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ABSTRACT

Neural PDE surrogates can improve on cost-accuracy tradeoffs of classical
solvers, but often generalize poorly to new initial conditions, accumulate errors
over time. To close the performance gap between training and long-term infer-
ence, we constrain neural surrogates with symmetry equivariance and physical
conservation laws as hard constraints, using novel input and output layers that
support scalar and vector fields on the staggered grids commonly used in compu-
tational fluid dynamics. We systematically investigate how these constraints af-
fect accuracy, individually and in combination, on two challenging tasks: shallow
water equations with closed boundaries and decaying incompressible turbulence.
Compared to a strong baseline, both types of constraints improve performance
consistently across autoregressive prediction steps, accuracy measures, and net-
work sizes. Symmetries are more effective but do not make physical constraints
redundant. Doubly-constrained surrogates were more accurate for the same net-
work and dataset sizes, and generalized better to initial conditions and durations
beyond the range of training data.

1 INTRODUCTION

Recently, neural networks have shown promising results in predicting the time evolution of PDE
systems, often achieving cost-accuracy tradeoffs that outperform traditional numerical methods (Li
et al., 2020; [Gupta & Brandstetter) [2022}; |Stachenfeld et al., [2021; [Takamoto et al., |2022; [Long
et al., 2019; |Um et al.| [2020; |Kochkov et al., [2021). However, obtaining accurate and stable au-
toregressive ‘rollouts’ over long durations remains notoriously difficult. Several techniques have
been proposed to address this, including physical constraints, symmetry equivariance, time-unrolled
training, specialized architectures, data augmentation, addition of input noise and generative mod-
elling (Sanchez-Gonzalez et al.| [2020; |Lippe et al.||2024; Stachenfeld et al.| 2021; Kohl et al.,2024;
Brandstetter et al.,[2022a; [Fanaskov et al.,|2023; | Bergamin et al., {2024} Sun et al., [2023} Hsieh et al.}
2019; | Tran et al., 2021; L1 et al., 2023} (Bonev et al.|[2023)). Nonetheless, the relative effectiveness of
these strategies remains largely ambiguous, and transparent, systematic comparisons remain elusive.

Here we systematically investigate the utility of symmetry constraints and physical conservation
laws, alone and in combination. Across multiple tasks, accuracy measures and scenarios, we show
a clear, reproducible and robust benefit from these constraints, and find they can be combined syn-
ergistically. In order to apply them broadly, we introduce novel input and output layers extending
these inductive biases for the first time to staggered grids.

2 BACKGROUND AND RELATED WORK

Neural PDE surrogates We aim to train neural networks to predict the time evolution of a system
of PDEs. We consider time-dependent variable fields w(t,z) € R™, forx € Q C R4, ¢t € [0, 7]
and

0

a—l: = F(t,z,w, Vw, V2w, ...) (1)
Starting from initial conditions (ICs) w(0, ) and boundary conditions (BCs) B[w]|(t,x) = 0,Vz €
011, the solution can be advanced with a fixed time step:

w(t + At,-) = Glw(t, )], 2)
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where G is an update operator. To provide training data and evaluate performance we use a reference
solution generated by a numerical solver with space- and time-discretized variable fields.

Recent studies have trained neural surrogates to approximate G (Greenfeld et al., 2019; Gupta &
Brandstetter, 2022} |List et al., [2024} Lippe et al.l 2024} |Li et al.l 2020} [Tripura & Chakraborty),
2023;Raonic et al.,|2024). The neural network can also be combined with a numerical solver, in so-
called ‘hybrid methods’ (Bar-Sinai et al.,|2019; [Tompson et al.| 2017; |[Kochkov et al., 2021} |Bukka
et al.,[2021} [Long et al.,[2019).

A major challenge remains training neural surrogates to give stable and accurate results over long
autoregressive rollouts. Several techniques have been proposed, including physical constraints, sym-
metry constraints, training with input noise, unrolled training and generative modelling. However, a
clear consensus on the relative effectiveness of these approaches remains elusive, and applying them
in various tasks is not always straightforward.

Symmetry equivariance Suppose f : w — z is an operator mapping between two multidimen-
sional variable fields w(x), z(x) defined on 2 C R?. Then for a group G of invertible transforma-
tions on R2, f is equivariant if it commutes with the actions of G on w and z. That is, there should
exist transformations 7, 7'g’ operating on w, z respectively, such that

[f07;w](w):[7;’ofw}(m), Vge G,x € (3)
When w is a scalar field, 7, 77 simply resamples it at coordinates defined by the action of G on R?
ﬁcalarw(w) _ w(g—lw) (4)

Other field types transform in more complex ways. For example, the action of a 90° rotation R on a
2D vector field both resamples the field and rotates each vector:

T wi (@), wa(@)] = [~w2(R™ @), w1 (R )] 5)
The range of possible actions is described by G’s group representations. Efficient, full-featured
software packages exist for equivariant convolutions (Cesa et al.,[2022) and self-attention (Romero
& Cordonnier;, |2020), and have proven useful in image classification (Chidester et al., [2019) and
segmentation (Veeling et al.l [2018)). Equivariance has been used to improve neural PDE surrogates
in some cases (Wang et al., [2020; [Helwig et al., 2023 |Smets et al., |2023; Huang & Greenberg,
2023} Ruhe et al., [2024). Numerical integration methods can also benefit from maintaining PDE
symmetries |[Rebelo & Valiquette| (2011)).

We restrict ourselves to discrete symmetry groups on regular grids, though some approaches for
continuous symmetries have been proposed (Weiler & Cesa, [2019} |Cesa et al., [2022). We note that
standard convolutions and self-attention with relative encoding are already equivariant to translations
(up to boundary effects).

Staggered grids Fluid dynamical systems are often simulated using staggered grids (Fig. [I] left),
in which variables such as pressure, density, divergence or velocity along each axis are represented
at different locations. This approach can avoid grid-scale numerical artifacts in numerical integra-
tion, and is common in fluid dynamics (Holl & Thuereyl 2024} |[Kochkov et al., |2021}; Jasak| 2009;
Stone et al., [2020) as well as atmospheric (Jungclaus et al.l 2022} |De Pondeca et al., 2011) and
ocean models (Korn et al.| 2022} |Madec et al.,[2023). Unfortunately, existing equivariant network
layers (Cesa et al., [2022; [Romero & Cordonnier, 2020) assume 7, can be described by a resampling
operation followed by an independent transformation at each grid point as in Equation [5] but on
staggered grids rotation and reflection do not take this form.

Physical constraints Neural surrogates have frequently been applied to physical systems, many
of which include known conservation laws. To improve accuracy, stability, and generalization ca-
pabilities, these laws can be imposed through additional loss terms (Read et al.| 2019; |Wang et al.,
2020; |Stachenfeld et al., 2021} Sorourifar et al., [2023)). Taking the strategy of physics-derived loss
terms to its ultimate limit, on arrives at unsupervised training on PDE-derived losses for discretized
(Wandel et al.| [2020; [Michelis & Katzschmann, [2022) or continuous solutions (Raissi et al., 2019)).
Alternatively, one can reparameterize network outputs to respect hard constraints (Mohan et al.,
2020; Beucler et al.| 2021} |(Chalapathi et al.| [2024; |Cranmer et al. [2020; |Greydanus et al., [2019).
Here we focus on discretized, supervised approaches, which have proven more competitive in larger
and more complex PDE systems (Takamoto et al., 2022).
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3 SYMMETRY- AND PHYSICS-CONSTRAINED NEURAL SURROGATES

In this work, we assess the separate and combined benefits of symmetries and conservation laws for
neural PDE surrogates. To achieve this, we construct specialized input layers that support equiv-
ariance on staggered grids (Fig. [7), as well as output layers that enforce both equivariance and
conservation laws. When comparing to non-equivariant networks, we replace equivariant convolu-
tions using standard convolutions with the same size and padding options, adjusting channel width
to match total parameter counts (details in Appendix [B).
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Figure 1: Symmetry- and physics-constrained neural surrogate for incompressible flow on a stag-
gered grid. A rotation-equivariant input layer maps velocities onto an unstaggered regular repre-
sentation, hidden layers employ steerable convolutions and the equivariant output layer enforces
conservation laws on mass and momentum (m + pt) as it maps to staggered velocities.

Fig. [I] demonstrates our overall framework for constructing equivariant, conservative neural sur-
rogates. As an illustrative example, we show the incompressible Navier Stokes equations, with
equivariance to translation and rotation, momentum conservation and a divergence-free condition
(equivalent to mass conservation). Input data defined on staggered grids are mapped through novel
equivariant input layers to a set of convolutional output channels defined at grid cell centers. Each
channel of internal activations is regular representations: a group of channels indexed by GEl on
which G acts by transforming each spatial field and by permuting the channels according to the
group action [Cohen & Welling| (2016)); [Cesa et al] (2022). Essentially, regular representations are
real-valued functions of the discrete symmetry group G. This formulation allows us to use the preex-
isting library escnn for all internal linear transformations between hidden layers.
Finally, we employ novel output layers to map the regular representation back to the staggered grid,
while simultaneously enforcing conservation laws as hard constraints.
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Figure 2: Action of rotation-equivariant input layer on staggered velocity fields (top left). The filter
bank is transformed by each ¢ € G to compute a G-indexed regular representation y. Rotation-
transforming inputs (bottom left) yields permuted, rotated output channels.
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Input layers We consider input data on staggered Arakawa C-grids (Fig. [I]left, Fig.[7). This grid
consists of square cells, where variable fields can be defined at cell centers (typically scalar fields
like pressure, surface height, or divergence), at the midpoints of cell interfaces (such as velocity
components) at vertices (e.g. stream functions). For an n x n 2D grid of cells, there is an (n+1) xn
grid of interfaces in the x; direction (along rows, including boundaries), and an n x (n + 1) grid of
interfaces in the x5 direction (along columns).

We designed convolutional input layers to take scalar inputs at cell centers and/or vector fields with
components defined at interfaces. Inputs at interfaces are first processed with a bank of convolutional

!Technically, channels of the regular representation are indexed by the non-translational subgroup of G.
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filters, which are each even-sized along the coordinate axis orthogonal to a single set of interfaces
and odd-sized along all other axes (Fig. [2} left). This filter bank is collectively transformed according
to each element of the symmetry group GG, while being applied to the input data. Note that, similar
to the transformation of vector fields (Eq. [5), these filter banks undergo collective transformation
by rotations and reflections, not only through resampling, but also through permutation and sign
flips (Fig. [2] right). When we rotation-transform input vector fields (Eq. [3)), this has the effect of
permuting and rotating the outputs of our input layer, as required for an equivariant mapping onto
a regular representation (fig. [2) magenta arrows). Inputs at cell centers are processed with separate,
standard equivariant convolution layers. Convolutions for both interface and center-defined input
variables produce regular representation outputs, which are then combined to compute the total input
to the network’s first hidden layer. We provide implementations of 2D input layers for translation-
rotation (p4) and translation-rotation-reflection (p4m). Further details on input layers can be found
in Appendix [C|

Output layers We designed convolutional output layers mapping from regular representations to
staggered C-grid variables (Fig. [I] center-right). As for the input layers, we use separate convo-
lutional filter banks for cell- and interface-centered variables, but now additionally support vertex-
centered outputs scalar for the purpose of enforcing physical constraints (see below). Scalar face-
centered outputs are computed using pooling layers over a regular representation (Cohen & Welling,
2016). Vector field outputs at each cell interface are computed as linear combinations of regular rep-
resentations at the surrounding two cell centers, with constraints imposed on the weights to satisfy
the equivariant transformation of vector fields (Eq. 5} details in[D)). Vertex-centered scalar outputs
are computed using even-size square filters, followed by pooling layers operating over G-indexed
channels.

Conservation laws Conservation laws for scalar quantities defined at cell centers and vectors at
cell interfaces are imposed through global mean corrections (details and alternatives in appendix
[E). As conservation of mass for incompressible flow is equivalent to a divergence free condition,
we enforce this by training the network to output a scalar stream function a at cell vertices, and
follow Wandel et al.|(2020) in defining

[att, 5t =V x [0,0, d] (6)

As the Helmholtz-Hodge decomposition of a vector field consists of curl-free and divergence-free
components, eq. [6] guarantees the learned vector field is divergence free, and that any divergence
free vector field can be represented in this way. For an n x n grid, periodically padding a to
(n+1) x (n+ 1) guarantees momentum conservation.

3.1 BASE ARCHITECTURE

In order to measure the efficacy of symmetry constraints and conservation at the cutting edge of neu-
ral PDE surrogate research, it was essential to choose a flexible base architecture with efficient train-
ing and inference that has produced highly competitive results. To this end we selected the “modern
U-net” introduced in|Gupta & Brandstetter| (2022)), which modifies the original U-net (Ronneberger
et al} |2015) for improved performance as a PDE surrogate. This architecture has shown strong re-
sults in [Kohl et al.[(2024), and a similar version performed well in |Lippe et al.|(2024). We used this
architecture without self-attention layers, which did not significantly affect our results.

3.2 TRAINING

We trained neural surrogates using an MSE loss £ = 3 ||@'*! — w'*? Hz where N is the number
of discretized PDE field values. All data fields were normalized by subtracting the mean and dividing
by the standard deviation, with common values for both components of vector fields. We trained on
8 A100 GPUs with the ADAM optimizer (Kingmal [2014), batch size 32 and initial learning rate
le-4. We employed early stopping when validation loss did not reduce for 10 epochs, and accepted
network weights with the best validation loss throughout the training process.
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4 PDE SYSTEMS

We considered two challenging 2D fluid dynamical PDEs, with the same staggered grid and sym-
metries but different variables, BCs/ICs, reference solvers and conservation laws. Full sets of con-
straints for each system and names for each combination appear in tables (I-2), while PDE parame-
ters and further numerical details appear in tables (3}4).

Table 1: Geometric and physical constraints  Table 2: Geometric and physical constraints for

for SWEs INS

Symmetries Symmetries
Conservation laws ] Bl N AN Conservation laws £ B BndN
None @ Pl/D pAID  pAm/D None o pL/O P4/ pam/@
Mass M pl/M  pa/M  pam/M Momentum p% plipii  pa/pi  pam/pd

Mass/moment. M+p% pLl/M+pl pa/M+pii padm/M+pi

4.1 CLOSED SHALLOW WATER SYSTEM

The shallow water equations (SWEs) are widely used to describe a quasi-static motion in a homo-
geneous incompressible fluid with a free surface. We consider nonlinear SWEs in momentum- and
mass conservative form on domain 2 with ‘closed’ Dirichlet BCs (Song et al.,[2018)):

o _ o Ll - 2 O _
i CDhu\u| gV({+ apV-u; 5 V- (hu) on {2 @)
u=0 on 0f) ®)

where ( is fluid surface elevation, u = [u, v] is the velocity field, d and h respectively represent the
undisturbed- and disturbed fluid depth (so that &~ = d + {) and OS2 is a closed domain boundary. ay,
is the horizontal turbulent momentum exchange coefficient, C'p is the bottom drag coefficient and
g is gravitational acceleration. SWE simulations exhibit travelling waves that reflect from domain
boundaries, temporarily increasing in height as they self-collide. This system is fundamentally more
challenging than previously proposed SWE-based benchmarks with open (Takamoto et al., 2022} or
periodic BCs (Gupta & Brandstetter,2022)), due to the combination of self-interfering wave patterns,
incompressibility and altered dynamics at pixels near the domain boundaries.

Numerical reference solution Closed BCs and incompressibility lead to stiff dynamics, so ex-
plicit solvers are inefficient. Instead, we generate data using a semi-implicit scheme (Backhaus|
1983)) that represents ¢ and [u,v] on a staggered Arakawa C-grid (Arakawa, [1977) and solves a
sparse linear system at each time step At = 300s.

Grids are 100 x 100, 100 x 99, and 99 x 100 respectively for {, u, and v. We trained on 50
simulations spanning 50 h (600 time steps) each. ICs were ( = 0 except for a 0.1 m high square-
shaped elevation, and [u, v] = 0. The square had side length uniformly distributed from 2-28 grid
cells and random position. Simulations in Fortran required 67 seconds on the CPU. Testing and
validation data included 10 simulations. Surrogates used the same time step as the solver.

Symmetries and conservation laws The shallow water system in Egs. is equivariant to ro-
tations and reflections. Since boundary effects interfere with translation equivariance, we provide
a boundary mask as an additional input channel. These symmetries are illustrated and empirically
verified in Fig. [7| The only conserved quantity for SWE is mass (defined as Az2h times fluid den-
sity, so that the mean of ( is also conserved). Momentum is not conserved due to reflection of waves
from the closed boundaries.

4.2 DECAYING TURBULENCE

The incompressible Navier—Stokes equations (INS) describe momentum balance for incompressible
Newtonian fluids. Our 2D version relates velocities u = [u, v] to pressure p:
Jou

__Vr 2. R
E-ﬁ-(u Viu = ; + puVeu; V-u=0 )
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where p fluid density and p is kinematic viscosity. Here we consider the ‘decaying turbulence’ sce-
nario introduced by [Kochkov et al.|(2021)). The velocity field is initialized as filtered Gaussian noise
containing high spatial frequencies. Predicting the evolution of the velocity field is challenging,
since eddy size and Reynolds number change over time as structures in the flow field coalesce, and
the velocity field becomes smoother and mroe uniform over time.

Numerical reference solution We solve eq. [9] with C-grid staggering of velocities, using
jax—-cfd (Kochkov et al., 2021} Dresdner et al., [2022). We follow the data generation setup of
Kochkov et al|(2021) and Stachenfeld et al.|(2021)). The solver used a grid of 576 x 576 cells and
a 44 ms time step over 224 seconds. Training data were coarsened to a time step of 0.84 s, and
resolution was reduced to 48 x 48 (Stachenfeld et al., |2021)) using face-averaging to conserve mo-
mentum and the divergence-free condition. The solver used a standard pressure projection approach,
so that p'*! is computed along with ‘"' along with i, and p? is discarded. We use a burn-in of
148 coarsened steps, leaving 120 steps for training. We trained on 100 ICs consisting of filtered
Gaussian noise with peak spectral density at wavenumber 10 (that is, 10 cycles across the spatial
domain). We used 10 initial conditions for testing and validation.

Symmetries and conservation laws INS in Equation [9] are equivariant to translations, rotations
and reflections, as illustrated and empirically verified in Figure 0] Conserved quantities include
momentum (equivalent to a constant mean for each velocity component, since p is constant), and
mass (manifested here as the divergence-free condition on the velocity field).

5 RESULTS

5.1 CLOSED SHALLOW WATER SYSTEM

We first trained and evaluated neural surrogates for the SWE system. For this task, we followed a
hybrid learning strategy, based on the observation that the semiimplicit numerical integration scheme
calculates ¢**! slowly with an iterative solver, but then calculates [u!*!, vt *1] given (*T! quickly

and trivially through a mathematical formula. We therefore trained surrogates to predict only Zt“,
and calculated [@*"!,9'*!] as in the numerical solver (Appendix [G). Keeping parameter counts
constant, we compared networks trained equivariant to 3 symmetry groups: pl (translation only), p4
(translation-rotation) and p4m (translation-rotation-reflection). We also compared mass conserving
networks (m) to those without physical constraints (&). Table [1] lists all constraint combinations
used for training, which took 0.5 h for non-equivariant networks and 2h for equivariant networks on
an A100 GPU.

Figure [3p compares autoregressive rollouts from unconstrained (p1/&) and maximally constrained
networks (p4m/M). p4m/M maintained accurate results for a much greater time interval, and in this
case was visually indistinguishable from the reference solution throughout the simulation (results
for all networks are shown in . Over 20 random held-out ICs in this test, pAm/M exhibited
lower normalized RMSE values and high correlations for predicted ¢ values than other networks
(Figure [3p-c)). We also compared to unconstrained networks trained with input noise (plm/& + e,
details in[T4)), which improved long-rollout performance as previously proposed (Stachenfeld et al.|
2021} [Lippe et al., |2024), but was not as effective as the combination of symmetry constraints and
conservation laws. Compared to other networks, p4m/M was able to train for more epochs before
early stopping occurred, and achieved a validation lower loss (Fig. [3{). It also achieved lower values
over a greater fraction of held-out ICs (Fig. [3¢), maintained energy conservation (which was not
constrained by any archicture) for longer (Fig. |[3f) and stayed correlated to the reference solution for
longer (Fig. [3g). Overall, we found that symmetry constraints were more effective than conservation
laws, but that the benefits provided by each combined synergistically, rather than redundantly.

5.2 DECAYING TURBULENCE

We next trained and evaluated neural surrogates for INS. Here we used the velocity fields [u, v]
as both inputs and outputs. As for SWEs, with consider pl, p4 and p4m equivariance, but now
considered 3 levels of physical constraints: unconstrained (&) conservation of momentum (pu) and
conservation of both momentum and mass (m + p). Table (2) lists all constraint combinations used
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Figure 3: p4Am/M (symmetry+physics constraints) outperforms other networks with similar param-
eter counts on SWE. (a) Reference surface disturbance ¢ with predictions from p1/& and p4m/M.
(b-c) Accuracy over 50h rollouts, with standard error of the mean over 20 ICs. (d) Training loss
over iterations. (e) Histogram of E.NRMSE over 20 ICs. (f) Violation of mass conservation for all
methods (black line shows reference simulation). (g) High correlation times for each model.

for training, which took 0.4 h for nonequivariant networks and 1.4 h for equivariant networks on an
A100 GPU.
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field’s features for each wavenumber k& (number of cycles across the domain). (f-g) Comparison
of the energy spectrum from all methods to the ground truth. Both the velocity and energy spectra
p4m/M+pii align best with the reference. Spectra are scaled by k°.

Figure (@ a) compares autoregressive rollouts from unconstrained (p1/&) and maximally constrained
networks (p4m/M+pi). As for the SWEs, we observed improvements to accuracy and stability of
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INS surrogates for both types of constraints (fig. @p-c), and best results for maximally constrained
networks, which also outperformed networks trained with the same input noise used for this task
in [Stachenfeld et al.| (2021). Unconstrained networks were particularly susceptible to numerical
instability in this task (for all networks’ rollouts, see fig. [[6HT7).

To evaluate the performance of neural surrogates beyond the time at which their predictions decor-
relate from the reference solution, we followed previous studies (Kochkov et al., 2021} [Lippe et al.]
[2024}, [Stachenfeld et al [2021) in further comparing the power spectra of predicted velocity fields,
and of energy fields ;|u|*, to those of the reference solver. Even after average correlation with
the reference solution reached 0, we found that p4Am/M+pu networks matched the spectra of the
reference solver far better than all other methods, consistently across multiple rollout times and es-
pecially at the highest spatial frequencies (fig. fd-g, additional spectra in fig. [I8). We also trained
p4m/M+pu networks with input noise, resulting in lower accuracy but excellent long-term numeri-
cal stability (fig. [T9).

5.3 GENERALIZATION

We next evaluated how physical and symmetry constraints affect generalization performance of
neural surrogates to ICs outside their training sets.
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Figure 5: Generalization beyond training data. (a) SWE rollouts from pl/& p4m/M on L-shaped
ICs. (b-c) Accuracy of each network over six generalization tests (appdendix [H.3). (d) INS rollouts
from p1/@ and p4m/M+pu on ICs with peak wavenumber of 8. (e-f) Velocity- and energy spectra

for INS at ¢t = 99.7 s, averaged over 10 ICs.

Closed Shallow Water System We tested on ICs defined as a sum of two rectangular elevations
0.1 m in height, with randomly varying location and shape (details in [T3). Fig. [3}a shows an
example in which these rectangles have combined to form an ‘L’ shape. As previously, we found the
maximally constrained model p4m/M to outperform alternatives with equal parameter counts (Fig.
[3p-c). Additional generalization results are show in Figs. 2T}22]

Decaying Turbulence We tested surrogates on ICs with peak wavenumber changed from 10 to 8
or 6. p4m/M+p rollouts more closely matched the reference solver (Fig. [5H) and its spectra (Fig.
[3k-f). Additional generalization results are shown in Fig. 24]
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5.4 EFFECTS OF NETWORK AND DATASET SIZE

We further investigated how the enhancement of neural INS surrogates by symmetry physical con-
straints depends on the size of the network and dataset. We trained p1/& and p4m/M+pu networks
with 0.1M, 2M and and 8.5M parameters on the same dataset (100 simulations). Evaluating pre-
dictions at 4.2 and 12.6 s, we observed lower errors and high correlations for p4m/M+pu at both
times and all three network sizes. The relative improvement of brought about by p4m/M+pu over
pl/@ was greatest for smaller networks and for longer forecast horizons, and overall performance
was best for larger networks.

Training 0.1M-parameter p1/& and p4m/M+pu networks on datasets of 100, 400, and 760 simula-
tions showed that constraints enhanced performance robustly across dataset size (Fig. [6c-d). Rela-
tive improvements were greater on larger datasets and longer rollouts. Additional results regarding
network and dataset size, including spectra, are shown in fig. 26|

W —
%) 3 ‘ ‘ | i ‘ (u/J) | ‘ ‘ | P i2.65
= = = } .pam/M+pﬂ'
o SY ‘ o | t=42s
zZ pd pam/M+pu
0 0 O 0 t =12.6s
0.1M 2M 8.5M 0.1M 2M 8.5M 100 400 760 100 400 760
Network size Network size Training data size Training data size

Figure 6: Accuracy of symmetry- and physics-constrained INS models across data and network
sizes, at t =4.2 s and 12.6 s. . (a-b) NRMSE-u and p(4,u) vs. network size for pl/@ and
p4m/M+pi. (c-d) NRMSE-u and p(i, u) for p1/@ and pAm/M+p vs. training datasets size.

6 DISCUSSION

We enforced hard constraints on symmetries and conservation laws for neural PDE surrogates. We
extended the applicability of previous techniques to c-grids, and systematically tested performance
across tasks and constraints. Symmetries were more effective, but conservation laws were not re-
dundant. Double constraints best matched reference simulations, individually and statistically.

Limitations & Future work For large enough networks and datasets, constraints might be learned
from data (Stachenfeld et al., [2021; Watt-Meyer et al., [2023)), but our results show the gap between
constrained and unconstrained surrogates grows with rollout length even for large networks and
datasets. Thus, constraints are likely relevant for longer time scales, e.g. for seasonal forecasts and
climate projections (Kochkov et al.| [2024; Watt-Meyer et al., 2023} [Nguyen et al., 2023).

Our understanding of how these constraints limit error accumulation remains rudimentary. While
we lack a rigorous theory, empirical investigations of how error accumulation correlates with con-
straint violations over time and ICs could provide some clarity. It also remains unclear how these
improvements might transfer to other PDE types, such as hyperbolic equations.

We considered mass and momentum conservation, and symmetries of square 2D grids. Future work
could pursue energy conservation (Cranmer et al.,2020)), continuous symmetry groups (Cohen et al.,
2018} [Esteves et al., 2018)), alternative grids and meshes (Cohen et al., [2019; |De Haan et al., |2020),
and other architectures and techniques, such as dilated Resnets, unrolled training, invariant measure
learning, transformers and denoising diffusions (Takamoto et al., |2022; |Brandstetter et al., [2022bj
Schiff et al.| [2024 [List et al., 2024} |Li et al., [2020; |Lippe et al., 2024). Nonetheless, we believe that
our results clearly demonstrate the potential of these inductive biases in improving rollout accuracy
and extensiib to longer time scales.
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A THE SYMMETRIES OF SWES AND INE ON C-GRID STAGGERING

A.1 GRID DISCRETIZATIONS

Here we show C-grid staggering for SWEs and INS.

a C-grid staggering of SWEs b C-grid staggering of INSs
< V11 V12 V11 V12
y a3

ui3

a23

U21
Uu23

(31 (32 (33 asi @32 ass

Figure 7: C-grid staggering for SWEs and INS.
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The symmetry transformation of the numerical solver S for SWEs can be described as:
flip: S¢(F(C), F(u), —F(v)) = F(5¢(¢, u,v)) (10)
rotation : S¢(R((), —R(v), R(u)) = R(S¢(¢,u,v)) (11)
flip — rotation :  S¢(R(F(()), R(F(v)), R(F(v))) = R(F(S¢(¢,u,v))) (12)

where S¢ denotes numerically solving for ¢ in the next time step, F' is a flipping operator, and R is
rotation.

¢ U ) Sc(Cu,v) F(S¢(¢,u,v))
Flip == I numerical
i= 1 solver
[ F(u) —F(v) S¢(F(Q), F(u), —F(v))
= “ . numlencal
solver,
- o — > identical
Rotation u v ScC ) RSclew)
- j ||| numerical mtatlon
i= 1 solver
R(Q) ~R(v) R(u) Se(R(C), —
P oo nun'llencal
! T, identical
Rotationflip ¢ U () Sc(C, u,v) F(5¢(¢, u,v)))
= o numerical flip
- ! !! solver rotatlon
R(F(C)) R(F(v)) R(F(u)) R(F(Q), R(F
, numerical
—— U solver
: | solver,, identical

Figure 8: Empirical validation of the symmetries of the numerical SWE solver. Three transforma-
tions, flip, rotation, and flip-rotation are shown. These plots correspond to Eqs. [T0H12]
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Next, the flip, rotation, and flip-rotation symmetries of of INSs can be described as follows:

[ Su(=F(u), F(v)) = —F(Sy(u,v))
flip : { Sy(—F(u), F(v)) = F(S, (u,v)) (13)
. | Su(R(v),—R(u)) = R(S,(u,v)
rotation { Su(R(v), —R(u)) = R(—Su(u,v)) (14)
ip — rotation : Su(R(F(v), —R(=F(u))) = R(F(Sy(u,v)))
flip — rotat { Sy (R(F(v)), —R(~F(u))) = —R(~F(Su(u, v))) (15)

F(Sy(u, v))

numerical
solver

Identical

Rotation

numerical
solver

e

numerical

solver . E
g

Identical

numerical
solver

: ’ g

Identical

Figure 9: Empirical validation of the symmetries of the numerical INS solver. We show the symme-
tries of flip, rotation, flip-rotation for INS.

B PADDING OPTIONS

In some numerical solvers, although a C-grid staggering is used, the software produces output of
the same size for each component of the vector field, requiring special attention to the chosen con-
ventions for padding and boundary representation in the outputs. In this special case, a padding
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technique is required to restore the vector field to the standard C-grid staggering. For example, peri-
odic padding can be applied for the periodic BCs. It is important to note that the physical properties
of the data, such as the divergence in the incompressible Navier—Stokes equations and the BCs, must
remain unchanged when applying this correction.

C GROUP EQUIVARIANT INPUT LAYERS

In this section, we write out explicit formulas for the equivariant input layers, and prove that they
satisfy equivariance. For brevity we include proofs only for p4, but extension to p4m is trivial.

C.1 GROUP EQUIVARIANT INPUT LAYER FOR SWES

Since our input data for shallow water equations (SWEs) uses C-grid staggering, as illustrated in
Figure[/] we need to construct an input layer that matches the C-grid staggering while maintaining
equivariance. On the C-grid, the variables u and v have different sizes. Therefore, we select two
rectangular filters, W, . and W}, ., for v and v, where the - symbol denotes all values along a
glven axis. The filter W is an Cin >< co x K x 8 array, where cj, is the number of input channels,
co 1s the batch size, and K x S represents the filter size. For instance, the sizes are 4 x 3 for u and
3 x 4 for v. When performing group transformations in the input layer, we need to swap the filters
for u and v to match the sizes of the input variables.

We first show an input layer of group p4 transformation which has four channels obtained from 4
different rotated filters. The detail input layer is written as following 4 equations:

g, —1 . —1 &l —1

in Cin in

yjl"o’.)' - (W'j(’i’-’. *Ci’.’.> Z (Wjﬂ;l 5" *uia'v') + Z (W;)l7 y *’Ui,',') + b]) (16)
1=0 =0 =0
cfnfl et —1
o= S (R0 ea ) S (RO )
o = (17)
¢, —1
+ Z (R?O(go (W_]uz )*UL, s ) + ij
=0
Cfn_l ci—1
yjl,Q,, = Z (eroglo ( ) Cz, s ) + Z <—Rr108[0 (VVJMZ )*uu 7)
T = (18)
+ 3 (FREC W) w ) + by,
=0
Z (Rr207too Fises D * G ) Z (REOZOO(Wv )*Uz)
o = (19)

v
Cin—

+ Z ( R?QZOO '72'7")*1}1'7'7') +b]

where W]-CZ- .. is afilter for ¢ and it has a square size, for example, 4 x 4. b is a cyy-element vector.
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Next, we show an input layer for p4m using the same logic as the p4 input layer. It has 8 different
group transformations including flip and rotation. The detail input layer is written as following
equations:

cfn -1 ¢ —1 cin—1
Voo = 20 (Wi w G )+ D0 W wwi )+ 30 (Wi xvi ) +b, 0)
1=0 1=0 =0
i1 el
yjl'vlv'a' = Z (FﬂiP(ngi,w)*Cim') + : (Fﬂip(Wﬁim)*ui,w)
2:(1)1 ) 1=0 (21)
+ Z (FﬂiP(W;ii,~,<)*Ui,‘,')+ij
=0
S - cl =
Uon = o (BN OVE )x ) + D0 (RE W7 ) v )
- = (22)
¢l —1
+ Y (R?OQ"(W;;,,,)*UL.,.) by,
i=0
an_l C;,"n_l
Wa = D (P W5 )G+ 2 (Fug (R (W) )
Z:?) . =0 (23)
0 (Pg (R W 0) i) + by,
=0
Cfni C?n_l
Ua = D0 (RS OV ) x 6]+ 20 (BT ) xus)
=0 =0 (24)
ey, —1
+ 3 (eroinO(W;ii,-,-)*’Uim') +bj,
=0
cfnfl ci —1
Uhsee = D (BB (WS )% G ) + D (BB (W), ) ws.)
l:(i ) 1=0 (25)
+ ) (FﬂiP(erosioo(W;’ji,~,»))*Uim') + by,
=0
e, —1 et —1
Uion = D (BAT WS DxG) + 30 (B s )
=0 =0 (26)
¢, —1
> (BRI ) R ) + b,
=0
cf,—1 et =1
Yjg.. = Z (Fmp(R?oZO (ch,i,-,~))*<i,w) + Z (Fﬂip(RrQJtO (Wﬁi,»,~))*uiw,‘>
7,:(3/ ) 1=0 (27)
0 (P (REY (W, )% i) + b,
=0

where the filters W}, . and W},  are rectangles and the filter sz is a square.
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C.2 GROUP EQUIVARIANCE OF P4 INPUT LAYER IN SWES

Here we prove equivariance to the rotation symmetry of SWEs S¢(R(C), —R(v),R(u)) =
R(S¢(¢,u,v)). To prove the equivariance of our p4 input layer, we need to transform our input
from ¢;. ., ui. ., vi.. to RO (&), —RY (vi....), and R (u;,..). Then, using the p4 input layer
shown in Equations (I6HT9), the transformed four layers i become:

Cfn_l C;'Ln_l
g},o,y. = Z (Wﬁi,.7.*R?£ (Q)) + Z (Wﬁi,-,A*_R?o? (%))
T i=0 o8
30 (W % R (i) + by,
i=0
C§n71 C;L—l
gjl',l’.7. = Z (R?o(z (Wﬁqﬁ,~,~)*Rr900t (QH)) + Z (_R?()Ot (W;ji,,-)*_R?OO[ (’Ui’_’.))
z:c(z B 1=0 (29)
3 (R W) B (i, )) + by,
i=0
65”71 C?n71
gjl‘.Q,.’. = Z (erogio (WJ$17.7.)*R?0(: (Q’.’.)) + Z (_er()StO (Wﬁi,.’.)*—R?O(z (vi,.’.))
1:63 B 1=0 (30)
B3 (RO« R i) +
i=0
1 .
o= o (RS ) * RS (G)) + D0 (REC (W) — R (i)
z':c(i 1 i=0 an
+ (—REJ°° (W) * RS (uiﬁ.)) +b;.
i=0
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Next, we need to rotate 90 degree for the first layer output in Equations (I6)-(I9) and then put
rotation into the convolution. We obtain the following equations:

cfnfl cin—1
R (ko) —R2 ( S (W) S )
c? 711‘:0 - 2
+ (W;i7,7_*v%,)+b]> =71,
=0
cg—1 et =1
R?o(g (yjl',17-,-) :Rf()o? ( Z (RI?OOI (ch,i,-,-)*gi,'v') + Z (_R?O(z (Wj?ji,'f)*ui"")
c? —IZZO = (33)
+ (R?o? (W) % vis, ) + ba) = Tja.,
=0
cfn—1 el —1
B (y)s...) =R ( (R W ) w G )+ D0 (RIS (W) wu)
c? —114:0 = (34)
+ 3 (R ) w ) + bj) = s,
=0
cg"—l Cin—1
B (y)..) =Fom ( S (REC WS )G )+ > (RE W) v )
i=0 =0 (35)

+ > (~REC W)« +bj) — ...
0

We find these equations satisfy the formula:
R (W (Gt v3,,)) = 31 (Rigd (Gir)s —Rogy (vi), Rogy (wi, ) (36)

This form precisely matches the rotation symmetry for SWEs in Equation(IT). Thus, we have proved
the group equivariant of p4 input layer in shallow water equations.

C.3 GROUP EQUIVARIANT INPUT LAYER FOR INS

The input data of incompressible Navier—Stokes equations is the velocity w and v, which have dif-
ferent sizes on the C-grid staggering. Thus, we also need two rectangle filters W, ~and W7,  for
the velocity field. According to the symmetries of rotation of INS in Equation , we first build a
p4 input layer for INS as following equations:

cin—1 Cin—1

Vioe. = D (Wi xus )+ > (Wi xvi.) +bj, (37
i=0 1=0
et —1 -1

Ui = 0 (R OV ) wui )+ 30 (ZRW (W) wvi ) + by, (38)
=0 =0
cin—1 cl,—1

Yoo = 2 (FRRCOV xui )+ Y (FREC OV ) wv) b (39)
=0 1=0
et ~1 ¢, -1

y]13,' = (7Rr207to (W]?Jz )*u2, )+ (REOZO (W]uz ) Ui, >+bJ (40)
=0 1=0



Under review as a conference paper at ICLR 2025

Next, based on the symmetries of flip-rotation of INS in Equation (T3), we introduce a p4m of input
layer as following equations:

C};n_l C;-J"—l

Vo= D W v+ Y (Wi svi) +b;, (1)
1=0 =0
C?n_l Cln_l

Y. = (Fuip (W) x i) + > (Fuip(W)i.) * i) + by, (42)
i=0 =0
¢ —1 ¢l —1

Yoo = O (B W wuin )+ 0 (R (W) *vi ) + by, (43)
i=0 =0
cip—1 ¢y, —1

Ui, = (Fﬂip( rot (Wj?ji,'y))*uirr) + Y (FﬂiP(R?OE: (W, ))*Uz'f,) +bj, (44
1=0 =0
Cin—1 cl,—1

Yhaee = O (R Jww )+ 30 (RS (W) *vis,) + by, (45)
1=0 1=0
Cin—1 cl,—1

Yo = o (PR W D wue )+ D (PR (W), )) % vi ) + by, (46)
=0 =0
C;Ln—l c;’n_l

Yoo = O (REC W dww, )+ >0 (RE (W) * i) + by, @)
=0 i=0
C’,‘;n—l C'Ii)n_l

Yoo = > (PupRE Wi D v ) + 3 (Fup(BEY (W 0) % v, ) + by, (48)
i=0 =0

C.4 EMPIRICAL VALIDATION OF EQUIVARIANCE FOR SWE AND INS INPUT LAYERS

In this section, we plot an example showing the action of group equivariant input layers for SWEs
and INS. First, we show the plot p4 and p4m group equivariant input layer of SWEs in fig.

¢ m ) average(p4) R(average(p4))
Rotation
= o “ ML
- !“ first Iayer rotatlon
R(¢) —R(v) R(u) average(p4

average(p4m) (F(average(p4m)))

Rotation-flip ML

A y ‘I first Iayer filp

rotatlon

== " I st Iayer
|
Identical
-

R(F(Q) R(F(v)) R(F(u))

ML
= o ' i first Iayer

Figure 10: An example plot of input layer for the group p4 and p4m equivariant in shallow water
equations. It clearly shows that our input layers are equivariant.

average(pdm)

Identical
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Next, we plot an example of p4 and p4m group equivariant for INS in fig. [T} We can find that our
p4 and p4m input layers are equivariant.

average(p4) R(average(p4))

Rotation

rotation
—
Id

average(p4) T

average(p4m) R(F (average(p4m)))
Rotation-flip
flip
rotation
—_—>

average(pdm)

Identical

Figure 11: The group equivariant plots for the p4 and p4m input layers in incompressible
Navier—Stokes equations.

D GROUP EQUIVARIANT OUTPUT VECTOR LAYER WITH C-GRID
STAGGERING

After the modern U-Net, we need to select a feature field for the output based on the physical
variables. For a scalar field, we can directly use r2_act.trivial_repr in escnn. How-
ever, for a vector field on C-grid staggering, we cannot use the vector field in escnn, referred to
as r2_act.irrep (1), because it is not on the C-grid and does not satisfy the symmetry of the
discretized PDEs. Therefore, we build vector layers for p4 and p4m:

P4 Uir0.5,5 = Pit1,4,0 — Dij,1; Vi j+0.5 = Dij+1,2 — Dij.3 (49)
Ui c = m ot oy
p4m : i40.5,5 = Dit1,5,1 = Pi,j,3 T Pit+1,5,56 — Pi,j,7 (50)
Vi j+0.5 = Di,j+1,2 — Di,j.4 + Pij+1,6 — Dij.0

where p; ; 1, is on the regular representations. ¢ and j express the position index and £ is the group
transformation. ¢ + 0.5 and j + 0.5 are position on C-grids for v and v. Thus, these layers not only
satisfy the group equivariant but also back to C-grid. An example of vector layer for P4 is shown in
Figure (T)) as red box.

D.1 PROOF OF EQUIVARIANCE BY CONSTRUCTION FOR VECTOR OUTPUT LAYERS

In Equations @9H50), we show the vector output layers from p4 and p4m regular representation.
Here, we show a process how we these layers were derived from the constraints we wish to prove.

Output vector from p4 regular representation First, we give a proof of the equivariance for our
vector output layer for p4. For given input v and v, in the regular representation layer, we have
four channels related to p4 group transformation p;11 .0, Pi+1,5,1> Pi+1,5,2, and p; 1 ;3. When we
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transform the input to R(v), —R(u), the four regular representations become to pit1,j,0, Pi+1,5,1
Di+1,5,2 and p;y1 ; 3. There exits a relation between them as:

R(pit1,5,0) = Dit1,5,3 (51)
R(pit1,4,1) = Dit1,5,0 (52)
R(piy1,5,2) = Pit1,41 (53)
R(piv1,53) = Piv1.4.2 (54)

This relation of p4 is also show in Figure(T)) of hidden layers. Now we assume an equivariant output
on c-grids staggering written as:

3 3
Uit055 = D CkPit1 gk — Y dkPijik (55)
k=0 k=0
3 3
Vi 105 = Y ekDijik — O fiPijk (56)
k=0 k=0
where ¢y, dy, ey, and fj, are coefficients. We can write the rotated output as:
3 3
Uiv0.55 = D CkPist gk — Y dkbijk (57
k=0 k=0
3 3
V55405 = Zekf)i,jﬂ,k - Z frDijk (58)
k=0 k=0

According to the symmetry of p4 in Equation(I4) for the vector field on c-grids, we can write

Uiv05,; = R(vij+05); Vij+os = R(—uit05,,). Combining all equations 58) into the
symmetry constraint. We obtain the relations for the coefficients:

c1=dy=e3=f4 (59)
ca=d3z=es=f1 (60)
c3=dy=e1 = fo (61)
cg =dy =ex = f3 (62)

We choose a simple case ¢y = 1 and co = ¢3 = ¢4 = 0 in this work. Therefore, we obtain an
equivariant vector output from p4 regular representation can be written as

Ui+0.5,5 = Pi+1,5,1 — Di,j,3 (63)
Vi, j+0.5 = Pi,j+1,2 — Di,j,4 (64)
Output vector from p4m regular representation The p4m regular representation layer has 8

channels denoted as p;;1 jr where k = 0,--- ,7. We also employ the same form as the p4 to build
the vector output layer:

7 7
Uit0.5,5 = Z CkDit1,5,k — Z dkpi ik (65)
k=0 k=0
7 7
Vij405 = D CkPijirk — Y [rPijk (66)
k=0 k=0
where the coefficients are cg, di, e, fr, where k = 0, - - - | 7. Taking the same way of analysis like
to the p4, we obtain the relation for each coefficient as following:
ca=dy=e3=fa=cs=ds =e7r=fo (67)
ce=dz=es=fi=ce=dr=e=f5 (68)
03:d4:61:f2:C7:d0:65:f6 (69)
ca=di=ex=fy=co=ds =es = f7 (70)

Here, we take a simple case ¢; = 1 and co = c3 = ¢4 = 0. Thus, the vector output layers on c-grids
for u and v from p4m regular representation are written as:

Uit 0.5,§ = Pit1,4,1 — Pij,3 T Pit1,5,5 — Dij,7 (71)
Vi j40.5 = Di,j+1,2 — Dij,4 T Dij+1,6 — Pi,j,0- (72)
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E PHYSICAL CONSTRAINTS EMBEDDED INTO NETWORKS

For the SWE, the mass is a conserved variable. To enforce mass conservation during training and
inference, we subtract the mean of the tendency update from iteself:

¢t = ¢t + d¢ — mean(d() (73)

To conserve momentum for the INS at training/inference, we follow a similar approach to SWE
training. We introduce another physical constraint by learning a scalar potential a in Equation [6]
using the neural network and update the velocity fields by taking the curl of that scalar field. Both
constraints can be written as following:

Momentum — conser. : u'*t! = u! + du — mean(du); v'*! =o' + dv — mean(dv) (74)

so1. o t+l ot da. i+l _ .t da
Learn — scalar — potential : v =u 5y U =v'+ 5 . (75)

These physical constraint layers are added following the output layers. An example implementation
for INS can be found in the blue box in Figure ().

Alternatively, we might have learned fluxes at the C-grid interfaces for conserved quantities at cell
centers, or fluxes at the vertices for conserved quantities at the interfaces, similar to a finite volume
solver. This would have the advantage of being locally computed, allowing easier generalization
of domain size after training. We leave this avenue of exploration to future work, anticipating that
further improvements in accuracy might be obtained.
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F SIMULATION PARAMETERS

In this section, we show the detail parameters used for solving the shallow water equations and
incompressible Navier—Stokes equations for the data generation.

Table 3: Simulation parameters used for SWEs

Parameters Explanation Value
LxL simulation domain 1000 x 1000 (Km)

d undisturbed water depth 100 (m)

Chb bottom drag coefficient 1.0e — 3
g acceleration due to gravity 9.81 (m/s?)
Az space step 10 (Km)

At time step 300 (s)

Wimp implicit weighting 0.5

Table 4: Simulation parameters used for INS

Parameters Explanation Value
LxL simulation domain 21 X 21w
P density 1
I viscosity le—3
T simulation time 224.34 s
Atgolver the time step of numerical solver ~ 0.00436 s
M x M the grids of numerical solver 576 x 576
AZgover the space step of numerical solver 0.0109
At the time step of ML model 0.8375
mXxXm the grids of ML model 48 x 48
Ay the space step of ML solver 0.1308

G A HYBRID METHOD FOR THE PREDICTION OF SHALLOW WATER SYSTEM

Fig. [12] shows a hybrid method used to predict the solution of shallow water system. In our neural
integrator, we only have one output ¢ and we have three inputs u, v and (. Thus, we need a small
numerical solver to calculate u’ and v* from a given (?. These calculations are made only for au-
toregressive rollouts with trained networks, and not during training (Backhaus||1983). The formulas
for the velocity at the new time step can be written as

n . 8Cn+1
um = — Atgwimpw (76)
. 8cn+1
o = — AtgwimpTy 77
where u* and v* are written as
* n 1 n|,n 8C” 2. n
w=u" — AthEu [u™| — Atg(1 — wimp)% + AtapVau (78)
* n 1 ni,n aCn 2..n
v* =" — AtCDEU [v™] — Atg(1l — wimp)a—y + AtapVev (79)
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condition integrator solver

SR e e —
Initial |, 0| — Neural >| ¢t Numerical
0

Figure 12: A structure of hybrid method for the prediction of shallow water system. Due to only
one output ¢, we need a small numerical solver to calculate u! and v?.

H THE DETAILED RESULTS

H.1 THE DETAILS FOR CLOSED BOUNDARY SHALLOW WATER SYSTEM

Figure [13|presents the predictions on the surface elevations ¢ for additional time steps and models.
This example is presented in Figure(3) of the main text.
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Figure 13: An example of rollout predictions on ( from all methods for the SWE at different time
steps. The top row shows the ground truth as a reference. It shows that pAm/M has the best long
rollout accuracy.

We compare our best symmetry-physics-constrained model, p4m/M, with its noisy variant, where
Gaussian noise with a zero mean and a standard deviation of 0.0001, N'(u = 0,0 = 0.0001) is
added during training. We find that training with input noise achieves long rollouts but with lower
accuracy than the noise-free model. An example of the noisy approach’s performance is shown
in Figure (I3). Predictions from the noisy model are less accurate, even at the early stages of the
rollout.

Furthermore, the mass, momentum, and total energy for the shallow water equations are plotted over
all tested methods over the course of a 50-hour period and presented in Figure[I3] In the context of
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5
o a 1.0 b| |— reference
L = pl/o
g tj — pl/@+€
o = —_ p4dm/M
z — p4m/M+¢€
0 = 0.2
t(h) 50 0 t(h) 50

Figure 14: A comparison of predictions from methods that include noise during training, p1/& + ¢
and p4m/M+¢, with the no-noise approaches, pl/@ and p4m/M, is presented using the metrics
NRMSE-¢ and p(,¢). The NRMSE-¢ metric shows that p4m/M+-¢ maintains a relatively lower
error over a longer time period compared to the other methods.

evolutionary processes, the mass, momentum, and total energy remain constant, as illustrated in the
reference by the black curve. The pAm/M model demonstrates superior performance in maintaining
mass conversion over extended periods. In terms of both momentum and total energy, the p4m/M
model also demonstrates superior performance in comparison to all other models.

1.000 405 6 = 1944 100 -
s S| / —ref, —pa/o
& € c plL/® — pa/M
o I (3] pL/M — pam/Q®
= g = — PL/D+E —— PAM/M
S E — ENO/® drnet/o
0.989 T 0 0t o0 MM o

Figure 15: The mass, momentum, and total energy of the shallow water equations for all tested
models over the course of 50 hours are presented in the Figure. Our most effective model, p4m/M,
demonstrates superior performance in maintaining the conversion of mass, momentum, and energy
in comparison to other methods.
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H.2 THE DETAILS FOR DECAYING TURBULENCE

Figure [I6] and [T7] presents the predictions on the velocity « and v over additional time steps and
models,

0.8s 10.1s 19.3s 28.5s 37.7s 46.9s 56.1s 65.3s 74.5s 83.8s 93.0s 99.7s

ground
truth

pL/®

—

—

pa/® pl/D+E pl/M+pii pl/pi

pa/pi

am/@ pa/M+pi

pii Pam/pi p

p4m/M+

pam/M+
pu+E

drnet/?2 FNO/Q

Figure 16: An example of rollout predictions on u from all methods with network sizes of approxi-
mately 0.1M parameters for the incompressible Navier-Stokes equations at different time steps. The
top row shows the ground truth as a reference.
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Figure 17: An example of rollout predictions on v from all methods with network sizes of approxi-
mately 0.1M parameters for the incompressible Navier-Stokes equations at different time steps. The
top row shows the ground truth as a reference.
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Figure(T8) presents the velocity and energy spectra over additional time steps, expanding on the two
time steps shown in Figure @»d,e,f,g) of the main text. Our analysis shows that the best-performing
model, pAm/M+pu (blue curve), consistently provides the closest match to the reference across all
time steps for both the velocity and energy spectra.

0.8s 28.5s 56.1s ) 99.7s
1S 10{)_ a S 1012
= 10°4b 9JC d w— ref. w— p1/D+E
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Q_Am?_ 107 10°4 = p1/M+pi pam/@
“;‘s 6 1 1064 PA/M 4P s pAM/ Pl
£ =100+ 10°4 . —pam/M+piE
3 B ) 10° 104
o 10°4 10°
= 10° 10 10° 10t 10 10 10° 10
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Figure 18: The velocity and energy spectra at additional time points correspond to Figure (@} d,e.f,g)
in the main text. Our best method, p4m/M+pu, closely matches the reference spectra, shown as
black curves.

We also report the NRMSE and correlation over long rollouts on the field variable u for the de-
caying turbulence case. The models used are p4m/M+pu (our best performing model) and p1/a,
both trained with clean data and training noise A'(z = 0,0 = 0.001). We find that the model
p4m/M+pu + ¢ which is trained with noise, reaches a lower accuracy but higher rollout correlation
compared to its counterpart trained with no noise p4m/M+pu.

2
< 2 —reference
LI pl/D
2 —pl/2+€
E — p4m/M+pii
zZ — pam/M+pi+E
0 ) 0 04 T0) T00

Figure 19: The comparison of models trained with noise and clean data: p1/& + ¢, pAm/M+pu + ¢,
pl/@ and p4m/M+pu. We find that training with noise provides longer rollout stability but lower
accuracy compared to training with clean data.
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H.3 THE DETAILS ON GENERALIZATION TASKS

The test of generalization for shallow water equations, we focus on two experiments: (1) one rect-
angle ¢ = 0.1m as IC with random size and location; (2) two rectangles ¢ = 0.1 with random size
and location. Thus, in later experiment, one rectangle can cover to another one to generate a new
shape, for example, a “L” shape illustrated in main test. In the cover case, the cover domain ¢ = 0.2
which is the sum of two rectangles. Therefore, it is also a more challenging and general case.

Figure 20| presents the generalization results of the SWE for all models, using the L-shaped surface
elevation IC. Our best model is p4m/M with p4m/& a close second.
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Figure 20: The rollouts demonstrating generalization for the SWE, obtained from all methods with
an L-shaped IC, are shown at various time intervals. This is the detailed version of the @-a) from
the main text
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Fig. [2T] presents the generalization results of the SWE for all models, using a rectangular-shaped
elevation IC. In this case, p4m/M, outperforms all other methods in both accuracy and long-rollout
prediction compared to the ground truth. Our best model, pAm/M, accurately predicts the surface
elevation ¢ up to 50 hours, while all other models fall short, with predictions failing before 25 hours.
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Figure 21: The rollouts demonstrating generalization for the SWE, generated by all methods using
a single rectangular-shaped elevation IC, are shown at various time intervals.
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Fig. 22]illustrates the generalization of rollout performance for the SWE with ICs of two rectangular-
shaped elevations. This is particularly a challenging problem because we train using experiments
with ICs of single square-shaped elevation. We find that p4m/M achieves the best rollout perfor-
mance and correctly predicts the surface elevation for time 25h rollouts.
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Figure 22: The rollouts demonstrating generalization for the Shallow Water Equations (SWEs) on
rollout performance, from all methods are shown at various times, using a challenging IC: two
rectangular-shaped elevations. p4m/M achieves the best rollout performance.
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Figure 23: The rollout performance of networks with different physical and symmetry constraints
for the decaying turbulence case. All plots show the evolution of the field variable u. This is the
detailed version of the Figure d) from the main text. It indicates that the model p4m/M+pt aligns
more closely with the ground truth trajectory and remains stable over a longer period compared to
other models
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Figure 24: The detailed analysis of velocity u and energy power spectra over longer rollouts for the
decaying turbulence case is presented. This expands the Figure [5}(e,f) from the main text. We find
that the best-performing network is p4m/M+pi, it matches the energy and velocity spectra closer
compared to networks with other constraints.
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Figure 25: The rollout performance of networks with different physical and symmetry constraints
for the decaying turbulence case. All plots show the evolution of the field variable v. This is the

detailed version of the Figure (3}d) from the main text.
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H.4 DETAILS ON THE EFFECTS OF NETWORK AND DATASET SIZE ON ROLLOUT
PERFORMANCE

Fig. [26] depicts a detailed analysis of the effect of network size and training data size on rollout
performance. We examine three different network sizes: 0.1M, 2M, and 8.5M parameters, and three
different training dataset sizes: 100, 400, and 760 experiments with varying ICs. Increasing the net-
work size or the training dataset size improves the rollout performance of the network. Additionally,
the network with physical and symmetry constraints performs better in each case.
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Figure 26: Top: Influence of network size on NRMSE-u, p(#, u) (a, b) and energy spectrum (c, g)
for pl/@ and p4m/M+p. Bottom: Influence of training data size on NRMSE-u, p(i,w) (h, i), and
the energy spectrum (g,s). All results are reported on 99.7s rollouts.
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