete feature F .
Shannon’s information theory provides a suitable formalism for quantifying the above concepts.
The information about the quality vector Q contained in the feature vector ϕ(F) is then I(Q;ϕ(F)).
As a consequence of the data processing inequality, I(Q;ϕ(F)) ≤ I(Q;F). A feature vector ϕ(F)
is defined to be sufficient if the inequality above is an equality.
Definition 4.1 (Definition of Sufficient Tree Representation). A tree feature representation ϕ(F) is
considered sufficient if:

I(Q;ϕ(F)) = I(Q;F)

In Section 4.2, we theoretically demonstrate that the tree information captured within this graph is
sufficient for node selection.

4.1 TREE REPRESENTATION

In this section, we introduce a tripartite graph for tree representation. An advantage of our rep-
resentation is that it is theoretically proved to be sufficient in Section 4.2. This theoretical suffi-

4

Published as a conference paper at ICLR 2025

ciency ensures that our representation can comprehensively capture the necessary features across
the branch-and-bound tree for effective node quality assessment. Additionally, to enhance practical
applicability in machine learning, we tailor the representation to facilitate feature learning. In-
stead of directly representing each node with its variables and constraints, which would redundantly
present at the root node, we focus on depicting the unique branch constraints that distinguish each
node. This approach emphasizes the subtle, often overlooked differences among nodes, thereby
facilitating machine learning algorithms to more effectively learn and discriminate node features.

We represent the branch-and-bound tree as a weighted tripartite graph G = (V ∪ C ∪ LN,EC ∪
ELN). The vertex set V ∪ C ∪ LN is divided into three subsets: the variable vertex set V with
|V | = l, the constraint vertex set C with |C| = m and the leaf node vertex set LN with |LN | = n.
The vertex sets V , C and LN are mutually exclusive: V ∩ C = V ∩ LN = C ∩ LN = ∅. We
denote the variable vertices as V = {v1, v2, . . . , vl}, constraint vertices as C = {c1, c2, . . . , cm}
and leaf node vertices LN = {ln1, ln2, . . . , lnn}. The leaf node vertices represent candidate leaf
nodes for selection strategies within the branch-and-bound tree. After a node is selected, the branch-
and-bound algorithm divides it into two new leaf nodes, adding constraints of the form {xi ≤ z}
or {xi ≥ z}, where xi is the variable chosen for branching and z ∈ Z. The constraint edges EC

connect variable vertices V to constraint vertices C and the branching edges EB connect variable
vertices V to leaf node vertices LN , indicating branching decisions. The edges are denoted as
EC

i,j = (vi, cj) and EB
j,k = (cj , lnk), with |EC | = e1, |EB | = e2, for i ∈ {1, 2, . . . , l}, j ∈

{1, 2, . . . ,m}, k ∈ {1, 2, . . . , n}. We denote the collection of all such weighted tripartite graphs
G = (V ∪ C ∪ LN,EC ∪ ELN) with |V | = l, |C| = m and |LN | = n as Gl,m,n.

Each vertex in the tripartite graph is associated with a feature vector: vertices in V (variables),
C (constraints), and LN (leaf nodes) hold features hV

i ∈ HV , hC
j ∈ HC , and hLN

k ∈ HLN ,
respectively. We define the feature spaces for the sets of all variable vertices, constraint vertices, and
leaf node vertices as HV

l := (HV)l, HC
m := (HC)m, and HLN

n := (HLN)n. Edges in the graph are
imbued with specific attributes that detail the interactions between vertices. For constraint edges that
connect constraint vertices ci to variable vertices vj , each edge feature fC

i,j ∈ FC is one-dimensional
and directly represents the coefficient Aij of variable xj in constraint ci. Branching edges connect
variable vertices vj to leaf node vertices lnk, and these edges carry two-dimensional features that
specify the branching conditions for the variable xj at the leaf node. Each branching edge feature
encapsulates xj ≥ a and xj ≤ b, represented as fB

j,k = (a, b) ∈ FB . We define FC
e1 := (FC)e1 and

FB
e2 := (FB)e2 . The exact features of the graph are described in Appendix C.

We extract an MILP solving search tree’s features via a tripartite graph ϕt(F) = (V ∪C∪LN,EC∪
EB) ∈ Gl,m,n ×HV

l ×HC
m ×HLN

n ×FC
e1 ×FB

e2 , where F denotes the aggregate of node features.
In Figure 1, we illustrate the process of converting a branch-and-bound tree from an MILP instance
into a tripartite graph. The conversion begins with the root node, where variables and constraints are
represented as “variable vertices” and “constraint vertices”, respectively. As the branching process
progresses, each step adds new constraints to the leaf nodes, encapsulated as “leaf node vertices”
in the graph. These additional constraints differentiate each leaf node’s MILP problem from the
root node’s problem. Edges connect these leaf node vertices to variable vertices, forming a path
that represents the sequence of branching decisions made from the root node to each leaf node. For
example, in Figure 1, the candidate leaf node in the lower left undergoes two branching steps, adding
constraints y ≤ 1 and x ≤ 1, represented by edges e1 and e3, respectively.

4.2 THEORETICAL PROOF OF SUFFICIENCY

In this section, we prove our main theorems and present a sketch of our proof lines. The full proof
lines are presented in the Appendix A. We first present with the following theorem that the tripartite
graph is sufficient to represent an MILP search tree.

Theorem 4.1. Given the node Ni with features JNi
, the tripartite graph representation ϕt(F) sat-

isfies: I(Q;ϕt(F)) = I(Q;F), where F =
⊕m+n

i=0 JNi and Q denotes the quality vector.

This theorem asserts that the information uncertainty in Q, when knowing the tripartite graph repre-
sentation ϕt(F), is equivalent to that when knowing the features of all nodes in the tree F .

Then, we analyze the relationship between the features of child nodes and their parent node:

5

Published as a conference paper at ICLR 2025

tripartite graph

B&B tree

Tree Representation(§4)

state s Layer
Norm

+
Linear

Graph
Conv
×3

AvgPool

AvgPool

AvgPool

Linear
+

Sigmoid

Q-value vectorcandidate nodes

action a

first selected nodes

TRGNN Model (§5)

heuristic
algorithm

𝑛 nodes

Figure 2: Illustration of our proposed RL framework for learning node selection policies. In this
framework, the search tree is represented as a tripartite graph (see Section 4), serving as the environ-
ment, and the TRGNN model acts as the agent(see Section 5). We first apply the heuristic algorithm
“BestEstimate” to pre-select n candidate nodes and incorporate their estimate values into the node
features. Subsequently, the TRGNN model processes these features and outputs a Q-value vector,
from which the nodes with the highest Q-values are selected as the final choices.

Theorem 4.2. Given a node Np and its two child nodes Nl and Nr, it holds that I(Q; JNp ⊕ JNl
⊕

JNr) = I(Q; JNl
⊕ JNr), where JN denotes the extracted feature of the node N .

This theorem illustrates that the information provided by the features of the parent node can
be completely represented by the features of its child nodes. The proof proceeds as follows:
We start with the obvious inequality: I(Q; JNp

⊕ JNl
⊕ JNr

) ≥ I(Q; JNl
⊕ JNr

) accord-
ing to the data processing inequality. To establish the reverse inequality, we analyze the node
features, encompassing both MILP characteristics, denoted by Jm, including the variables, con-
straints and objective function, and the global attributes within the tree, denoted by Jg . Thus,
we define: JN = (Jm)N ⊕ (Jg)N . We demonstrate that functions fm and fg exist such that
(Jm)Np

= fm((Jm)Nl
⊕ (Jm)Nr

) and (Jg)Np
= fg((Jg)Nl

⊕ (Jg)Nr
). This relationship estab-

lishes a Markov chain: Q → JNl
⊕JNr → JNp⊕JNl

⊕JNr , allowing the use of the data processing
inequality to confirm I(Q; JNp ⊕ JNl

⊕ JNr) ≤ I(Q; JNl
⊕ JNr).

By invoking Theorem 4.2 recursively, we illustrate that the features of all leaf nodes, denoted by
L, encapsulate the necessary information to represent the whole tree, thereby establishing that
I(Q;L) = I(Q;F). This finding is pivotal for proving Theorem 4.1.

In proving Theorem 4.1, it is essential to validate that the information flow Q → ϕt(F) → L
holds. The tripartite graph representation ϕt(F) includes the root node’s MILP features (Jm)N0

and
each leaf node’s branching constraints BN and global features (Jg)N , ensures that from (Jm)N and
BN , the MILP features (Jm)N of the leaf node N can be deduced. Employing the data processing
inequality again, we establish the sufficiency of ϕt(F) as a representation, proving Theorem 4.1.

5 LEARNING NODE SELECTION VIA TRIPARTITE GRAPH

Building upon the tripartite graph framework detailed in Section 4 for extracting observable features
from the branch-and-bound tree (P1), this section delves into (P2): assessing node quality and
selecting a node based on the tripartite graph representation.

The challenges in node selection are twofold. Firstly, the branch-and-bound process involves se-
quential decision-making, where each choice impacts subsequent decisions. This creates a scenario
of delayed rewards, where the consequences of early decisions may not become apparent until later
stages. Secondly, there is a distinct lack of comprehensive metrics for evaluating node quality.

To address these issues, we frame the node selection problem within a Markov Decision Process
(MDP) framework and leverage Reinforcement Learning (RL) to learn node selection policies, as
detailed in Section 5.1. Following this, we introduce three node quality metrics that assess the impact
of nodes in the solving process, further discussed in Section 5.2.

6

Published as a conference paper at ICLR 2025

5.1 REINFORCEMENT LEARNING FORMULATION

We formulate an MILP solver as the environment and the RL model as the agent. We consider
an MDP defined by the tuple (S,A, r, π). Specifically, we specify the state space S, the action
space A, the reward function r : S ×A → R, the transition function π, and the terminal state in the
following. (1) The state space S. As delineated in Section 4, the core information for node selection
is represented by a tripartite graph. (2) The action space A. The action space is intended to include
all nodes that are potentially selectable. However, the dynamic nature of the selection process means
the number of selectable nodes is subject to change due to the addition of newly expanded nodes
and the removal of pruned nodes. To address this variability, we employ the heuristic node selection
algorithm called Estimate in modern solvers to pre-select nodes, choosing the top n nodes, where
n is a predetermined value, to form a set of node candidates. If the initial set of candidates is less
than n, placeholders are used to fill the remaining slots, ensuring a consistent set size. We define the
action space as this set of node candidates with a size of n. (3) The reward function r. The reward
function, as discussed in Section 5.2, encompasses the gap update reward, the optimal solution path
reward, and the path switching penalty. (4) The transition function π. The transition function
maps the current state s and the action a to the next state s′, representing the ensuing search tree
post the expansion of node a. (5) The terminal state. The process reaches a terminal state when
the gap attains zero or no remaining candidate nodes are in the set. Within this framework, the
trajectory probability τ = (s0, . . . , sT) depends on the node selection policy π and the other solver
components, formulated as pπ(τ) = p(s0)

∏T−1
t=0

∑
a∈A π(a|st)p(st+1|st, a).

TRGNN Model. Figure 2 delineates the architecture of our proposed model. The features of the
variable, constraint, and leaf node vertices on the tripartite graph undergo an initial transformation
via a 32-dimensional embedding layer. This layer is pivotal for normalizing and refining the input
features before they traverse through three subsequent graph convolutional layers, each with dimen-
sions 8, 4, and 4, and each utilizing a ReLU activation function to capture complex, non-linear
relationships. Post convolution, the refined representations of the variable, constraint, and node
constraint vectors are separately averaged, reducing dimensionality and mitigating overfitting risks.
These averaged representations are then amalgamated with the global node features, creating a com-
prehensive feature vector encapsulating both localized and global information. This amalgamated
feature vector is then processed through a linear layer and a sigmoid activation layer, culminating in
a Q-value vector of predetermined dimension n. This vector quantitatively represents the value of
each node in the pre-selected candidate node set, serving as a decisive metric for action selection.
The action is determined by selecting the node corresponding to the maximum Q-value, directing
the model’s focus towards the most promising regions of the search space.

A significant advantage of our model is higher learning efficiency for different node features. Ex-
periments demonstrate that TRGNN requires far fewer training examples compared to conventional
imitation learning models (Labassi et al., 2022), thus conserving computational resources. For in-
stance, with the GISP datasets, our model needs only 250 instances for training, whereas traditional
imitation learning methods may require up to 1000 instances.

5.2 REWARD FUNCTION

The reward function R for the selected node N is defined as:

R(N) = w1Rg(N) + w2Ro(N)− w3Rs(N) (4)

where Rg represents the updates to the global gap, Ro represents the potential of a node to lead to
an optimal solution, and Rs signifies the normalized reward for path-switching steps. Due to space
constraints, the normalizing methods and parameters are detailed in the Appendix.

In branch-and-bound algorithms, node selection is crucial for optimizing the solving process. The
overarching goal is to efficiently converge to the optimal solution by narrowing the primal and
dual bounds. Each node is critically evaluated for its potential to: (1) update the global lower
bound, finding an improved feasible solution, (2) influence the global upper bound, reducing the
gap between the current best known solution and the optimal solution, or (3) generate promising
descendant nodes that might yield feasible solutions.

The updates to the global lower and upper bounds are quantitatively assessed by changes in the
global gap. We denote the optimal solution reward Ro, a methodology endorsed by prior re-

7

Published as a conference paper at ICLR 2025

search (He et al., 2014; Yilmaz & Yorke-Smith, 2020; Labassi et al., 2022).

Ro(N) =

{
1 if LBN ≤ x∗ ≤ UBN ,

0 otherwise.
(5)

where LBN and UBN denotes the local lower and upper bound of node N , x∗ denotes the optimal
solution. Each node defines a unique segment of the search space; If the optimal solution resides
within the current node’s domain, the reward Ro is 1. If the optimal solution is not within the domain
of the current node, the reward for this component is zero. This method enables the model to learn
from node features to discern which nodes are likely to lead to potentially promising solutions.

However, one often-overlooked aspect of node selection is the time taken to transition
from the last selected node to the newly chosen one. This transition time can signifi-
cantly impact overall performance. For instance, in the MaxSAT dataset, where n ranges
from 70 to 80, the path switching phase consumes, on average, 5.2% of the total solving
time. In the branch-and-bound process, solvers like SCIP (Bestuzheva et al., 2021) navi-
gate the path from the last selected node to the newly chosen one, known as path switching.

Selected Node

Selected Node

Last Node

Fork NodeState 𝒔𝒕 State 𝒔𝒕"𝟏

(a) (b)

Figure 3: Path switching process. Figure (a) de-
picts the current state st with node Nt selected and
figure (b) shows the subsequent state st+1 with
node Nt+1 chosen.

Figure 3 illustrates how each node traces back
through the tree to find a common ancestor.
Although this process might seem straightfor-
ward, it introduces significant computational
overhead. We employ the “Eventhdlr” from
PySCIPOpt (Maher et al., 2016). We utilize
the “PY SCIP EVENTTYPE” states “NODE-
SOLVED” and “NODEFOCUSED” to track
the time from when one node is completely
solved (“NODESOLVED”) to when the solver
shifts its focus to another node (“NODEFO-
CUSED”). Since the path switch time is posi-
tively correlated with the number of path switch
steps, we incorporate the steps required for a
path switch as a component of the reward func-
tion in our reinforcement learning model. We calculate the number of steps between nodes by adding
the number of steps each node takes to reach their nearest common ancestor.

6 EXPERIMENTS

Table 2: Policy evaluation on the synthetic and real-world datasets. The best performance is
marked in bold. We report the 1-shifted geometric mean (standard deviation) of the Time.

Methods FCMCNF MaxSAT GISP

Time(s) wins Im(%) Time(s) wins Im(%) Time(s) wins Im(%)

SCIP 21.15 ± 2.42 20/100 0.00 8.22 ± 1.90 23/100 0.00 3.88 ± 1.32 27/100 0.00

SVM 22.17 ± 2.44 14/100 -4.82 8.15 ± 1.76 8/100 +0.85 4.98 ± 1.78 3/100 -28.35
RankNet 22.39 ± 2.24 14/100 -5.86 8.29 ± 1.83 9/100 -0.85 5.03 ± 1.81 2/100 -29.64
GNN 19.63 ± 2.13 18/100 +7.19 8.05 ± 1.98 17/100 +2.07 4.19 ±1.79 13/100 -7.99

TRGNN (Ours) 14.50 ± 2.21 34/100 +31.44 7.60 ± 1.86 43/100 +7.54 3.34 ± 1.37 55/100 +13.92

Methods MIK CORLAT Anonymous

Time(s) wins Im(%) Time(s) wins Im(%) Time(s) wins Im(%)

SCIP 29.45 ± 1.76 0/18 0.00 6.81 ± 5.00 6/50 0.00 215.28 ± 37.90 0/20 0.00

SVM 39.60 ± 1.79 0/18 -34.46 4.78 ± 4.42 4/50 +29.81 1966.14 ± 25.06 0/20 -8.13
RankNet 48.00 ± 1.95 0/18 -62.99 4.52 ± 3.81 5/50 +33.63 1840.65 ± 48.86 0/20 -7.55
GNN 40.08 ± 1.69 2/18 -36.99 4.71 ± 3.90 8/50 +30.84 271.40 ± 15.38 0/20 -26.07

TRGNN (Ours) 11.95 ± 1.45 16/18 +59.42 4.23 ± 4.10 19/50 +37.89 105.68 ± 20.87 20/20 +50.91

Our experiments have three main parts: Experiment (1) Evaluate our approach on three classical
MILP problems and three challenging MILP problem benchmarks from diverse application areas.
Experiment (2) Perform carefully designed ablation studies to provide further insight into TRGNN.

8

Published as a conference paper at ICLR 2025

Experiment (3) Test whether TRGNN can generalize to instances significantlly larger than those
seen during training. The codes are modified from Labassi et al. (2022).

6.1 SETUP

Benchmarks. We evaluate our approach on six NP-hard MILP problem benchmarks, which
consist of three classical synthetic MILP problems and three real-world MILP problems from
diverse application areas. (1) Synthetic datasets comprise three widely used synthetic MILP
problem benchmarks: Fixed Charge Multicommodity Network Flow (FCMCNF) (Hewitt et al.,
2010), Maximum Satisfiability (MAXSAT) (Ansótegui & Gabàs, 2017) and Generalized Inde-
pendent Set (GISP) (Colombi et al., 2017). We artificially generate instances following Béjar
et al. (2009); Chmiela et al. (2021); Labassi et al. (2022). (2) Real-world datasets comprise
MIK (Atamtürk, 2003), CORLAT (Gomes et al., 2008), and the Anonymous problem, inspired
by a large-scale industrial application (Gasse et al., 2022). Details of datasets are provided in the
Appendix D.1. Throughout all experiments, we use SCIP 8.0.4 (Bestuzheva et al., 2021) as the
backend solver, which is the state-of-the art open source solver, and is widely used in research of
machine learning for combinatorial optimization (Chmiela et al., 2021; Gasse et al., 2019; Turner
et al., 2022; Wang et al., 2023). We keep all the other SCIP parameters to default and emphasize
that all of the SCIP solver’s advanced features, such as presolve and heuristics, are open.

Baselines. We compare against the state-of-the-art best estimate node selection rule (Bénichou
et al., 1971; Forrest et al., 1974). This is the default method in SCIP (Bestuzheva et al., 2021).
In addition, we compare against three machine learning approaches: the Support Vector Machine
(SVM) approach (He et al., 2014), the RankNet feedforward neural network approach (Song et al.,
2018), and the approach based on Graph Neural Networks (GNN) (Labassi et al., 2022).

Training. We generate extensive synthetic datasets, consisting of 10,000 training samples and 1,000
test samples. From these, we randomly select 1,000 samples for the SVM, RankNet, and GNN
models training and 100 samples for testing within each problem. Additionally, we generate 1,000
larger-scale datasets, randomly selecting 50 samples from each to evaluate the transfer capability of
our method. For the real-world dataset, each problem set is split into training and test sets with 80%
and 20% of the instances. Specifically, we train model with 1,000 samples for Corlat, 72 samples
for MIK and 65 samples for Anonymous dataset. The model implemented in PyTorch (Paszke et al.,
2019) and optimized using Adam (Kingma & Ba, 2014) with training batch size of 16. The training
process is conducted on a single machine that contains eight GPU devices(NVIDIA GeForce RTX
4090) and two AMD EPYC 7763 CPUs.

We observe that our model performs remarkably well even when trained with fewer samples, achiev-
ing results comparable to those obtained with larger datasets. This demonstrates its efficiency and
effectiveness in utilizing limited data. The ability to maintain such performance with a reduced
dataset size is particularly valuable, given the significant time and computational resources required
to collect training samples by solving multiple MILP instances. For instance, collecting 90 sam-
ples for the Anonymous problem alone took over 13.89 hours. In the Appendix D.5, we provide a
comparison between our TRGNN model and a GNN baseline trained with the same limited dataset,
referred to as GNN light.

Evaluation Metrics. We employ two widely recognized evaluation metrics: (1) Time: running
times in seconds (lower is better) and (2) Wins: number of times each node selection strategy re-
sulted in the fastest solving time, over total number of solved instances. We limit the solution time
for all problems to a maximum of 3600 seconds. Any time exceeding this limit is recorded as 3600
seconds. We assess node selection methods in terms of the 1-shifted geometric mean over the in-
stances, accompanied by the geometric standard deviation. Furthermore, to evaluate different node
selection methods compared to the default SCIP, we propose an (3) Improvement metric. Specifi-
cally, we define the metric by Im = T (SCIP)−T (M)

T (SCIP) , where T (SCIP) represents the solving time
of SCIP, and T (M) represents the solving time of the compared method. Due to the space limits,
we report the size of the branch-and-bound tree (Nodes) in the Appendix D.4.

6.2 COMPARATIVE EXPERIMENT

For each problem, machine learning models are trained on instances of the same size as the test
instances. The results in Table 2 suggest TRGNN significantly outperforms all baseline methods.

9

Published as a conference paper at ICLR 2025

Importantly, it is the only known learning-based node selection method to consistently outperform
the default SCIP in terms of solving time across all six datasets. Compared to SCIP, TRGNN demon-
strates notable efficiency improvements across all tested problems, being 31.44% faster in FCMCNF,
7.54% in MaxSAT, 13.92% in GISP, 59.42% in MIK, 37.89% in CORLAT, 50.91% in Anonymous.

6.3 ABLATION STUDY

We present an ablation study conducted to evaluate the contribution of different metrics in Sec. 5.
We report the performance of TRGNN, TRGNN-1 and TRGNN-2 with different reward strategies
in Table 3 on FCMCNF, GISP, MIK, and Anonymous. TRGNN-1 utilizes our RL framework with a
reward function based on the optimal solution, as established in prior research (Labassi et al., 2022).

Table 3: Comparison between TRGNN, TRGNN
with two metrics (TRGNN-2) and TRGNN with
one metric (TRGNN-1).

Methods FCMCNF GISP MIK Anonymous

SCIP 21.15 s 3.88 s 29.45 s 215.28 s

TRGNN-1 23.28 s 3.48 s 13.27 s 183.62 s
TRGNN-2 22.97 s 3.36 s 12.08 s 124.05 s
TRGNN(Ours) 14.50 s 3.34 s 11.95 s 105.68 s

TRGNN-2 incorporates gap change into the
node metrics, while TRGNN, our full model,
additionally accounts for path switching over-
head. The results in Table 3 reveal that both
TRGNN-1 and TRGNN-2 outperform SCIP on
GISP, MIK, and Anonymous datasets, high-
lighting the benefits of integrating the rein-
forcement learning model with our tripartite
graph representation. Furthermore, TRGNN
significantly surpasses TRGNN-1, TRGNN-2,
and other baselines across all four datasets. The
results demonstrate that both of the gap update and path switching overhead is important for efficient
exploration in complex tasks.

6.4 GENERALIZATION

We evaluate the ability of TRGNN to generalize across larger sizes of MILPs. We evaluate the
generalization ability on FCMCNF, MaxSAT and GISP datasets, as we can artificially generate the
larger transfer instances.

Table 4: The generalization ability of TRGNN. The best performance is marked in bold. We report
the 1-shifted geometric mean (standard deviation) of the Time.

Methods FCMCNF MaxSAT GISP

Time(s) wins Im(%) Time(s) wins Im(%) Time(s) wins Im(%)

SCIP 1474.60 ± 4.19 3/50 0.00 76.12 ± 1.83 4/50 0.00 427.29 ± 1.65 0/50 0.00

SVM 1857.29 ± 3.99 0/50 -25.95 84.78 ± 2.66 1/50 -11.37 557.52 ± 2.39 0/50 -30.48
RankNet 1560.22 ± 4.18 7/50 -5.80 101.45 ± 2.15 0/50 -33.27 701.62 ± 2.02 0/50 -64.20
GNN 1503.83 ± 3.90 11/50 -1.98 69.44 ± 1.57 19/50 +8.78 534.72 ± 1.90 0/50 -25.14

TRGNN (Ours) 1243.39 ± 3.64 29/50 +15.68 48.20 ± 1.55 26/50 +36.67 339.66 ± 1.85 50/50 +20.51

The results in Table 4 indicate that TRGNN significantly surpasses the baselines in terms of
both solving time and number of wins, demonstrating its superior generalization ability. Notably,
TRGNN demonstrates an even more pronounced improvement in solving time on larger datasets
compared to smaller ones, underscoring the importance of effective node selection strategies, par-
ticularly for large-scale MILP instances.

7 CONCLUSIONS

We addressed two pivotal problems in node selection including the sufficient tree representation
and assessment of the node quality with delayed rewards. We introduce an innovative tripartite
graph representation for the branch-and-bound search tree and provide theoretical evidence. Subse-
quently, we introduce more comprehensive metrics for node selection and develop a novel TRGNN
model, leveraging reinforcement learning to acquire node selection policies. Experiments show that
TRGNN significantly outperforms human-designed and learning-based baselines in terms of solving
efficiency on three synthetic MILP problems and three real-world MILP problems.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The research is partially supported by National Key R&D Program of China under Grant No.
2021ZD0110400 , Innovation Program for Quantum Science and Technology 2021ZD0302900 and
China National Natural Science Foundation with No. 62132018, 62231015, “Pioneer” and “Leading
Goose” R&D Program of Zhejiang, 2023C01029, and 2023C01143.

REFERENCES

Tobias Achterberg. Constraint integer programming. PhD thesis, 2007.

Carlos Ansótegui and Joel Gabàs. Wpm3: an (in) complete algorithm for weighted partial maxsat.
Artificial Intelligence, 250:37–57, 2017.

Alper Atamtürk. On the facets of the mixed–integer knapsack polyhedron. Mathematical Program-
ming, 98(1-3):145–175, 2003.

Ramón Béjar, Alba Cabiscol, Felip Manyà, and Jordi Planes. Generating hard instances for maxsat.
In 2009 39th International Symposium on Multiple-Valued Logic, pp. 191–195. IEEE, 2009.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical Programming, 1:
76–94, 1971.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin
Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report, Op-
timization Online, December 2021. URL http://www.optimization-online.org/DB HTML/2021/
12/8728.html.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022.

Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning to
schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235–24246, 2021.

Marco Colombi, Renata Mansini, and Martin Savelsbergh. The generalized independent set prob-
lem: Polyhedral analysis and solution approaches. European Journal of Operational Research,
260(1):41–55, 2017.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 1452–1459, 2020.

Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling:
Modeling, algorithms, and applications. Annals of Operations Research, 139:131–162, 2005.

JJH Forrest, JPH Hirst, and JOHN A Tomlin. Practical solution of large mixed integer programming
problems with umpire. Management Science, 20(5):736–773, 1974.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

11

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html

Published as a conference paper at ICLR 2025

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 Competitions and Demonstrations Track, pp. 220–231. PMLR, 2022.

Carla P Gomes, Willem-Jan Van Hoeve, and Ashish Sabharwal. Connections in networks: A hybrid
approach. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems: 5th International Conference, CPAIOR 2008 Paris, France, May 20-23,
2008 Proceedings 5, pp. 303–307. Springer, 2008.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.
com.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Mike Hewitt, George L Nemhauser, and Martin WP Savelsbergh. Combining exact and heuristic
approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on Com-
puting, 22(2):314–325, 2010.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10219–10227, 2022.

Kiavash Kianfar. Branch-and-bound algorithms. Wiley Encyclopedia of Operations Research and
Management Science, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and
bound with graph neural networks. arXiv preprint arXiv:2210.16934, 2022.

AH Land and AG Doig. An automatic method of solving discrete programming problems. Econo-
metrica, 28(3):497–520, 1960.

Jeff T Linderoth and Martin WP Savelsbergh. A computational study of search strategies for mixed
integer programming. INFORMS Journal on Computing, 11(2):173–187, 1999.

Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and
Felipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP optimization
suite. In Mathematical Software – ICMS 2016, pp. 301–307. Springer International Publishing,
2016. doi: 10.1007/978-3-319-42432-3 37.

Alexander Mattick and Christopher Mutschler. Reinforcement learning for node selection in branch-
and-bound. arXiv preprint arXiv:2310.00112, 2023.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Vangelis Th Paschos. Applications of combinatorial optimization, volume 3. John Wiley & Sons,
2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
cut by looking ahead: Cutting plane selection via imitation learning. In International conference
on machine learning, pp. 17584–17600. PMLR, 2022.

12

https://www.gurobi.com
https://www.gurobi.com

Published as a conference paper at ICLR 2025

Hongbo Ren and Weijun Gao. A milp model for integrated plan and evaluation of distributed energy
systems. Applied energy, 87(3):1001–1014, 2010.

Fazlollah M Reza. An introduction to information theory. Courier Corporation, 1994.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, and
Karen Aardal. Learning to branch with tree mdps. Advances in neural information processing
systems, 35:18514–18526, 2022.

Yunzhuang Shen, Yuan Sun, Andrew Eberhard, and Xiaodong Li. Learning primal heuristics for
mixed integer programs. In 2021 international joint conference on neural networks (ijcnn), pp.
1–8. IEEE, 2021.

Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, and Masahiro Ono. Learning
to search via retrospective imitation. arXiv preprint arXiv:1804.00846, 2018.

Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive cut selection in mixed-
integer linear programming. arXiv preprint arXiv:2202.10962, 2022.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. arXiv preprint arXiv:2302.00244, 2023.

Kaan Yilmaz and Neil Yorke-Smith. Learning efficient search approximation in mixed integer
branch and bound. arXiv preprint arXiv:2007.03948, 2020.

Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie Zhang. A review
on learning to solve combinatorial optimisation problems in manufacturing. IET Collaborative
Intelligent Manufacturing, 5(1):e12072, 2023.

13

Published as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

We enumerate our theoretical findings and provide detailed proofs to substantiate them.

First, we list the definition of a Markov chain and the data processing inequality (Reza, 1994) to aid
in the proof of the subsequent theorem.
Definition A.1. Consider three random variables X , Y , and Z. They form a Markov chain X →
Y → Z if it holds that:

p(x, y, z) = p(x)p(y|x)p(z|y),
where p(x, y, z) is the joint probability density function of X , Y , and Z.
Theorem A.1 (Data processing inequality). If X → Y → Z forms a Markov chain, then:

I(X;Y) ≥ I(X;Z).

Theorem A.2 (Restatement of Theorem 4.2). Given a node Np and its two child nodes Nl and Nr,
it holds that I(Q; JNp

⊕ JNl
⊕ JNr

) = I(Q; JNl
⊕ JNr

), where JN denotes the extracted feature
of the node N .

Proof of Theorem 4.2. First, note that JNl
⊕ JNr

⊆ JNp
⊕ JNl

⊕ JNr
, hence Q → JNl

⊕ JNr
→

JNp
⊕ JNl

⊕ JNr
is a Markov chain. According to the data processing inequality (Theorem A.1),

we have:
I(Q; JNp

⊕ JNl
⊕ JNr

) ≥ I(Q; JNl
⊕ JNr

).

To complete the proof, it is necessary to show that:

I(Q; JNp ⊕ JNl
⊕ JNr) ≤ I(Q; JNl

⊕ JNr).

Assuming JNl
⊕JNr

→ JNp
, then Q → JNp

⊕JNl
⊕JNr

→ JNl
⊕JNr

also forms a Markov chain.
Thus, by applying the data processing inequality once again, we establish the desired equality.

To prove the Markov chain, we analyze the relationship between the parent node Np and the child
nodes Nl and Nr. The node features encompass both the MILP characteristics, denoted by Jm,
including the variables, constraints and its objective function, and the global attributes within the
tree, denoted by Jg . Thus, we have: JN = (Jm)N ⊕ (Jg)N .

In order to prove JNl
⊕ JNr

→ JNp
, we only need to prove (Jm)Nl

⊕ (Jm)Nr
→ (Jm)Np

and
(Jg)Nl

⊕ (Jg)Nr
→ (Jg)Np

.

We consider the MILP characteristics, which is only related to their problem structures. The vari-
ables and objective function in the branch-and-bound tree is the same as the root node (Jm)N0

.
We denote the common variables and objective function feature as CF , the variable set as V =
{xi | i ∈ {0, 1, . . . , l}}, with |V | = l, and the constraint set of the node N as SN . Thus, we have
(Jm)N = SN ⊕ CF .

Because the constraints of both the child nodes Nl and child nodes Nr is the constraint of the
parent node Np added by the branching constraints. Denote Np’s LP relax solution as xNp

, and let
z = ⌊(xNp

)i⌋, where (xNp
)i denotes the value of variable xi in the LP relax solution xNp

.

The branching constraints are denoted as xi ≤ z for Nl and xi ≥ z+1 for Nr, where xi ∈ V is the
selected branch variable on the parent node Np.

Consequently, the sets of constraints for Nl and Nr can be represented as:

SNl
= SNp

∪ {xi ≤ z},
and

SNr
= SNp

∪ {xi ≥ z + 1}.
which leads to a significant overlap: SNl

∩ SNr
= SNP

. This implies that the combined MILP
characteristics Jm for Nl and Nr encapsulate the MILP characteristics of Np:

(Jm)Nl
∩ (Jm)Nr

= (SNl
⊕ CF) ∩ (SNr

⊕ CF)

= (SNl
∩ SNr)⊕ CF

= (SNp
⊕ CF)

= (Jm)Np .

14

Published as a conference paper at ICLR 2025

Thus, we establish that a function relationship fm exists such that: (Jm)Np
= fm((Jm)Nl

⊕
(Jm)Nr

).

Considering the mutual information equations:

I(Q; JNp ⊕ (JNl
⊕ JNr)) = I(Q; ((Jm)Np ⊕ (Jg)Np)⊕ (JNl

⊕ JNr))

≤ I(Q; fm((Jm)Nl
⊕ (Jm)Nr

)⊕ (Jg)Np
⊕ (JNl

⊕ JNr
))

≤ I(Q; ((Jm)Nl
⊕ (Jm)Nr)⊕ (Jg)Np ⊕ (JNl

⊕ JNr))

≤ I(Q; ((Jm)Nl
⊕ (Jm)Nr

)⊕ (Jg)Np
⊕ ((Jm)Nl

⊕ (Jg)Nl
)

⊕ ((Jm)Nr ⊕ (Jg)Nr))

= I(Q; (Jg)Np
⊕ (JNl

⊕ JNr
)).

Next, we turn our attention to the global attributes Jg , which contain the solving process character-
istics of each node and the positional characteristics of each node to represent the whole tree.

The solving process characteristics originates from the an improved feasible integer solution or the
LP relaxation solution, denoted as the update of the local upper and lower bounds. We denote the
local upper and lower bounds on the node N as UBN and LBN . We denote the node N ’s positional
characteristics as pN , which can represent the position of the node N in the tree. Thus, we have
(Jg)N = (LBN , UBN)⊕ pN .

Given that the LP relaxation solutions of the child nodes, Nl and Nr, are also solutions of the node
Np. The local upper bound only updates when finding a tighter LP relaxation solution. Thus, it
is established that UBNl

≤ UBNp
and UBNr

≤ UBNp
. According to Lemma A.1, it is inferred

that the infeasible integer solution of the node Np is also a solution of either Nl or Nr. Hence, we
deduce that LBNl

≤ LBNp
and LBNr

≤ LBNp
. This establishes that:

(LBNp , UBNp) ⊆ (LBNl
, UBNl

) ∪ (LBNr , UBNr).

Since child nodes are derived from the parent node, positional attributes of pNp
of the parent node

can be deduced by the two child nodes’ positional features pNl
and pNr

. We denote a function fp
such that

pNp
= fp(pNl

, pNr
),

demonstrating that:

(Jg)Np
⊆ (LBNl

, UBNl
)∪(LBNr

, UBNr
)⊕pNp

= (LBNl
, UBNl

)∪(LBNr
, UBNr

)⊕fp(pNl
, pNr

).

Considering the mutual information equations:

I(Q; JNp
⊕ JNl

⊕ JNr
) ≤ I(Q; (Jg)Np

⊕ (JNl
⊕ JNr

))

= I(Q; ((LBNp , UBNp)⊕ pNp)⊕ (JNl
⊕ JNr))

≤ I(Q; ((LBNl
, UBNl

) ∪ (LBNr
, UBNr

)⊕ fp(pNl
, pNr

))

⊕ (JNl
⊕ JNr

))

≤ I(Q; ((LBNl
, UBNl

)⊕ (LBNr , UBNr)⊕ pNl
⊕ pNr)

⊕ (JNl
⊕ JNr

))

= I(Q; ((Jg)Nl
⊕ (Jg)Nr

)⊕ (JNl
⊕ JNr

))

= I(Q; JNl
⊕ JNr

).

Lemma A.1. Given a node Np and its two child nodes Nl and Nr, any infeasible integer solution
of node Np is also an infeasible solution of either Nl or Nr.

Proof of Lemma A.1. Suppose there exists an infeasible integer solution x of node N0 that is not an
infeasible solution of either child nodes, N1 or N2.

Let SN0 , SN1 , and SN2 represent the constraint spaces of nodes N0, N1, and N2, respectively. By
assumption, x ∈ SN0 but x /∈ SN1 ∪ SN2 .

15

Published as a conference paper at ICLR 2025

Given that N1 and N2 are child nodes of N0, we can express the constraint spaces of N1 and N2 as

SN1
= SN0

∩ {x ∈ C|xi ≥ z + 1, z ∈ Z}

and
SN2 = SN0 ∩ {x ∈ C|xi ≤ z, z ∈ Z}.

Thus, x must belong to the set difference SN0
\ (SN1

∪ SN2
), which is equivalent to

SN0
∩ {x ∈ C|z < xi < z + 1, z ∈ Z}.

However, since x is an integer solution, it cannot belong to the set {x ∈ C|z < xi < z + 1, z ∈ Z},
leading to a contradiction. Therefore, any infeasible integer solution of node N0 must also be an
infeasible solution of either N1 or N2.

Theorem A.3 (Restatement of Theorem 4.1). Given the node Ni with features JNi
, the tripartite

graph representation ϕt(F) satisfies: I(Q;ϕt(F)) = I(Q;F), where F =
⊕m+n

i=0 JNi
.

Proof of Theorem 4.1. The leaf nodes are denoted as Nj1 , Nj2 , . . . , Njn . The set of the leaf nodes’
features is denoted as L =

⊕n
i=1 JNji

.

First, let us prove I(Q;ϕt(F)) = I(Q;L), where ϕt(F) = (Jm)N0 ⊕ (
⊕n

i=1 BNji
) ⊕

(
⊕n

i=1(Jg)Nji
), where JN denotes the extracted feature of the node N , BN denotes the set of

branching constraints added from the root node to the node N , and (Jg)N denotes the global fea-
tures in the tree of the node N , include both the local upper and lower bounds and its positional
characteristics.

Thus, we only need to prove Q → ϕt(F) → L is a Markov chain.

We have JNji
= (Jm)Nji

⊕ (Jg)Nji
and (Jm)Nji

= SNji
⊕CF = (SN0

∪ (
⊕n

i=1 BNji
))⊕CF =

(Jm)N0
∪ ((

⊕n
i=1 BNji

) ⊕ CF). Thus, L =
⊕n

i=1 JNji
=

⊕n
i=1(Jm)N0

∪ ((
⊕n

i=1 BNji
) ⊕

CF))⊕ (Jg)Nji
.

From ϕt(F), we can deduce (Jm)N0 , BNji
, and (Jg)Nji

, for all i = 1, 2, . . . , n. Due to (Jm)N0 =

SN0⊕CF , where SN0 denotes the set of the root node’s constraints, we can known CF from ϕt(F).
Then, we can denote there exists a function f1 that f1(ϕt(F)) = L, which shows Q → ϕt(F) → L
is a Markov chain.

At the same, we can also known (Jg)Nji
, (Jm)N0

, and BNji
, for all i = 1, 2, . . . , n, from the

representation L. Thus, there exists a function f2 that f2(L) = ϕt(F), which shows Q → L →
ϕt(F) is a Markov chain.

Next, we prove I(Q;
⊕n

i=1 JNji
) = I(Q;F). Because I(Q;L) ≤ I(Q;F) obviously satisfies, we

only need to prove I(Q;L) ≥ I(Q;F). We prove this step by mathematical induction. When
expanding the root node for the first time, the conclusion holds according to Theorem 4.2.

Suppose that the conclusion I(Q;L) ≥ I(Q;F) holds after the k−th selection of nodes. That is, we
have Q → L → F is a Markov chain. We denote the set of all of the nodes in the tree as Tk. When
expanding the leaf nodes for the k + 1−th time, we denote the selected leaf node as Ns. We denote
set of the other candidate nodes as N ′. Thus, we have Q → (

⊕
N∈N ′ JN) ⊕ JNs

→
⊕

N∈Tk
JN

is a Markov chain. We denote the selected node is expanded into two child nodes. To simplify, we
denote them as Ns,l and Ns,r. The tree node set turns to be Tk+1 = Tk ∪ {Ns,l, Ns,r}. According
to Theorem 4.2, we have Q → JNs,l

⊕ JNs,r
→ JNs

⊕ JNs,l
⊕ JNs,r

is a Markov chain. Thus,
Q → (

⊕
N∈N ′ JN)⊕ JNs,l

⊕ JNs,r →
⊕

N∈Tk
JN ⊕ JNs,l

⊕ JNs,r is a Markov chain.

According to the Data processing inequality(Theorem A.1), we can prove I(Q;L) ≥ I(Q;F).

16

Published as a conference paper at ICLR 2025

B MORE DETAILS OF NODE SELECTION PROCESS

Node selection process. Algorithm 1 details a general procedure for node selection within this
MDP formulation. It describes the primary operations carried out by the node selector in the B&B
process. The specific implementation details may vary depending on the chosen node selection
strategy, but the fundamental concept remains consistent. Initially, a node is chosen based on the
branching strategy. After selection, the node is evaluated, which involves updating its bounds and
assessing whether it should be pruned. If the node is not pruned, the tree is branched to enable
further exploration.

Algorithm 1 General Node Selection Procedure

Require: Node list L, parent node bounds, probability Prob of heuristic integer solution calculation
1: for each node P in L do
2: Select node P according to the node selection strategy.
3: Update the lower bound of P , LB(P) = lbparent, where lbparent is the lower bound of

parent node of P .
4: Solve the LP relaxation of node P , getting the solution Sol1 and objective function value

Obj1.
5: Update the upper bound of P , UB(P) = Obj1. Propagate the updated upper bound upward.
6: if Obj1 ≤ LB(P) then
7: Prune node P .
8: else
9: if Sol1 is an integer solution then

10: Update the lower bound of P , LB(P) = Obj1. Propagate the updated lower bounds
upward.

11: end if
12: Call the heuristic to calculate an integer solution with probability Prob, resulting in Sol2

and Obj2.
13: if Obj2 > LB(P) is an integer solution then
14: Update the lower bound of P , LB(P) = Obj2. Propagate the updated lower bounds

upward.
15: end if
16: Branch at node P and add the children nodes to list L.
17: end if
18: end for

17

Published as a conference paper at ICLR 2025

C MORE DETAILS OF TRIPARTITE GRAPH.

Graph representation. Having sufficient information is crucial to infer the optimal node for se-
lection. But what qualifies as “sufficient” in this context? An ideal problem representation should
be capable of incorporating information that affects node selection, which includes the inherent at-
tributes of the original problem (A, b, c) and the attributes of the explored space. Actually, such
problem has a strong mathematical structure (Chen et al., 2022). For instance, if we swap the
positions of the i, j-th variable in 1, elements in vectors b, c and columns of matrix A will be re-
ordered. The reordered features (Â, b̂, ĉ) actually represent an exactly equivalent MILP problem
with the original one (A, b, c). Such property is named as permutation invariance. If we do not
explicitly restrict ML models with a permutation invariant structure, the models may overfit to the
variable/constraint orders of instances in the training set. Motivated by this point, we adopt the graph
representation that are permutation invariant naturally in Section 4. A list of the features included in
our tripartite graph representation is given as Table 5.

Table 5: Description of the constraint, variable and leaf node vertex features, and edge features in
our tripartite state representation.

Category Feature Description

variable vertex

lb Lower bound.

ub Upper bound.

objective coeff Objective coefficient.

var type Type (binary, integer and continuous) as a
one-hot encoding.

constraint edge coef Constraint coefficient.

constraint vertex
rhs Right-hand side of the constraint.

cons type Constraint type feature (eq, geq) as a
one-hot encoding.

leaf node vertex

leaf lb Lower bound of the leaf node.

leaf ub Upper bound of the leaf node.

depth Depth of the leaf node.

estimate Estimate value of the leaf node.

branching constraint
edge

bc lb Lower bound of the variable.

bc ub Upper bound of the variable.

18

Published as a conference paper at ICLR 2025

D MORE DETAILS OF EXPERIMENTS

The details of experiments are provided in this section.

D.1 BENCHMARK

Synthetic datasets. We similarly employ three synthetic instance families, just like Labassi et al.
(2022) in the latest node selection work. The first benchmark is composed of Fixed Charge Multi-
commodity Network Flow (FCMCNF) instances (Hewitt et al., 2010), generated from the code of
Chmiela et al. (2021). We train and test on instances with n = 20 and m = 1.5×n commodities, and
also evaluate on larger transfer instances with n = 30 nodes. The second benchmark is composed
of MaxSAT (Ansótegui & Gabàs, 2017) instances, generated following the scheme of Béjar et al.
(2009). We train and test on instances with a uniformly sampled number of nodes n ∈ [80, 100]
and transfer on instances with n ∈ [120, 150]. Our third benchmark is composed of Generalized
Independent Set (GISP) instances (Colombi et al., 2017), generated from the code of Chmiela et al.
(2021). We train and test on instances with a uniformly sampled number of nodes n ∈ [60, 70] and
transfer on instances with n ∈ [120, 150]. All these families require an underlying graph: we use in
each case Erdős–Rényi random graphs with the prescribed number of nodes, with edge probability
p = 0.33 for FCMCNF and p = 0.66 for MaxSAT and GISP.

Table 6: Average value of the size of variables and constraints for MILP problems (Train and Test).

Number GISP MaxSAT FCMCNF MIK Corlat Anonymous

Avg. Binary 65.0 1611.70 125.61 79.17 100.0 14747.35
Avg. Int 0.0 0.0 0.0 420.83 0.0 1268.35
Avg. Continuous 625.48 0.0 3185.67 18.33 366.0 21865.6
Avg. Cons 1249.78 1542.16 633.36 439.17 486.46 49603.6

Table 7: Average value of the size of variables and constraints for MILP problems (Transfer).

Number GISP MaxSAT FCMCNF

Avg. Binary 134.14 3353.61 287.23
Avg. Int 0.0 0.0 0.0
Avg. Continuous 2690.61 0.0 10754.84
Avg. Cons 5378.52 3218.40 1410.72

Real-world datasets. Following He et al. (2014); Nair et al. (2020), our dataset consists of the
following components: MIK (Atamtürk, 2003), a set of MILP problems with knapsack constraints,
and CORLAT (Gomes et al., 2008), a real dataset used for the construction of a wildlife corridor
for grizzly bears in the Northern Rockies region. In addition to these datasets, we have introduced a
more challenging dataset into our experiments: the Anonymous problem, sourced from the NeurIPS
2021 ML4CO competition (Gasse et al., 2022). Each problem set is split into training and test sets
with 80% and 20% of the instances.

D.2 BASELINES

The SVM and RankNet methods utilize a multilayer perceptron; the latter varies for one benchmark
where they use three hidden layers, while for simplicity, we use a multilayer perceptron with a
hidden layer of 32 neurons for all benchmarks (MLP). The GNN method uniquely leverages the
structure of the graph to guide node selection. The features used in these papers are roughly similar;
again, for simplicity, we adopt the fixed-dimensional features of He et al. (2014) for both the SVM
and RankNet method.

D.3 HYPER-PARAMETER SETTINGS

The hyperparameters primarily consist of those associated with the reward function and the prese-
lection size n determined by the “BestEstimate” heuristic algorithm. In our evaluation, we set n = 5

19

Published as a conference paper at ICLR 2025

and more detailed analysis of how variations in n affect the final node selection results is provided
in Section D.7.

Reward function hyper-parameters. We denote a parameter m to normalize the path switching
steps. The path switching steps are denoted as s, the normalized reward for path switching steps is
Rs = s

m − 1. In this function, if the path switching steps are less than m, Rs > 0; otherwise, the
model receives a penalty. The value of m depends on the size of the problem. We use m = 15 for
the FCMCNF, MaxSAT, GISP, MIK and CORLAT datasets and m = 50 for the Anonymous dataset.
Moreover, we take the weight values w1 = w2 = w3 = 1

3 .

Additionally, we follow Labassi et al. (2022) to limit the number of times the learning-based node
selector is called. Consistent with the setup in Labassi et al. (2022), the learning-based node selec-
tion method is only called before the primal bound is updated four times. After four updates, we
switch to the Breadth-First Search method.

D.4 MORE RESULTS OF NODES

Table 8: Policy evaluation on the synthetic and real-world datasets. The best
performance is marked in bold. We report the 1-shifted geometric mean (standard

deviation) of the Nodes and Im N (in percentage).

Methods FCMCNF MaxSAT GISP

Nodes Im N Nodes Im N Nodes Im N

SCIP 105.58 ± 5.50 0.00% 128.43 ± 2.33 0.00% 100.77 ± 3.32 0.00%

SVM 101.28 ± 4.62 +3.01% 224.28 ± 2.01 -74.63% 127.15 ± 3.09 -26.17%
RankNet 92.48 ± 3.70 +12.40% 204.54 ± 2.18 -59.26% 119.78 ± 3.25 -18.86%
GNN 78.65 ± 4.21 +25.50% 194.22 ± 2.31 -51.22% 117.56 ± 3.05 -16.66%

TRGNN (Ours) 230.74 ± 4.50 -118.54% 78.31 ± 3.48 +39.02% 101.07 ± 3.19 -0.30%

Methods MIK CORLAT Anonymous

Nodes Im N Nodes Im N Nodes Im N

SCIP 896.19 ± 4.56 0.00% 273.81 ± 35.66 0.00% 51037.30 ± 31.49 0.00%

SVM 870.12 ± 4.64 +2.90% 160.23 ± 26.51 +41.48% 52369.21 ± 297.75 -2.60%
RankNet 937.15 ± 5.53 -4.57% 156.60 ± 21.65 +42.80% 53881.66 ± 32.55 -5.57%
GNN 757.99 ± 4.32 +15.42% 173.82 ± 22.73 +36.51% 16039.64 ± 39.03 +68.57%

TRGNN (Ours) 953.56 ± 4.58 -6.38% 276.36 ± 28.88 -0.93% 19445.26 ± 36.45 +61.89%

Table 9: The generalization ability of TRGNN. The best performance is marked in
bold. We report the 1-shifted geometric mean (standard deviation) of the Time.

Methods FCMCNF MaxSAT GISP

Nodes Im N Nodes Im N Nodes Im N

SCIP 2427.33 ± 6.17 0.00% 390.92 ± 2.66 0.00% 31552.14 ± 1.89 0.00%

SVM 3036.70 ± 5.66 -25.10% 582.88 ± 2.88 -49.10% 23675.73 ± 2.26 +24.96%
RankNet 1766.20 ± 5.66 +27.23% 591.18 ± 2.50 -51.23% 31214.54 ± 1.99 +1.07%
GNN 1710.77 ± 5.21 +29.52% 503.43 ± 2.07 -28.78% 27909.15 ± 2.01 +11.55%

TRGNN (Ours) 1812.40 ± 8.33 +25.33% 531.73 ± 2.72 -36.02% 26386.49 ± 2.21 +16.37%

Table 8 and Table 9 illustrate the results of various methods solving MILPs, with the number of
nodes (Nodes) used as the evaluation metric. To evaluate different node selection methods com-
pared to the default SCIP, we propose an Improvement metric. Specifically, we define the met-
ric by ImN = Nodes(SCIP)−Nodes(M)

Nodes(SCIP) , where Nodes(SCIP) represents the nodes of SCIP, and
Nodes(M) represents the nodes of the compared method.

Due to the imposition of a 3600-second time limit, instances exceeding this duration were capped at
3600 seconds for statistical purposes. We provide the results which averaging the node counts at the
point of interruption for instances. Some instances in Anonymous dataset could not be solved within

20

Published as a conference paper at ICLR 2025

this time frame, rendering comparisons of node counts less meaningful, as RankNet only completed
9/18 and SVM completed 8/18 instances within the time constraint.

Although TRGNN does not consistently yield the smallest tree size, it illustrates a pivotal observa-
tion: a reduction in solving time does not invariably equate to a decrease in the number of nodes
in the search tree. This reinforces our proposition that the influence of node selection on solving
efficiency is multifaceted, intertwining with elements like the cost of path switching, discussed in
detail in Section 5.2.

D.5 RESULTS WITH DIFFERENT SAMPLE SIZES

We conducted tests to assess the impact of training with an increased number of samples. The results
demonstrate a consistent upward trend in performance.

Table 10: Comparison of Solving Time (s) for GNN and TRGNN with sample sizes.

Method GISP MaxSAT FCMCNF

Test Transfer Test Transfer Test Transfer

SCIP 4.27 ± 1.72 77.82 ± 1.31 11.11 ± 2.22 322.73 ± 1.76 15.89 ± 1.68 2102.49 ± 1.99

GNN light (250 instances) 4.57 ± 1.76 82.34 ± 1.25 11.28 ± 1.36 420.44 ± 1.76 14.59 ± 1.59 2311.61 ± 1.83
GNN (1000 instances) 4.18 ± 1.44 71.53 ± 1.58 10.08 ± 1.41 400.96 ± 1.86 13.57 ± 1.94 1968.54 ± 2.19

TRGNN (250 instances) 2.89 ± 1.40 62.02 ± 1.46 8.63 ± 1.47 300.00 ± 1.72 11.62 ± 1.63 1410.13 ± 1.74
TRGNN (500 instances) 2.93 ± 1.40 61.98 ± 1.46 8.54 ± 1.44 299.19 ± 1.71 11.65 ± 1.76 1417.93 ± 1.74
TRGNN (1000 instances) 2.81 ± 1.42 62.01 ± 1.46 8.51 ± 1.40 306.80 ± 1.71 11.63 ± 1.62 1406.12 ± 1.74

D.6 ABLATION STUDY ON TRIPARTITE AND BIPARTITE GRAPH REPRESENTATIONS

With the inclusion of leaf nodes, the tripartite graph has a complexity of O(|V | + |C| + |LN | +
|E| + |V ||LN |), compared to the bipartite graph’s O(|V | + |C| + |E|). While this increases the
space overhead, the tripartite representation is more space-efficient during node selection. For every
candidate leaf node, the bipartite approach requires a complete graph representation, leading to a
space complexity of O(|LN |(|V | + |C| + |E|)). In problems where the number of constraints is
similar to or exceeds the number of variables, such as GISP and MaxSAT, the tripartite graph saves
space by avoiding redundant representations of constraints and variables.

We conducted an ablation experiment on the bipartite graph approach. In this study, we used the
BestEstimate heuristic to pre-filter candidate nodes and then represented each candidate node with a
bipartite graph within our reinforcement learning framework (BRGNN). The training times for the
MaxSAT and GISP datasets are listed in Table 11. The results indicate that the computational over-
head primarily arises from reinforcement learning rather than the tripartite graph itself. Moreover,
the tripartite graph representation can save 29.37% and 20.16% of training time on MaxSAT and
GISP, respectively.

Table 11: Comparison of training time (s) for GNN, BRGNN and TRGNN.

Method MaxSAT GISP
GNN (IL) 62.64 54.07
BRGNN 14391.13 3658.54
TRGNN (Ours) 10164.75 2921.07

We added tests for the average graph construction time, and inference time per instance on the
MaxSAT and GISP datasets. Although we acknowledged that reinforcement learning required more
time during the training phase compared to imitation learning (IL), it did not add to inference time.
Additionally, the tripartite graph approach did not increase additional time overhead compared to
the bipartite method.

To demonstrate the impact of the tripartite graph representation on solving efficiency compared
to bipartite graphs, we conducted tests on the GISP and MaxSAT datasets. Table 16 shows that

21

Published as a conference paper at ICLR 2025

Table 12: Comparison of graph construction time (s) for GNN, BRGNN and TRGNN.

Method MaxSAT GISP
GNN (IL) 0.02 0.01
BRGNN 0.01 0.00
TRGNN (Ours) 0.01 0.00

Table 13: Comparison of inference time(s) for GNN, BRGNN and TRGNN.

Method MaxSAT GISP
GNN (IL) 0.16 0.05
BRGNN 0.13 0.01
TRGNN (Ours) 0.20 0.01

the “BestEstimate” method performs similarly to the default SCIP settings. Our tripartite graph
approach (TRGNN) improves over SCIP and BestEstimate. Notably, the tripartite graph method
outperforms the bipartite method, achieving improvements of 19.4% on the MaxSAT dataset and
2.5% on the GISP dataset.

Table 14: Comparison of TRGNN and BRGNN on GISP and MaxSAT datasets.

Method MaxSAT (n ∈ [80, 100]) GISP (n ∈ [60, 70])

Time (s) Wins Nodes Time (s) Wins Nodes

SCIP 8.15 ± 1.64 3/50 147.51 ± 2.02 3.35 ± 1.30 6/50 94.81 ± 3.67

BestEstimate 7.98 ± 1.68 11/50 177.64 ± 2.13 3.53 ± 1.30 8/50 102.99 ± 3.18
BRGNN 7.92 ± 1.67 5/50 200.68 ± 2.05 3.20 ± 1.32 17/50 97.27 ± 3.59

TRGNN (Ours) 6.38 ± 1.85 31/50 134.93 ± 2.83 3.03 ± 1.27 19/50 83.72 ± 3.51

D.7 ANALYSIS OF PRE-SELECTION SIZE USING THE HEURISTIC ALGORITHM

In our work, we initially use the heuristic algorithm “BestEstimate” to pre-select a fixed candidate
set of size n. To determine the potential impact of the heuristic algorithm on solution quality, we
increased n from 5 to 10. We recorded the position of the nodes selected by our TRGNN within the
rankings provided by the heuristic.

0 1 2 3 4 5 6 7 8 9
Position

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

0 1 2 3 4 5 6 7 8 9
Position

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

Figure 4: Histograms showing the distribution of positions picked by TRGNN in “BestEstimate,”
with GISP on the left and MaxSAT on the right.

The results show that in MaxSAT and GISP, nodes ranked higher than 5 by “BestEstimate” are never
chosen by TRGNN. This indicates that nodes not ranked among the top by “BestEstimate” have a

22

Published as a conference paper at ICLR 2025

very low probability of being selected. This is because “BestEstimate” primarily relies on the node
estimate value which represents an optimistic prediction of the best feasible solution that can be
found within the subtree of that node. Nodes ranked toward the end generally have poorer estimates,
indicating a smaller probability of leading to optimal solutions.

D.8 ANALYSIS OF THE IMPACT OF THE HEURISTIC ALGORITHM ON THE SOLVING RESULTS

To ensure fair comparisons, we tested a GNN algorithm based on imitation learning with heuristic
pre-selection (GNN+BestEstimate) to eliminate the impact of “BestEstimate” on the solving results.
We found that the filtered results were consistent with the original ones because nodes ranked lower
by the heuristic “BestEstimate” were seldom chosen by the GNN (see Appendix D.7).

Table 15: Comparison of TRGNN and GNN+BestEstimate on GISP and MaxSAT datasets.

Method MaxSAT (n ∈ [80, 100]) GISP (n ∈ [60, 70])

Time (s) Nodes Time (s) Nodes

SCIP 8.15 ± 1.64 147.51 ± 2.02 3.12 ± 1.30 77.10 ± 3.79

GNN+BestEstimate 7.71 ± 1.93 230.72 ± 3.30 3.26 ± 1.35 96.99 ± 3.66

TRGNN (Ours) 6.38 ± 1.85 134.93 ± 2.83 2.88 ± 1.28 80.50 ± 3.39

D.9 RESULTS WITH THE PURE BRANCH-AND-BOUND FRAMEWORK

While our TRGNN demonstrates significant improvements over the modern solver SCIP, our tri-
partite graph representation is specifically tailored for the branch-and-bound framework. Our graph
does not account for external solver features, such as restarts or cut pools. An intriguing area for
future research lies in designing enhanced representations for cutting planes within branch-and-cut
algorithms. We believe this is a promising direction.

To better evaluate our node selection method in a branch-and-bound context, we tested SCIP with
cutting planes and restarts disabled to better evaluate our node selection method within branch-
and-bound. The results showed further improvements for both the GNN and our TRGNN methods
compared to SCIP. For example, on MaxSAT, the improvement in solving time for TRGNN over
SCIP increased from 7.54% to 12.71%, and on GISP from 13.92% to 18.67%.

Table 16: Comparison of TRGNN and GNN in a branch-and-bound context.

Method MaxSAT (n ∈ [80, 100]) GISP (n ∈ [60, 70])

Time (s) Nodes Time (s) Nodes

SCIP 4.56 ± 1.65 78.48 ± 2.66 3.16 ± 1.30 1119.03 ± 3.90

GNN 4.42 ± 1.70 205.15 ± 3.01 2.72 ± 1.18 1753.04 ± 1.52

TRGNN (Ours) 3.98 ± 1.70 156.42 ± 3.24 2.57 ± 1.17 1334.94 ± 1.62

23

	Introduction
	Related work
	Preliminaries
	Mixed integer linear programming
	Branch and bound
	Information theory

	Tripartite graph representation of branch and bound tree
	Tree representation
	Theoretical proof of sufficiency

	Learning node selection via tripartite graph
	Reinforcement learning formulation
	Reward function

	Experiments
	Setup
	Comparative experiment
	Ablation study
	Generalization

	Conclusions
	Theoretical Analysis
	More details of Node Selection Process
	More Details of Tripartite Graph.
	More Details of Experiments
	Benchmark
	Baselines
	Hyper-parameter settings
	More Results of Nodes
	Results with different sample sizes
	Ablation Study on Tripartite and Bipartite Graph Representations
	Analysis of Pre-Selection Size Using the Heuristic Algorithm
	Analysis of the impact of the Heuristic Algorithm on the solving results
	Results with the pure Branch-and-Bound framework

