
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GEOMETRIC AND PHYSICAL CONSTRAINTS SYNER-
GISTICALLY IMPROVE NEURAL PDE SURROGATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural PDE surrogates can improve on cost-accuracy tradeoffs of classical
solvers, but often generalize poorly to new initial conditions, accumulate errors
over time. To close the performance gap between training and long-term infer-
ence, we constrain neural surrogates with symmetry equivariance and physical
conservation laws as hard constraints, using novel input and output layers that
support scalar and vector fields on the staggered grids commonly used in compu-
tational fluid dynamics. We systematically investigate how these constraints af-
fect accuracy, individually and in combination, on two challenging tasks: shallow
water equations with closed boundaries and decaying incompressible turbulence.
Compared to a strong baseline, both types of constraints improve performance
consistently across autoregressive prediction steps, accuracy measures, and net-
work sizes. Symmetries are more effective but do not make physical constraints
redundant. Doubly-constrained surrogates were more accurate for the same net-
work and dataset sizes, and generalized better to initial conditions and durations
beyond the range of training data.

1 INTRODUCTION

Recently, neural networks have shown promising results in predicting the time evolution of PDE
systems, often achieving cost-accuracy tradeoffs that outperform traditional numerical methods (Li
et al., 2020; Gupta & Brandstetter, 2022; Stachenfeld et al., 2021; Takamoto et al., 2022; Long
et al., 2019; Um et al., 2020; Kochkov et al., 2021). However, obtaining accurate and stable au-
toregressive ‘rollouts’ over long durations remains notoriously difficult. Several techniques have
been proposed to address this, including physical constraints, symmetry equivariance, time-unrolled
training, specialized architectures, data augmentation, addition of input noise and generative mod-
elling (Sanchez-Gonzalez et al., 2020; Lippe et al., 2024; Stachenfeld et al., 2021; Kohl et al., 2024;
Brandstetter et al., 2022a; Fanaskov et al., 2023; Bergamin et al., 2024; Sun et al., 2023; Hsieh et al.,
2019; Tran et al., 2021; Li et al., 2023; Bonev et al., 2023). Nonetheless, the relative effectiveness of
these strategies remains largely ambiguous, and transparent, systematic comparisons remain elusive.

Here we systematically investigate the utility of symmetry constraints and physical conservation
laws, alone and in combination. Across multiple tasks, accuracy measures and scenarios, we show
a clear, reproducible and robust benefit from these constraints, and find they can be combined syn-
ergistically. In order to apply them broadly, we introduce novel input and output layers extending
these inductive biases for the first time to staggered grids.

2 BACKGROUND AND RELATED WORK

Neural PDE surrogates We aim to train neural networks to predict the time evolution of a system
of PDEs. We consider time-dependent variable fields w(t, x) ∈ Rm, for x ∈ Ω ⊂ Rd, t ∈ [0, T ]
and

∂w

∂t
= F(t,x,w,∇w,∇2w, . . .) (1)

Starting from initial conditions (ICs) w(0,x) and boundary conditions (BCs) B[w](t,x) = 0,∀x ∈
∂Ω, the solution can be advanced with a fixed time step:

w(t+∆t, ·) = G[w(t, ·)], (2)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

where G is an update operator. To provide training data and evaluate performance we use a reference
solution generated by a numerical solver with space- and time-discretized variable fields.

Recent studies have trained neural surrogates to approximate G (Greenfeld et al., 2019; Gupta &
Brandstetter, 2022; List et al., 2024; Lippe et al., 2024; Li et al., 2020; Tripura & Chakraborty,
2023; Raonic et al., 2024). The neural network can also be combined with a numerical solver, in so-
called ‘hybrid methods’ (Bar-Sinai et al., 2019; Tompson et al., 2017; Kochkov et al., 2021; Bukka
et al., 2021; Long et al., 2019).

A major challenge remains training neural surrogates to give stable and accurate results over long
autoregressive rollouts. Several techniques have been proposed, including physical constraints, sym-
metry constraints, training with input noise, unrolled training and generative modelling. However, a
clear consensus on the relative effectiveness of these approaches remains elusive, and applying them
in various tasks is not always straightforward.

Symmetry equivariance Suppose f : w → z is an operator mapping between two multidimen-
sional variable fields w(x), z(x) defined on Ω ⊂ Rd. Then for a group G of invertible transforma-
tions on R2, f is equivariant if it commutes with the actions of G on w and z. That is, there should
exist transformations Tg, T ′

g operating on w, z respectively, such that

[f ◦ Tgw](x) = [T ′
g ◦ fw](x), ∀g ∈ G,x ∈ Ω (3)

When w is a scalar field, T , T ′ simply resamples it at coordinates defined by the action of G on Rd

T scalar
g w(x) = w(g−1x) (4)

Other field types transform in more complex ways. For example, the action of a 90◦ rotation R on a
2D vector field both resamples the field and rotates each vector:

T vector
R [w1(x), w2(x)] = [−w2(R

−1x), w1(R
−1x)] (5)

The range of possible actions is described by G’s group representations. Efficient, full-featured
software packages exist for equivariant convolutions (Cesa et al., 2022) and self-attention (Romero
& Cordonnier, 2020), and have proven useful in image classification (Chidester et al., 2019) and
segmentation (Veeling et al., 2018). Equivariance has been used to improve neural PDE surrogates
in some cases (Wang et al., 2020; Helwig et al., 2023; Smets et al., 2023; Huang & Greenberg,
2023; Ruhe et al., 2024). Numerical integration methods can also benefit from maintaining PDE
symmetries Rebelo & Valiquette (2011).

We restrict ourselves to discrete symmetry groups on regular grids, though some approaches for
continuous symmetries have been proposed (Weiler & Cesa, 2019; Cesa et al., 2022). We note that
standard convolutions and self-attention with relative encoding are already equivariant to translations
(up to boundary effects).

Staggered grids Fluid dynamical systems are often simulated using staggered grids (Fig. 1, left),
in which variables such as pressure, density, divergence or velocity along each axis are represented
at different locations. This approach can avoid grid-scale numerical artifacts in numerical integra-
tion, and is common in fluid dynamics (Holl & Thuerey, 2024; Kochkov et al., 2021; Jasak, 2009;
Stone et al., 2020) as well as atmospheric (Jungclaus et al., 2022; De Pondeca et al., 2011) and
ocean models (Korn et al., 2022; Madec et al., 2023). Unfortunately, existing equivariant network
layers (Cesa et al., 2022; Romero & Cordonnier, 2020) assume Tg can be described by a resampling
operation followed by an independent transformation at each grid point as in Equation 5, but on
staggered grids rotation and reflection do not take this form.

Physical constraints Neural surrogates have frequently been applied to physical systems, many
of which include known conservation laws. To improve accuracy, stability, and generalization ca-
pabilities, these laws can be imposed through additional loss terms (Read et al., 2019; Wang et al.,
2020; Stachenfeld et al., 2021; Sorourifar et al., 2023). Taking the strategy of physics-derived loss
terms to its ultimate limit, on arrives at unsupervised training on PDE-derived losses for discretized
(Wandel et al., 2020; Michelis & Katzschmann, 2022) or continuous solutions (Raissi et al., 2019).
Alternatively, one can reparameterize network outputs to respect hard constraints (Mohan et al.,
2020; Beucler et al., 2021; Chalapathi et al., 2024; Cranmer et al., 2020; Greydanus et al., 2019).
Here we focus on discretized, supervised approaches, which have proven more competitive in larger
and more complex PDE systems (Takamoto et al., 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 SYMMETRY- AND PHYSICS-CONSTRAINED NEURAL SURROGATES

In this work, we assess the separate and combined benefits of symmetries and conservation laws for
neural PDE surrogates. To achieve this, we construct specialized input layers that support equiv-
ariance on staggered grids (Fig. 7), as well as output layers that enforce both equivariance and
conservation laws. When comparing to non-equivariant networks, we replace equivariant convolu-
tions using standard convolutions with the same size and padding options, adjusting channel width
to match total parameter counts (details in Appendix B).

Arakawa C-grid

Hidden layers
regular representation

collocated grid

Input layer
equivariant filters

 

Input data
staggered grid

Arakawa C-grid

Output data
staggered grid

 

Output layer  
equivariance

physical constraints

Physical constraints

Symmetry constraints

M+

Figure 1: Symmetry- and physics-constrained neural surrogate for incompressible flow on a stag-
gered grid. A rotation-equivariant input layer maps velocities onto an unstaggered regular repre-
sentation, hidden layers employ steerable convolutions and the equivariant output layer enforces
conservation laws on mass and momentum (m+ ρu⃗) as it maps to staggered velocities.

Fig. 1 demonstrates our overall framework for constructing equivariant, conservative neural sur-
rogates. As an illustrative example, we show the incompressible Navier Stokes equations, with
equivariance to translation and rotation, momentum conservation and a divergence-free condition
(equivalent to mass conservation). Input data defined on staggered grids are mapped through novel
equivariant input layers to a set of convolutional output channels defined at grid cell centers. Each
channel of internal activations is regular representations: a group of channels indexed by G,1 on
which G acts by transforming each spatial field and by permuting the channels according to the
group action Cohen & Welling (2016); Cesa et al. (2022). Essentially, regular representations are
real-valued functions of the discrete symmetry group G. This formulation allows us to use the preex-
isting library escnn (Cesa et al., 2022) for all internal linear transformations between hidden layers.
Finally, we employ novel output layers to map the regular representation back to the staggered grid,
while simultaneously enforcing conservation laws as hard constraints.

 

Input layer

c
a
n

o
n

ic
a
l 

in
p

u
t 

r
o
ta

te
d

in
p

u
t

Figure 2: Action of rotation-equivariant input layer on staggered velocity fields (top left). The filter
bank is transformed by each g ∈ G to compute a G-indexed regular representation y. Rotation-
transforming inputs (bottom left) yields permuted, rotated output channels.

Input layers We consider input data on staggered Arakawa C-grids (Fig. 1 left, Fig. 7). This grid
consists of square cells, where variable fields can be defined at cell centers (typically scalar fields
like pressure, surface height, or divergence), at the midpoints of cell interfaces (such as velocity
components) at vertices (e.g. stream functions). For an n×n 2D grid of cells, there is an (n+1)×n
grid of interfaces in the x1 direction (along rows, including boundaries), and an n× (n+ 1) grid of
interfaces in the x2 direction (along columns).

We designed convolutional input layers to take scalar inputs at cell centers and/or vector fields with
components defined at interfaces. Inputs at interfaces are first processed with a bank of convolutional

1Technically, channels of the regular representation are indexed by the non-translational subgroup of G.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

filters, which are each even-sized along the coordinate axis orthogonal to a single set of interfaces
and odd-sized along all other axes (Fig. 2, left). This filter bank is collectively transformed according
to each element of the symmetry group G, while being applied to the input data. Note that, similar
to the transformation of vector fields (Eq. 5), these filter banks undergo collective transformation
by rotations and reflections, not only through resampling, but also through permutation and sign
flips (Fig. 2, right). When we rotation-transform input vector fields (Eq. 5), this has the effect of
permuting and rotating the outputs of our input layer, as required for an equivariant mapping onto
a regular representation (fig. 2, magenta arrows). Inputs at cell centers are processed with separate,
standard equivariant convolution layers. Convolutions for both interface and center-defined input
variables produce regular representation outputs, which are then combined to compute the total input
to the network’s first hidden layer. We provide implementations of 2D input layers for translation-
rotation (p4) and translation-rotation-reflection (p4m). Further details on input layers can be found
in Appendix C.

Output layers We designed convolutional output layers mapping from regular representations to
staggered C-grid variables (Fig. 1, center-right). As for the input layers, we use separate convo-
lutional filter banks for cell- and interface-centered variables, but now additionally support vertex-
centered outputs scalar for the purpose of enforcing physical constraints (see below). Scalar face-
centered outputs are computed using pooling layers over a regular representation (Cohen & Welling,
2016). Vector field outputs at each cell interface are computed as linear combinations of regular rep-
resentations at the surrounding two cell centers, with constraints imposed on the weights to satisfy
the equivariant transformation of vector fields (Eq. 5, details in D). Vertex-centered scalar outputs
are computed using even-size square filters, followed by pooling layers operating over G-indexed
channels.

Conservation laws Conservation laws for scalar quantities defined at cell centers and vectors at
cell interfaces are imposed through global mean corrections (details and alternatives in appendix
E). As conservation of mass for incompressible flow is equivalent to a divergence free condition,
we enforce this by training the network to output a scalar stream function a at cell vertices, and
follow Wandel et al. (2020) in defining

[ût+1, v̂t+1] = ∇× [0, 0, a] (6)

As the Helmholtz-Hodge decomposition of a vector field consists of curl-free and divergence-free
components, eq. 6 guarantees the learned vector field is divergence free, and that any divergence
free vector field can be represented in this way. For an n × n grid, periodically padding a to
(n+ 1)× (n+ 1) guarantees momentum conservation.

3.1 BASE ARCHITECTURE

In order to measure the efficacy of symmetry constraints and conservation at the cutting edge of neu-
ral PDE surrogate research, it was essential to choose a flexible base architecture with efficient train-
ing and inference that has produced highly competitive results. To this end we selected the “modern
U-net” introduced in Gupta & Brandstetter (2022), which modifies the original U-net (Ronneberger
et al., 2015) for improved performance as a PDE surrogate. This architecture has shown strong re-
sults in Kohl et al. (2024), and a similar version performed well in Lippe et al. (2024). We used this
architecture without self-attention layers, which did not significantly affect our results.

3.2 TRAINING

We trained neural surrogates using an MSE loss L = 1
N

∥∥ŵt+1 −wt+1
∥∥2
2
, where N is the number

of discretized PDE field values. All data fields were normalized by subtracting the mean and dividing
by the standard deviation, with common values for both components of vector fields. We trained on
8 A100 GPUs with the ADAM optimizer (Kingma, 2014), batch size 32 and initial learning rate
1e-4. We employed early stopping when validation loss did not reduce for 10 epochs, and accepted
network weights with the best validation loss throughout the training process.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 PDE SYSTEMS

We considered two challenging 2D fluid dynamical PDEs, with the same staggered grid and sym-
metries but different variables, BCs/ICs, reference solvers and conservation laws. Full sets of con-
straints for each system and names for each combination appear in tables (1-2), while PDE parame-
ters and further numerical details appear in tables (3-4).

Mass

None

Conservation laws

Symmetries

p1/�� �

p1/MM p4/M p4m/M

p4/� p4m/�

Symmetries

Conservation laws

Momentum

None p1/�

p1/ p4/ p4m/

Mass/moment. p1/M+ p4/M+ p4m/M+

p4/� p4m/�

Table 1: Geometric and physical constraints 
for SWEs

Table 2:  Geometric  and  physical  constraints  for
 INS

M+

4.1 CLOSED SHALLOW WATER SYSTEM

The shallow water equations (SWEs) are widely used to describe a quasi-static motion in a homo-
geneous incompressible fluid with a free surface. We consider nonlinear SWEs in momentum- and
mass conservative form on domain Ω with ‘closed’ Dirichlet BCs (Song et al., 2018):

∂u

∂t
= −CD

1

h
u|u| − g∇ζ + ah∇2u;

∂ζ

∂t
= −∇ · (hu) on Ω (7)

u = 0 on ∂Ω (8)

where ζ is fluid surface elevation, u = [u, v] is the velocity field, d and h respectively represent the
undisturbed- and disturbed fluid depth (so that h = d+ ζ) and ∂Ω is a closed domain boundary. ah
is the horizontal turbulent momentum exchange coefficient, CD is the bottom drag coefficient and
g is gravitational acceleration. SWE simulations exhibit travelling waves that reflect from domain
boundaries, temporarily increasing in height as they self-collide. This system is fundamentally more
challenging than previously proposed SWE-based benchmarks with open (Takamoto et al., 2022) or
periodic BCs (Gupta & Brandstetter, 2022), due to the combination of self-interfering wave patterns,
incompressibility and altered dynamics at pixels near the domain boundaries.

Numerical reference solution Closed BCs and incompressibility lead to stiff dynamics, so ex-
plicit solvers are inefficient. Instead, we generate data using a semi-implicit scheme (Backhaus,
1983) that represents ζ and [u, v] on a staggered Arakawa C-grid (Arakawa, 1977) and solves a
sparse linear system at each time step ∆t = 300s.

Grids are 100 × 100, 100 × 99, and 99 × 100 respectively for ζ, u, and v. We trained on 50
simulations spanning 50 h (600 time steps) each. ICs were ζ = 0 except for a 0.1 m high square-
shaped elevation, and [u, v] = 0. The square had side length uniformly distributed from 2-28 grid
cells and random position. Simulations in Fortran required 67 seconds on the CPU. Testing and
validation data included 10 simulations. Surrogates used the same time step as the solver.

Symmetries and conservation laws The shallow water system in Eqs. 7-8 is equivariant to ro-
tations and reflections. Since boundary effects interfere with translation equivariance, we provide
a boundary mask as an additional input channel. These symmetries are illustrated and empirically
verified in Fig. 7. The only conserved quantity for SWE is mass (defined as ∆x2h times fluid den-
sity, so that the mean of ζ is also conserved). Momentum is not conserved due to reflection of waves
from the closed boundaries.

4.2 DECAYING TURBULENCE

The incompressible Navier–Stokes equations (INS) describe momentum balance for incompressible
Newtonian fluids. Our 2D version relates velocities u = [u, v] to pressure p:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ µ∇2u; ∇ · u = 0 (9)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where ρ fluid density and µ is kinematic viscosity. Here we consider the ‘decaying turbulence’ sce-
nario introduced by Kochkov et al. (2021). The velocity field is initialized as filtered Gaussian noise
containing high spatial frequencies. Predicting the evolution of the velocity field is challenging,
since eddy size and Reynolds number change over time as structures in the flow field coalesce, and
the velocity field becomes smoother and mroe uniform over time.

Numerical reference solution We solve eq. 9 with C-grid staggering of velocities, using
jax-cfd (Kochkov et al., 2021; Dresdner et al., 2022). We follow the data generation setup of
Kochkov et al. (2021) and Stachenfeld et al. (2021). The solver used a grid of 576 × 576 cells and
a 44 ms time step over 224 seconds. Training data were coarsened to a time step of 0.84 s, and
resolution was reduced to 48 × 48 (Stachenfeld et al., 2021) using face-averaging to conserve mo-
mentum and the divergence-free condition. The solver used a standard pressure projection approach,
so that pt+1 is computed along with u⃗t+1 along with u⃗t, and pt is discarded. We use a burn-in of
148 coarsened steps, leaving 120 steps for training. We trained on 100 ICs consisting of filtered
Gaussian noise with peak spectral density at wavenumber 10 (that is, 10 cycles across the spatial
domain). We used 10 initial conditions for testing and validation.

Symmetries and conservation laws INS in Equation 9 are equivariant to translations, rotations
and reflections, as illustrated and empirically verified in Figure 9. Conserved quantities include
momentum (equivalent to a constant mean for each velocity component, since ρ is constant), and
mass (manifested here as the divergence-free condition on the velocity field).

5 RESULTS

5.1 CLOSED SHALLOW WATER SYSTEM

We first trained and evaluated neural surrogates for the SWE system. For this task, we followed a
hybrid learning strategy, based on the observation that the semiimplicit numerical integration scheme
calculates ζt+1 slowly with an iterative solver, but then calculates [ut+1, vt+1] given ζt+1 quickly
and trivially through a mathematical formula. We therefore trained surrogates to predict only ζ̂t+1,
and calculated [ût+1, v̂t+1] as in the numerical solver (Appendix G). Keeping parameter counts
constant, we compared networks trained equivariant to 3 symmetry groups: p1 (translation only), p4
(translation-rotation) and p4m (translation-rotation-reflection). We also compared mass conserving
networks (m) to those without physical constraints (∅). Table 1 lists all constraint combinations
used for training, which took 0.5 h for non-equivariant networks and 2h for equivariant networks on
an A100 GPU.

Figure 3a compares autoregressive rollouts from unconstrained (p1/∅) and maximally constrained
networks (p4m/M). p4m/M maintained accurate results for a much greater time interval, and in this
case was visually indistinguishable from the reference solution throughout the simulation (results
for all networks are shown in 13). Over 20 random held-out ICs in this test, p4m/M exhibited
lower normalized RMSE values and high correlations for predicted ζ values than other networks
(Figure 3b-c)). We also compared to unconstrained networks trained with input noise (p1m/∅ + ε,
details in 14), which improved long-rollout performance as previously proposed (Stachenfeld et al.,
2021; Lippe et al., 2024), but was not as effective as the combination of symmetry constraints and
conservation laws. Compared to other networks, p4m/M was able to train for more epochs before
early stopping occurred, and achieved a validation lower loss (Fig. 3d). It also achieved lower values
over a greater fraction of held-out ICs (Fig. 3e), maintained energy conservation (which was not
constrained by any archicture) for longer (Fig. 3f) and stayed correlated to the reference solution for
longer (Fig. 3g). Overall, we found that symmetry constraints were more effective than conservation
laws, but that the benefits provided by each combined synergistically, rather than redundantly.

5.2 DECAYING TURBULENCE

We next trained and evaluated neural surrogates for INS. Here we used the velocity fields [u, v]
as both inputs and outputs. As for SWEs, with consider p1, p4 and p4m equivariance, but now
considered 3 levels of physical constraints: unconstrained (∅) conservation of momentum (ρu⃗) and
conservation of both momentum and mass (m+ρu⃗). Table (2) lists all constraint combinations used

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

g
r
o
u

n
d

 t
r
u

th

25h 50h10h4h2h0.2ha

p
1
/�

p
4
m

/M

ref.

p4m/�
p1/�
p1/M
p1/�+

p4/�
p4/M

p4m/M

FNO/� drnet/�

d e

H
ig

h
-c

o
r
r
e
la

ti
o
n

  
  

  
 t

im
e
 (

h
)

g
36

0

p4m/�

p1/�

p1/M

p1/�+

p4/�

p4/M p4m/M

left: correlation>0.9

right: correlation>0.8

b

c

f

Figure 3: p4m/M (symmetry+physics constraints) outperforms other networks with similar param-
eter counts on SWE. (a) Reference surface disturbance ζ with predictions from p1/∅ and p4m/M.
(b-c) Accuracy over 50h rollouts, with standard error of the mean over 20 ICs. (d) Training loss
over iterations. (e) Histogram of EtNRMSE over 20 ICs. (f) Violation of mass conservation for all
methods (black line shows reference simulation). (g) High correlation times for each model.

for training, which took 0.4 h for nonequivariant networks and 1.4 h for equivariant networks on an
A100 GPU.

a 82.9s0.8s 12.6s

g
r
o
u

n
d

 t
r
u

th

36.0s 59.5s 99.7s

p
1
/�

p
4
m

/M
+

e

59.5s

f

36.0s

g

59.5s

d

36.0s

e

59.5s

b c ref.
p1/�
p1/
p1/M+

p4/�
p1/�+

p4m/�
p4/M+

p4/

p4m/

drnet/�p4m/M+

FNO/�

Figure 4: p4m/M+ρu⃗ outperforms other networks with similar parameter counts on INS. (a) Ref-
erence horizontal velocity with predictions from p1/∅ and p4m/M+ρu⃗. (b-c) Accuracy over 50h
rollouts, with standard error of the mean over 30 ICs. (d-e) Log-log plots of the average veloc-
ity power spectrum from 30 ICs ar t = 36.0s, 59.5s. Spectra measure the strength of the chaotic
field’s features for each wavenumber k (number of cycles across the domain). (f-g) Comparison
of the energy spectrum from all methods to the ground truth. Both the velocity and energy spectra
p4m/M+ρu⃗ align best with the reference. Spectra are scaled by k5.

Figure (4-a) compares autoregressive rollouts from unconstrained (p1/∅) and maximally constrained
networks (p4m/M+ρu⃗). As for the SWEs, we observed improvements to accuracy and stability of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

INS surrogates for both types of constraints (fig. 4b-c), and best results for maximally constrained
networks, which also outperformed networks trained with the same input noise used for this task
in Stachenfeld et al. (2021). Unconstrained networks were particularly susceptible to numerical
instability in this task (for all networks’ rollouts, see fig. 16-17).

To evaluate the performance of neural surrogates beyond the time at which their predictions decor-
relate from the reference solution, we followed previous studies (Kochkov et al., 2021; Lippe et al.,
2024; Stachenfeld et al., 2021) in further comparing the power spectra of predicted velocity fields,
and of energy fields 1

2 |u⃗|
2, to those of the reference solver. Even after average correlation with

the reference solution reached 0, we found that p4m/M+ρu⃗ networks matched the spectra of the
reference solver far better than all other methods, consistently across multiple rollout times and es-
pecially at the highest spatial frequencies (fig. 4d-g, additional spectra in fig. 18). We also trained
p4m/M+ρu⃗ networks with input noise, resulting in lower accuracy but excellent long-term numeri-
cal stability (fig. 19).

5.3 GENERALIZATION

We next evaluated how physical and symmetry constraints affect generalization performance of
neural surrogates to ICs outside their training sets.

reference

g
r
o
u

n
d

 t
r
u

th

25h10h4h0.2ha

b c

g
r
o
u

n
d

 t
r
u

th

82.9s 99.7s59.5s12.6s0.8sd

p
4
m

/M
+

reference

p1/∅
p1/M

p4/M

p4m/M

p4/∅

p4m/∅

p4/M+

p4/

p4m/

p4m/M+

p
4
m

/M
p

1
/∅

p
1
/∅

p1/∅+

p1/∅

p1/

p1/M+

p1/∅+

p4/∅

p4m/∅

f

99.7s

e

99.7s

Figure 5: Generalization beyond training data. (a) SWE rollouts from p1/∅ p4m/M on L-shaped
ICs. (b-c) Accuracy of each network over six generalization tests (appdendix H.3). (d) INS rollouts
from p1/∅ and p4m/M+ρu⃗ on ICs with peak wavenumber of 8. (e-f) Velocity- and energy spectra
for INS at t = 99.7 s, averaged over 10 ICs.

Closed Shallow Water System We tested on ICs defined as a sum of two rectangular elevations
0.1 m in height, with randomly varying location and shape (details in 13). Fig. 5-a shows an
example in which these rectangles have combined to form an ‘L’ shape. As previously, we found the
maximally constrained model p4m/M to outperform alternatives with equal parameter counts (Fig.
5b-c). Additional generalization results are show in Figs. 21-22.

Decaying Turbulence We tested surrogates on ICs with peak wavenumber changed from 10 to 8
or 6. p4m/M+ρu⃗ rollouts more closely matched the reference solver (Fig. 5d) and its spectra (Fig.
5e-f). Additional generalization results are shown in Fig. 24.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 EFFECTS OF NETWORK AND DATASET SIZE

We further investigated how the enhancement of neural INS surrogates by symmetry physical con-
straints depends on the size of the network and dataset. We trained p1/∅ and p4m/M+ρu⃗ networks
with 0.1M, 2M and and 8.5M parameters on the same dataset (100 simulations). Evaluating pre-
dictions at 4.2 and 12.6 s, we observed lower errors and high correlations for p4m/M+ρu⃗ at both
times and all three network sizes. The relative improvement of brought about by p4m/M+ρu⃗ over
p1/∅ was greatest for smaller networks and for longer forecast horizons, and overall performance
was best for larger networks.

Training 0.1M-parameter p1/∅ and p4m/M+ρu⃗ networks on datasets of 100, 400, and 760 simula-
tions showed that constraints enhanced performance robustly across dataset size (Fig. 6c-d). Rela-
tive improvements were greater on larger datasets and longer rollouts. Additional results regarding
network and dataset size, including spectra, are shown in fig. 26.

t =4.2s

t =4.2s

t =12.6s

c da b

p4m/M+

p4m/M+

p1/∅

p1/∅

t =12.6s

Network size Network size Training data size Training data size

Figure 6: Accuracy of symmetry- and physics-constrained INS models across data and network
sizes, at t =4.2 s and 12.6 s. . (a-b) NRMSE-u and ρ(û, u) vs. network size for p1/∅ and
p4m/M+ρu⃗. (c-d) NRMSE-u and ρ(û, u) for p1/∅ and p4m/M+ρu⃗ vs. training datasets size.

6 DISCUSSION

We enforced hard constraints on symmetries and conservation laws for neural PDE surrogates. We
extended the applicability of previous techniques to c-grids, and systematically tested performance
across tasks and constraints. Symmetries were more effective, but conservation laws were not re-
dundant. Double constraints best matched reference simulations, individually and statistically.

Limitations & Future work For large enough networks and datasets, constraints might be learned
from data (Stachenfeld et al., 2021; Watt-Meyer et al., 2023), but our results show the gap between
constrained and unconstrained surrogates grows with rollout length even for large networks and
datasets. Thus, constraints are likely relevant for longer time scales, e.g. for seasonal forecasts and
climate projections (Kochkov et al., 2024; Watt-Meyer et al., 2023; Nguyen et al., 2023).

Our understanding of how these constraints limit error accumulation remains rudimentary. While
we lack a rigorous theory, empirical investigations of how error accumulation correlates with con-
straint violations over time and ICs could provide some clarity. It also remains unclear how these
improvements might transfer to other PDE types, such as hyperbolic equations.

We considered mass and momentum conservation, and symmetries of square 2D grids. Future work
could pursue energy conservation (Cranmer et al., 2020), continuous symmetry groups (Cohen et al.,
2018; Esteves et al., 2018), alternative grids and meshes (Cohen et al., 2019; De Haan et al., 2020),
and other architectures and techniques, such as dilated Resnets, unrolled training, invariant measure
learning, transformers and denoising diffusions (Takamoto et al., 2022; Brandstetter et al., 2022b;
Schiff et al., 2024; List et al., 2024; Li et al., 2020; Lippe et al., 2024). Nonetheless, we believe that
our results clearly demonstrate the potential of these inductive biases in improving rollout accuracy
and extensiib to longer time scales.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

A Arakawa. Computational design of the basic dynamical processes of the ucla general circulation
model. Methods in Computational Physics/Academic Press, 1977.

Jan O Backhaus. A semi-implicit scheme for the shallow water equations for application to shelf
sea modelling. Continental Shelf Research, 2(4):243–254, 1983.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Federico Bergamin, Cristiana Diaconu, Aliaksandra Shysheya, Paris Perdikaris, José Miguel
Hernández-Lobato, Richard E Turner, and Emile Mathieu. Guided autoregressive diffusion mod-
els with applications to pde simulation. In ICLR 2024 Workshop on AI4DifferentialEquations In
Science, 2024.

Tom Beucler, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine. Enforc-
ing analytic constraints in neural networks emulating physical systems. Physical Review Letters,
126(9):098302, 2021.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. In International conference on machine learning, pp. 2806–2823. PMLR,
2023.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. In International Conference on Machine Learning, pp. 2241–2256. PMLR,
2022a.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022b.

Sandeep Reddy Bukka, Rachit Gupta, Allan Ross Magee, and Rajeev Kumar Jaiman. Assessment
of unsteady flow predictions using hybrid deep learning based reduced-order models. Physics of
Fluids, 33(1), 2021.

Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build e (n)-equivariant steerable cnns.
In International conference on learning representations, 2022.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. arXiv preprint arXiv:2402.13412, 2024.

Benjamin Chidester, Tianming Zhou, Minh N Do, and Jian Ma. Rotation equivariant and invariant
neural networks for microscopy image analysis. Bioinformatics, 35(14):i530–i537, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999. PMLR, 2016.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolu-
tional networks and the icosahedral cnn. In International conference on Machine learning, pp.
1321–1330. PMLR, 2019.

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks, 2020. URL https://arxiv.org/abs/2003.04630.

Pim De Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge equivariant mesh cnns:
Anisotropic convolutions on geometric graphs. arXiv preprint arXiv:2003.05425, 2020.

10

https://arxiv.org/abs/2003.04630


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Manuel SFV De Pondeca, Geoffrey S Manikin, Geoff DiMego, Stanley G Benjamin, David F Par-
rish, R James Purser, Wan-Shu Wu, John D Horel, David T Myrick, Ying Lin, et al. The real-time
mesoscale analysis at noaa’s national centers for environmental prediction: current status and
development. Weather and Forecasting, 26(5):593–612, 2011.

Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Núñez, Jamie A Smith,
Michael P Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
turbulent flows. arXiv preprint arXiv:2207.00556, 2022.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so
(3) equivariant representations with spherical cnns. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 52–68, 2018.

Vladimir Fanaskov, Tianchi Yu, Alexander Rudikov, and Ivan Oseledets. General covariance data
augmentation for neural pde solvers. In International Conference on Machine Learning, pp.
9665–9688. PMLR, 2023.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid pde solvers. In International Conference on Machine Learning, pp. 2415–2423. PMLR,
2019.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019. URL
https://arxiv.org/abs/1906.01563.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Jacob Helwig, Xuan Zhang, Cong Fu, Jerry Kurtin, Stephan Wojtowytsch, and Shuiwang Ji.
Group equivariant fourier neural operators for partial differential equations. arXiv preprint
arXiv:2306.05697, 2023.

Philipp Holl and Nils Thuerey. Φflow (PhiFlow): Differentiable simulations for pytorch, tensorflow
and jax. In International Conference on Machine Learning. PMLR, 2024.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Yunfei Huang and David S Greenberg. Symmetry constraints enhance long-term stability and accu-
racy in unsupervised learning of geophysical fluid flows. Authorea Preprints, 2023.

Hrvoje Jasak. Openfoam: Open source cfd in research and industry. International journal of naval
architecture and ocean engineering, 1(2):89–94, 2009.

Johann H Jungclaus, Stephan J Lorenz, Hauke Schmidt, Victor Brovkin, Nils Brüggemann, Fate-
meh Chegini, Traute Crüger, Philipp De-Vrese, Veronika Gayler, Marco A Giorgetta, et al. The
icon earth system model version 1.0. Journal of Advances in Modeling Earth Systems, 14(4):
e2021MS002813, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation models for
weather and climate. Nature, pp. 1–7, 2024.

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. In ICML 2024 AI for Science Workshop, 2024.

11

https://arxiv.org/abs/1906.01563


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peter Korn, Nils Brüggemann, Johann H Jungclaus, SJ Lorenz, Oliver Gutjahr, Helmuth Haak,
Leonidas Linardakis, Carolin Mehlmann, Uwe Mikolajewicz, Dirk Notz, et al. Icon-o: The
ocean component of the icon earth system model—global simulation characteristics and local
telescoping capability. Journal of Advances in Modeling Earth Systems, 14(10):e2021MS002952,
2022.

Zhijie Li, Wenhui Peng, Zelong Yuan, and Jianchun Wang. Long-term predictions of turbulence by
implicit u-net enhanced fourier neural operator. Physics of Fluids, 35(7), 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-refiner:
Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Bjoern List, Li-Wei Chen, Kartik Bali, and Nils Thuerey. How temporal unrolling supports neural
physics simulators. arXiv preprint arXiv:2402.12971, 2024.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

Gurvan Madec, Mike Bell, Adam Blaker, Clément Bricaud, Diego Bruciaferri, Miguel Castrillo,
Daley Calvert, Jérômeme Chanut, Emanuela Clementi, Andrew Coward, Italo Epicoco, Christian
Éthé, Jonas Ganderton, James Harle, Katherine Hutchinson, Doroteaciro Iovino, Dan Lea, Tomas
Lovato, Matt Martin, Nicolas Martin, Francesca Mele, Diana Martins, Sébastien Masson, Pierre
Mathiot, Francesca Mele, Silvia Mocavero, Simon Müller, A.J. George Nurser, Stella Paronuzzi,
Mathieu Peltier, Renaud Person, Clement Rousset, Stefanie Rynders, Guillaume Samson, Sibylle
Téchené, Martin Vancoppenolle, and Chris Wilson. Nemo ocean engine reference manual, July
2023.

Mike Y. Michelis and Robert K. Katzschmann. Physics-constrained unsupervised learning of partial
differential equations using meshes, 2022. URL https://arxiv.org/abs/2203.16628.

Arvind T Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard
physical constraints in neural network coarse-graining of 3d turbulence. arXiv preprint
arXiv:2002.00021, 2020.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36, 2024.

Jordan S Read, Xiaowei Jia, Jared Willard, Alison P Appling, Jacob A Zwart, Samantha K Oliver,
Anuj Karpatne, Gretchen JA Hansen, Paul C Hanson, William Watkins, et al. Process-guided
deep learning predictions of lake water temperature. Water Resources Research, 55(11):9173–
9190, 2019.

Raphaël Rebelo and Francis Valiquette. Symmetry preserving numerical schemes for partial differ-
ential equations and their numerical tests, 2011. URL https://arxiv.org/abs/1110.
5921.

David W Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention for
vision. arXiv preprint arXiv:2010.00977, 2020.

12

https://arxiv.org/abs/2203.16628
https://arxiv.org/abs/1110.5921
https://arxiv.org/abs/1110.5921


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

David Ruhe, Johannes Brandstetter, and Patrick Forré. Clifford group equivariant neural networks.
Advances in Neural Information Processing Systems, 36, 2024.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Yair Schiff, Zhong Yi Wan, Jeffrey B. Parker, Stephan Hoyer, Volodymyr Kuleshov, Fei Sha, and
Leonardo Zepeda-Núñez. DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic
Systems, June 2024. URL http://arxiv.org/abs/2402.04467. arXiv:2402.04467.

Bart MN Smets, Jim Portegies, Erik J Bekkers, and Remco Duits. Pde-based group equivariant
convolutional neural networks. Journal of Mathematical Imaging and Vision, 65(1):209–239,
2023.

Ting Song, Alex Main, Guglielmo Scovazzi, and Mario Ricchiuto. The shifted boundary method for
hyperbolic systems: Embedded domain computations of linear waves and shallow water flows.
Journal of Computational Physics, 369:45–79, 2018.

Farshud Sorourifar, You Peng, Ivan Castillo, Linh Bui, Juan Venegas, and Joel A Paulson. Physics-
enhanced neural ordinary differential equations: Application to industrial chemical reaction sys-
tems. Industrial & Engineering Chemistry Research, 62(38):15563–15577, 2023.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

James M. Stone, Kengo Tomida, Christopher J. White, and Kyle G. Felker. The athena++ adap-
tive mesh refinement framework: Design and magnetohydrodynamic solvers. The Astrophysi-
cal Journal Supplement Series, 249(1):4, June 2020. doi: 10.3847/1538-4365/ab929b. URL
https://doi.org/10.3847%2F1538-4365%2Fab929b.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. A neural pde solver with temporal stencil modeling.
In International Conference on Machine Learning, pp. 33135–33155. PMLR, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. In International conference on machine learning,
pp. 3424–3433. PMLR, 2017.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differ-
ential equations in computational mechanics problems. Computer Methods in Applied Mechanics
and Engineering, 404:115783, 2023.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
equivariant cnns for digital pathology. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20,
2018, Proceedings, Part II 11, pp. 210–218. Springer, 2018.

13

http://arxiv.org/abs/2402.04467
https://doi.org/10.3847%2F1538-4365%2Fab929b


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nils Wandel, Michael Weinmann, and Reinhard Klein. Learning incompressible fluid dynam-
ics from scratch–towards fast, differentiable fluid models that generalize. arXiv preprint
arXiv:2006.08762, 2020.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. arXiv preprint arXiv:2002.03061, 2020.

Oliver Watt-Meyer, Gideon Dresdner, Jeremy McGibbon, Spencer K Clark, Brian Henn, James
Duncan, Noah D Brenowitz, Karthik Kashinath, Michael S Pritchard, Boris Bonev, et al.
Ace: A fast, skillful learned global atmospheric model for climate prediction. arXiv preprint
arXiv:2310.02074, 2023.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Advances in neural
information processing systems, 32, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THE SYMMETRIES OF SWES AND INE ON C-GRID STAGGERING

A.1 GRID DISCRETIZATIONS

Here we show C-grid staggering for SWEs and INS.

C-grid staggering of SWEs C-grid staggering of INSsa b

Figure 7: C-grid staggering for SWEs and INS.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The symmetry transformation of the numerical solver S for SWEs can be described as:

flip : Sζ(F (ζ), F (u),−F (v)) = F (Sζ(ζ, u, v)) (10)
rotation : Sζ(R(ζ),−R(v), R(u)) = R(Sζ(ζ, u, v)) (11)

flip− rotation : Sζ(R(F (ζ)), R(F (v)), R(F (u))) = R(F (Sζ(ζ, u, v))) (12)

where Sζ denotes numerically solving for ζ in the next time step, F is a flipping operator, and R is
rotation.

numericalFlip

Rotation

solver

numerical
solver

�ip

numerical

solver

rotation

Rotation-�ip

numerical

solver

numerical

solver

rotation

�ip

identical

identical

identical

numerical

solver

Figure 8: Empirical validation of the symmetries of the numerical SWE solver. Three transforma-
tions, flip, rotation, and flip-rotation are shown. These plots correspond to Eqs. 10-12

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Next, the flip, rotation, and flip-rotation symmetries of of INSs can be described as follows:

flip :

{
Su(−F (u), F (v)) = −F (Su(u, v))
Sv(−F (u), F (v)) = F (Sv(u, v))

(13)

rotation :

{
Su(R(v),−R(u)) = R(Sv(u, v))
Sv(R(v),−R(u)) = R(−Su(u, v))

(14)

flip− rotation :

{
Su(R(F (v)),−R(−F (u))) = R(F (Sv(u, v)))
Sv(R(F (v)),−R(−F (u))) = −R(−F (Su(u, v)))

(15)

numerical

Flip

Rotation

solver

numerical

solver

�ip

identical

rotation

Rotation-�ip

rotation

�ip

numerical

solver

numerical

solver

numerical

solver

numerical

solver

identical

identical

Figure 9: Empirical validation of the symmetries of the numerical INS solver. We show the symme-
tries of flip, rotation, flip-rotation for INS.

B PADDING OPTIONS

In some numerical solvers, although a C-grid staggering is used, the software produces output of
the same size for each component of the vector field, requiring special attention to the chosen con-
ventions for padding and boundary representation in the outputs. In this special case, a padding

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

technique is required to restore the vector field to the standard C-grid staggering. For example, peri-
odic padding can be applied for the periodic BCs. It is important to note that the physical properties
of the data, such as the divergence in the incompressible Navier–Stokes equations and the BCs, must
remain unchanged when applying this correction.

C GROUP EQUIVARIANT INPUT LAYERS

In this section, we write out explicit formulas for the equivariant input layers, and prove that they
satisfy equivariance. For brevity we include proofs only for p4, but extension to p4m is trivial.

C.1 GROUP EQUIVARIANT INPUT LAYER FOR SWES

Since our input data for shallow water equations (SWEs) uses C-grid staggering, as illustrated in
Figure 7, we need to construct an input layer that matches the C-grid staggering while maintaining
equivariance. On the C-grid, the variables u and v have different sizes. Therefore, we select two
rectangular filters, Wu

j,i,·,· and W v
j,i,·,·, for u and v, where the · symbol denotes all values along a

given axis. The filter W is an cin × c0 × K × S array, where cin is the number of input channels,
c0 is the batch size, and K × S represents the filter size. For instance, the sizes are 4× 3 for u and
3 × 4 for v. When performing group transformations in the input layer, we need to swap the filters
for u and v to match the sizes of the input variables.

We first show an input layer of group p4 transformation which has four channels obtained from 4
different rotated filters. The detail input layer is written as following 4 equations:

y1j,0,·,· =

cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (16)

y1j,1,·,· =

cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(17)

y1j,2,·,· =

cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(18)

y1j,3,·,· =

cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj .

(19)

where W ζ
j,i,·,· is a filter for ζ and it has a square size, for example, 4× 4. b is a cout-element vector.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Next, we show an input layer for p4m using the same logic as the p4 input layer. It has 8 different
group transformations including flip and rotation. The detail input layer is written as following
equations:

y1j,0,·,· =

cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (20)

y1j,1,·,· =

cζin−1∑
i=0

(
Fflip(W

ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(W

u
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(W

v
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(21)

y1j,2,·,· =

cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(22)

y1j,3,·,· =

cζin−1∑
i=0

(
Fflip(R

90◦

rot (W ζ
j,i,·,·)) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(R

90◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
Fflip(R

90◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj ,

(23)

y1j,4,·,· =

cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(24)

y1j,5,·,· =

cζin−1∑
i=0

(
Fflip(R

180◦

rot (W ζ
j,i,·,·)) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(R

180◦

rot (Wu
j,i,·,·)) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
Fflip(R

180◦

rot (W v
j,i,·,·)) ⋆ vi,·,·

)
+ bj ,

(25)

y1j,6,·,· =

cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj ,

(26)

y1j,7,·,· =

cζin−1∑
i=0

(
Fflip(R

270◦

rot (W ζ
j,i,·,·)) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Fflip(R

270◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
Fflip(R

270◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj ,

(27)

where the filters Wu
j,i,·,· and W v

j,i,·,· are rectangles and the filter W ζ
j,i,·,· is a square.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2 GROUP EQUIVARIANCE OF P4 INPUT LAYER IN SWES

Here we prove equivariance to the rotation symmetry of SWEs Sζ(R(ζ),−R(v), R(u)) =
R(Sζ(ζ, u, v)). To prove the equivariance of our p4 input layer, we need to transform our input
from ζi,·,·, ui,·,·, vi,·,· to R90◦

rot (ζi,·,·), −R90◦

rot (vi,·,·), and R90◦

rot (ui,·,·). Then, using the p4 input layer
shown in Equations (16-19), the transformed four layers ỹ become:

ỹ1j,0,·,· =

cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ R
90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ R
90◦

rot (ui,·,·)
)
+ bj ,

(28)

ỹ1j,1,·,· =

cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ R

90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
−R90◦

rot (W v
j,i,·,·) ⋆−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ R

90◦

rot (ui,·,·)
)
+ bj ,

(29)

ỹ1j,2,·,· =

cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ R

90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ R

90◦

rot (ui,·,·)
)
+ bj ,

(30)

ỹ1j,3,·,· =

cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ R

90◦

rot (ζi,·,·)
)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·)−R90◦

rot (vi,·,·)
)

+

cvin−1∑
i=0

(
−R270◦

rot (Wu
j,i,·,·) ⋆ R

90◦

rot (ui,·,·)
)
+ bj .

(31)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Next, we need to rotate 90 degree for the first layer output in Equations (16)-(19) and then put
rotation into the convolution. We obtain the following equations:

R90◦

rot (y1j,0,·,·) =R90◦

rot

( cζin−1∑
i=0

(
W ζ

j,i,·,· ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)

+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj

)
= ỹ1j,1,·,·

(32)

R90◦

rot (y1j,1,·,·) =R90◦

rot

( cζin−1∑
i=0

(
R90◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj

)
= ỹ1j,2,·,·

(33)

R90◦

rot (y1j,2,·,·) =R90◦

rot

( cζin−1∑
i=0

(
R180◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj

)
= ỹ1j,3,·,·

(34)

R90◦

rot (y1j,3,·,·) =R90◦

rot

( cζin−1∑
i=0

(
R270◦

rot (W ζ
j,i,·,·) ⋆ ζi,·,·

)
+

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)

+

cvin−1∑
i=0

(
−R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj

)
= ỹ1j,0,·,·

(35)

We find these equations satisfy the formula:

R90◦

rot (y1(ζi,·,·, ui,·,·, vi,·,·)) = ỹ1(R90◦

rot (ζi,·,·),−R90◦

rot (vi,·,·), R
90◦

rot (ui,·,·)) (36)

This form precisely matches the rotation symmetry for SWEs in Equation(11). Thus, we have proved
the group equivariant of p4 input layer in shallow water equations.

C.3 GROUP EQUIVARIANT INPUT LAYER FOR INS

The input data of incompressible Navier–Stokes equations is the velocity u and v, which have dif-
ferent sizes on the C-grid staggering. Thus, we also need two rectangle filters Wu

j,i,·,· and W v
j,i,·,· for

the velocity field. According to the symmetries of rotation of INS in Equation (14), we first build a
p4 input layer for INS as following equations:

y1j,0,·,· =

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (37)

y1j,1,·,· =

cuin−1∑
i=0

(
R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
−R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj , (38)

y1j,2,·,· =

cuin−1∑
i=0

(
−R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
−R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj , (39)

y1j,3,·,· =

cuin−1∑
i=0

(
−R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj . (40)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Next, based on the symmetries of flip-rotation of INS in Equation (15), we introduce a p4m of input
layer as following equations:

y1j,0,·,· =

cuin−1∑
i=0

(
Wu

j,i,·,· ⋆ ui,·,·
)
+

cvin−1∑
i=0

(
W v

j,i,·,· ⋆ vi,·,·
)
+ bj , (41)

y1j,1,·,· =

cuin−1∑
i=0

(
Fflip(W

u
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(W

v
j,i,·,·) ⋆ vi,·,·

)
+ bj , (42)

y1j,2,·,· =

cuin−1∑
i=0

(
R90◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R90◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj , (43)

y1j,3,·,· =

cuin−1∑
i=0

(
Fflip(R

90◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(R

90◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj , (44)

y1j,4,·,· =

cuin−1∑
i=0

(
R180◦

rot (Wu
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R180◦

rot (W v
j,i,·,·) ⋆ vi,·,·

)
+ bj , (45)

y1j,5,·,· =

cuin−1∑
i=0

(
Fflip(R

180◦

rot (Wu
j,i,·,·)) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(R

180◦

rot (W v
j,i,·,·)) ⋆ vi,·,·

)
+ bj , (46)

y1j,6,·,· =

cuin−1∑
i=0

(
R270◦

rot (W v
j,i,·,·) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
R270◦

rot (Wu
j,i,·,·) ⋆ vi,·,·

)
+ bj , (47)

y1j,7,·,· =

cuin−1∑
i=0

(
Fflip(R

270◦

rot (W v
j,i,·,·)) ⋆ ui,·,·

)
+

cvin−1∑
i=0

(
Fflip(R

270◦

rot (Wu
j,i,·,·)) ⋆ vi,·,·

)
+ bj , (48)

C.4 EMPIRICAL VALIDATION OF EQUIVARIANCE FOR SWE AND INS INPUT LAYERS

In this section, we plot an example showing the action of group equivariant input layers for SWEs
and INS. First, we show the plot p4 and p4m group equivariant input layer of SWEs in fig. 10.

Rotation
ML

�rst layer rotation

identical

Rotation-�ip

rotation

�ip

ML

�rst layer

ML

�rst layer

ML

�rst layer

identical

Figure 10: An example plot of input layer for the group p4 and p4m equivariant in shallow water
equations. It clearly shows that our input layers are equivariant.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Next, we plot an example of p4 and p4m group equivariant for INS in fig. 11. We can find that our
p4 and p4m input layers are equivariant.

Rotation

identical

solver

solver
ML

rotation

Rotation-�ip

rotation
flip

ML

identical

solver
ML

solver
ML

Figure 11: The group equivariant plots for the p4 and p4m input layers in incompressible
Navier–Stokes equations.

D GROUP EQUIVARIANT OUTPUT VECTOR LAYER WITH C-GRID
STAGGERING

After the modern U-Net, we need to select a feature field for the output based on the physical
variables. For a scalar field, we can directly use r2_act.trivial_repr in escnn. How-
ever, for a vector field on C-grid staggering, we cannot use the vector field in escnn, referred to
as r2_act.irrep(1), because it is not on the C-grid and does not satisfy the symmetry of the
discretized PDEs. Therefore, we build vector layers for p4 and p4m:

p4 : ui+0.5,j = pi+1,j,0 − pi,j,1; vi,j+0.5 = pi,j+1,2 − pi,j,3 (49)

p4m :

{
ui+0.5,j = pi+1,j,1 − pi,j,3 + pi+1,j,5 − pi,j,7
vi,j+0.5 = pi,j+1,2 − pi,j,4 + pi,j+1,6 − pi,j,0

(50)

where pi,j,k is on the regular representations. i and j express the position index and k is the group
transformation. i+ 0.5 and j + 0.5 are position on C-grids for u and v. Thus, these layers not only
satisfy the group equivariant but also back to C-grid. An example of vector layer for P4 is shown in
Figure (1) as red box.

D.1 PROOF OF EQUIVARIANCE BY CONSTRUCTION FOR VECTOR OUTPUT LAYERS

In Equations (49-50), we show the vector output layers from p4 and p4m regular representation.
Here, we show a process how we these layers were derived from the constraints we wish to prove.

Output vector from p4 regular representation First, we give a proof of the equivariance for our
vector output layer for p4. For given input u and v, in the regular representation layer, we have
four channels related to p4 group transformation pi+1,j,0, pi+1,j,1, pi+1,j,2, and pi+1,j,3. When we

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

transform the input to R(v),−R(u), the four regular representations become to p̂i+1,j,0, p̂i+1,j,1,
p̂i+1,j,2 and p̂i+1,j,3. There exits a relation between them as:

R(pi+1,j,0) = p̂i+1,j,3 (51)
R(pi+1,j,1) = p̂i+1,j,0 (52)
R(pi+1,j,2) = p̂i+1,j,1 (53)
R(pi+1,j,3) = p̂i+1,j,2 (54)

This relation of p4 is also show in Figure(1) of hidden layers. Now we assume an equivariant output
on c-grids staggering written as:

ui+0.5,j =

3∑
k=0

ckpi+1,j,k −
3∑

k=0

dkpi,j,k (55)

vi,j+0.5 =

3∑
k=0

ekpi,j+1,k −
3∑

k=0

fkpi,j,k (56)

where ck, dk, ek, and fk are coefficients. We can write the rotated output as:

ûi+0.5,j =

3∑
k=0

ckp̂i+1,j,k −
3∑

k=0

dkp̂i,j,k (57)

v̂i,j+0.5 =

3∑
k=0

ekp̂i,j+1,k −
3∑

k=0

fkp̂i,j,k (58)

According to the symmetry of p4 in Equation(14) for the vector field on c-grids, we can write
ûi+0.5,j = R(vi,j+0.5); v̂i,j+0.5 = R(−ui+0.5,j). Combining all equations (51 -58) into the
symmetry constraint. We obtain the relations for the coefficients:

c1 = d2 = e3 = f4 (59)
c2 = d3 = e4 = f1 (60)
c3 = d4 = e1 = f2 (61)
c4 = d1 = e2 = f3 (62)

We choose a simple case c1 = 1 and c2 = c3 = c4 = 0 in this work. Therefore, we obtain an
equivariant vector output from p4 regular representation can be written as

ui+0.5,j = pi+1,j,1 − pi,j,3 (63)
vi,j+0.5 = pi,j+1,2 − pi,j,4 (64)

Output vector from p4m regular representation The p4m regular representation layer has 8
channels denoted as pi+1,j,k where k = 0, · · · , 7. We also employ the same form as the p4 to build
the vector output layer:

ui+0.5,j =

7∑
k=0

ckpi+1,j,k −
7∑

k=0

dkpi,j,k (65)

vi,j+0.5 =

7∑
k=0

ekpi,j+1,k −
7∑

k=0

fkpi,j,k (66)

where the coefficients are ck, dk, ek, fk, where k = 0, · · · , 7. Taking the same way of analysis like
to the p4, we obtain the relation for each coefficient as following:

c1 = d2 = e3 = f4 = c5 = d6 = e7 = f0 (67)
c2 = d3 = e4 = f1 = c6 = d7 = e0 = f5 (68)
c3 = d4 = e1 = f2 = c7 = d0 = e5 = f6 (69)
c4 = d1 = e2 = f3 = c0 = d5 = e6 = f7 (70)

Here, we take a simple case c1 = 1 and c2 = c3 = c4 = 0. Thus, the vector output layers on c-grids
for u and v from p4m regular representation are written as:

ui+0.5,j = pi+1,j,1 − pi,j,3 + pi+1,j,5 − pi,j,7 (71)
vi,j+0.5 = pi,j+1,2 − pi,j,4 + pi,j+1,6 − pi,j,0. (72)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E PHYSICAL CONSTRAINTS EMBEDDED INTO NETWORKS

For the SWE, the mass is a conserved variable. To enforce mass conservation during training and
inference, we subtract the mean of the tendency update from iteself:

ζt+1 = ζt + dζ − mean(dζ) (73)

To conserve momentum for the INS at training/inference, we follow a similar approach to SWE
training. We introduce another physical constraint by learning a scalar potential a in Equation 6
using the neural network and update the velocity fields by taking the curl of that scalar field. Both
constraints can be written as following:

Momentum− conser. : ut+1 = ut + du− mean(du); vt+1 = vt + dv − mean(dv) (74)

Learn− scalar− potential : ut+1 = ut − ∂a
∂y ; vt+1 = vt + ∂a

∂x . (75)

These physical constraint layers are added following the output layers. An example implementation
for INS can be found in the blue box in Figure (1).

Alternatively, we might have learned fluxes at the C-grid interfaces for conserved quantities at cell
centers, or fluxes at the vertices for conserved quantities at the interfaces, similar to a finite volume
solver. This would have the advantage of being locally computed, allowing easier generalization
of domain size after training. We leave this avenue of exploration to future work, anticipating that
further improvements in accuracy might be obtained.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F SIMULATION PARAMETERS

In this section, we show the detail parameters used for solving the shallow water equations and
incompressible Navier–Stokes equations for the data generation.

Table 3: Simulation parameters used for SWEs
Parameters Explanation Value
L× L simulation domain 1000× 1000 (Km)

d undisturbed water depth 100 (m)
CD bottom drag coefficient 1.0e− 3
g acceleration due to gravity 9.81 (m/s2)
∆x space step 10 (Km)
∆t time step 300 (s)
wimp implicit weighting 0.5

Table 4: Simulation parameters used for INS
Parameters Explanation Value
L× L simulation domain 2π × 2π

ρ density 1
µ viscosity 1e− 3
T simulation time 224.34 s

∆tsolver the time step of numerical solver 0.00436 s
M ×M the grids of numerical solver 576× 576
∆xsolver the space step of numerical solver 0.0109
∆tml the time step of ML model 0.8375
m×m the grids of ML model 48× 48
∆xml the space step of ML solver 0.1308

G A HYBRID METHOD FOR THE PREDICTION OF SHALLOW WATER SYSTEM

Fig. 12 shows a hybrid method used to predict the solution of shallow water system. In our neural
integrator, we only have one output ζ and we have three inputs u, v and ζ. Thus, we need a small
numerical solver to calculate ut and vt from a given ζt. These calculations are made only for au-
toregressive rollouts with trained networks, and not during training (Backhaus, 1983). The formulas
for the velocity at the new time step can be written as

un+1 = u∗ −∆tgwimp
∂ζn+1

∂x
(76)

vn+1 = v∗ −∆tgwimp
∂ζn+1

∂y
(77)

where u∗ and v∗ are written as

u∗ = un −∆tcD
1

h
un|un| −∆tg(1− wimp)

∂ζn

∂x
+∆tah∇2un (78)

v∗ = vn −∆tcD
1

h
vn|vn| −∆tg(1− wimp)

∂ζn

∂y
+∆tah∇2vn (79)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

 Numerical

    solver

   Neural

integrator
   Initial 

condition

Figure 12: A structure of hybrid method for the prediction of shallow water system. Due to only
one output ζ, we need a small numerical solver to calculate ut and vt.

H THE DETAILED RESULTS

H.1 THE DETAILS FOR CLOSED BOUNDARY SHALLOW WATER SYSTEM

Figure 13 presents the predictions on the surface elevations ζ for additional time steps and models.
This example is presented in Figure(3) of the main text.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.2h 0.9h

g
r
o
u

n
d

 
tr

u
th

1.8h 2.6h 6.8h 10.0h 16.8h 25.0h 50.0h

p
1
/

p
1
/M

p
4
/M

p
4
m

/M
p

4
/

p
4
m

/
p

1
/

+
p

4
m

/M
+

d
r
n

e
t/

F
N

O
/

Figure 13: An example of rollout predictions on ζ from all methods for the SWE at different time
steps. The top row shows the ground truth as a reference. It shows that p4m/M has the best long
rollout accuracy.

We compare our best symmetry-physics-constrained model, p4m/M, with its noisy variant, where
Gaussian noise with a zero mean and a standard deviation of 0.0001, N (µ = 0, σ = 0.0001) is
added during training. We find that training with input noise achieves long rollouts but with lower
accuracy than the noise-free model. An example of the noisy approach’s performance is shown
in Figure (13). Predictions from the noisy model are less accurate, even at the early stages of the
rollout.

Furthermore, the mass, momentum, and total energy for the shallow water equations are plotted over
all tested methods over the course of a 50-hour period and presented in Figure 15. In the context of

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

reference

p1/�
p1/�+
p4m/M

p4m/M+

a
b

Figure 14: A comparison of predictions from methods that include noise during training, p1/∅ + ε
and p4m/M+ε, with the no-noise approaches, p1/∅ and p4m/M, is presented using the metrics
NRMSE-ζ and ρ(ζ̂, ζ). The NRMSE-ζ metric shows that p4m/M+ε maintains a relatively lower
error over a longer time period compared to the other methods.

evolutionary processes, the mass, momentum, and total energy remain constant, as illustrated in the
reference by the black curve. The p4m/M model demonstrates superior performance in maintaining
mass conversion over extended periods. In terms of both momentum and total energy, the p4m/M
model also demonstrates superior performance in comparison to all other models.

ref.

p4m/�
p1/�
p1/M
p1/�+

p4/�
p4/M

p4m/M

FNO/� drnet/�

ca b

Figure 15: The mass, momentum, and total energy of the shallow water equations for all tested
models over the course of 50 hours are presented in the Figure. Our most effective model, p4m/M,
demonstrates superior performance in maintaining the conversion of mass, momentum, and energy
in comparison to other methods.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H.2 THE DETAILS FOR DECAYING TURBULENCE

Figure 16 and 17 presents the predictions on the velocity u and v over additional time steps and
models,

0.8s 10.1s 19.3s 28.5s 37.7s 46.9s 56.1s 65.3s 74.5s 83.8s 93.0s 99.7s

p
1

/�

p
1

/
p

1
/M

+
p

4
/�

p
1

/�

+
p

4
m

/�

p
4

/M
+

p
4

/
p

4
m

/
p

4
m

/M
+

p
4

m
/M

+
  

  
+

g
r
o
u

n
d

tr
u

th
F
N

O
/�

d
r
n

e
t/

�

Figure 16: An example of rollout predictions on u from all methods with network sizes of approxi-
mately 0.1M parameters for the incompressible Navier-Stokes equations at different time steps. The
top row shows the ground truth as a reference.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.8s 10.1s 19.3s 28.5s 37.7s 46.9s 56.1s 65.3s 74.5s 83.8s 93.0s 99.7s

p
1

/�

p
1

/
p

1
/M

+
p

4
/�

p
1

/�

+
p

4
m

/�

p
4

/M
+

p
4

/
p

4
m

/
p

4
m

/M
+

p
4

m
/M

+
  

  
+

g
r
o
u

n
d

tr
u

th
F
N

O
/�

d
r
n

e
t/

�

Figure 17: An example of rollout predictions on v from all methods with network sizes of approxi-
mately 0.1M parameters for the incompressible Navier-Stokes equations at different time steps. The
top row shows the ground truth as a reference.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure(18) presents the velocity and energy spectra over additional time steps, expanding on the two
time steps shown in Figure (4-d,e,f,g) of the main text. Our analysis shows that the best-performing
model, p4m/M+ρu⃗ (blue curve), consistently provides the closest match to the reference across all
time steps for both the velocity and energy spectra.

ref.
p1/�

p1/

p1/M+

p4/�

p1/�+

p4m/�

p4/M+

p4/

p4m/

p4m/M+

a

0.8s 28.5s 56.1s 99.7s

99.7s

b c d

i

83.8s

hgfe
56.1s28.5s0.8s

Figure 18: The velocity and energy spectra at additional time points correspond to Figure (4-d,e,f,g)
in the main text. Our best method, p4m/M+ρu⃗, closely matches the reference spectra, shown as
black curves.

We also report the NRMSE and correlation over long rollouts on the field variable u for the de-
caying turbulence case. The models used are p4m/M+ρu⃗ (our best performing model) and p1/∅,
both trained with clean data and training noise N (µ = 0, σ = 0.001). We find that the model
p4m/M+ρu⃗+ ε which is trained with noise, reaches a lower accuracy but higher rollout correlation
compared to its counterpart trained with no noise p4m/M+ρu⃗.

p4m/M+

reference

p1/�
p1/�+

p4m/M+    +

a b

Figure 19: The comparison of models trained with noise and clean data: p1/∅+ ε, p4m/M+ρu⃗+ ε,
p1/∅ and p4m/M+ρu⃗. We find that training with noise provides longer rollout stability but lower
accuracy compared to training with clean data.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

H.3 THE DETAILS ON GENERALIZATION TASKS

The test of generalization for shallow water equations, we focus on two experiments: (1) one rect-
angle ζ = 0.1m as IC with random size and location; (2) two rectangles ζ = 0.1 with random size
and location. Thus, in later experiment, one rectangle can cover to another one to generate a new
shape, for example, a “L” shape illustrated in main test. In the cover case, the cover domain ζ = 0.2
which is the sum of two rectangles. Therefore, it is also a more challenging and general case.

Figure 20 presents the generalization results of the SWE for all models, using the L-shaped surface
elevation IC. Our best model is p4m/M with p4m/∅ a close second.

0.2h 2.0h 4.0h 10.0h 25.0h 33.3h 41.7h 50.0h

p
1
/

p
1
/M

p
4
/M

p
4
m
/M

p
4
/

p
4
m
/

p
1
/

+
g
r
o
u
n
d

tr
u
th

Figure 20: The rollouts demonstrating generalization for the SWE, obtained from all methods with
an L-shaped IC, are shown at various time intervals. This is the detailed version of the (5-a) from
the main text

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Fig. 21 presents the generalization results of the SWE for all models, using a rectangular-shaped
elevation IC. In this case, p4m/M, outperforms all other methods in both accuracy and long-rollout
prediction compared to the ground truth. Our best model, p4m/M, accurately predicts the surface
elevation ζ up to 50 hours, while all other models fall short, with predictions failing before 25 hours.

0.2h 4.0h 10.0h 25.0h 33.3h 41.7h 50.0h

p
1
/

p
1
/M

p
4
/M

p
4
m
/M

p
4
/

p
4
m
/

g
r
o
u
n
d

tr
u
th

Figure 21: The rollouts demonstrating generalization for the SWE, generated by all methods using
a single rectangular-shaped elevation IC, are shown at various time intervals.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Fig. 22 illustrates the generalization of rollout performance for the SWE with ICs of two rectangular-
shaped elevations. This is particularly a challenging problem because we train using experiments
with ICs of single square-shaped elevation. We find that p4m/M achieves the best rollout perfor-
mance and correctly predicts the surface elevation for time 25h rollouts.

0.2h 2.0h 4.0h 10.0h 25.0h 33.3h 41.7h 50.0h

p
1
/

p
1
/M

p
4
/M

p
4
m
/M

p
4
/

p
4
m
/

p
1
/

+
g
r
o
u
n
d

tr
u
th

Figure 22: The rollouts demonstrating generalization for the Shallow Water Equations (SWEs) on
rollout performance, from all methods are shown at various times, using a challenging IC: two
rectangular-shaped elevations. p4m/M achieves the best rollout performance.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

g
r
o
u
n
d

tr
u
th

0.8s 10.1s 19.3s 28.5s 37.7s 46.9s 56.1s 65.3s 74.5s 83.8s 99.7s

p
1
/�

p
1
/

p
1
/M

+
p
4
/�

p
1
/�

+
p
4
m
/�

p
4
/M

+
p
4
/

p
4
m
/

p
4
m
/M

+

Figure 23: The rollout performance of networks with different physical and symmetry constraints
for the decaying turbulence case. All plots show the evolution of the field variable u. This is the
detailed version of the Figure (5-d) from the main text. It indicates that the model p4m/M+ρt⃗ aligns
more closely with the ground truth trajectory and remains stable over a longer period compared to
other models

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

ihgfe
99.7s83.8s56.1s28.5s0.8s

a b c d

0.8s 56.1s 99.7s28.5s

ref.
p1/�

p1/

p1/M+

p4/�

p1/�+

p4m/�

p4/M+

p4/

p4m/

p4m/M+

Figure 24: The detailed analysis of velocity u and energy power spectra over longer rollouts for the
decaying turbulence case is presented. This expands the Figure 5-(e,f) from the main text. We find
that the best-performing network is p4m/M+ρu⃗, it matches the energy and velocity spectra closer
compared to networks with other constraints.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

g
r
o
u
n
d

tr
u
th

0.8s 10.1s 19.3s 28.5s 37.7s 46.9s 56.1s 65.3s 74.5s 83.8s 99.7s

p
1
/�

p
1
/

p
1
/M

+
p
4
/�

p
1
/�

+
p
4
m
/�

p
4
/M

+
p
4
/

p
4
m
/

p
4
m
/M

+

Figure 25: The rollout performance of networks with different physical and symmetry constraints
for the decaying turbulence case. All plots show the evolution of the field variable v. This is the
detailed version of the Figure (5-d) from the main text.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

H.4 DETAILS ON THE EFFECTS OF NETWORK AND DATASET SIZE ON ROLLOUT
PERFORMANCE

Fig. 26 depicts a detailed analysis of the effect of network size and training data size on rollout
performance. We examine three different network sizes: 0.1M, 2M, and 8.5M parameters, and three
different training dataset sizes: 100, 400, and 760 experiments with varying ICs. Increasing the net-
work size or the training dataset size improves the rollout performance of the network. Additionally,
the network with physical and symmetry constraints performs better in each case.

b
a

h i

The e ect by the di erent data size

The e ect by the di erent networks size

gfedc

99.7s83.8s56.1s28.5s0.8s

data=760p1/�

data=100

data=100

data=400
data=400

p4m/M+

p4m/M+

data=760p4m/M+

p1/�

p1/�

99.7s83.8s56.1s28.5s0.8s

snmkg

net=8884482

p4m/M+

p4m/M+

p4m/M+

p1/

p1/

p1/

net=90114

net=86995

net=2111619

net=8415199

net=2224642

Figure 26: Top: Influence of network size on NRMSE-u, ρ(û, u) (a, b) and energy spectrum (c, g)
for p1/∅ and p4m/M+ρu⃗. Bottom: Influence of training data size on NRMSE-u, ρ(û, u) (h, i), and
the energy spectrum (g,s). All results are reported on 99.7s rollouts.

39


	Introduction
	Background and Related Work
	Symmetry- and Physics-Constrained Neural Surrogates
	Base architecture
	Training

	PDE Systems
	Closed Shallow Water System 
	Decaying Turbulence 

	Results
	Closed Shallow Water System
	Decaying Turbulence
	Generalization
	Effects of Network and Dataset Size

	Discussion
	The symmetries of SWEs and INE on C-grid staggering
	Grid discretizations

	Padding options
	Group equivariant input layers 
	Group equivariant input layer for SWEs 
	Group equivariance of p4 input layer in SWEs
	Group equivariant input layer for INS 
	Empirical validation of equivariance for SWE and INS input layers

	Group equivariant output vector layer with C-grid staggering
	Proof of equivariance by construction for vector output layers

	Physical constraints embedded into networks
	Simulation parameters
	A hybrid method for the prediction of shallow water system
	The detailed results
	The details for closed boundary shallow water system
	The details for decaying turbulence
	The details on generalization tasks
	Details on the Effects of Network and Dataset Size on Rollout Performance


