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Abstract

The generalization of deep neural network algorithms to a broader population
is an important challenge in the medical field. In this study, we aimed to apply
self-supervised learning using masked autoencoders (MAEs) to improve the per-
formance of deep learning models that detect left ventricular systolic dysfunction
(LVSD) from 12-lead electrocardiography data. In our MAE approach, we first
mask the vast majority, that is, 75% of the ECG time series. Second, we pretrain a
Vision Transformer encoder by inferring the masked part. Our proposed approach
enables rich features that generalize well from unlabeled ECG data to be learned.
In fact, the reconstructed ECG maintains the relationships among the major ECG
components. Transfer performance in the detection of LVSD outperforms the
baseline CNN model on external validation datasets and shows promising results
for generalization that enables us to use the model for a broader population by
solely using ECG data collected in a single medical institution.

1 Introduction

The generalization of deep neural network (DNN) algorithms to a broader population is an important
challenge, and this problem can be a major barrier to the social implementation of DNN algorithms
in the medical field (1-3). Low generalization performance can occur when the dataset used to train
the algorithm is not diverse enough. Improving generalizability requires large amounts of accurately
labeled data, however, obtaining such data is often difficult due to labeling costs requiring specialized
knowledge and ethical considerations in the medical field. To address this problem, self-supervised
learning, which can make more effective use of limited data, is attracting attention in computer-vision
tasks. Self-supervised learning using masked autoencoders (MAEs; licensed under an Attribution
Non-Commercial 4.0 International license) learns very high-capacity models that generalize well
(4). Pretraining with an MAE enables data-hungry models such as Vision Transformers (ViT)-
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Large/Huge (5) to be trained on ImageNet-1K to improve generalization performance. Contrast-
learning approaches such as MoCo (6, 7) and SimCLR (8) have also achieved high performance in
computer-vision tasks but require image transformation to create a contrast to the original image.
In contrast, MAE learns a reusable representation of the input image by masking random patches
and reconstructing missing pixels. Therefore, the transformations used in contrast learning are
unnecessary. In this study, we aimed to apply self-supervised learning using MAE to the analysis of
12-lead electrocardiograms (ECGs), which is one of the most popular medical time-series data. The
deep learning approach to analyzing ECGs has been widely studied in recent years, enabling highly
accurate detection of cardiac diseases that were previously difficult to diagnose from ECGs (9-11).
However, these approaches require large amounts of labeled electrocardiography data, which are
difficult to collect at a single institution. To solve this problem, several methods have been proposed
to apply self-supervised pretraining to ECGs (12, 13). However, no previous studies have applied
MAE-based pretraining to train a high-capability ViT-Large exclusively for ECG analysis. We focus
on detecting left ventricular systolic dysfunction (LVSD) from the ECG. LVSD is a common disease
that may increase the risk of sudden death (14, 15). Therefore, early detection of LVSD is desirable.
In clinical practice, LVSD is currently diagnosed by echocardiography (16), and diagnosis from
ECGs has been difficult. However, it has been reported that LVSD can be diagnosed from an ECG
by applying deep learning (9), and the implementation of these deep-learning algorithms in clinical
practice is expected.

2 Method

2.1 Datasets

To build and evaluate the models, we collected electrocardiographic data from eight academic medical
institutions. We created two datasets for training. The first is a small dataset (Dataset1) comprising
37,456 ECGs collected at institution 1, and the second is a large dataset (Dataset2) comprising
126,203 ECGs collected from institutions 1, 2, and 3 (Tables 1 and 2). LVSD was assessed by
echocardiography and defined as an ejection fraction of less than 40%. Patients who had LVSD were
labeled as positive, and the rest were labeled as negative. Tables 1 and 2 show the details of the
datasets. Dataset1 was divided into Train1 (containing train1 and valid1) and Test1, and Dataset2
was divided into Train2 (containing train2 and valid2) and Test2. Note that to avoid data leakage, all
ECGs from one patient were assigned to the same split. All ECG data from Dataset1 and Dataset2
were used separately for the self-supervised pretraining, in which the labels were not used. The Train1
or Train2 dataset was then used for the downstream task, in which a ViT-Large model was trained to
detect LVSD by supervised learning. In addition, ECGs from the five external institutions that were
not used for training were prepared as an external validation dataset, as detailed in Appendix A, to
test the performance of the model. The prevalence of LVSD was also included in Appendix A. This
study was conducted with the approval of the University of Tokyo’s Institutional Review Board and
in a manner such that the data could not be used to identify individuals.

2.2 Self-Supervised Pretraining

The first step of our approach was to pretrain an efficient ViT-Large encoder by self-supervised
learning using Dataset1 and Dataset2. In this study, we used the MAE algorithm. In an MAE for
image data (e.g., 224×224), the input is divided into 16 × 16 patches. These patches are randomly
masked and the missing pixels are then reconstructed. This process creates an encoder that has
learned a useful representation (4). Raw data from each ECG examination record were represented as
a 12×5000 matrix of ECG voltage, in which the first dimension was a spatial dimension (each column
represented one lead) and the second dimension was the temporal dimension (each row represented a
specific time point). To take advantage of the interrelationship of the 12 ECG leads, the patch size was
changed to 1×250. As a result, the ECG information per patch was 0.5 s. For self-supervised learning,
we trained the ViT-Large encoder for 1600 epochs with a batch size of 1024. Implementation details
followed those of the previous study (4).

2.3 Model Architecture

We use a ViT-Large architecture to take advantage of its strong generalization capabilities. Although
ViT-Huge could have been used, ViT-Large was selected for usability considerations. The encoder
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Table 1: Details of Dataset 1. Small dataset from a single institution.
Split Case Control Unique patients Over all

Train1 train1 2,160 (8%) 23,992 (92%) 16,187 26,152
Dataset1 valid1 461 (8%) 5,203 (92%) 3,478 5,664

Test1 493 (8%) 5,147 (92%) 3,489 5,640

Over all 3,114 34,342 23,154 37,456

Table 2: Details of Dataset 2. Large dataset from three institutions.
Split Case Control Unique patients Over all

Train2 train2 7,881 (9%) 80,599 (91%) 4,8598 88,480
Dataset2 valid2 1,601 (8%) 17,490 (92%) 10,432 19,091

Test2 1,722 (9%) 16,910 (91%) 10,275 18,632

Over all 11,204 114,999 69,305 126,203

takes a 12×5000 ECG matrix as input, and finally outputs a 1024-dimensional feature vector. In
the self-supervised pretraining, ECGs after normalization were input to the encoder using MAE. In
the downstream task, a normalization layer and a fully connected layer were added to the encoder
to detect LVSD. As a baseline, a CNN architecture was used because a previous study showed that
this architecture can achieve high performance in detecting LVSD (9). The encoder consists of six
temporal convolution blocks, one spatial convolution block, and one fully connected layer. The
encoder takes a 12×5000 ECG matrix as input, and finally outputs a 128-dimensional feature vector.
In the downstream task, two fully connected layers and a sigmoid layer were added to the encoder
to detect LVSD. The binary cross-entropy loss was minimized. To obtain a qualitative sense of our
reconstruction task, see Figure 1 and Appendix C.

(a) Original ECGs (b) Masked ECGs

(c) Reconstructed ECGs

Figure 1: Example of the reconstruction process in II and V5 lead

2.4 Evaluation experiments

We conducted two experiments: one with our proposed approach and one with the baseline (with-
out pretraining) using four sets of Nvidia Tesla A100 80 GB graphics processing units (Nvidia
Corporation, Santa Clara, USA). First, we conducted self-supervised pretraining on the ViT-Large
encoders for each pretraining dataset: Dataset1 and Dataset2. Then, we fine-tuned the model on each
downstream dataset (Train1 or Train2) using the pretrained ViT-Large encoders. Second, the baseline
was trained, omitting the self-supervised pretraining step. We directly trained the models on the down-
stream datasets using supervised learning. The CNN model was trained with randomly initialized
model weights, whereas the ViT-Large model was trained with the model weights pretrained by MAE
using ImageNet-1K. Table 4 in Appendix A shows the correspondence of the datasets used in each
experiment. In all experiments, the Adam optimizer was used. Initial learning rates of 1e-4, 3e-5, and
1e-5 were tested in each experiment; the model weights with the lowest validation loss were saved
and later used for evaluation on the test set. Models fine-tuned on Train1 (consisting of data from
institution 1) were evaluated on Test1 and the data from the remaining seven institutions, whereas the
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models fine-tuned on Train2 (consisting of data from institutions 1, 2, and 3) were evaluated on Test2
and all data from the remaining five institutions. Appendix B presents an overview of our experiment.

3 Results and Discussion

We analyze the fine-tuning results of the self-supervised ViT-Large. For the models fine-tuned on
Train1, the model pretrained using Dataset1 performed better, with area under the receiver operating
characteristic curve (AUROC) results of 0.96, 0.94, 0.92, 0.92, 0.95, 0.96, and 0.94 compared to the
baseline CNN model, which obtained AUROC results of 0.95, 0.88, 0.89, 0.87, 0.92, 0.94, and 0.90
for the Test1 and institution 2–8 cohorts. Moreover, the model pretrained using Dataset2 obtained
the highest AUROC results of 0.97, 0.95, 0.93, 0.92, 0.95, 0.97, and 0.94 (Table 3). The proposed
method performs better than the baseline CNN, indicating that the ViT encoder can learn feature
representations that are effective in detecting LVSD through self-supervised pretraining. The results
also show that higher model performance can be obtained by performing self-supervised learning
with MAE using a large dataset. Regarding the models fine-tuned with Train2, the model pretrained
using Dataset1 obtained AUROC results of 0.95, 0.92, 0.95, 0.97, and 0.94, which are higher than
those of the baseline CNN, which obtained AUROC results of 0.93, 0.90, 0.93, 0.95, and 0.92 for
the Test2 and institution 4–8 cohorts. The model pretrained using Dataset2 performed the best, with
AUROC result of 0.96, 0.94, 0.96, 0.98, and 0.95. Furthermore, the baseline ViT-Large pretrained
by MAE using ImageNet-1K had the lowest AUROC results of 0.91, 0.88, 0.91, 0.94, 0.90 for the
Test 2, institutions 4–8 cohorts. The baseline ViT-Large performed worse than the baseline CNN
model (table 3). These data show that the performance of the pretrained ViT-Large can be further
improved using a larger training dataset. By contrast, the low accuracy of the ViT-Large pretrained
on ImageNet-1K indicates that, although fine-tuning was performed using similarly large training
data, the training dataset used in this study was not sufficient to train the ViT-Large. Therefore,
we believe that our proposed method helped train ViT-Large without using additional labeled data
and instead making effective use of limited data. Furthermore, as shown in the results in Table 3,
ViT-Large using the model pretrained with self-supervised learning yields higher AUROC scores with
external validation data than do the baseline models, indicating that generalizability was improved.
We highlight a comparison of the performance of ViT-Large pretrained using Dataset1 and fine-tuned
on Train1 (bolded text in Table 3) and the baseline CNN model fine-tuned on Train2 (underlined
text in Table 3). ViT-Large, which was pretrained and fine-tuned using a small training dataset from
a single institution, obtained higher AUROC results on the external validation dataset and better
generalization performance than the baseline CNN model fine-tuned on a large training dataset
collected from three institutions. The total number of labels used for our proposed self-supervised
approach is only 31,816 labels in Train1. In contrast, the baseline CNN model used 107,571 labels in
Train2. In summary, the proposed method achieves higher AUROC results than the baseline CNN
with only 30% labels and improves generalization performance.

Table 3: AUROC of each model evaluated on test datasets. Our proposed methods were used to
pretrain a ViT on Dataset1 and Dataset2. A CNN and ViT pretrained on ImageNet-1K are the baseline
models.

Model CNN ViT ViT CNN ViT ViT ViT

Pre-training — Dataset1 Dataset2 — ImageNet Dataset1 Dataset2

Fine-tuning Train1 Train1 Train1 Train2 Train2 Train2 Train2

Test1 0.95 0.96 0.97 — — — —
Test2 — — — 0.93 0.91 0.95 0.96
Institution2 0.88 0.94 0.95 — — — —
Institution3 0.89 0.94 0.95 — — — —
Institution4 0.87 0.92 0.93 0.90 0.88 0.92 0.94
Institution5 0.92 0.95 0.95 0.93 0.91 0.95 0.96
Institution6 0.94 0.96 0.97 0.95 0.94 0.97 0.98
Institution7 0.90 0.94 0.94 0.92 0.90 0.94 0.95
Institution8 0.89 0.93 0.94 0.92 0.89 0.94 0.95
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4 Broader Impact

Although our approach allowed us to develop a deep learning model with high generalization
performance that efficiently uses few labels and detects LVSD, more detailed studies are needed to
determine whether our method can be widely used for other ECG-based tasks. Based on this study,
we aim to publish a powerful ECG pretraining model that is capable of multitasking. Our goal is to
contribute to research for the social implementation of deep learning models to analyze ECGs soon.
To the best of our knowledge, our work has no potential negative impacts.
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Appendix

A Dataset Details

Table 4: Data splits used for each institution. (%) indicates the prevalence at each institution.
Institution1 Institution2 Institution3
Case Control Case Control Case Control

Train 2,160(8%) 23,992(92%) 3,003(9%) 30,270(91%) 2,718(9%) 26,337(91%)
Valid 461(8%) 5,203(92%) 526(7%) 6,616(93%) 614(10%) 5,671(90%)
Test 493(8%) 5,147(92%) 658(9%) 6,280(91%) 571(9%) 5,483(91%)

Institution4 Institution5 Institution6
Case Control Case Control Case Control

Train — — — — — —
Valid — — — — — —
Test 18,952(87%) 2,724(13%) 3,925(95%) 199(5%) 12,759(96%) 595(4%)

Institution7 Institution8
Case Control Case Control

Train — — —
Valid — — — —
Test 24,208(89%) 2,947(11%) 31,660(91%) 3,181(9%)
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B Overview of Our Experiment

Figure 2: We collected 12-lead electrocardiographic data from eight academic medical institutions
and labeled left ventricular systolic dysfunction(LVSD). LVSD was assessed by echocardiography
and defined as an ejection fraction of less than 40%. We created two datasets for training. The first
is a small dataset (Dataset1) collected at institution 1, and the second is a large dataset (Dataset2)
comprising collected from institutions 1, 2, and 3. Dataset1 was divided into Train1 and Test1, and
Dataset2 was divided into Train2 and Test2. All ECG data from Dataset1 and Dataset2 were used
separately for the self-supervised pretraining, in which the labels were not used. The Train1 or Train2
dataset was then used for the downstream task, in which a ViT-Large model was trained to detect
LVSD from 12-lead electrocardiographic data by supervised learning. In addition, ECGs from the
external institutions that were not used for training were evaluated as an external validation dataset.
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C Qualitatively Understanding of the ECG Features Learned in the
Self-Supervised Pretraining

We qualitatively assessed the validity of the ECGs reconstructed by the physician. As shown in Figure 2, the
reconstructions maintained the relationships among the major ECG components such as the P wave, QRS
wave, and T wave. In addition, there was no significant discrepancy in the information between the II, III, and
aVF leads (with information about the lower wall of the heart) and the V1, V2, V3, V4, and V5 leads (with
information about the anterior wall), which indicate the position information of the ECG.

(a) Original ECGs

(b) Masked ECGs

(c) Reconstructed ECGs

Figure 3: Example of the reconstruction process of a 12-lead ECG
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