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Abstract

Reinforcement learning (RL) agents can learn complex sequential decision-making
and control strategies, often above human expert performance levels. In real-world
deployment, it becomes essential from a risk, safety-critical, and human interaction
perspective for agents to communicate the degree of confidence or uncertainty
they have in the outcomes of their actions and account for it in their decision-
making. We assemble here a complete pipeline for modelling uncertainty in the
finite, discrete-state setting of offline RL. First, we use methods from Bayesian
RL to capture the posterior uncertainty in environment model parameters given
the available data. Next, we determine exact values for the return distribution’s
standard deviation, taken as the measure of uncertainty, for given samples from the
environment posterior (without requiring quantile-based or similar approximations
of conventional distributional RL) to more efficiently decompose the agent’s uncer-
tainty into epistemic and aleatoric uncertainties compared to previous approaches.
This allows us to build an RL agent that quantifies both types of uncertainty and
utilises its epistemic uncertainty belief to inform its optimal policy through a novel
stochastic gradient-based optimisation process. We illustrate the improved uncer-
tainty quantification and Bayesian value optimisation performance of our agent
in simple, interpretable gridworlds and confirm its scalability by applying it to a
clinical decision support system (AI Clinician) which makes real-time recommen-
dations for sepsis treatment in intensive care units, and address the limitations that
arise with inference for larger-scale MDPs by proposing a sparse, conservative
dynamics model.

1 Introduction

In safety-critical machine learning applications, accurately quantifying confidence and uncertainty in
decision outcomes becomes imperative for regulatory and trust resons [7, 24]. In general, uncertainties
that such systems face can be epistemic, arising from limited data availability, or aleatoric, originating
from inherent environmental randomness. Uncertainty quantification is particularly relevant in
Reinforcement Learning (RL) systems as uncertainty in decisions compounds in sequential decision-
making. The task of disentangling these uncertainties gains importance in real-world decision-
making scenarios that are either discrete state in nature or arise where continuous environmental
variables are clustered into a finite number of discrete states [26, 13]. In such cases, aleatoric
uncertainty encapsulates the uncertainty introduced by this clustering process. While this may lead to
information loss and poor scaling with high-dimensional state spaces, it increases the tractability of
the resulting environment. In this work, we provide a thorough analysis of uncertainty in these finite-
state environments. Utilising Bayesian RL, with distributional elements, we account for epistemic
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uncertainty via a Bayesian dynamics model with exact inference, assigning posterior probabilities
to potential environments [12]. Aleatoric uncertainty is quantified by analytically solving linear
equations for higher return distribution moments [35]. We then combine these uncertainties to derive
overall aleatoric and epistemic standard deviations. We compare the computational complexity and
accuracy of our method with prior work. We propose a novel stochastic gradient-based method for
policy optimisation that accounts for model dynamics uncertainty. We empirically demonstrate its
superior optimisation performance and scalability over previous methods [11], providing results
on gridworlds with varying offline dataset sizes. Our methods find application in clinical decision
support systems (CDSS), which leverage vast patient data sets to train RL algorithms for treatment
suggestions [17, 30]. We analyse a setup used for sepsis treatment [26], where patients’ condition and
treatment options were clustered into finite states and actions, originally tackled by applying dynamic
programming methods [5]. We enhance this approach with uncertainty quantification and uncertainty-
aware control. We investigate the scalability of our methods in such practical environments and
address additional challenges, especially in constructing a meaningful dynamics prior, tackled by
including domain-specific conservatism in the dynamics model.

2 Related Work

This section reviews uncertainty treatment in offline RL. We focus on epistemic uncertainty in Robust
and Adaptive MDP settings, aleatoric uncertainty for risk-averse policy suggestion, and recent work
quantifying both types of uncertainty.

Robust and Adaptive MDPs. A simple model-based approach for an MDP uses relative visitation
frequencies as the ground truth transition probabilities. This can introduce bias and result in policies
that generalise poorly [31, 37, 6]. To address this, a Bayesian approach is often employed to account
for uncertainty in ambiguous transition dynamics, a common method in Bayesian RL [16]. Bayesian
dynamics models used in Bayes-Adaptive MDPs (BAMDPs) [12, 18] maintain the current belief
in transition dynamics and enable optimal ‘offline’ planning of adaptable ‘online’ policy rollouts.
However, these models may be intractable beyond simple MDPs [33, 29, 40].

In high-risk offline settings, exploration is undesirable. For instance, in the clinical decision support
system suggested in [26], novel actions are avoided by only selecting actions above a minimum
visitation threshold. Therefore, we focus on optimal memoryless, stationary (non-adaptive) policies
depending only on the state [10]. Finding such policies that are robust to the worst-case realisation of
uncertain dynamics can often lead to overly conservative policies, making average value optimization
across a distribution of MDPs a better alternative [32, 21, 38]. The work in [11] provides a method to
find such policies, but scalability is not addressed. We propose using stochastic gradient-based policy
value function optimization to overcome this limitation.

Risk-averse policies. Accounting for inherent environmental stochasticity is often desirable. Using
the distributional RL framework [3], policies are often informed by return distribution properties
other than its mean to select risk-averse actions [9, 8]. However, optimal policies for such statistical
functionals are generally neither memoryless nor time-consistent [35, 4]. Therefore, we focus on
using the mean of the return distribution to guide the agent’s policy.

Aleatoric and Epistemic Uncertainty in RL for Healthcare. Several recent efforts have tried
to model both types of uncertainties. In healthcare, [23] used a Bayesian dynamics model and
Monte Carlo trajectory sampling to model uncertainties and determine when to defer treatment. In
contrast, [14] trained an ensemble of distributional deep neural networks (DNNs) to learn the return
distribution, effectively learning a ’distribution over distributions’ of the return. Our work aims to
improve uncertainty representation by replacing DNNs with exact dynamic programming methods
and substituting the epistemic uncertainty from DNN parameter disagreement with the epistemic
uncertainty due to uncertainty in transition dynamics.

3 Background

Dynamic Programming A Markov Decision Process M (MDP) [34] is defined by a tuple
(S,A, R, P, γ, ρ), where S and A are the (assumed finite) state and action spaces respectively,
R : S × A → R is the reward function, P : S × A → P(S) the transition kernel, γ ∈ [0, 1]
a discount factor and ρ the distribution over initial states. Given a policy π : S → P(A), the
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return of an episode starting from state s is a random variable given by Gπ(s) =
∑∞

t=0 γ
tRt, where

Rt = R(st, at), at ∼ π(·|st), st ∼ P (·|st−1, at−1) given that s0 = s. For our purposes we will be
taking reward R as deterministic given state, with reward upon departing state s given by r(s) and
therefore independent of policy. This is a natural modelling step for MDPs where a certain state is
associated with a particular reward, which in practice is common when constructing MDPs. When π
is deterministic at state s, we denote the certain action as π(s).

The expected value of G is called the value function V π(s) = EGπ(s), and it can be shown that with
this definition, V satisfies the Bellman equation

V π(s) = r(s) + γ
∑
a,s′

P (s′|s, a)π(a|s)V π(s′). (1)

Dynamic programming methods, such as value iteration, can evaluate V and provide the policy that
optimises V [36]. It can be shown that the value of any arbitrary policy is

v(π) = (I− γT(π))−1r, (2)

with v and r |S|-dimensional vectors with ith element being V π(si) and r(si) respectively (for s the
ith state in S) and T(π) the policy-dependent transition matrix with element i, j given by

Ti,j =
∑
a

π(a|si)P (sj |si, a).

For clarity we have highlighted here the dependence of T on π and note that r does not depend on
policy as we are working with state-dependent rewards.

Return Distribution The most common approach to analysing the return distribution, referred to
as distributional RL, involves applying distributional Bellman operators [3] which, in the finite-state
setting, compute the return distribution arbitrarily accurately for a given MDP (assuming a sufficiently
expressive parametrisation) [4]. However, we pursue a different path to usual distributional RL, as
for our purposes we only require the first two moments of the return distribution. These can be
determined exactly in closed-form for a given MDP without resorting to the full distributional RL
framework.

Methods analogous to those developed to evaluate the value of policies by solving the Bellman value
equation (Eq. 1) can be extended to determine more general properties of the return distribution
Gπ(s). For example, it can be shown that the variances of the return distribution satisfy an analogous
set of linear Bellman equations, with solution given in vector form by [35]:

var(π) = (I− γ2T(π))−1r(var)(π), (3)

where the vector of variances var has element i corresponding to the variance at state si and r(var) is
the vector with element i being

r(var)
i (π) =

∑
j

Pπ(sj |si)(r(si) + γV π(sj))
2 − V π(si)

2,

where Pπ(s′|s) =
∑

a π(a|s)P (s′|s, a).

Bayesian Dynamics Model The dynamics model we employ is standard in Bayesian RL, and is
equivalent to the one used in BAMDPs [16, 33] with an unchanging belief and similar to the one
proposed in [23], but stationary. By modelling the belief over dynamics parameters of the MDP, this
line of work effectively captures the uncertainty due to not being able to narrow down what the true
underlying MDP is: with a finite number of transitions, there may be a number of potential MDPs
that may have generated the observations, to which we can assign posterior probabilities by using
Bayes’ rule. For our purposes, we take the reward function of the MDP as known (and deterministic),
ultimately because in our applications we will define reward directly as a deterministic function of
state, but treat the dynamics of the world as unknown.

Let θs
′

s,a be a parameter representing the probability of transitioning to state s′ given action a at
state s, and consider a dataset of observed transitions (s, a, r, s′) ∈ D. The likelihood of observing
a transition from s, a to s′ is thus p(s′|s, a) = θs

′

s,a. Next, we specify a conjugate Dirichlet prior
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on θ, so that for each state-action the resulting posterior probability is also Dirichlet. Assuming a
symmetric Dirichlet prior with parameter αp, the posterior distribution satisfies

p({θsis,a|si ∈ S}|D) ∝
∏
j

(θsjs,a)
nj+αp−1, (4)

with ns being the number of times s, a transitioned to state s′ and the proportionality constant is
given (in closed form) by the multivariate Beta function [27].

When the number of possible outcomes, in this case next states, is large then inference on the
Dirichlet parameters can be very data-inefficient when a generic maximum-entropy prior parameter
is employed and assigns a disproportionate amount of posterior probability to unobserved outcomes.
To mitigate this, one may scale the prior parameter inversely to the number of outcomes, as done in
a BAMDP context in [18], or induce sparsity in the possible outcomes by modelling the belief of
feasible next states through a hierarchical Bayesian model [15]. The approach we propose is to use a
conservative dynamics model: in our applications, we have a very clearly defined failure (death) state,
so we model the possible next state outcomes for each state-action as being just the observed ones
and the failure state. The number of possible outcomes modelled will therefore be much smaller than
the full range of outcomes and a maximum-entropy prior can usefully be employed. We compare the
effect such a modelling choice has on the posterior values and learned policies to a symmetric prior
chosen through Bayesian model selection.

Aleatoric and Epistemic Uncertainty In order to quantify and distinguish between epistemic
uncertainty due to ambiguity in MDPsM given limited data and aleatoric uncertainty in the return
G, we use the common decomposition formula that arises after applying the law of total variance
[24, 23] to the return G:

VarG(s) = VarMEGM(s)︸ ︷︷ ︸
epistemic

+EMVarGM(s)︸ ︷︷ ︸
aleatoric

, (5)

where we have made clear that the dependence on the return random variable G is conditioned on the
MDPsM. The epistemic variance term captures the overall variance in the expected returns due to
ambiguity in the MDPs and the aleatoric variance term is an estimate of the intrinsic variance averaged
over the posterior MDP distribution. Equations 2 and 3 allow us to determine EGM(s) = V (s)
and VarGM(s) exactly, while averages and variances over the MDPs can be approximated through
Monte Carlo sampling of the posterior over MDPs. In the limit of infinite data, the epistemic variance
should tend to 0 as the probability mass of the posterior focuses in on a specificM (see Appendix A
for a brief discussion), but the aleatoric term won’t in general behave similarly.

4 Methods

4.1 Uncertainty quantification

Existing approaches for estimating aleatoric and epistemic uncertainty in discrete-space MDPs
either overlook uncertainty in the transition model [14] or rely on extensive Monte Carlo sampling
[23]. As a consequence, the former does not scale consistently with additional data (see Appendix
B for empirical evidence for this claim) and we can introduce improvements in the latter for the
infinite-horizon MDP case by using closed-form expressions for the first two moments of the return
distribution.

We present in Algorithm 1 a way to estimate the value, aleatoric and epistemic variances in Eq. 5. Its
computational complexity scales as O(|S|3) per dynamics sample due to requiring an |S|×|S|matrix
inversion for each of the NM dynamics samples. In contrast, methods that rely on Monte Carlo return
samples to estimate aleatoric and epistemic return will require a larger number of Dirichlet samples
and large simulation trajectory lengths to achieve comparable accuracy, but no matrix inversion.
We investigate this trade-off quantitatively in Appendix C and conclude that the larger number of
samples required for a full Monte Carlo-style evaluation (similar to [23]) is not worth the additional
sampling overhead for the MDPs we are considering (|S| < 1000). Note in principle one could also
use some iterative policy evaluation scheme [36] to solve for the first and second moments of the
return distribution, in so doing sacrificing accuracy to avoid calculating a matrix inverse.
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Algorithm 1 Bayesian Value, Epistemic and Aleatoric Uncertainty Evaluation

Require: Policy π, state si, posterior distribution over transition parameters p(M|D)
θs

′

sa{1:NM} ← NM transition matrix samples from p(M|D)
∀s, s′ ∈ S {Tss′}{1:NM} ←

∑
a π(a|s)θs

′

sa ▷ Tt is the tth action-marginalised transition matrix
for t = 1 to NM do

vT ← (I− γTt(π))
−1r ▷ Eq. 2 for sampled dynamics

∀sk ∈ S, r(var)
k (π)←

∑
j P

π
t (sj |sk)(r(sk) + γV π(sj))

2 − V π(sk)
2

varT ← (I− γ2Tt(π))
−1r(var)(π) ▷ Equation 3

vt ← element i of vT

vart ← element i of varT
end for
bayes_value← 1

NM

∑NM

t=1 vt

aleatoric_var ← 1
NM

∑NM

t=1 vart

epistemic_var ← 1
NM−1

∑NM

t=1(vt − bayes_value)2

return bayes_value, aleatoric_var, epistemic_var

4.2 Policy improvement

Beyond evaluating uncertainty, having a belief over the possible range of dynamics that an MDP can
exhibit can allow us to account for this uncertain belief when carrying out control. Thus, we seek to
find a policy that maximises the value objective under the Bayesian dynamics posterior belief

max
π

∑
s

ρ(s)EM∼p(·|D)V
π
M(s), (6)

where the Bayesian value of each state EM∼p(·|D)V
π
M(s) has been marginalised with respect to the

initial state distribution ρ. Algorithm 2 shows the gradient-based approach we suggest to optimise this
objective. In contrast to other methods ([26], [11]) this does not introduce bias due to a finite number
of transition samples: by re-sampling from the posterior every gradient step, we remove the bias
that would occur by picking a smaller finite sample, and standard stochastic gradient optimisation
guarantees ensure that we converge to a local optimum.

Algorithm 2 Stochastic Gradient Policy Optimisation

Require: Initial deterministic π, posterior distribution over transition parameters p(M|D), initial
policy softness parameter η, learning rate α
∀s ∈ S, a ∈ A zsa ← log(η/(|A| − 1))
∀s ∈ S zsπ(s) ← log(1− η) ▷ Set initial policy parametrisation
while not converged do
∀s ∈ S, a ∈ Aπ(a|s)← exp(zsa)∑′

a exp(zsa′ )

θs
′

sa{1:n} ← n minibatch samples from p(M|D)
∀s, s′ ∈ S {Tss′}{1:n} ←

∑
a π(a|s)θs

′

sa ▷ Tt is the tth action-marginalised transition matrix
∀ivi ← (I− γTi(π))

−1r ▷ Eq. 2 for sampled dynamics
L = −

∑
i ρ · vi ▷ Marginalise over MDP posterior and initial state distribution

∀s ∈ S, a ∈ A zsa ← zsa − α ∂L
∂zsa

▷ Policy parameters step towards improving value
end while
∀s ∈ S, a ∈ Aπ(a|s)← exp(zsa)∑′

a exp(zsa′ )

return π

5 Results

Here we present some illustrative results on gridworld environments as well as on a clinical dataset.
The gridworld experiments demonstrate the salient features of our methods in the case where a
ground-truth MDP can be easily investigated and modified, while the application to clinical data
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confirms its applicability to MDPs with practical use. We first examine uncertainty evaluation
for a specific policy and then consider policy improvement. We then apply the same methods to
the MIMIC-III dataset [22], and present results on the impact that carrying out Bayesian policy
improvement has on this dataset.

5.1 Gridworld

We consider a gridworld with stochastic transitions: at each step there is a probability prand of being
pushed down regardless of action taken. Otherwise, the agent moves up, down, left or right by one
square determined by the action. The observed transitions dataset D is generated by repeatedly
spawning an agent in a non-terminal random state and carrying out a random action. Experiments are
ran on the gridworld visualised in Fig. 1a. The results presented here are for datasets that are proper
subsets of any one of the larger datasets to ensure that the latter are strictly more informative.

Uncertainty Quantification We first highlight the main differences compared to recent methods
that have been suggested to quantify aleatoric and epistemic uncertainty. To focus on this particular
feature, we consider the policy evaluation problem, comparing how results from our Bayesian
approach differ from others when evaluating the uncertainty for the policy that is optimal under the
MLE dynamics parameter estimates. We see that our uncertainty quantification in Algorithm 1 scales
consistently with varying dataset size (epistemic uncertainty always becomes small) and intrinsic
stochasticity (higher prand corresponds to higher aleatoric uncertainty).

In contrast, we find that the approach in [14] always leads to low epistemic uncertainty at the end of
training, as the lack of knowledge of the underlying MDP is not modelled, and thus does not scale
consistently with data. In Appendix B we visualise how this quantity evolves during training with
different datasets after adapting the algorithm to carry out SARSA policy evaluation on the same,
fixed policy and observe that it always tends to be small regardless of how informative the dataset is
by the end of training. Additionally, as discussed in section 4.1, the computation of aleatoric and
epistemic uncertainty through closed-form moments as in Algorithm 1 achieves better accuracy for
similar computation compared to previous methods that carry out aleatoric and epistemic uncertainty
quantification in discrete MDPs.

(a) Gridworld
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(b) Aleatoric and epistemic uncertainty

Figure 1: Fig. 1a shows the gridworld used in the experiments. The terminal states are the failure
states (cliff) marked as F in red, and the goal state marked as G in green. The agent can move up,
down, left, or right (or remain stationary if it hits the boundary of the grid). The transition dynamics
have intrinsic stochasticity controlled by the probability prand, which is the probability of pushing the
agent down regardless of action taken. Offline training datasets were created by randomly sampling
actions at random non-terminal states. State ⋆ is chosen as an exemplar state to plot state-dependent
uncertainties. In Fig. 1b, the epistemic (blue) and aleatoric (red) standard deviations (taken as the
square root of the variances in Eq. 5) are shown as a function of training dataset size, with different
levels of intrinsic stochasticity indicated by solid, dashed, and dotted lines.
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(d) Gradient vs MSBI

Figure 2: Fig. 2a shows the average return (‘Value’) as a function of dataset size, averaged across
the Bayesian posterior, as in Eq. 6. We compare the performance on this objective of four methods:
(i) MLE-optimal policy with naive transition probabilities, (ii) the optimal policy for the expected
(nominal) MDP, (iii) MSBI policy from [11], and (iv) our proposed gradient-optimized policy. Higher
values indicate better performance at equal dataset sizes. The example gridworld has prand = 0.25. As
value will be dataset-dependent, we show the average and standard deviation between the difference
in Bayesian state value at state ⋆ for the same dataset in Fig. 2b and 2d, where values above the red
dashed line signify an improvement. These plots report the average and standard deviation across 50
generated datasets for each dataset size.

Bayesian Policy Improvement An optimal memoryless policy that accounts for the model uncer-
tainty will be maximising the average value across the MDP posterior given in Eq. 6. We compare
the performance on this objective of our Algorithm 2 (Gradient policy), the optimal policy for naive
visitation frequencies (MLE-optimal policy), the optimal policy for the expected (marginalised),
referred to as Nominal [11, 10], MDP (Nominal-optimal policy) and the Multi-Sample Backwards
Induction (MSBI policy) algorithm suggested in [11]. The latter comes with theoretical guarantees of
near-optimality; however, the number of samples from the transition matrix posterior required for such
guarantees for our setup are of the order of magnitude (ϵ(1− γ))

−3 ≈ 1014 using γ = 0.999 and an
error tolerance on the value of ϵ = 0.01, which is a computationally intractable number of samples
to store and process for transition matrices. Thus, we use a number of samples (NM = 32768) that
roughly matches the computation time of the gradient-optimised policy (30-60s depending on dataset
without GPU acceleration for the gridworld experiments). In Algorithm 2, we choose our initial
policy to be a softened version of the Nominal-optimal policy. The initial MSBI policy is also taken
to be the Nominal-optimal policy for a fairer comparison.

We empirically find that the gradient-optimised policy consistently outperforms this version of MSBI,
for the particular MDPs and dynamics parameter distributions we are considering, as well as the
MLE- and Nominal-optimal policies especially in lower data regimes when optimising the Bayesian
posterior value objective. Results for a sample state and dataset are presented in Fig. 2a for different
dataset sizes. The corresponding relative performances of our method against both MLE-optimal and
MSBI on the Bayesian objective over 50 sets of generated datasets are presented in Fig. 2b and 2d
with error bars (standard deviations), confirming that our method consistently outperforms the other
two over a larger number of randomly-generated datasets.
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5.2 Clinical Data

We apply Algorithm 2 to the MIMIC-III dataset, as in [26] and [14], using the same state clustering
of 752 states and 25 actions. Two terminal states represent patient recovery and death. As in [26],
actions at any state with fewer than 5 visits in the dataset are excluded. A patient’s recovery gives
a reward of 1, death gives 0, and no intermediate rewards are used. This ensures that state value
corresponds approximately to probability of survival when γ ≈ 1 (γ = 0.999).

Bayesian inference with Dirichlet distributions with a large number of possible outcomes (next states)
is problematic, as mentioned in section 3 [15], and careful thought must be given to what prior
to employ. First we consider a Bayesian model selection approach: we assume all possible states
are reachable and symmetric. This allows us to optimise the model evidence with respect to the
unique parameter αp of the prior, in the hope that specifying a prior which is more in line with the
observations will lead to better inference (see Appendix D for details). As expected, the optimal αp

is found to be much smaller than 1, αp = 0.072, giving less weight after inference to the prior than
the maximum-entropy αp = 1 prior does. However, this approach still fails to accurately model our
belief, which can be seen by considering the following scenario: suppose the patient is in a bad state
and has two options, namely (a) try a treatment that has been attempted many times with rare success
or (b) try a treatment that has always gone wrong, but has been tried a small number of times so
has high uncertainty in the outcome. Option (b) is clearly not appealing, but the agent’s posterior
will still place significant probability mass on unobserved states in the presence of a small number
of transitions, thus highly encouraging the agent to take the less visited action and assigning it a
disproportionately high value. Upon inspection, this is exactly what is happening in the outlier state
in Fig. 3a (at approximate coordinates (0.6, 0.8)), and the value given by this Bayesian posterior is
likely unreasonable.

To address this, we introduce conservatism by considering only observed states and the death state
as next possible states, thus ensuring a more conservative prior. Inducing conservatism in offline
RL with datasets that don’t adequately cover the full state-action space is in line with literature
[1, 28], and conservative MDP models have found success in continuous offline RL by modulating
reward [39, 25] or dynamics [19], somewhat analogously to what is being proposed here. By only
including observed or negative outcomes, the agent is unable to place probability mass on unsupported
next-states and therefore use high uncertainty to inflate the value of poorly visited actions in bad
states. The scarcity of outcomes allows for meaningful inference using a maximum-entropy prior
with αp = 1, and a high-entropy prior is favorable from a conservatism standpoint. It encourages the
agent to select actions that have sufficient support to offset the high prior probability mass assigned
to the death state. The Bayesian values inferred with this setup are presented in Fig. 3b. Fig. 3 shows
the possible improvement, according to the Bayesian posterior value, of employing the Bayesian
gradient-optimised policy compared to the MLE-optimal policy used in [26], resulting in higher
probability of survival (according to the dynamics model). In particular, we note that employing the
gradient-optimised policy improves the value, and therefore corresponding approximate probability
of survival, by about 2.1% when averaged across states, with a maximum improvement on a particular
state of 17.8%, according to the conservative Bayesian dynamics model.

6 Limitations

Our methods apply to a specific category of Markov Decision Processes (MDPs) with finite states
and known reward structures. We have shown these are capable of handling moderately-sized MDPs
that carry practical real-world application possibilities in section 5.2), yet it is unclear exactly how
large the MDPs tackled can be before these approaches become computationally intractable. One key
limitation of our proposed methods is its sensitivity of the resulting policy and inferred values on
the dynamics model prior used, especially when data is inadequate for effective inference across all
dynamics priors. For example, we observe that the effects of having a sparse or evidence-optimised
model can be significant on both the inferred policy and the associated values (see Fig. 3) and exactly
how to best include or combine these elements to select a prior that achieves consistently good
performance on the ground-truth MDPs is an important question and one that we defer to future work.
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Figure 3: Values of each state under the Bayesian policy and the MLE-optimal policy in the clinical
MDP. Each state is represented by its corresponding Bayesian and MLE values, and points above the
diagonal indicate superior performance of the Bayesian policy on the Bayesian objective. The left
plot (a) demonstrates the impact of different dynamics model priors on performance when employing
Bayesian model selection with an optimal parameter of αp = 0.072. The right plot (b) shows the
results when using a prior selected through a conservative sparse dynamics model.

7 Conclusion

We have proposed a framework for estimating aleatoric and epistemic uncertainty in the outcome
of discretised state space policies and use it for control, including an example to application in the
domain of clinical decision support systems. Specifically, the setup analysed here is relevant to the
setup presented in one of the key exemplars of offline RL [26] in clinical decision support systems. In
comparison to previous frameworks estimating such uncertainties in RL with a similar setup there are
two main improvements. 1. we do not require function approximators and therefore entirely bypass
complications, numerical inaccuracies or uncertainties that may be introduced during the training
of these. 2. by employing a Bayesian dynamics model, the quantification for epistemic uncertainty
meaningfully scales with additional data, which is not a feature of ensemble methods [8, 14] as
training uncertainty is the only modelled uncertainty. Additionally, the stationarity of the dynamics
model employed enables us to compute standard deviations of the return distribution analytically
without requiring Monte Carlo trajectory sampling, as done in [23], resulting in more accurate and
computationally efficient evaluations.

On the control side, we can account for epistemic uncertainty in the optimisation of a policy and, as
highlighted by earlier work [35], address aleatoric uncertainty by suggesting it should be handled by
reshaping the reward rather than doing non-expectation-based optimisation. While previous methods
to carry out memoryless Bayesian policy optimisation exist [11], the computational overhead to
attain the theoretical guarantees in these is intractable for our setup. Therefore, we propose a
computationally scalable approach that outperforms its feasible counterpart based on empirical
evaluations. Our approach has relevance to the analysis of MDPs with more general uncertainty
in dynamics parameters [38, 10] particularly when practical computational considerations take
precedence over theoretical guarantees. We have introduced pessimism in the face of uncertainty,
a common and necessary ingredient in offline RL [25, 39, 2] especially when the dataset does not
adequately span the full state-action space [1], in the form of a conservative dynamics model. This
draws an analogy to conservatism in the face of uncertainty commonly used in continuous control
offline RL.

On the application side, the methods presented here could be employed for a variety of purposes, such
as enhancing possible treatment strategies’ interpretability to decision-makers through uncertainty
quantification, for example by splitting states and treatment options into varying groups of outcome
uncertainty (see Appendix E for an example visualisation). In large MDPs, we caution against using
naive symmetrical Dirichlet priors for dynamics modelling, as used for example in [12, 18], when
data is finite and limited. Instead, we suggest exploring better prior modelling techniques such as
sparse or hierarchical [15] Bayesian models, which could be combined with evidence-based Bayesian
model selection, to improve epistemic uncertainty quantification and control robustness.
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A Dynamics posterior with infinite data

Recall that the transition parameters corresponding to the transition probabilities for state-action s, a
have posterior probability density of the form given in Eq. 4, which is a Dirichlet distribution with
parameters αi = ni + αp. A standard property of the Dirichlet distribution is that the variances of its
random variables are given by

Var θisa =
α̂i(1− α̂i)

α0 + 1
,

where α0 =
∑

j αj and α̂i = αi/α0. Since 0 ≤ α̂i ≤ 1, in the limit of infinite data, corresponding
to arbitrarily large α0, the variance of the posterior vanishes. Hence, the posterior probability mass
entirely concentrates arbitrarily close to the MDP corresponding to the transition parameters with α̂i

which, in the limit, corresponds to the observed visitation frequency.

B Policy uncertainty evaluation

The policy we present and compare results for is the policy that optimises the maximum likelihood
estimate (MLE) of the transition dynamics MDP, where transition probability is taken to be the
relative frequency of observed transitions, which we refer to as the MLE-optimal policy.

Running SARSA policy evaluation on the methods proposed in [14] explicitly shows that the epistemic
uncertainty in the dynamics transition is not captured by the ensemble method used. Fig. 4 shows
that with this setup, epistemic uncertainty correlates with loss but is independent of amount of data
observed. This is visible as the curves collapse to small epistemic uncertainty values irrespective of
data set size even though the amount of data in the smallest data set size (25) is smaller than the total
number of transitions of the MDP (80). This is because it captures information on parametric training
uncertainty but not of the dynamics model uncertainty.
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Figure 4: Plot of the epistemic uncertainty and loss as a function of training timestep demonstrating
that epistemic is not accurately tracked by previous methods. Epistemic standard deviation (top row,
red data) is quantified here over 10k time steps, corresponding to the agent carrying out transitions
over many episodes. The corresponding ensemble quantile regression loss (bottom row, blue data) at
each training timestep is shown below. Here we show as examplar the results for fixed policy using
ensemble methods with a MLE-dynamics model for different number of observed transitions in the
dataset generated by the gridworld with prand = 0.5. The value that the epistemic standard deviation
converges to is always small for all visited states and independent of dataset size as the only notion of
uncertainty captured in this setup is one of parametric uncertainty and not MDP uncertainty.

C Probabilistic evaluation bounds

Here we provide a quantitative investigation into the choice of method to evaluate the quantities of
interest for a given policy, including a comparison of the probabilistic bounds on the errors due to
finite numbers of samples. We compare the efficiency required to achieve an evaluation within a
certain accuracy ε with a minimum probability 1− δ for methods that (i) (ours, Algorithm 1) carry
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out an exact calculation of the return distribution moments and then Monte Carlo evaluation with
samples from the dynamics posterior or (ii) carry out Monte Carlo sampling for every evaluation
step. The quantity we investigate in detail is the Bayesian value at a given state for a given policy
(appearing in Eq. 6 for a given policy and state), and since aleatoric and epistemic uncertainties are
calculated in very similar fashion, the conclusions regarding Bayesian value estimation will also carry
through to the uncertainty quantification case.

C.1 Exact moments

The quantity of interest we wish to approximate is

V̂ = EM(VM(s)),

where the expectation is taken over the Dirichlet posterior of MDP dynamics parameters. For a given
set of dynamics parametersM, we have access to the closed form expression for the first moment of
the return distribution VM(s) (in terms of policy, dynamics and reward) as presented in Eq. 2.

We assume a bounded reward |r| ≤ rmax and employ the well-known form of the Hoeffding inequality
[20] valid for the random variable Sn =

∑n
i=1 Xi with Xi bounded and i.i.d. such that E(Sn) = µ:

P(|Sn − µ| ≤ ϵ) ≥ 1− 2 exp

(
− 2ϵ2

n∆2

)
with ∆ being the size of the interval on which X can take values.

In context, we take Xi =
1

NM
Vi as the closed-form expression for the value of the ith of the NM

dynamics samples, so µ = V̂ . From the boundedness assumption on the reward, we can also bound
|Vi| ≤ rmax

1−γ = Vmax and ∆ ≤ 2Vmax/NM . We require enough samples so that with probability at least

1− δ the error in our approximation of V̂ is within ϵ of the true value. By the Hoeffding inequality,
we can ensure this is the case by choosing NM such that

δ ≤ 2 exp

(
−NM ϵ2

2V 2
max

)
,

which corresponds to the smallest integer NM such that

NM ≥ log

(
2

δ

)(
2V 2

max

ϵ2

)
.

C.2 Monte-Carlo sampling

The alternative method to using closed-form expressions for the moments of the return distribution
given an MDP sample would be to in turn approximate these through Monte Carlo samples, as done
in [23]. To do so, given the infinite horizon nature of the MDPs we are considering, we would have
to accumulate rewards over a roll-out with a finite number of steps T , thus incurring in some error,
which can be bounded above by γTVmax. Note that the tightness of this bound will depend entirely
on the reward structure of the MDP, and that this is not a source of error that can be reduced by
repeatedly sampling transitions. For the purposes of the analysis presented, we will be generous in
mostly ignoring the computational cost associated with sampling trajectories for a given MDP. In
practice, sampling from a categorical distribution (i.e. sampling the trajectories for a given MDP) is
significantly faster than sampling from a Dirichlet distribution (i.e. sampling the transition matrix),
so we incorporate the overall computational cost of trajectory sampling into the modest condition
that T cannot be arbitrarily large, but assume infinite trajectory sampling capability otherwise. This
assumption allows us to determine the value for the ith given MDP arbitrarily accurately up to this
error, so that the distance between the true value Vi to the accumulated finite sum of rewards V ′

i will
be bounded by |Vi − V ′

i | ≤ γTVmax.

Thus, we can consider the distance∣∣∣∣∣V̂ − 1

NM

∑
i

V ′
i

∣∣∣∣∣ ≤
∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+
∣∣∣∣∣ 1

NM

∑
i

Vi −
1

NM

∑
i

V ′
i

∣∣∣∣∣
≤

∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+ γTVmax,
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so that if ∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+ γTVmax ≤ ϵ,

with probability at least 1− δ, then the distance to the original estimate also satisfies∣∣∣∣∣V̂ − 1

NM

∑
i

V ′
i

∣∣∣∣∣ ≤ ϵ.

with at least probability 1− δ.

As such, we apply the Hoeffding inequality in the form

P

(∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣ ≤ ϵ− γTVmax

)
≥ 1− 2 exp

(
−NM (ϵ− γTVmax)

2

2V 2
max

)
.

Note that this also imposes a minimum horizon truncation of T > log(ϵ/Vmax)/ log γ. Explicitly
including the probability threshold δ now corresponds to finding an NM such that

δ ≤ 2 exp

(
−NM (ϵ− γTVmax)

2

2V 2
max

)
,

so

NM ≥ log

(
2

δ

)
2V 2

max

(ϵ− γTVmax)2
.

This bound corresponds to a worsening by a factor of (1− γTVmax/ε)
−2 in the number of samples

required to get comparable accuracy to the method that uses exact moments. For example, for the
gridworld setup considered (γ = 0.999, rmax = 1 and positing ϵ = 0.001) would require an order
of magnitude of T ≈ 105 for every rolled out trajectory, (of which we are assuming to be able to
carry out an arbitrarily large number to obtain this bound) at which point the contribution of the
trajectory sampling to the bottleneck would be severe and require a completely different bound to
take it into account. Thus, for the regime we consider, choosing to compute exact moments does save
computation towards the computational bottleneck of taking samples from a Dirichlet posterior.

Note that aleatoric and epistemic uncertainty will behave similarly: aleatoric variance is an analogous
expectation over the second instead of first moment (which we again can have in closed-form or can
estimate through Monte Carlo samples) and the bound will be analogous. Similarly, for epistemic
variance the error in return due to truncated trajectories will compound when calculating the variance
over expected returns, and again we expect a similarly greater number of samples for NM .

D Bayesian model selection

To determine the prior that for the dynamics model with results presented in Fig. 3a, we carry out
Bayesian model selection by minimising the negative log-marginal likelihood of the data with respect
to the parameter αp. To remain consistent with the limitation that only actions observed at least
5 times in the data should be employed at each state, we only use the data for such state-action
transitions when determining the optimal αp.

For each state-action, the full form of the Dirichlet prior in terms of αp is [15]

p({θsjs,a|si ∈ S}) =
Γ(|S|αp)

Γ(αp)|S|

∏
j

(θsjs,a)
αp−1,

where Γ is the gamma function. The likelihood is

p(D|θ) =
∏
j

(θsjs,a)
nj ,

with nj being the number of observed transitions from state-action s, a to state sj . Hence, the model
evidence is

p(D) =
∫

dθp(D|θ)p(θ) (7)

=
Γ(|S|αp)

Γ(αp)|S|

∏
j Γ(αp + nj)

|S|

Γ(|S|αp +Ns,a)
, (8)
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with Ns,a being the number of observed transitions from state-action s, a. Since transitions are
independent across state-actions, taking the negative logarithm of this quantity and summing across
all state-actions results in the overall negative log-marginal likelihood for the dataset in terms of αp.
The resulting function of αp is visualised in Fig.5 and attains a minimum value at approximately
αp = 0.072.
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Figure 5: Negative log-marginal likelihood for clinical data dynamics model against parameter αp of
the prior.

E State uncertainty visualisation

In Fig. 6 we show how the MIMIC-III states aleatoric and epistemic uncertainties are related. The
values are computed using the same conservative dynamics model of Fig. 3b.
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Figure 6: States plotted according to their epistemic and aleatoric standard deviations. Each dot
represents a state, with its colour corresponding to its average value according to the Bayesian
posterior.

As expected for the particular reward structure of the MDP considered, aleatoric uncertainty and
average Bayesian value are strongly related: since the return variable is approximately binomial
(approximately 1 for success and 0 for failure) its mean and variance are related straightforwardly.
Note this will not be true for MDPs with more general return structures.
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