Evolving Control: Evolved High Frequency Control
for Continuous Control Tasks

Samuel Holt* Todor Davchev Dhruva Tirumala Ben Moran
sih31@cam.ac.uk Google DeepMind Google DeepMind Google DeepMind
University of Cambridge

Atil Iscen Antoine Laurens Yixin Lin Erik Frey
Google DeepMind Google DeepMind Google DeepMind Google DeepMind

Markus Wulfmeier' Francesco Romano! Nicolas Heess
Google DeepMind Google DeepMind Google DeepMind

Abstract: High-frequency control in continuous action and state spaces is essential
for practical applications in the physical world. Directly learning end-to-end high-
frequency control struggles with assigning credit to actions across long temporal
horizons, compounded by the difficulty of efficient exploration. The alterna-
tive, learning low-frequency policies that guide higher-frequency controllers (e.g.,
proportional-derivative (PD) controllers), can result in a limited total expressive-
ness of the combined control system, hindering overall performance. We introduce
EvoControl, a novel bi-level policy learning framework for learning both a slow
high-level policy (using PPO) and a fast low-level policy (using Neuroevolution)
for solving continuous control tasks. Learning with Neuroevolution for the lower-
policy allows robust learning for long horizons that crucially arise when operating
at higher frequencies. This enables EvoControl to learn to control interactions at
high frequency, benefitting from more efficient exploration and credit assignment
than direct high-frequency torque control without the need to hand-tune PD param-
eters. We empirically demonstrate that EvoControl can achieve a higher evaluation
reward for continuous-control tasks compared to existing approaches, specifically
excelling in tasks where high-frequency control is needed, such as those requiring
safety-critical fast reactions.

Keywords: Safety, High-frequency Control, Control
1 Introduction

High-frequency control is paramount for ensuring the safety and reliability of systems that operate
in the real world [1, 2, 3, 4]. Failures to respond in real-time to unexpected collisions, disturbances,
or human interaction can lead to catastrophic consequences in safety-critical applications such as
surgery [5], autonomous driving [6], and industrial automation [7].

Recent work falls into two main categories. First, directly learning end-to-end high-frequency (often
torque-based [8]) policies, labeled direct torque control, presents significant learning challenges
as this increases the number of state transitions within a fixed time window, resulting in longer
trajectories with complex temporal dependencies that hinder exploration and credit assignment
[9, 10, 11]—and can often lead to suboptimal behavior (Section 5.2).

Second, a common alternative is to learn a slower high-level policy that outputs target positions or
velocities, which are then tracked by a faster (higher-frequency) low-level fixed controller, such as
a proportional-derivative (PD) controller [12]. This bi-level approach, labeled as fixed controllers,

*Work done during an internship at Google DeepMind.
TEqual advising.

Workshop on Safe and Robust Robot Learning for Operation in the Real World (SAFE-ROL) at CoRL 2024.

is prevalent in real-world continuous control tasks [8, 13] and simplifies learning by reducing the
effective time horizon of the high-level policy [14]. For real-time control, this composition affords
the high-level policy larger inference time, key for handling rich observations, such as images (i.e.,
at 30Hz) or using larger networks, such as Visual-Language-Models [15]. While composing with a
low-level PD controller that operates at higher-frequencies ~ 500 H z on robotic platforms, often only
observing at high-frequency direct robot proprioceptive observations such as robot joint positions,
velocities and torques [16]. However, fixed controllers are unable to produce fast interaction behavior
beyond simple state-goal-tracking limiting their expressiveness, and require manual tuning of their
PD parameters for each task.

An effective method for high-frequency control therefore aims to have the following three core
properties: (P1) Efficient Exploration: Throughout learning be able to efficiently explore the state
space as well as a high-level policy with a fixed controller. (P2) High-Frequency Interaction
Control: Enable the learning of a low-level controller capable of complex, adaptive behaviors at
high frequencies. (P3) Automate Controller Tuning: Reduce manual tuning of the low-level PD
controller parameters.

Contributions: () We introduce EvoControl, a novel bi-level policy learning framework for learning
both a slow (e.g. 30Hz) high-level policy and a fast (e.g. 500Hz) low-level robot proprioceptive
controller using PPO and Neuroevolution, respectively, for continuous-control tasks (Section 3).
(@ Theoretically, we show that there exist some MDPs where higher frequency actions can be
more optimal (Proposition 2.1). Empirically, we demonstrate that EvoControl can achieve a higher
evaluation reward for standard continuous-control tasks at high-frequency compared to existing
approaches, excelling in tasks where high frequency control is needed, such as in safety critical
applications of unmodeled interactions (Section 5.1). @ We gain insight and understanding of how
EvoControl can achieve efficient exploration compared to direct torque control at high-frequency,
learn fast interactions, and demonstrate robustness to mistuned PD parameter settings.

2 Problem

We follow the standard continuous control reinforcement learning (RL) setting with the inclusion of
an optional low-level controller.

States & Actions. We denote the environments state space as S C R% and its action space as
U C R%. Attime t € R, the system’s state is represented by s, € S, and its action by u; € U.
Considering action (e.g. actuator) limits the action space is constrained to a box in Euclidean space:
U= [umin; umax]~

Environment Dynamics. The transition dynamics for continuous control environments can be
described by an underlying unknown differential equation of s, = % = f(st, ut). The transition
function, which describes the evolution of the state over a discrete time step A4, can be approximated
using the Euler method s;1a, & s + A, f(s¢, uy). Given an action u, and current state s;, S¢4a, ~
P(st4a,|St,) is implicitly defined by this approximation. More sophisticated numerical integration

methods can also be used. We expand on the problem setup in Appendix A.

Policies. The agent can be represented as a sin- Algorithm 1 Bi-Level Policy Interaction (Single High-

gle policy 7 : R% — R%:, that observes the Level Step)

current observation at time ¢ and samples an ac- 1: ag ~ p(sk) > High-level action
tion uy ~ 7(s;) and then applies this actionto 2: fori =0to G — 1 do

the environment at a given fixed A;.To formal- 3 Upti ~ B(Sk1i,ar) > Low-level action
ize a bi-level policy, we decompose 7 into two ~ # Sheit1 ~ f(Skeis Untis At)

components: a slow, high-level policy, p, and a fast, low-level policy, 8. Both policies interact with
the environment as described in Algorithm 1. At time step k, p outputs a latent action aj ~ p(sk)
(e.g., a target position or velocity). Operating at a higher frequency, (3 receives aj, and generates
low-level actions uy; (€.g., motor torques) at a finer-grained time step ¢ to achieve the target specified
by p. With S operating at frequency 1/A¢, p’s latent action is executed by 3 for G steps, making p’s
effective frequency 1/(GA;).

Objective. The environment produces a reward r; sampled from an unknown reward function
r(s¢, ut). The overall objective of the agent is to maximize the expected future discounted reward

Eso:T a0:T—1.r0:T—1 [ZiT;Ol Wih} , where 0 < 7 < 1 is the discount factor.
2.1 Higher Frequency Actions Can Be More Optimal

In some environments controlling with a higher-frequency action can be more optimal—a point we
make formally in Proposition 2.1, with a full proof in Appendix B.

Proposition 2.1. There exist Markov Decision Processes (MDPs) where the optimal control policy,
maximizing the expected cumulative reward over a fixed episode duration T, requires an action
frequency approaching infinity.

This highlights the need for high-frequency control in certain environments. This is analogous to the
Pulse Width Modulation (PWM) sampling theorem [17], where variable pulse widths enable perfect
signal reconstruction from discrete samples, similar to how high-frequency actions enable optimal con-
trol in our MDP setting. See Appendix B.1 for a continuous control safety critical intuitive example.

2.2 Background: Fixed PD Controllers Table 1: Common Fixed Low-Level PD Controllers

In continuous control and robotics, hierarchical Method ‘ o | Control L"‘W(.
. PD Absolute Position | ¢* =ay | 7(t) = Ky(¢* — q) + Ka(¢* —)
structures composed of a learned high-level pol- PD Dela Positon | 4’ = o Tgfg _ K‘pg(,,}, h o;qd) Jzﬁ + Ig)'d(q‘d)
. PD Velocity ¢ =ar | T(t) = Ky(¢°—q¢)+ Kq(0— G
icy (p) and a fixed low-level controller (€.8., 8 pp cerared Velocity | ¢ = ar | 1(6) = Kol(a? + [4%6) —) + KalO—)

PD controller [18]) are common. This hierarchi-
cal decomposition reduces the number of decision steps for the high-level policy by a factor of G
within a fixed episode duration 7', where G is the number of low-level actions executed per high-level
action. The high-level policy outputs a target ay, often a desired position or velocity®, which the
low-level PD controller then tracks. The controller computes a control signal u; based on the error
between the target a;, and the measured system state s;, uy = Kp(ag — s¢) + Kq(ar — ;) where
e; = ay, — s is the tracking error, and K, K4 € R™ are constant proportional and derivative gains.
Common PD controller designs using proprioceptive states (joint positions g;, velocities ¢;, and
torques 7;) are summarized in Table 1. We provide an expanded background on PD controllers in
Appendix C.

3 EvoControl: Evolved low-level controller framework

We now propose EvoControl, a novel bi-level policy learning framework for learning both a slow
high-level policy and a fast low-level policy for continuous control tasks. The key idea is to stabilize
the bi-level on-policy learning of a higher-level policy by initially learning with a fixed-low-level
PD controller and then annealing to a gradually neuroevolved high-frequency controller—Figure 1
provides a block diagram.

First, we formulate the bi-level policy optimization problem and its challenges. Then, we discuss our
approach and the advantages of using Neuroevolution for lower-level policy optimization. Specifically
our framework can be applied starting with different semantically meaningful high-level actions ay,
from the high-level policy, such as position/velocity targets, commonly seen in existing PD controllers,
as outlined in Table 1.

3.1 Promise and Challenges of Policy Hierarchies

Hierarchical reinforcement learning (HRL) promises to tackle complex tasks by leveraging temporal
abstraction with multiple policy levels [19, 14, 20]. Diverse low-level trajectories induced by high-
level actions improve exploration [14, 21, 22], as exemplified by fixed low-level controllers (e.g.,
PD) acting as effective temporally extended actions [23]. However, simultaneously learning both
policy levels with latent actions can destabilize learning due to the co-dependency between them:
changing low-level policies create non-stationarity for the high-level, while the low-level requires
informative high-level actions [24, 25, 26]. Moreover, bi-level optimization presents challenges in

3The state s; can encompass a wide range of proprioceptive information beyond joint positions (g;). We
present the target a; and tracking error in terms of position/velocity to align with common PD controller
formulations.

High-Level Policy pg(So) po(sa)
14 14

High-Level Action @o aG
v v
Low-Level I’nlmﬂqs(ao ao) Ba(a1,ao -+ Bg(sg-1,00) Bo(sa,ac) By(sar1,aa) -+ By(s2a-1,06)
2 2 2 2
uo u1 uG—1 UG+1 U2G -1
& & @ @& &
EvoControl Training Loop Neuroevolution
for k in {0, ..., K Sample Evaluate Update
0« Pl{)O(O @, (v}) Update 6, Fix ¢ T/A:—1
/
1} e HLEIIL:VI?%H“OHW ¢,) Fix 0, Update ¢ ¢(] _— (b, —>F(¢,L) = Z T(SiA,-,UiAt)At_’ ¢ — ¢

Repeat for n i—0
generations I - l

Figure 1: Top: Bi-level Policy Interaction. The high-level policy pg outputs latent action ay, which guides
the low-level policy B4 for G steps. Bottom: EvoControl Training Loop. EvoControl trains both the high-level
(po, with parameters 6) and low-level (54, with parameters ¢) policies over the course of training divided into
K discrete sections. Each section k first optimizes 6 with PPO (fixed ¢), then optimizes ¢ with Neuroevolution
(fixed 0). Neuroevolution maintains a population of ¢ parameters, evaluates their fitness (episodic return, F'), and
updates the parameter distribution to maximize average fitness. This process, robust to long horizons, enables
learning of complex low-level behaviors. To stabilize learning, S, is initially a PD controller (Spp, o = 1) and
transitions to a learned controller as o anneals towards 0.

determining optimal latent actions and low-level rewards. While subgoal-based rewards are intuitive,
optimizing the overall episodic return (R) is often desirable but difficult due to the credit assignment
problem, especially with high-frequency low-level policies [9]. This motivates our framework for
directly optimizing R.

3.2 Efficient High-Level Policy Exploration

In the following we outline how we train both the slow high-level policy p and the fast low-level
policy 3, by training each level in K € Z stages, with the other fixed, which assists to mitigate the
issues of instability and long-horizon credit assignment.

To deliver on the key advantage of efficient high-level state-action exploration for the bi-level control
approach, as outlined in Figure 1, we seek a stable way of initially learning the high-level policy, to
overcome the non-stationary challenge of learning with a continually updating lower-level policy.
A key approach we choose, which, as we will see later, also assists in stably learning a lower-level
policy, is to represent the lower-level policy as a convex combination of a fixed PD controller Spp and
a learned neural network actor policy B4nn With parameters ¢, and start initially training with only
the PD controller, with « = 1, € [0, 1] and anneal « to 0 over the course of training. Specifically,
we formulate the bi-level policies during training in Algorithm 1 as:

po(Sk)s Be(Sk+i, ar) = aBpp(Sk+i, ak) + (1 — @) Bonn(Sk+i, ak)

This bring two immediate advantages, 1) the high-level action a;, output from the high-level policy
has an initial semantic meaning, grounding it and allowing a user to select the most appropriate PD
controller for the given task, and 2) as « is annealed throughout training from 1 to 0, we inherit the
effective state-action exploration properties of having a fixed PD controller initially (Section 5.2),
and yet can still retain the flexibility of learning more complex lower-level behavior, beyond just
sub-goal/state tracking.

To optimize the high-level policy, we employ Proximal Policy Optimization (PPO) [27], a highly
effective on-policy reinforcement learning algorithm for continuous control tasks. The high-level
policy is represented by a continuous control agent consisting of a neural network with separate critic
and actor heads. The actor head parameterizes a multivariate Gaussian distribution with a diagonal
covariance matrix, with parameters . Specifically, the high-level policy is defined as:

ap ~ po(sk) = N (pe(sk), Xo(sk))

where f19(sy) is the mean vector and ¢ (s;) = diag(o? | (sk), 05 5(Sk), .., 02, (sk)) is the diagonal
covariance matrix, with 05 ,(sx) representing the variance for the I-th action dimension at time step .

3.3 Neuroevolving a Fast Low-level Policy

We seek to learn more complex lower-level behavior, beyond prior work of simple goal-reaching
low-level policies [25]. However, directly optimizing the episodic return (R) is challenging due to
the extended credit assignment horizon, exacerbated by the higher-frequency low-level controller and
its increased number of steps (G) per high-level latent action ay.

Policy gradient methods, while a natural choice for policy optimization, are known to struggle with
the long horizons encountered in high-frequency control [9]*. This difficulty is compounded by the
credit assignment problem [10], where the impact of individual low-level actions on the overall return
becomes increasingly diffused over longer horizons [28]. Furthermore, the increased temporal density
of actions at higher frequencies can lead to heightened sensitivity to policy parameter variations,
making optimization landscapes more challenging to navigate and potentially leading to suboptimal
solutions. Empirical evidence supporting these challenges is presented in Section J.1.

Instead we seek a learning method that is invariant to the long-horizon credit assignment issue, and
has the properties that enable it to discover ideally a globally optimal low-level policy. Motivated
by this, we use Neuroevolution, a gradient free, black box, global optimization approach [29, 30].
Neuroevolution leverages Evolutionary Strategies (ES) to optimize the lower-level policy neural
network parameters ¢, by maintaining a population of parameters represented by a distribution p;, (¢),
itself parameterized by 7 and maximizes the average fitness value Ey.,, F'(¢) over the population by
searching for ¢ with stochastic gradient ascent [30]. The core idea rests upon optimizing the score
function estimator of

1
VoEen,0)[F (¢ + o€)] = ;EeNN(O,I) [F'(¢ + oe)e],

where N (0, I) is the standard multivariate normal distribution, and o is a step size parameter. This
estimator allows for gradient estimation without explicit backpropagation by sampling perturbations
of €. Therefore Neuroevolution maintains a population of parameters, evaluates their fitness, and
generates a new population through selection, mutation (adding noise oe¢), and recombination, as
determined by a specific Neuroevolution algorithm used [30]. ES, while less sample efficient
compared to RL, are particularly well-suited for scenarios where gradient-based methods struggle,
such as those with delayed-rewards, noisy environments, or long-horizon tasks [30]. Specifically, we
use Policy Gradients with Parameter-Based Exploration (PGPE) [31], which optimizes a population
of policy parameters by maximizing average fitness using a score function estimator, eliminating
the need for backpropagation and making it robust to long horizons and noisy environments. We
empirically demonstrate its effectiveness within EvoControl in Section 5.1.

One consideration is what to select as the fitness function F(¢) for the parameters. Given the
bi-level setup, we seek to optimize the episodic return for the combined bi-level policy as a rollout
in the environment, i.e. F(¢) = R. Doing so becomes a long horizon optimization problem,
especially when the lower-level operates at a higher frequency. Interestingly, directly optimizing the
parameters with gradient descent is infeasible due to stochastic noise on the state of the environment
and potentially many steps of gradient propagation through an entire bi-level policy rollout of the
environment. Crucially, to reduce variance of the fitness function F' and improve learning convergence
of the lower-level policy, we sample the mode of the probabilistic high-level actor, and parameterize
the lower-level actor as a deterministic low-level policy neural network.

Another advantage of using Neuroevolution for lower-level policy optimization is the inherent
parallelism of fitness evaluations. This parallelism can lead to faster wall-clock time convergence
compared to gradient-based methods, even though evolutionary strategies (ES) generally require
more samples [30]. In our experiments, we find that this trade-off is beneficial: the increased

“Low-level controllers often operate at 500Hz-1KHz, resulting in G = 50 — 100 low-level actions respec-
tively for each high-level action at 10Hz.

sample complexity is outweighed by the ability to stably learn a high-frequency low-level policy
(Appendix J.2).

The process of annealing with a PD controller further improves learning a lower-level policy that
can be directed with a high-level latent action as input aj, that is directed towards solving the task.
Although initially the higher-level policy will provide a latent-action ay, that would be applicable to a
particular PD controller that it was initially trained with in the early stages of training, by enabling full
optimization of the lower-level policy we can evolve a better performing lower-level policy, lessening
the reliance on a tuned PD controller. In practice we find this effective, even if the PD controller is
mistuned (Section 5.2). We provide pseudocode for EvoControl in Appendix G.1.

4 Related Work

Here we provide the existing approaches to continuous control, and provide an extended related work
in Appendix D.

Fixed Low-Level Controllers: Combining learned low-frequency high-level policies with fixed high-
frequency controllers (e.g., PD) [13] simplifies exploration [9, 32] but suffers from limitations. PD
parameters require task-specific tuning, and fixed controllers struggle with complex high-frequency
interactions (e.g., collisions). Current real-world RL applications are often limited to low-frequency
control due to this reliance on analytical controllers [33, 34, 35, 36]. EvoControl, conversely, learns
flexible high-frequency behaviors, beyond simple state-goal tracking behavior of fixed-controllers.

Direct Torque Control: End-to-end high-frequency torque control [9, 37, 38] offers flexibility but
faces the curse of dimensionality, hindering exploration [33, 9]. EvoControl mitigates this with a
hierarchical structure, enabling efficient exploration while retaining low-level adaptability.

Hierarchical Reinforcement Learning (HRL): Methods like options [14, 39] and hierarchical
actor-critic [40, 41], including recent deep learning extensions [42, 43, 44, 45], decompose tasks but
often focus on discrete skills/subgoals. HRL typically learns simpler low-level policies limited by
subgoal attainment, not overall episodic return. EvoControl, inspired by HRL, tackles continuous
high-frequency control with meaningful exploration, focusing on a fast, complementary low-level
policy, uniquely combining PPO and neuroevolution within its hierarchy.

S Experiments and Evaluation

In this section, we evaluate EvoControl and verify that it can achieve a higher evaluation reward for
the same number of high-level policy steps compared to existing training of a high-level policy either
with fixed controllers or direct torque control.

Benchmark Environments. We evaluate performance on twelve high-dimensional continuous
control environments (Appendix E). Ten are standard Gym MuJuCo tasks [46, 47], including loco-
motion (e.g., Ant, HalfCheetah, Humanoid), and manipulation tasks (e.g., Reacher, Pusher). We
also introduce a safety-critical Reacher variant with a randomly positioned obstacle that penalizes
collisions. We simulate all environments at 500Hz, with each high-level policy baseline running at
31.25Hz, simulating realistic sensor limitations (e.g., camera-based state estimation).

Benchmark Methods. We compare EvoControl Table 2: EvoControl Ablation of PD Controllers.

. . . . Controller Variant Bnn Obs. SBxn action
agaIHSt CStabllS:led paselmes, us'lng the S.ame EvoControl (Full State) Sty ks €4y e, Ges /T T
high-level PPO” policy (p) learning algorithm EvoControl (Residual State) e t/T T

. . EvoControl (Target + Proprioceptive) ak, e, Gr, e)T T

across all, varying only the low-level policy (). EvoControl (Target) s Qs G t)T T
: . . sl EvoControl (Learned Gains) Sty Qs Gty Gty t)T K,, Kq

We consider fixed controllers: PD Position, PD g ¢ ol (Delta Position) stoprenanatr

Position Delta, and PD Integrated Velocity [8];
direct torque control at both high (500Hz) and low (31.25Hz) frequencies [49]; a Random policy
(30Hz); and several EvoControl ablations with varying state information provided to the low-level
neural network controller (Table 2). Here, the EvoControl variants using position-based controllers
are annealed from their corresponding PD controllers. Method implementation details are provided
in Appendix F.

>PPO is able to achieve state-of-the-art performance solving Gym MuJuCo tasks [48, 47].

Table 3: Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on
average achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque
control. Results are averaged over 384 random seeds, with 4 indicating 95% confidence intervals. Returns are
normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward achieved
by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D

RT Rt Rt RT Rt RT RT RT RT Rt RT
Fixed Cont. - PD Position 100£6.56 | 61.2+£0.441 91.6+1.23 100£2.96 100£0.974 99.9+0.03 100£1.53e-06 | 1004+8.47 100£1.8 | 85.242.87 | 75.7+0.633
Fixed Cont. - PD Position Delta 2.4+191 | 2.76+0.0888 100+1.35 | 96.6£1.71 | 2.96+0.0397 53.8+1.57 100+1.53e-06 0£0 4094323 | 15.24£7.6 | 90.2+0.239
Fixed Cont. - PD Int. Velocity 3.59+1.78 | 2.4640.0932 | 74.740.903 | 83.4+1.13 0+0 49.7£1.55 86.5+2 0+0 0+0 0+0 85.9+2.55
Fixed Cont. - Random 0.0+£0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0+0.0 0.0+£0.0 0.0+£0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 17.240.316 | 1.42+0.533 | 10.4+2.19 | 10.340.586 0+0 0+0 1.34+7.89 | 2.08+5.84 | 45.34+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) | 54.5£7.15 | 100+£1.21 7240.64 98+2.55 80.64+2.56 100+0.0311 100£1.53e-06 | 73.2+12.9 | 59.24+3.72 | 100£1.94 | 100+2.68
EvoControl (Full State) 368+73.2 157+18.3 274+20.6 123+19 116+18.4 101+0.859 100+0 362+12.5 | 114£7.51 | 106+2.75 203+137
EvoControl (Residual State) 182+16.1 182+6.31 101+5.54 170+18.2 212+145 99.2+1.25 100+0 375+94.8 | 106258 | 104+3.42 | 205+57.4
EvoControl (Target + Proprio.) 319+35.1 168+14.7 171+155 165+7.19 165+150 99.7£1.19 100+0 353+28.4 | 96.8+78.6 | 105+4.71 178+63.7
EvoControl (Target) 293+87 162+23.5 2834250 164+21.2 205+147 99.6+0.949 100+0 353+43.4 | 112+1.73 | 105+1.65 188+88.2
EvoControl (Learned Gains) 266+104 113+£10.5 206302 150-+£15.1 117+2.44 99.542.48 100+0 330+17.8 | 116+1.62 | 105+2.45 196:+118
EvoControl (Delta Position) 362-+47.7 133+£34.6 225+82.9 119+18 105+4.64 101-+0.394 100+0 2674302 | 655421 | 99.1£12.7 | 1831344

Evaluation. We train each policy (high-level p and low-level 3) for 1M high-level steps. Post-
training, we evaluate performance using 128 rollouts (different random seeds) per trained policy,
calculating the return for each 1,000-step episode. We repeat this process for three training seeds per
baseline. Results are reported as the mean normalized score R [50] across all 384 evaluation rollouts
(3 training seeds x 128 evaluation rollouts), scaled from 0 (random policy performance) to 100 (best
non-EvoControl baseline). Further evaluation details are provided in Appendix H.

5.1 Main Results

We evaluated all benchmark methods across all of our environments with results tabulated in Table 3.
EvoControl on average achieves high average evaluation normalized return R on all environments.
Specifically, EvoControl can both achieve a high average return R, while learning a slow (31.25Hz)
high-level policy, and able to solve a environment task with a fast (S500Hz) learned low-level policy.
Furthermore, EvoControl is able to outperform direct torque control at high frequency, and outperform
the same high-level policy learning algorithm with position PD controllers, and we provide insights
in Section 5.2.

5.2 Insight Experiments

Next, we analyze why EvoControl performs better than learning a policy with standard fixed con-
trollers or direct torque control. We highlight the importance of controlling an environment at high
frequency when required, without sacrificing learning convergence ability.

Does EvoControl Possess Efficient Exploration?
(P1). To explore if the benchmarked methods dur-
ing training possess efficient exploration we ana-
lyze the learning curves for the Reacher 1D envi-
ronment and their state space visitation frequency g
histograms in Figure 2 (with implementation details s
in Appendix I.1). We observe that EvoControl can ™
initially achieve the same efficient state exploration °‘ e
due to temporal abstractions, similar to that of a fixed .
PD position controller, and then can further achieve
a higher evaluation reward throughout training. This
suggests that the higher-frequency control enabled by
EvoControl, as theoretically motivated by Proposition
2.1, contributes to finding more optimal actions. This
is reminiscent of the principle behind Pulse Width
Modulation (PWM), where higher frequency allows
for finer control and more accurate signal represen-
tation [17]. While a direct equivalence to PWM is

—04 -0.2 02 0.4 0.6

-80|

04 0.6
p (Policy Steps)

Figure 2: Top 3 Sub-Plots: State visitation his-
togram for Reacher 1D. Empirically demonstrat-
ing that PPO with high-frequency-direct torque
control suffers from less efficient exploration com-
pared to using PPO at a low-frequency with a
fixed-high-frequency PD controller. EvoControl
can achieve the same efficient exploration as a
PD controller. Bottom: Evaluation return R
versus p policy steps on Reacher 1D. PPO at

not claimed, the ability of high-frequency actions to
improve control, as demonstrated in Proposition 2.1,
provides a theoretical underpinning for EvoControl’s
improved performance. Crucially, we observe per-
forming direct high-frequency torque control suffers
poor state exploration, given the same number of
training steps (Appendix I.1).

high-frequency with direct-torque control experi-
ences slower convergence, compared to learning
PPO at a low-frequency with a fixed PD controller.
EvoControl can evolve its lower-level controller
throughout training, leading to a higher evaluation
reward in comparison—additional plots are pro-
vided in Appendix I.1.

. Table 4: Normalized evaluation return R for the
Can EvoControl Learn High-Frequency In- benchmark methods on the Safety Critical Reacher

teraction Contl.'ol? (P2). High—.f?‘equency C_On' Environment—using the same normalization as in Ta-
trol can be crucial for safety-critical tasks like ble 3. EvoControl can learn to control at a higher fre-
collision avoidance where rapid responses to quency than that of the low-level policy frequency, even
unexpected contacts are paramount. To inves- though it starts with using a PD position cgntrol to learn
tigate such a setting, we adapted the Reacher the h1gh—1ev§1 controller,. whereas learning at a low-

. > . frequency with a PD position controller cannot observe
1D environment to introduce a random object

. 3 - the collision at a fast enough frequency receiving a low
in 25% of the episodes which blocks the arm evaluation reward for this environment.

from reaching its intended goal, and add both an Same PPO high-level alg. p with Safety Critical Reacher

observation for any measured contact force and =~ 2Low-Level Policy § of RY
. Fixed Cont. - PD Position 100+19.2

a reward penalty for this contact force (Safety Fived Cont. - PD Position Delta 040
Critical Reacher). We tabulate the normalized Fixed Cont. - PD Int. Velocity 67.1+114
. . Fixed Cont. - Random 0.0+0.0

performance of all baselines in Table 4. We pirect Torque Cont. - High Freq. (500Hz) 0+0
observe that EvoControl is able to observe and Direct Torque Cont. - Low Freq. (31.25Hz) 35.9+17.1
. EvoControl (Full State) 205+15.6
react faster at high-frequency to un-modelled gyocontrol (Residual State) 1244501
collisions, compared to a low-frequency policy EveControl (Target + Proprio.) 237+41.2
. . . EvoControl (Target) 121+41.9
with a fixed-high-frequency state tracking PD EvoControl (Learned Gains) 169+123
controller. Critically such a collision detection ~ EvoControl (Delta Position) 213437.5

and avoidance environment exemplifies our intuition from Proposition 2.1, that higher-frequency
actions can be more optimal. As intuitively a well performing policy, requires a change in behavior
as soon as any un-modelled collision is detected, intuitively similar to fast automatic reflexes for a
low-level system controller with a high-level system, beyond simple goal-state tracking. We provide
experimental details in Appendix 1.2.

Can EvoControl Automate Tuning of PD pa- Table 5: Normalized evaluation return R for the bench-
rameters? (P3). A widespread limitation of mark methods on Reacher 1D—using the same normal-
any fixed-PD-low-level controller is the inher- ization as in Table 3. EvoControl is more robust to

e . . . the tuning of the underlying PD controller than existing
ent sensitivity of its state-tracking performance fixed PD controllers, which can degrade as their PD con-

to that of its fixed gains (K| K). In practical troller parameter (K) becomes less tuned for the task.

scenarios such gains require careful manual tun- Sune PPObishevclale. it Ky 20000 | Ky =01 | Ky = 10| Ky 2 100
ing to each task and environment of operation_ Fixed Cont. - PD Position 00 13.547.39 | 81.8£2.81 | 100£0.893
X Fixed Cont. - PD Position Delta 00 040 | 14.6£7.31 | 78.8+3.58

Fixed Cont. - PD Int. Veloci 040 040 0+0 | 80.5+4.17

Therefore haVlng an approach that can be more Fired Cont, - Random 00£0.0 | 00400 | 00£00 | 0.0+0.0
. . . s Direct Torque Cont. - High Freq, (S00Hz) | 43.646.48 | 4362648 | 43.646.48 | 43.6+6.48

robust to tuning PD gains than just their inher- 5 Torate Cont. LowFreq (31.25Hs) | 9624187 | 9624187 | 9624187 | 9622187
PRI : e EvoControl (Full State) 9914313 | 99.2£7.07 | 102+3.25 | 101+0.36

ent sensitivity 1s practlcally useful. Emplrlcally, EvoContral (Residual State) 1004455 | 99.5:5.62 | 1004329 | 1024218
. . EvoControl (T: Proprio. 98.6435 | 9794148 | 1014443 | 101:£0.894
evaluatlng on the Reacher 1D taSk, with vary- E:ZCs:::gl H?:gi:f roprio) 94,6;6.85 96.5+10.1 10&1.58 10&0.995
. . EvoControl (Learned Gains) 9184537 | 9344660 | 1014235 | 100+3.04
mng the Kp = {0001, 017 10’ 100} gain, we Eiﬁcﬁ."..iﬁl (Dz?t;“le-'()sit;::f 95.8+8.29 | 97.4+1.92 | 95.4+122 | 97.6+8.52

observe EvoControl achieving a higher average normalized return R than a PD controller, crucially
as the PD controllers become less tuned K, — 0 their performance decreases, highlighting the
sensitivity of these fixed controllers. This highlights EvoControls robustness to PD parameters, which
could arise due to the PD controller provides a semantically meaningful initial latent action ay, that the
lower-level policy can then refine. Ablating the initial PD controller annealing in EvoControl destabi-
lizes learning of both the high-level and low-level policies, confirming its importance (Appendix J.4).

6 Conclusion and Future Work

In this paper we present EvoControl, a novel bi-level policy learning framework for learning both a
slow high-level policy and a fast low-level controller using PPO and Neuroevolution, respectively,
for continuous-control tasks. Theoretically, we show the existence of MDPs where infinitely high
action frequency is necessary for optimal control. Empirically, EvoControl outperforms existing high-
frequency control methods, particularly in tasks requiring fast reactions. Moreover the limitations
of the current approach, are that EvoControl still relies on the existence of a fixed-PD controller
for the task (common in robotics applications, Appendix J.4) and can require more computational
complexity compared to only performing PPO, which can be readily parallelized in practice with
modern accelerated compute platforms, both could be readily improved. In addition, promising
future directions include exploring more complex nested hierarchies, direct low-level to high-level
information flow, and ensembles of policies (Appendix K).

Acknowledgments

We thank the anonymous reviewers, and area chairs, and specifically Francesco Nori, Leonard
Hasenclever, Steven Bohez, Thomas Lampe, Nimrod Gileadi and Jose Enrique Chen for their
insightful comments and suggestions that ultimately improved this work. This work was supported
by Google DeepMind.

References

[1] N. Hogan. Impedance control: An approach to manipulation. In 1984 American control
conference, pages 304-313. IEEE, 1984.

[2] S. Oh, H. Woo, and K. Kong. Frequency-shaped impedance control for safe human-robot
interaction in reference tracking application. IEEE/ASME Transactions On Mechatronics, 19
(6):1907-1916, 2014.

[3] S. Venkataraman and S. Gulati. Terminal slider control of robot systems. Journal of Intelligent
and Robotic Systems, 7:31-55, 1993.

[4] E. Dantec, M. Taix, and N. Mansard. First order approximation of model predictive control
solutions for high frequency feedback. IEEE Robotics and Automation Letters, 7(2):4448-4455,
2022.

[5] K. J. Kuchenbecker, J. Gewirtz, W. McMahan, D. Standish, P. Martin, J. Bohren, P. J. Mendoza,
and D. I. Lee. Verrotouch: High-frequency acceleration feedback for telerobotic surgery. In Hap-
tics: Generating and Perceiving Tangible Sensations: International Conference, EuroHaptics
2010, Amsterdam, July 8-10, 2010. Proceedings, Part I, pages 189-196. Springer, 2010.

[6] J. Guo, U. Kurup, and M. Shah. Is it safe to drive? an overview of factors, metrics, and
datasets for driveability assessment in autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, 21(8):3135-3151, 2019.

[7] M. Vasic and A. Billard. Safety issues in human-robot interactions. In 2013 ieee international
conference on robotics and automation, pages 197-204. IEEE, 2013.

[8] E. Aljalbout, F. Frank, M. Karl, and P. van der Smagt. On the role of the action space in robot
manipulation learning and sim-to-real transfer. I[EEE Robotics and Automation Letters, 2024.

[9] X.B. Peng and M. Van De Panne. Learning locomotion skills using deeprl: Does the choice
of action space matter? In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 1-13, 2017.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

[11] W. Dabney, G. Ostrovski, and A. Barreto. Temporally-extended e-greedy exploration, 2020.

[12] B. Wei. A tutorial on robust control, adaptive control and robust adaptive control—application
to robotic manipulators. Inventions, 4(3):49, 2019.

[13] P.Song, Y. Yu, and X. Zhang. A tutorial survey and comparison of impedance control on robotic
manipulation. Robotica, 37(5):801-836, 2019.

[14] R.S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

[15] Y. Ma, Z. Song, Y. Zhuang, J. Hao, and I. King. A survey on vision-language-action models for
embodied ai. arXiv preprint arXiv:2405.14093, 2024.

[16] R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar. A review of pid control, tuning methods
and applications. International Journal of Dynamics and Control, 9:818-827, 2021.

[17] J. Huang, K. Padmanabhan, and O. M. Collins. The sampling theorem with constant amplitude
variable width pulses. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(6):
1178-1190, 2011.

[18] D. E. Oku, E. P. Obot, and C. Author. Comparative study of pd, pi and pid controllers for
control of a single joint system in robots. Int. J. Eng. Sci, 7(9):V2, 2018.

[19] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Advances in
neural information processing systems, 10, 1997.

[20] R.S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde:
A scalable real-time architecture for learning knowledge from unsupervised sensorimotor
interaction. In The 10th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS 11, page 761-768. International Foundation for Autonomous
Agents and Multiagent Systems, 2011. ISBN 0982657161.

[21] S. Li, J. Zhang, J. Wang, Y. Yu, and C. Zhang. Active hierarchical exploration with stable
subgoal representation learning. arXiv preprint arXiv:2105.14750, 2021.

[22] W. McClinton, A. Levy, and G. Konidaris. Hac explore: Accelerating exploration with hierar-
chical reinforcement learning. arXiv preprint arXiv:2108.05872, 2021.

[23] S. Chiaverini, B. Siciliano, and L. Villani. A survey of robot interaction control schemes with
experimental comparison. IEEE/ASME Transactions on mechatronics, 4(3):273-285, 1999.

[24] X. Yang, Z. Ji, J. Wu, Y.-K. Lai, C. Wei, G. Liu, and R. Setchi. Hierarchical reinforcement
learning with universal policies for multistep robotic manipulation. IEEE Transactions on
Neural Networks and Learning Systems, 33(9):4727-4741, 2021.

[25] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In NeurIPS, 2018.

[26] J. Wohlke, F. Schmitt, and H. van Hoof. Hierarchies of planning and reinforcement learning for
robot navigation. In 2021 IEEFE international conference on robotics and automation (ICRA),
pages 10682—-10688. IEEE, 2021.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[28] P. Dayan and G. E. Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, S, 1992.

[29] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolution
strategies. The Journal of Machine Learning Research, 15(1):949-980, 2014.

[30] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[31] F. Sehnke, C. Osendorfer, T. RiickstieB3, A. Graves, J. Peters, and J. Schmidhuber. Parameter-
exploring policy gradients. Neural Networks, 23(4):551-559, 2010.

[32] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek. Hierarchical reinforcement learning: A
comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1-35, 2021.

[33] R. Martin-Martin, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space: An action space for reinforcement learning in contact-rich tasks.
In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages
1010-1017. IEEE, 2019.

10

[34] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, and A. M. Agogino. Deep reinforcement learning
for robotic assembly of mixed deformable and rigid objects. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2062-2069. IEEE, 2018.

[35] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow, and
S. Levine. Residual reinforcement learning for robot control. In 2019 international conference
on robotics and automation (ICRA), pages 6023-6029. IEEE, 2019.

[36] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal, and S. Ramamoorthy. Residual
learning from demonstration: Adapting dmps for contact-rich manipulation. IEEE Robotics
and Automation Letters, 7(2):4488—4495, 2022.

[37] N. Wahlstrom, T. B. Schon, and M. P. Deisenroth. From pixels to torques: Policy learning with
deep dynamical models. arXiv preprint arXiv:1502.02251, 2015.

[38] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally linear
latent dynamics model for control from raw images. Advances in neural information processing
systems, 28, 2015.

[39] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

[40] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. van de Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by playing - solving sparse reward tasks from scratch. In
Proceedings of the 35th International Conference on Machine Learning, 2018.

[41] G. Vezzani, D. Tirumala, M. Wulfmeier, D. Rao, A. Abdolmaleki, B. Moran, T. Haarnoja,
J. Humplik, R. Hafner, M. Neunert, et al. Skills: Adaptive skill sequencing for efficient
temporally-extended exploration. arXiv preprint arXiv:2211.13743, 2022.

[42] D. Rao, F. Sadeghi, L. Hasenclever, M. Wulfmeier, M. Zambelli, G. Vezzani, D. Tirumala,
Y. Aytar, J. Merel, N. M. O. Heess, and R. Hadsell. Learning transferable motor skills with
hierarchical latent mixture policies. ArXiv, abs/2112.05062, 2021.

[43] S. Salter, M. Wulfmeier, D. Tirumala, N. Heess, M. Riedmiller, R. Hadsell, and D. Rao. Mo2:
Model-based offline options. In Conference on Lifelong Learning Agents, pages 902-919.
PMLR, 2022.

[44] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. Tobias Springenberg, M. Neunert, N. Siegel,
T. Hertweck, T. Lampe, N. Heess, and M. Riedmiller. Compositional transfer in hierarchical
reinforcement learning. Robotics: Science and Systems XVI, Jul 2020. doi:10.15607/rss.2020.
xvi.054. URL http://dx.doi.org/10.15607/rss.2020.xvi.054.

[45] M. Wulfmeier, D. Rao, R. Hafner, T. Lampe, A. Abdolmaleki, T. Hertweck, M. Neunert,
D. Tirumala, N. Siegel, N. Heess, and M. Riedmiller. Data-efficient hindsight off-policy option
learning, 2020.

[46] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[47] C.D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax—a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

[48] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. Imple-
mentation matters in deep rl: A case study on ppo and trpo. In International conference on
learning representations, 2019.

11

http://dx.doi.org/10.15607/rss.2020.xvi.054
http://dx.doi.org/10.15607/rss.2020.xvi.054
http://dx.doi.org/10.15607/rss.2020.xvi.054

[49] S. Chen, B. Zhang, M. W. Mueller, A. Rai, and K. Sreenath. Learning torque control for
quadrupedal locomotion. In 2023 IEEE-RAS 22nd International Conference on Humanoid
Robots (Humanoids), pages 1-8. IEEE, 2023.

[50] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[51] J. R. Norris. Markov chains. Number 2. Cambridge university press, 1998.

[52] N. Chentanez, M. Miiller, M. Macklin, V. Makoviychuk, and S. Jeschke. Physics-based
motion capture imitation with deep reinforcement learning. In Proceedings of the 11th Annual
International Conference on Motion, Interaction, and Games, pages 1-10, 2018.

[53] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. DeepMimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Transactions on Graphics (TOG),
37(4):143, 2018.

[54] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne. Learning locomotion skills for cassie:
Iterative design and sim-to-real. In Conference on Robot Learning, pages 317-329. PMLR,
2020.

[55] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
arXiv preprint arXiv:1805.08296, 2018.

[56] S. Abramowitz and G. Nitschke. Scalable evolutionary hierarchical reinforcement learning.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages
272-275, 2022.

[57] D. Reda, T. Tao, and M. van de Panne. Learning to locomote: Understanding how environment
design matters for deep reinforcement learning. In Proceedings of the 13th ACM SIGGRAPH
conference on motion, interaction and games, pages 1-10, 2020.

[58] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Silver. Learning and transfer
of modulated locomotor controllers. arXiv preprint arXiv:1610.05182, 2016.

[59] O. Sigaud. Combining evolution and deep reinforcement learning for policy search: A survey.
ACM Transactions on Evolutionary Learning, 3(3):1-20, 2023.

[60] K. Suri, X. Q. Shi, K. N. Plataniotis, and Y. A. Lawryshyn. Maximum mutation reinforcement
learning for scalable control. arXiv preprint arXiv:2007.13690, 2020.

[61] S.Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. Advances
in Neural Information Processing Systems, 31, 2018.

[62] E. Conti, V. Madhavan, F. Petroski Such, J. Lehman, K. Stanley, and J. Clune. Improving
exploration in evolution strategies for deep reinforcement learning via a population of novelty-
seeking agents. Advances in neural information processing systems, 31, 2018.

[63] P. Li, J. Hao, H. Tang, X. Fu, Y. Zhen, and K. Tang. Bridging evolutionary algorithms and
reinforcement learning: A comprehensive survey on hybrid algorithms. IEEE Transactions on
Evolutionary Computation, 2024.

[64] C. Bodnar, B. Day, and P. Li6. Proximal distilled evolutionary reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3283-3290,
2020.

[65] H. Zheng, P. Wei, J. Jiang, G. Long, Q. Lu, and C. Zhang. Cooperative heterogeneous deep
reinforcement learning. Advances in Neural Information Processing Systems, 33:17455-17465,
2020.

12

[66] T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M. Faissol, and B. K. Petersen.
Symbolic regression via neural-guided genetic programming population seeding. arXiv preprint
arXiv:2111.00053, 2021.

[67] S.Elfwing, E. Uchibe, K. Doya, and H. I. Christensen. Evolutionary development of hierarchical
learning structures. IEEE transactions on evolutionary computation, 11(2):249-264, 2007.

[68] S.Huang, R. F.J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. AraAéjo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal of
Machine Learning Research, 23(274):1-18, 2022.

[69] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1-8,2021. URL http://jmlr.org/papers/v22/20-1364.html.

[70] J.Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, et al. Jax: Autograd and xla. Astrophysics Source Code
Library, pages ascl-2111, 2021.

[71] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 12 2014.

[72] Y. Tang, Y. Tian, and D. Ha. Evojax: Hardware-accelerated neuroevolution. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pages 308-311, 2022.

[73] C. Lu, J. Kuba, A. Letcher, L. Metz, C. Schroeder de Witt, and J. Foerster. Discovered policy
optimisation. Advances in Neural Information Processing Systems, 35:16455-16468, 2022.

[74] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAl gym. CoRR, abs/1606.01540, 2016.

13

http://jmlr.org/papers/v22/20-1364.html

Appendix

Table of Contents
A Expanded Problem 16
B Proof of Proposition 2.1: Optimality of High-Frequency Control 17
B.1 Intuitive Continuous Control Safety-Critical Example 18
C Expanded Background: Fixed PD Controllers 19
D Extended Related Work 20
E Environment Selection and Implementation Details 22
E.1 Standard Gym MuJuCo Tasks 22
E2 Reacher 1D 22
E.3 Safety Critical Reacher 23
F Benchmark Method Implementation Details 24
F.1 High-Level Policy and PPO Implementation 24
FE2 PD Controller Implementation 25
F3 Fixed Controllers, 25
F4 Direct Torque Control 25
G EvoControl Implementation Details 26
G.1 EvoControl PseudoCode 26
G.2 Detailed Analysis of EvoControl 27
G.3 Computational Considerations o 28
H Evaluation Metrics 29
I Additional Experimental Setup 29
I.1 Efficient Exploration Experimental Setup 29
I.2 High-frequency Interaction Control in Safety Critical Reacher 29
J Additional Experiments 29
J.1 Ablation Using PPO to Train the Lower-level Policy 29
J.2 ES Outperforms Direct Torque Control at High-frequency 30
J.3 Ablation Equal Computational Complexity for All Baselines 30
J.4 Ablation: No annealing with PD Controller 36
J.5 Ablation: Main Results for More High-level Steps 37
J.6 Main Table of Results Additional Metrics 38
J.7 Learning Curves for All Baselines 39
J.8 Ablation: Training High-Level Policy with Neuroevolution 43
J.9 Rollout Trajectory Plots of High-level Action for Baselines 44
J.10 Ablation: Removing Communication Between the Layers in EvoControl 48
K Limitations & Future Work 51
L Reproducibility Statement 51
M Ethics Statement 51
N Common Questions and Discussion 51

14

15

A Expanded Problem

In the following we expand the problem setup from the main paper.

States & Actions. We denote the environments state space as S C R% and its action space as
U C R%*. Attime t € R, the system’s state is represented by s, € S, and its action by u, € U.
Considering action (e.g. actuator) limits the action space is constrained to a box in Euclidean space:
U= [umina umax]~

Environment Dynamics. The transition dynamics for continuous control environments can be
described by an underlying unknown differential equation of s, = % = f(s¢,ut). The transition
function, which describes the evolution of the state over a discrete time step A, can be approxi-
mated using the Euler method s;4a, & ¢ + A¢f(st, us). Given an action u; and current state s;,
St4n, ~ P(stya,|st, ur) is implicitly defined by this approximation. More sophisticated numerical
integration schemes (e.g., Runge-Kutta methods) can be employed for higher accuracy. In stochastic
environments, the dynamics function f can be considered to be stochastic, leading to a probability
distribution over next states given the current state and action. We consider the setting where there
is an additional observation function that maps the current environment state to an underlying ob-
servation z; = g(s;) + €, where € is optional observation noise, e.g. Gaussian noise with zero mean
et ~ N(0,02)%. To simplify notation we use observation and state interchangeably and clarify the
specifics when needed.

Policies. The agent can be represented as a single policy 7 : R% — R%: | that observes the current
observation at time ¢ and samples an action u; ~ 7(s;) and then applies this action to the environment
at a given fixed A;. In the case of a stochastic policy, the action is sampled from a distribution
conditioned on the state: u; ~ 7(+|s).

To formalize a bi-level policy, we decompose 7 into two components: a slow, high-level policy, p,
and a fast, low-level policy, 3. Both policies interact with the environment as described in Algorithm
1. The high-level policy p operates at a lower frequency and outputs a high-level (latent) action,
ay ~ p(sg), at time step k. This latent action often represents a desired high-level target, such as a
target position or velocity. The low-level policy /3 operates at a higher frequency and receives the
high-level action ay, as input. 3 then generates the low-level actions, uy4;, at a finer-grained time
step 4, corresponding to direct motor torques or other low-level control signals. These low-level
actions aim to achieve the high-level target specified by p. We denote the high-level time steps as
k and low-level time steps as 4 to maintain this distinction. The fast, low-level policy 3 operates at
a frequency of 1/A,, where A, is the low-level time step. The slow, high-level policy p guides the
low-level policy over a longer horizon. Specifically, p issues a latent action which is executed by 3
for G steps. This means p effectively operates at a frequency of 1/(GA;) with a time step of GA;.

Objective. The environment produces a reward r; sampled from an unknown reward function
r(s¢,u), 7 S x U — R. The overall objective of the agent is to maximize the expected future
discounted reward E .7 vo:7—1,Ry:T—1 {Zz:ol fyirz} , where 0 < v < 1 is the discount factor.
Markov Decision Process (MDP). We can model the environment as a Markov Decision Process
(MDP), defined by the tuple M = (S,U, P, r,~), where:

+ S C R% is the continuous state space.

* U C R% is the continuous action space.

* P(st1n,|st,ut) is the state transition probability distribution, implicitly defined by the
dynamics function f and the discretization scheme (e.g., Euler method).

o r: S xU — R is the reward function, providing a scalar reward r; = r(s;, u) at each time
step.

* v € [0,1) is the discount factor, determining the importance of future rewards.

SFor the standard MuJoCo Brax environments we use, the joint velocity observation has Gaussian noise
added to it, following the standard implementation of the environments [47].

16

B Proof of Proposition 2.1: Optimality of High-Frequency Control

Proposition B.1. There exist Markov Decision Processes (MDPs) where the optimal control policy,
maximizing the expected cumulative reward over a fixed episode duration T, requires an action
[frequency approaching infinity.

Full Set of Assumptions:

1. Reward Magnitudes: rg,q > 0 and rpyq < 0. This ensures that maximizing time in Sgood
and minimizing time in sy, maximizes the cumulative reward.

2. Transition Probabilities: The transition probabilities are derived from a continuous-time
Markov process with constant transition rates. When discretized with time step A, the tran-
sition probabilities are accurate up to first order in A;, with error terms of O(A?) converging
uniformly to zero as A; — 0. This is a standard assumption when discretizing continuous-
time Markov processes, justifiable by the Taylor expansion of the matrix exponential
representing the continuous-time transition probabilities (see, e.g., Norris [51], Chapter 2).
Specifically, if the transition rate from s; to s; is g;;, then P(s;|s;,a, At) = q;jAr + O(A?)
fori # jand P(silsi,a, Ay) = 1=, ¢ijAr+ O(A?). We also assume 0 < A; < 1/p
to ensure probabilities remain within [0, 1].

3. Time Horizon: The time horizon 7" > 0 is fixed. We consider the limit as A; — 0
while holding 7" constant. For any considered fixed A; > 0, 7' is an integer multiple of
Ay. This simplifies notation without loss of generality. Furthermore, for any fixed A, the
number of time steps 7'/A; is assumed to be sufficiently large to allow the system to closely
approximate its stationary distribution under the low-frequency policy. This ensures the
accuracy of the approximation used for the low-frequency policy’s expected reward by
allowing the transient behavior of the Markov chain to become negligible, thus permitting
the application of the ergodic theorem [51].

Proof. Markov Decision Process (MDP) Definition: The MDP is derived from a continuous-time
Markov process, discretized with a time step A;.

» State Space: S = {go0d; Sbad }
e Action Space: A= {amaintaina arecnver}
* Time Step: A; (time between actions), 0 < A; < 1/p

 Transition Probabilities (derived from continuous-time rate p > 0):

P(Sg00d| Szoods Gmaintains At) = 1 — pAy + O(AF) (1)
P(Sbad|Sg00ds Gmaintain, A¢) = pA; + O(AF) 2)
P(Sg00d|Sgood; Grecovers A¢) =1 3)

P (Sbad|Sgood; Grecovers A¢) = 0 4)
P (Sbad| Sbad, Gmaintain, A¢) = 1 5)
P (5g00d|Sbads @maintain, A¢) = 0 (6)
P(Sgo0d|Sbads Grecovers A¢) = 1 7

P (spad|Sbads Grecovers At) = 0 (8)

* Reward Function: 7(sgo0d; @) = Tgood > 0; 7(Spad, @) = 7pad < 0. Note that the reward is
only a function of the state.

* Discount Factor: v = 1 (undiscounted)

» Episode Duration: T’

17

* Initial State: sg0q

Cumulative Reward Definition: The cumulative reward R(,T’) for a policy 7 over a time horizon
T is defined as:
T/Ar—1
R(r,T)=E, Z r(st, at)

t=0

where the expectation is taken over the trajectories induced by policy 7.
Proof Steps:

1) Optimal Policy (7*(A;) and 7y r): For any fixed A; > 0, the optimal policy 7*(A;) is to apply
Grecover 1N Spad ANd Amaingain 1N Sgood- This is because the recovery is instantaneous and always improves
the reward, so any delay in recovery reduces the cumulative reward. The high-frequency policy 7
is defined as the limiting behavior of 7*(A;) as A; — 0, which maintains the same action choices.

2) Expected Cumulative Reward (High-Frequency, 75 as A; — 0): As A; — 0, the time spent
in spyg approaches 0 because the recovery is instantaneous. Thus, the expected cumulative reward
approaches:

R(WHFa T) = Trgood 9)

3) Expected Cumulative Reward (Low-Frequency, 7*(A;) with fixed A; > 0): For a fixed
Ay, let peooa and finag be the stationary distribution probabilities of being in states Sgo0q and Spag
respectively under the optimal policy 7*(A;). Solving the balance equations of the Markov chain
gives [pad = % and figood = ﬁ. Using the Taylor series expansions for small A, we have
Hgood = 1 — pAy and fipaq = pA;. By the ergodic theorem [51], as T'//A; — oo, the expected
cumulative reward is:

R(m*(At), T) = T[jtgood"good + Hbadbad] (10)
~ T[(1 = pAi)reood + (PAL)Tbad] (11)
~ T[rgo0d — PAtTg00d + PATpad] (12)
~ T'reood — TPATg00d + TPATpad] (13)
~ Trgood — TPA(Tg00d — Thad)- (14)

4) Comparison: The difference in expected rewards is:

AR(T,A;) = R(rgr,T) — R(7™(A), T) (15)
~ Trgo0d — [TTg00d — TPA¢(Tg00d = Tbad)] (16)
~ Trgood — T'Tgo0d + TPA(Tg00d — Thad) (17
~ TpA¢(Tg00d — Tbad)- (18)

Since Tgood > Thad and p > 0, we have AR(T, A;) > 0 for any fixed, sufficiently small A, > 0.
Therefore, R(mpp,T) > R(m*(A:),T) for sufficiently small A;. As A; can be arbitrarily small,
the optimal action frequency 1/A; can be arbitrarily large, demonstrating the existence of MDPs
where the optimal control policy requires an action frequency approaching infinity. O

Explanation of Assumptions: The reward assumption creates a meaningful optimization problem.
The transition probability assumption reflects a standard discretization of a continuous-time Markov
process. Assumption 3 regarding 7" simplifies the analysis and allows the use of the ergodic theorem to
accurately approximate the expected reward of the low-frequency policy by its stationary distribution,
since 7" is large enough that the transient phase becomes negligible. This clarifies that we compare
policies where the low-frequency policy has had sufficient time to express its long-term behavior. The
assumption of a fixed 7" as A; — 0 provides a consistent basis for comparing high and low frequency
policies [51].

18

B.1 Intuitive Continuous Control Safety-Critical Example

Consider a safety-critical task involving a one-degree-of-freedom robot arm. The arm’s state is its
joint angle 6;, and the action is the motor torque 7. The goal is to reach a target angle 0goq from an
initial angle 6y within a fixed episode duration 7. An immovable obstacle may appear in a random
subset of episodes (e.g., 25% of the time), obstructing the direct path to the goal. The reward function
encourages reaching the target angle while penalizing contact forces with the obstacle:

T
— 60t —Og0u
R :/ (Tgoale 16¢—6eou _ TcollisionFt> dt
0

where g0 and Teollision are positive weighting constants, and Fy is the magnitude of the contact force
between the arm and the obstacle at time ¢ (0 if no contact). The policy receives the observation
Oy = (04, 0¢, Tt measured), Where Ti measured 1S the measured torque, reflecting contact forces if any.

A standard approach might use a position PD controller with a low-frequency high-level policy
that provides the target angle 0y,5. However, this approach faces limitations. If the obstacle is
present, the PD controller will exert a continuous force against it, incurring significant penalties. The
low-frequency policy might only detect the collision after a substantial delay, making it difficult to
react effectively.

A high-frequency policy, on the other hand, can detect the collision much faster and take corrective
action. Upon detecting a sudden increase in 7; measured, it can immediately reduce the motor torque,
minimizing the contact force F;. Furthermore, a sophisticated high-frequency policy can learn to
approach the target cautiously, probing for the obstacle with small torques. If contact is detected, it
can adjust its trajectory to reach the goal while avoiding further collisions.

This intuitive example illustrates how high-frequency control can be crucial for safety-critical tasks.
It enables faster reaction to unexpected events and allows for more nuanced control strategies that
consider the full reward structure, including collision avoidance. This motivates the development of
methods like EvoControl, capable of effectively learning such high-frequency policies. This example
highlights scenarios where high-frequency control offers a significant advantage over traditional
low-frequency control coupled with fixed controllers, especially in tasks requiring rapid responses
and nuanced interaction behaviors.

C Expanded Background: Fixed PD Controllers

Low-level PD controllers are extensively used within robotics applications, specifically when com-
bined with a learned high-level policy p. This hierarchical structure simplifies the learning problem
and effectively reduces the number of decision steps for the high-level policy. This reduction is
achieved by allowing the high-level policy to operate at a timestep of GA;, where G is the number
of low-level actions executed per high-level action, effectively reducing the number of high-level
actions within a fixed episode duration 7.

In continuous control and robotics, these hierarchical structures, composed of a learned high-level
policy (p) and a fixed low-level controller (e.g., a PD controller [18]), are common [9, 13, 52, 53, 54].
The high-level policy outputs a target a; which the low-level PD controller tracks using a control
signal based on the error between aj, and the measured system state s;.

Commonly, PD control is designed to track a second-order signal, such as position or velocity. The
control signal, u, is given by:

up = Kp(ag — s¢) + Kalar — 51), (19)

where K, K; € R™ are constant proportional and derivative gains, and e, = aj, — s; represents the
tracking error.

Specifically for robotics, proprioceptive observed states can be represented as joint positions (g;), joint
velocities (¢;), and torques (73). This leads to several common PD control designs, summarized in

19

Table 1. These designs differ in how the high-level target ay, is interpreted and used in the control law.
For instance, in "PD Absolute Position," a;, directly specifies the desired joint position (¢¢), while in
"PD Delta Position," a;, represents a change in joint position (6¢?) relative to the current position.
The state s; in the control law can encompass a wider range of proprioceptive information beyond
just joint positions (q;). We present the target ay, and tracking error in terms of position/velocity for
clarity and to align with common PD controller formulations.

D Extended Related Work

Table 6: Comparison with related bi-level learning approaches in RL. Our method, EvoControl, can achieve
efficient state-action space exploration, whilst learning high-frequency interaction behavior, and avoids tuning of
PD parameters.

Approach Ref. ™ Low-level High-level Action High-level (P1) Efficient (P2) High-Frequency ~(P3) Automate Controller
/3 Reward Duration A, Action p Exploration Interaction Control Tuning PD Parameters

Fixed Controllers [13] GA {4qa, qa, 7a} 4

Direct Torque Control [9] A a(t) v v
HRL: Skills 114,421 {puanagers {80, B1, -, Bu}hm € 2, 2 € 2, v v

HRL: Sub Goals [55) {p.8} GA, Saesinea(t) v v
EvoControl (Ours) {p.8} GA, 2 € {aa, Ga, Ta} v v v

Existing approaches to continuous control in robotics primarily fall into two categories: those
employing fixed low-level controllers and those utilizing direct torque control learned end-to-end.
EvoControl aims to addresses limitations inherent in both approaches, and we summarize the key
differences in Table 6.

Fixed Low-Level Controllers: A common strategy involves combining a learned high-level policy
(often operating at low frequency, e.g., 10-30Hz) with a fixed, high-frequency low-level controller
(e.g., a Proportional-Derivative (PD) controller operating at 500Hz or higher) [13, 52, 53, 54]. The
high-level policy generates setpoints (e.g., desired positions or velocities), and the low-level controller
tracks these setpoints by adjusting actuator torques. While prevalent, this approach suffers from
several drawbacks. The low-level controller’s parameters require careful tuning, and its fixed nature
limits its ability to handle high-frequency interactions such as unexpected collisions or disturbances.
Furthermore, recent work applying RL algorithms to the physical world often restricts itself to
relatively low-frequency control (~20Hz) due to the reliance on analytical impedance controllers
[33, 34, 35]. Even hierarchical approaches employing analytical controllers often limit high-level
policy frequencies [36]. EvoControl, in contrast, aims to achieve efficient exploration while also
enabling the learning of flexible and complex high-frequency behaviors in the low-level policy.

Evolutionary Strategies: Direct evolutionary strategies have been shown to provide an alternative
for solving reinforcement learning environments; however the direct application of them, as shown by
others are that they can be sample inefficient, get stuck in global minima; however excel at discovering
good performing long-horizon tasks, sparse reward tasks and delayed reward tasks, as they often
optimize the episodic return, rather than the intermediate temporal difference return [30]. There
exist works formulating hierarchical ES for both levels, however still under-perform gradient-based
RL policy methods [56]. EvoControl through it’s novel combination of a PPO learned high-level
policy, and a Neuroevolved low-level policy empirically outperforms the ablation version of using
Neuroevolution for both the high-level and low-level in EvoControl, as shown in Appendix J.8.

Direct Torque Control: Alternatively, some methods learn an end-to-end policy that directly
outputs joint torques at a high frequency [9, 37, 38]. This approach, while potentially offering
greater adaptability, faces significant challenges. High-frequency control suffers from the curse
of dimensionality imposed by the increased number of time steps in long horizons. The resulting
explosion in the number of possible action sequences significantly hinders exploration and can lead
to suboptimal policies [33, 9]. EvoControl mitigates these challenges by employing a hierarchical
structure, enabling more efficient exploration while retaining the adaptability afforded by direct
torque control at the low level. Moreover, the related work of Peng and Van De Panne [9] compares
learning policies with four different action spaces of direct torque control, PD position control, PD
velocity control and a muscle activation’s for the task of imitating gaits for planar walking robot
environments (continuous control). Their findings correlate with ours, in that they observed on

20

average faster learning convergence and higher task reward using a low-level high-frequency (fast)
controller, such as PD controller compared to performing direct torque control. Additionally Peng
and Van De Panne [9] due to having no prior controller parameters for the environments that they
wanted to control, Peng and Van De Panne [9] similarly performed a related approach where they
optimized the fixed low-level controller parameters throughout training a high-level policy. However,
all of their low-level controllers used are simple, few parameter (2-7) controllers, such as a PD
controller, and such fixed simple controllers are all only capable of sub-goal simple tracking behavior.
Whereas EvoControl, can represent the fast lower-level policy with a neural network policy and learn
this throughout training the high-level policy, learning fast adaptive behavior of the low-level policy,
that goes beyond simple sub-goal tracking behavior. Furthermore, the related work of Reda et al.
[57] studied environment design for continuous control tasks, and found that varying the control
frequency of performing direct torque control in standard Mujoco Gym like environments (e.g. Ant,
Hopper) could yield better learning and overall policy return, however requires tuning the control
frequency (or discrete action repeats of the simulation timestep A;) for each environment and task to
get the best performance—Ilikely due to matching the inherent control frequency of the dynamics
of the environment. They also studied the use of learning with PD controllers, and determined that
PD controllers can aid in converging faster to good policy, however can get stuck in lower-reward
solutions (local minima), motivating the need for a method to practically perform high-frequency
torque control. In summary, EvoControl can overall learn a high-frequency policy 7 by learning
both a slow-high-level policy p combined with a fast-low-level policy /3, learning adaptive low-level
behavior of an equivalent high-frequency policy, avoiding the difficulties of learning a direct torque
control high-frequency policy directly. Furthermore, we provide empirical evidence for the difficulty
of learning a direct torque control high-frequency policy, as even with an ever increasing number of
training steps, such a policy may converge to local minima Appendix J.2.

Hierarchical Reinforcement Learning (HRL): EvoControl draws inspiration from the HRL
paradigm, which decomposes complex tasks into simpler subtasks managed by separate policies.
Existing HRL methods such as options frameworks [14, 39] and hierarchical actor-critic architectures
[40, 41] have been successfully applied to improve exploration and learning efficiency. However,
these methods typically focus on discrete skill selection or subgoal decomposition [58], while
EvoControl explicitly addresses the challenges of learning a low-level controller for continuous
high-frequency control, enabling semantically meaningful exploration in different control modes.
Related work in the RHPO/HO2/MO2/HeLMS family [42, 43, 44, 45] has also explored hierarchical
approaches. However, unlike typical HRL, which focuses on skill discovery, EvoControl targets
learning a fast low-level policy that complements the slow high-level policy. Uniquely, EvoControl
combines PPO and Neuroevolution within its hierarchical framework for efficient exploration and
complex high-frequency control.

Hybrid Combinations of RL and ES: Existing related work has looked into combining evolutionary
strategies ES to improve RL algorithms, specifically using them to collect diverse data as ES methods
show superior exploration capabilities compared to on-policy and off-policy RL algorithms, and also
take updates for the RL agent itself [59, 60, 61, 62, 63, 64]. Specifically, Suri et al. [60], Khadka and
Tumer [61] use RL (SAC/DDPG) with ES data collection to collect diverse trajectories into the replay
buffer to update the RL agent. Suri et al. [60] propose automatic mutation tuning to improve the ES
component, and demonstrate improved performance on 10 out of 15 continuous-control environments
compared to the equivalent RL method baselines. Khadka and Tumer [61] also uses Neuroevolution
(ES) to collect diversified trajectories, and use these trajectories in a replay buffer to train an off-policy
RL agent. They further, update the Neuroevolution data collection agent with snapshots of the trained
RL agent throughout training, and demonstrate on continuous control tasks that this can lead to
higher reward evaluation and faster convergence in higher-dimensional state-action challenging
environments. Furthermore, Zheng et al. [65] proposes a transfer approach that has a pool of agents
containing three classes of agents: on-policy agents, off-policy agents, and a population-based ES
agents. All agents explore and collect trajectories into a replay buffer, with the on-policy and ES
agent initially transferred from the weights off-policy (global) agent; the trajectories of the on-policy
agents are then more frequently sampled when used to update the off-policy global agent, and use a

21

threshold to control the frequency of policy parameter transfer. There also exist alternative solutions
to combine ES and RL, such as seeding ES with an RL agent for symbolic regression [66]. Moreover,
Elfwing et al. [67] proposed a task decomposition method, using MAXQ, to break down a complex
task into a hierarchy of subtasks on small dimensional state-action space problems, and used a genetic
programming algorithm to learn the hierarchical task decomposition automatically. Specifically in
Elfwing et al. [67], each hierarchy corresponds to a different subtask that can be performed. Unlike
EvoControl, all of these related works do not consider the problem of learning at higher frequencies,
operating their continuous control environments at default large discrete time steps (e.g. 20-100Hz
[46]), and do not focus on an hierarchical approach of having a high-level policy outputting a latent
action and a low-level policy following this latent action for G steps (providing temporal action
abstractions)—which limits the practical deployment of their agent, as if rich features are used
as inputs to the agent such as images or the use of larger architectures, such as Vision Language
Transformers, the inference time of the agent would increase (e.g. ~ 30H z for images from video),
limiting the agents use where high-frequency control is necessary for an environment. Conversely,
EvoControl enabled from its hierarchical structure decomposing a high-level policy and a low-level
policy, the low-level policy can remain a simple neural network agent of a smaller size being able
to run with a fast inference time, and hence fast control operation of 500 — 1K H z, and still gain
the benefit of having a higher-level policy that can still take as input rich features arriving at a
lower-frequency such as images.

E Environment Selection and Implementation Details

Benchmark environments. We compare against ten standard continuous-control environments
[46, 47], and also a safety critical continuous control environment. Specifically we use the continuous
control suite from Brax” [47], which consists of ten standard continuous control environments, such
as locomotion based robot control tasks such as Ant, HalfCheetah and larger state-action space
environments such as Humanoid (e.g. controlling a humanoid robot with a state-action dimension of
60 to walk forwards with a given velocity). All the Brax environments are released under the Apache-
2.0 license. Furthermore, within this standard suite of tasks is manipulation based environments such
as Reacher and Pusher, where pusher is a 7 degree of freedom (DOF) robotic arm, with the task to
push a movable object on a table to a desired goal location. Moreover, we also construct a safety
inspired environment, adapting a single arm version of the Reacher environment, where introduce a
random un-modeled contact that incurs a large negative reward when the robot manipulator collides
with the object. To compare the frequency element, we set the frequency of each environment to
500Hz, and then motivated by a low-lever controller running at lower frequency such as 31.25Hz
(G = 16) (a realistic assumption when involving cameras to determine state), we set this as the
low-level frequency.

E.1 Standard Gym MuJuCo Tasks

We use Brax [47], a differentiable physics engine, which provides efficient implementations of
the Ant, HalfCheetah, Hopper, Humanoid, HumanoidStandup, InvertedDoublePendulum, Pusher,
Reacher, and Walker2d environments. These environments encompass a range of locomotion and
manipulation tasks, providing a diverse testbed for evaluating EvoControl. For each environment, we
set the simulation timestep A, to 0.002 (500Hz operation). High-level policies operate at a frequency
of 31.25Hz, achieved by executing each high-level action for G = 16 simulation steps. To ensure a
fair comparison across different control modes, we remove the action magnitude penalization from
the default reward function of each environment. The low-level policy receives the high-level action
concatenated to a subset of the environment observation state as its own observation, and the exact
input specification for each EvoControl variation is provided in Table 2. This allows the low-level
controller to condition its actions on the target specified by the high-level policy. The low-level

"The Brax continuous control environments are all publicly available from https://github.com/google/
brax.

22

https://github.com/google/brax
https://github.com/google/brax

action space is the same as the high-level action space. All environments have a fixed episode length
of low-level timesteps of 1,000 environment steps. To increase the realism of the simulation, we
run the Brax environments with the backend of MJX, that is a MuJoCo environment in Jax with
XLA. This enables us to even modify the MuJoCo xml definition file (to create the Safety Critical
Reacher) environment. For all MuJoCo environments, we incorporated fixed PD controllers. We
tuned the PD gains for each environment individually. Specifically, we set the proportional gain (K)
to 1.0. This value was chosen as the environments, by default, accept actions with a magnitude of 1,
representing a normalized torque input. To determine the optimal derivative gain (K4), we leveraged
MuJoCo’s dampratio parameter, setting it to 1.0 (critically damped). We then empirically observed
the K4 value that corresponds to this dampratio within the simulation. These tuned K, and Ky values
were used consistently throughout our experiments unless explicitly stated otherwise, providing a
standardized and well-tuned PD baseline for comparison with EvoControl. This approach ensured
that the PD controllers were appropriately configured for each environment’s dynamics, providing a
strong benchmark for evaluating the performance of learned low-level policies.

E.2 Reacher 1D

The Reacher 1D environment is a simplified version of the standard Reacher environment. We remove
the second arm link, creating a 1DOF task suitable for detailed analysis. The goal is randomly placed
within the reachable workspace of the single arm link. The high-level state space consists of the angle
and angular velocity of the arm, and the 2D position of the target. The high-level action is the desired
angle. The low-level state comprises the high-level state concatenated with the high-level action, and
the low-level action is the torque applied to the joint. To ensure reproducibility we provide the full
environment MuJoCo xml specification below.

<mujoco model="reacher_1d">
<compiler angle="radian" inertiafromgeom="true"/>
<default>
<joint armature=
<geom conaffinity=
</default>

damping="1.0" limited="true"/>
" contype="0" friction="1 0.1 0.1" rgba="0.4 0.33 0.26 1.0"/>

<option gravity="0 0 0" timestep="0.002" />

<custom>
<!-— brax custom params ——>
<numeric data="0 0.1 -0.1" name="init_qpos"/>
<numeric data="1000 1000" name="constraint_stiffness"/>
<numeric " name="constraint_limit_stiffness"/>
<numeric " name="constraint_vel_damping"/>
<numeric "constraint_ang_damping"/>
<numeric ang_damping"/>
<numeric "spring_mass_scale"/>
<numeric spring_inertia_scale "/>
<numeric name="solver_maxls"/>

</custom>
<worldbody >
<light diffuse=".5 .5 .5" pos="0 0 3" dir="0 0 -1"/>
<!-- Arena ——>
<geom conaffinity="0"
<geom conaffinity=
<geom conaffinity=
<geom conaffinity=
<geom conaffinity=
<!-— Arm —->
<geom conaffinity="0" contype="0" fromto="0 0 0 0 0 0.02" name="root" size=".011" type="capsule"/>
<body name="body0" pos="0 0 0.01">
<joint axis="0 0 1" limited="true" name="joint0" pos="0 0 0" type="hinge" range="-3.13 3.13"/>
<geom fromto="0 0 0 0.2 0 0" name="link0" size=".01" type="capsule"/>
<body name="fingertip" pos="0.11 0 0">
<geom name="fingertip" pos="0 0 0" size=".01" type="sphere"/>

contype="0" name="ground" pos="0 0 0"

' 23,01 .3 -3 .01" name="
3 3 .01" name
.3 .01 .3 .3 .01" name
3 3 .01" name="sideW"

type="plane" rgba="1 11 1"/>
".02" "capsule"/>
capsule"/>
capsule"/>
capsule"/>

</body>
</body>
<!-— Target ——>
<body name="target" pos="0 0 0.01">
<joint armature="0" axis="1 0 0" damping="0" limited="true" name="target_x" pos="0 0 0" range="-.2 .2" stiffness="0" type="
slide "/>
<joint armature="0" axis="0 1 0" damping="0" limited="true" name="target_y" pos="0 0 0" range="-.2 .2" stiffness="0" type="
slide"/>
<geom conaffinity="0" contype="0" name="target" pos="0 0 0" size=".009" type="sphere"/>
</body>

</worldbody >
<actuator >
<motor ctrilimited="true" ctrlrange="-1.0 1.0" gear="200.0" joint="joint0"/>
</actuator >
</mujoco>

E.3 Safety Critical Reacher

The Safety Critical Reacher environment builds upon the Reacher 1D environment by introducing a
safety aspect. In 25% of the episodes, a randomly positioned obstacle is introduced, which the arm

23

must avoid. A contact force sensor is added to the observations, and a penalty is applied to the reward
for any contact force exceeding a threshold. This encourages the development of low-level controllers
capable of reacting quickly to avoid collisions. The high-level state space adds a contact force sensor
to the Reacher 1D state, while action spaces for both high and low level controllers remain the same
as the Reacher 1D environment. This environment directly tests the hypothesis that higher-frequency
actions can lead to significantly better performance in safety-critical scenarios, aligning with the
intuition presented in Proposition 2.1. The faster reaction time allowed by a high-frequency low-level
controller is crucial for effective collision avoidance. To ensure reproducibility we provide the full
environment MuJoCo xml specification below. We also use the following reward:

T:—qu—gH ~ 3.1415927 - I(|| f.]| > 0) (20)

where ¢ is the joint angle (where ¢ indicates the first dimension of ¢ at time t), f,. is the contact
force between the arm and the obstacle, and I(+) is an indicator function that equals 1 if the condition
inside is true, and 0 otherwise. Where we used a fixed goal location of 7/2, and initial starting state
of qo = 0.

<mujoco model="safety_critical_reacher">
<compiler angle="radian" inertiafromgeom="true"/>
<default>
<joint armature="1" damping="1" limited="true"/>
<geom friction="1 0.1 0.1" rgha="0.4 0.33 0.26 1.0"/>
</default>
<option gravity="0 0 0" timestep="0.002" />

<custom>
<!-— brax custom params -—>
<numeric data="-1.57 0.11 0.0 -0.3" name="init_qpos"/>
<numeric 000 1000" name="constraint_stiffness"/>
<numeric 000" name="constraint_limit_stiffness"/>
<numeric 3" name="constraint_vel_damping"/>
<numeric .1" name="constraint_ang_damping"/>
<numeric " name="ang_damping"/>
<numeric " name="spring_mass_scale"/>
<numeric " name="spring_inertia_scale"/>
<numeric " name="solver_maxls"/>
</custom>
<worldbody >
<light diffuse=".5 .5 .5" pos="0 0 3" dir="0 0 -1"/>
<!-- Arena -—>
<geom conaffinity= name="ground" pos="0 0 0" si " orgba="1 1 1 1'/>
<geom conaffinity= fromto="-.3 -3 .01 .3 -3 .01" 02" ty capsule"/>
<geom ¢ fromto 3 -3 .01 .3 .3 .01 02" type="capsule"/>
<geom ity = fromto="-.3 .3 .01 .3 .3 .01" 02" type="capsule"/>
<geom conaffinity= contype="0" fromto="-.3 -3 .01 -3 .3 .01" ".02" type="capsule"/>
<!-— Arm ——>

<geom conaffinity="0" contype="0" fromto="0 0 0 0 0 0.02" name="root" size=".011" type="capsule"/>
<body name="body0" pos="0 0 0.01"
<joint axis="0 0 1" limited="true" name="joint0" pos="0 0 0" range="-1.570 3.1415" type="hinge"/>
<geom fromto="0 0 0 0.2 0 0" name="1ink0" size=".01" type="capsule"/>
<body name="fingertip" pos="0.11 0 0">
<geom conaffinity="0" contype="0" name="fingertip" pos="0 0 0" size=".01" type="sphere"/>

</body>
</body>
<!-— Random Collision Capsule —-—>
<body name="obstacle -body" pos="0 0 0.01">
<joint axis="1 0 0" damping= limited="true" name="obstacle_x" pos="0 0 0" range="-.2 .2" stiffness="0" type="slide"
armature="1el0"/>
<joint axis="0 1 0" damping="0" limited="true" name="obstacle_y" pos="0 0 0" range="-.2 .2" stiffness="0" type="slide"
armature="1el0"/>
<joint axis="0 0 1" damping="0" limited="true" name="obstacle_z" pos="0 0 0" range="-.3 .3" stiffness="0" type="slide"
armature="1el0"/>
<geom pos="0 0 0" size=".02" fromto="0 0 -0.1 0 0 0.1" type="capsule" name="obstacle"/>
</body>
</worldbody >

<contact>
<pair geoml="obstacle" geom2="fingertip" condim="1" />
<pair geoml="obstacle" geom2="link0" condim="1" />
</contact>
<actuator >
<motor ctrlilimited="true" ctrlrange="-1.0 1.0" gear="200.0" joint="joint0"/>
</actuator>
</mujoco>"""

F Benchmark Method Implementation Details

Benchmark methods. We seek to compare against competitive established baselines, using the
same high-level PPO policy (p) learning algorithm with the same high-level architecture across all
baselines, varying only the low-level policy (). We compare with fixed controllers baselines, which
are deterministic PD controllers of: PD Position, PD Position Delta, and PD Integrated Velocity [8].
We also compare against direct torque control baselines at both high (500Hz, i.e. the simulation
timestep) and low (31.25Hz) frequencies; and a Random policy (31.25Hz). Moreover, we seek to
investigate the EvoControl framework, and hence benchmark against several different variations from

24

varying the observation for the low-level policy, from the full-state to a restricted partially observed
state (only observing the robot joint positions q or velocities ¢), following EvoControl types with
their corresponding observations as outlined in Table 2. Additionally, the EvoControl variants using
position-based controllers are annealed from their corresponding PD controllers. We provide more
detailed implementation information for each benchmark method in the following.

F.1 High-Level Policy and PPO Implementation

The focus of the paper is on enabling high-frequency control with a learning based method, therefore
to provide a thorough competitive implementation of all the benchmark methods we use the same
high-level policy neural network architecture and learning algorithm of PPO [27] across all the
benchmark methods for all the main results. We did also perform additional ablations of training the
high-level policy with Neuroevolution instead for all the benchmark methods, which can be seen in
Appendix J.8.

We use the standard PPO implementation [27]. We used the fixed PPO hyper-parameters from Pure-
JaxRL, which are derived from the PPO continuous-control environment parameters from CleanRL
[68] which are themselves derived from those from stable baselines [69]. These hyper-parameters
have been determined to provide good performance across a range of continuous-control environ-
ments. These parameters are specifically ‘learning_rate’=3e-4, ‘num_envs’=1024, ‘num_steps’=10
(number of environment steps per rollout), ‘total_timesteps’=1e6, ‘update_epochs’=4 (number of
PPO update epochs per iteration), ‘num_minibatches’=8 (number of minibatches for each PPO
update),‘gamma’=0.99 (discount factor),‘gae_lambda’=0.95 (generalized Advantage Estimation pa-
rameter), ‘clip_eps’=0.2, ‘ent_coef’=0.0,‘vf_coef’=0.5, and ‘max_grad_norm’=0.5 (gradient clipping
threshold).

The PPO implementation uses batched environments for efficient data collection, accumulating
‘num_envs’ X ‘num_steps’ transitions before performing updates. This facilitates parallel environment
interaction and accelerated training.

The high-level policy architecture (the same for all benchmark methods) py (with parameters 6) is
represented by an actor-critic network implemented using Flax (a Jax based neural network library).
Both the actor and critic share a common base network consisting of two hidden layers with 256 units
each and tanh activation’s (this architecture was initially provided by PureJaxRL to provide effective
performance). The actor head outputs the parameters of a multivariate Gaussian distribution (mean
and diagonal covariance)—as outlined in Section 3. The critic head outputs a scalar value estimating
the state-value function.

F.2 PD Controller Implementation

We implement standard PD controllers as described in Table 1. For all environments, we tune the PD
gains as described in Section E. Briefly, K, is set to 1.0 and K is selected to correspond to a MuJoCo
‘dampratio’ of 1.0 (critically damped). For the PD Position controller, the high-level action ay, is
interpreted as the desired absolute joint position (¢%). The PD Delta Position controller interprets ay,
as a change in joint position (5¢¢) relative to the joint position at the time of the high-level action
qx» such that ¢ = ¢, + d¢%. The Integrated Velocity controller interprets ay, as the desired joint
velocity and integrates it to obtain a target position. This integration is performed numerically using
the trapezoidal rule. These controllers provide a variety of baseline behaviors for comparison.

F.3 Fixed Controllers
The fixed controllers (PD Position, PD Position Delta, and PD Integrated Velocity) are implemented

as deterministic policies. Given a state and the high-level action ay, they directly compute the
low-level control action u; based on the corresponding control law as described in Table 1.

25

F.4 Direct Torque Control

For direct torque control, we use two variants: high-frequency (5S00Hz) and low-frequency (31.25Hz).
In the high-frequency variant, the policy operates at the simulation frequency, outputting a torque
command at every simulation step. The low-frequency variant operates at the same frequency as the
high-level policy in the hierarchical setting. It outputs a torque command every G = 16 simulation
steps, which is held constant during the intervening steps. Both variants are trained using PPO
with the same hyperparameters as the high-level policy, except for the number of environment
steps which is adapted based on the direct torque control policy frequency. This allows for a direct
comparison of the performance of direct torque control at different frequencies. The same high-level
PPO implementation is used to train both the high and low-frequency policies, ensuring that any
performance differences are due to the control frequency and not the learning algorithm itself.

26

G EvoControl Implementation Details

In the following we provide implementation details for EvoControl. We used JAX [70] to implement
EvoControl, and present the core training loop in Algorithm 2.

Network Architectures. We use the exact same high-level policy architecture and learning algorithm
as the baselines use, from Appendix F.1. Therefore the high-level policy py (with parameters)
is represented by an actor-critic network implemented using Flax. Both the actor and critic share
a common base network consisting of two hidden layers with 256 units each and tanh activations.
The actor head outputs the parameters of a multivariate Gaussian distribution (mean and diagonal
covariance). The critic head outputs a scalar value estimating the state-value function. The low-level
policy Bgnn (with parameters ¢) is a separate neural network, also implemented using Flax. It
consists of three hidden layers with 256 units each and tanh activations. The output layer produces
the low-level control actions (torques), 7 = u; (unless otherwise specified, for example K, K;).
Specifically the low-level takes as an input observation the EvoControl variant observation, as detailed
in Table 2.

Table 7: EvoControl Ablation of PD Controllers.

Controller Variant Onn Obs. BN action
EvoControl (Full State) Sty Ak, €t e, G, t)T T
EvoControl (Residual State) e, t/T T
EvoControl (Target + Proprioceptive) Ak, qt, e, €1, t)T T
EvoControl (Target) Ak, @ty Gty t)T T
EvoControl (Learned Gains) Sty Ak, qt, Giy t/T K, K,
EvoControl (Delta Position) Sty Ak, €1, e, Gty t)T T

Low-level Observation. For clarity we reproduce Table 2, here as Table 7. Specifically, the
observation for the low-level policy can consist of the current state s;, the high-level policy latent
action ay, the PD controller error e; (that is used during the annealing), the robots generalized
positions ¢, the generalized velocities ¢;, and the ratio of the percentage of the low-level steps that
the current high-level action is being followed for—for example with G = 16, T = G = 16, and
hence ¢ = 7 (Algorithm 1) or the number of low-level steps out of G that the low-level policy is
currently on whilst following the high-level policy.

Annealing Strategy. The annealing parameter « controls the convex combination of the fixed PD
controller (Bpp) and the learned low-level policy (34). We use a linear decay schedule, starting at
o = 1.0 and decreasing linearly to o = 0.0 over the K training sections, of oy, = 1 — %, where £k is
the current training section.

Neuroevolution Details. For Neuroevolution we use Policy Gradients with Parameter-Based Explo-
ration (PGPE) [31] algorithm to optimize the low-level policy 34 n . The neural network’s parameter
vector ¢ is directly optimized. We use a population size of es_pop_size = 512, and each individual
is evaluated over es_rollouts = 16 rollouts to estimate its fitness (episodic return R). Adam [71] is
used within PGPE, and we we use the PGPE hyper-parameters of a center learning rate of 0.05 and
a standard deviation learning rate of 0.1. We use es_sub_generations = 8 generations per training
section k. The parameter distribution’s initial standard deviation is 0.1. We use the implementation of
PGPE provided by EvoJax [72], in Jax, and their recommended hyper-parameters for PGPE, which
were empirically found to work well for continuous control tasks. Furthermore, we set K = 8 per
1M high-level p steps used to train the high-level policy for, and this was empirically determined to
work well in practice.

G.1 EvoControl PseudoCode

For the following pseudocode; we used the same parameters as described above, specifically setting
the total number of training sections to K = 8 (per 1M high-level p policy steps), and then training the

27

PPO high-level policy for 1M (i.e. 1 Million) high-level steps, therefore performing N PPO updates
of N = | le6/(num_envsxnum_stepsxK)| = 12. We note that each step of the slow high-level
policy when operating with a fast low-level policy is effectively G = 16 high-frequency environment
timesteps of A.

Algorithm 2 EvoControl Training

Require: Environment f(s¢,u;), reward function r(s¢, u;), high-level policy pg(ss), initial low-
level policy Spp(s;, ax), total training sections K, steps per section N, annealing strategy for
«, neuroevolution parameters 77, population size P, generations per section G, rollouts per
individual R.,,.
Ensure: Trained high-level policy pg(sy), trained low-level policy 84(s;, ax).
1: Initialize o <— 1.0
2: Initialize low-level policy B(s;, ax) < aBpp(Si, ar) + (1 — a)Benn (Si, ax)
3: Initialize neuroevolution strategy (e.g., PGPE) with parameters 7
4: for k =1to K do

5: /l Train high-level policy py with PPO
6: forn =1to N do
7: Collect rollout data using pg and 5 (Algorithm 1)
8: Update pg using PPO
9: // Train low-level policy 3, with neuroevolution
10: for g = 1to Gy do
11: ¢pop < Sample P parameter sets from p, (¢)
12: for p=1to Pdo
13: F,<+0
14: for r = 1to Ry, do
15: Collect rollout using py (mode) and 34, (Algorithm 1)
16: F, < F,+ rollout return
17: Fp < Fp/Revo
18: Update neuroevolution parameters 7 using fitness values F}.p (e.g., PGPE update)
19: ¢ < best performing parameter set from neuroevolution
20: Benn (i, ar) < neural network with parameters ¢

21: B(si,ar) < abpp(si, ar) + (1 —) Benn (i, ax)
22: a+—1-k/K

G.2 Detailed Analysis of EvoControl

This appendix provides a detailed analysis of the EvoControl algorithm, addressing the mathematical
setting, assumptions, complexity, and properties as requested.

G.2.1 Mathematical Setting and Assumptions

EvoControl operates within the standard continuous control Reinforcement Learning (RL) framework.
We consider a Markov Decision Process (MDP) defined by the tuple M = (S,U, P, r,~), with
definitions provided in Appendix A.

Assumptions:

* Markov Property: The environment dynamics satisfy the Markov property, meaning the
next state depends only on the current state and action, not on the history.

* Stationarity: The transition probabilities and reward function are stationary (do not change
over time).

* Differentiable Policy: The high-level policy pg(sy) is parameterized by 6 and is differen-
tiable with respect to 6. This allows for gradient-based optimization.

* Representable Low-Level Policy: The low-level policy (84(s;, ax) can be adequately repre-
sented by the chosen neural network architecture with parameters ¢.

28

G.2.2 Complexity Analysis

Time Complexity: The time complexity of EvoControl is dominated by the PPO updates for the
high-level policy (p) and the rollout evaluations for Neuroevolution of the low-level policy (53).

PPO Updates: The per-update complexity of PPO scales linearly with the number of environment
interactions. For IV, high-level steps, with ‘num_envs’ parallel environments running for ‘num_steps’
steps each, and PPO updates occurring every K training sections, there are N,/(K - num_envs -
num_steps) PPO updates. Each PPO high-level environment step involves G low-level environment
steps.

Neuroevolution Rollouts: Each training section involves Neuroevolution of the low-level policy. With
a population size of ‘es_pop_size’, ‘es_rollouts’ rollouts per individual, and ‘es_sub_generations’
generations per section, the number of rollouts per section is es_rollouts - es_sub_generations -
es_pop_size. Each rollout has ‘episode_length’ low-level steps.

Let 7cny be the time for a single low-level environment step of duration A;. Then, the total time
complexity, without parallelization of environment rollouts, is:

O ((N, -G+ K - es_rollouts - es_sub_generations - es_pop_size - episode_length) - Teny)

We can also re-express this, as if we train the high-level policy for IV, high-level p steps, and we train
EvoControl with K = 8 sections per 1M high-level p steps (i.e. K = (N, - 8)/(1e6)), then the time
complexity can also be expressed as:

O((N, - G+
N, -8
le

- es_rollouts - es_sub_generations - es_pop_size - episode_length) - Teny)

However, both of these time complexity measures are worst case, and do not account for any
availability to parallelize environment rollouts, which is common in practice on modern GPUs. If
we assume that a user has a GPU/CPU that can parallelize the environment rollouts, then the time
complexity can approach:

O((Nyy, - num_steps - G+
N, -8
1e6
Where N,,, = (N,)/(num_envs - num_steps).

- es_sub_generations - episode_length) - Teny)

We provide thorough additional experiments limiting the computational complexity of the above two
approaches, as detailed in Appendix J.3.

Space Complexity: The space complexity is primarily determined by the size of the neural networks
for the high-level and low-level policies, the size of the PPO buffer, and the population size for
neuroevolution. Itis O(|0| + |¢| + Sppo + P - |$|), where |0] and |$| are the number of parameters
in the high-level and low-level policies respectively, and Sppo is the size of the PPO buffer.

G.3 Computational Considerations

Building on the previous section, environment rollouts can be parallelized on modern GPUs. Specifi-
cally num_envs, es_rollouts, es_pop_size can all be parallelized. A benefit of neuroevolution here,
is that the fitness evaluations (within PGPE) are highly parallelizable. We leverage JAX’s ‘vmap’
function for vectorized rollouts, enabling efficient parallel execution on GPUs or CPUs. This can also
be readily further optimized, such as distributing the population across multiple devices, to reduce
training time (as neuroevolution is a gradient free approach) [30].

Whilst the goal of our work is to provide an initial method that can learn a better low-level controller
for use within a high-level policy learning environment, to achieve higher final evaluation reward, we

29

acknowledge that doing so increases computational complexity compared to policy learning with
a traditional fixed PD controller. Therefore to investigate, what happens if we make the number of
low-level environment steps equivalent we provide a further ablation in this setting in Appendix J.3.

H Evaluation Metrics

For each environment, and for each baseline we train the joint policy 7 consisting of a high-level
p and a low-level policy 3 for the same number of high-level policy p steps, here 1M steps. Once
the policies have been trained, we perform 128 evaluation rollouts, each with a different random
seed and compute the undiscounted cumulative sum of rewards for each rollout, i.e. the return for
the episode, where each episode lasts 1,000 environment steps. We repeat training each baseline
policy across three random seeds. We quote each result as the mean across it’s random seeds and
provide the corresponding 95% confidence intervals throughout for all metrics. Specifically we quote
the normalized score R [50] of the policy in the environment, averaged over 384 random seeds—
normalized to the interval of 0 to 100, where a score of 0 corresponds to a random policy performance,
and 100 to an existing fixed controller expert policy—which is whichever non-EvoControl baseline
scores the highest evaluation environment return.

All experiments were run on a NVIDIA H100 GPU, with 80GB VRAM with a 40 core CPU with
256 RAM. We detail the hyper-parameters in Appendix F for each benchmark method, and how
the hyper-parameters were selected, and their origin of source. We did sweep over the learning rate
for PPO with the fixed controller PD position baseline, however found the initial hyper-parameters
already provided by prior work (PureJaxRL [73], and hence CleanRL [68]) to be the most performant,
therefore they were kept constant throughout all experiments.

I Additional Experimental Setup

I.1 Efficient Exploration Experimental Setup

To reproduce this experiment, we used the Reacher 1D environment, as detailed in Appendix E.2.
Specifically to investigate the efficiency of exploration, we modified the Reacher 1D environment
to have a deterministic goal across new random seeds, such that the goal location is ggoat = T /2.0,
and the initial starting position to ¢ = 0. This is to ensure that we can correctly measure exploration,
otherwise starting in a random state with a random goal, could already explore the state-action
space, just through environment resets—whereas the focus of this insight experiment is to compare
the methods exploration instead, hence fixing the environment starting state and end goal state.
Specifically we run each baseline approach for 10,240 low-level environment steps each, and collect
the state throughout training for these initial steps. We then process the state collected, and plot the
state visitation histograms, as shown in Figure 2.

1.2 High-frequency Interaction Control in Safety Critical Reacher

To reproduce this experiment, we follow the same setup for the Safety Critical Reacher environment,
as detailed in Appendix E.3.

J Additional Experiments

J.1 Ablation Using PPO to Train the Lower-level Policy

We performed an additional ablation experiment, by training the low-level policy with PPO rather
than Neuroevolution. To be comparable we used the same architecture that our existing high-level
PPO agent uses, as described in Section 3, and Appendix G. We follow the same setup, of training
the high-level policy for 1M high-level environment steps, and now train the low-level policy for the
same 1M high-level steps, now training for the low-level for IMxG =16M low-level environment

30

steps—to give this ablation the most competitive performance comparison to EvoControl and the
non-EvoControl baselines. We perform a complete re-run across all environments as presented in the
main paper main results table. The ablation with PPO training the lower-level policy can be seen in
Table 8. We observe that using PPO to train the lower-level policy within this EvoControl ablation
performs worse (achieves a lower average evaluation return) than using Neuroevolution to train the
lower-level policy S—thus justifying the use of Neurevolution for training the low-level policy.

Table 8: Ablation. Training the lower-level policy with PPO instead of Neuroevolution, training both the
high-level policy and the low-level policy for 1M high-level environment steps each, to produce a competitive
ablation. Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on
average achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque
control. Results are averaged over 384 random seeds, with =+ indicating 95% confidence intervals. Returns are
normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward achieved
by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Method Name, High-level Low-level Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
pwith 3 with Standup Pendulum Pendulum 1D

Rt Rt R1 R1 R 1 R 1 R1 R1 R1 R1 Rt
Fixed Cont. - PD Position PPO PD Position | 1004£6.56 | 6120441 | 91.6£1.23 | 100£2.96 | 10040974 | 9994003 | 100£1.53¢-06 | 1004847 | 100+18 | 85.2+2.87 | 75.7+0.633
Fixed Cont. - PD Position Delta PPO | PD Position Delta | 24:£191 | 276+0.0888 | 1004135 | 96.6+1.71 | 296:0.0397 | 538+1.57 | 100415306 | 0£0 | 4094323 | 15247.6 | 90.2:40.239
Fixed Cont. - PD Int. Velocity PPO PD Int. Velocity | 3.59+1.78 | 2.46:£0.0032 | 74.7+0.903 | 83.4+1.13 00 49.7£1.55 86.5+2 00 00 040 | 8594255
Fixed Cont. - Random Random | Direct Torque | 0.0£0.0 | 0.0+0.0 00£00 | 00+00 | 00400 0.0+£0.0 0.0£0.0 00400 | 00400 | 00+£00 | 00400
Direct Torque Cont. - High Freq. (500Hz) PPO Direct Torque 00 17.2£0316 £0.533 | 1044219 | 10320.586 00 00 13447.89 | 2084584 | 4534674 | 0£0
Direct Torque Cont. - Low Freq. 31.25Hz) | PPO Direct Torque | 54.5+7.15 | 1001221 982,55 | 80.6+256 | 10000311 | 100£1.53¢-06 | 73.2£12.9 | 59.2+3.72 | 100£1.94 | 100+£2.68
Ablation: EvoControl (Full State) PPO PPO 164+59.6 | 2554536 | 1024557 | 1424203 | 824788 83.8+40 6944132 | 1054209 | 554271 | 80.1+31.5 | 824+9.64
Ablation: EvoControl (Residual State) PPO PPO 124497 | 413+692 | 6844102 | 60.2+121 | 339100 84.6164.8 100-+£0 9474351 | 914129 | 10147.8 | 103:+80.2
Ablation: EvoControl (Target + Proprio.) | PPO PPO 00 2554346 | 5414729 | 5664342 | 3854526 34.6+138 2084223 | 913%153 | 4474448 | 623485.1 | 20.8+119
Ablation: EvoControl (Target) PPO PPO 00 1784167 | 8824309 | 6984763 | 45+40.6 1354119 2784121 | 1324146 | 5934356 | 15.5433.5 | 95.1443.2
Ablation: EvoControl (Delta Position) PPO PPO 00 288186 | 894169 | 9254102 | 51.2:58.1 98.9+2.64 81.2:481 0£0 | 43.94107 | 5076106 | 61.6+48.6

J.2 ES Outperforms Direct Torque Control at High-frequency

In the following we provide empirical evidence for EvoControl outperforming the baseline of a
high-frequency low-level direct torque control policy. To address any sample complexity concerns,
we also find when we limit EvoControl to use the same computational complexity as all baselines,
EvoControl still outperforms the baselines, which is evaluated in detail in Appendix J.3. To provide
a thorough analysis of the ability to learn a high-frequency low-level direct torque control policy,
we performed additional experiments of training the Direct Torque Cont. - High Freq. (500Hz)
baseline for an increasing number of high-level p policy steps. Specifically, as tabulated in Table 9,
we train for a larger number of p steps, significantly greater than all the baselines were trained for
(which is 1M p steps)—here being from 1M p steps to 10B p steps. We observe that even with more
high-level p steps, which corresponds to significantly more low-level environment steps than that
used in EvoControl, Direct Torque Cont. - High Freq. (500Hz) still on average achieves a lower
normalized return compared to EvoControl. This could suggest that direct high-frequency control
with PPO produces policies that get stuck in local minima, and fail to find a better performing global
policy at high-frequency as EvoControl is able to do—leveraging Neuroevolution for learning the
lower-level high-frequency policy.

Table 9: Additional Experiment. Training Direct Torque Cont. - High Freq. (500Hz) baseline for an increased
number of high-level p policy steps—from from 1M p steps to 10B p steps. Normalized evaluation return R
for the baseline, across each environment. Results are averaged over 384 random seeds, with + indicating
95% confidence intervals. Returns are normalized to a 0-100 scale, where 0O represents a random policy, and
100 represents the highest reward achieved by a non-EvoControl baseline in each environment—using the
normalization from the main table of results, Table 3.

Same PPO high-level alg. with Ant | Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted | Pusher | Reacher | Reacher | Walker2D
a Low-Level Policy 5 of Standup Pendulum | Pendulum 1D
R1 R1 R1T R R1 R1T R R1T R1 R1T R1

1,000,000 Train p steps Direct Torque Cont. - High Freq. (500Hz) 0+0 | 17.2£0.336 | 3.63£0.259 | 15.6+3.64 | 17+12 00 0+0 | 2955781 | 00 | 4534674

10,000,000 Train p steps Direct Torque Cont. - High Freq. (S00Hz) 63+14.9 | 631143 | 93.5:2.82 | 87.9£341 | 7832 97.9+£0.148 | 42.6:1.48 | 21.9£9.03 | 424519 | 87.8£3.62 | 36.5+1.08
100,000,000 Train p steps Direct Torque Cont. - High Freq. (S00Hz) 137417 | 106+1.46 | 124+3.52 | 133+4.13 | 139435 88.2+1.08 | 632+2.86 | 42.5:139 | 103+2.32 | 67.6£625 | 91.5+6.51
1,000,000,000 Train p steps Direct Torque Cont. - High Freq. (S00Hz) | 125154 | 101+135 | 1414249 | 127+3.79 | 119+3.05 87.5+1 84.8+1.34 | 219+11.1 | 98.3+2.58 | 73.5+6.04 | 149647
10.000.000.000 Train p steps Direct Torque Cont. - High Freq. (S00Hz) | 185166 | 86.3£1.00 | 155+6.58 | 1434698 | 713+13 | 918108 | 84.6:121 | 75.5+12.7 | 88.543.01 | 812:+4.86 | 219+5.53

J.3 Ablation Equal Computational Complexity for All Baselines

We investigate making the computational complexity the same for all baselines and EvoControl, in two
approaches. First, the most direct approach we set the budget of the number of low-level environment
steps to be equivalent for all baselines, listed as equivalent number of low-level environment steps
in Appendix J.3.1. Second, we recognize that modern GPUs allow for environment parallelization.
Thus, we investigate only setting the same number of sequential low-level environment steps to be

31

equivalent for all baselines—where the bottleneck for parallelized rollouts is the number of sequential
steps of the parallelized environments. This is listed as equivalent number of sequential low-level
environment steps in Appendix J.3.2.

J.3.1 Equivalent Number of Low-Level Environment Steps

Here we explicitly set the total number of low-level environment steps for all the baselines to be
the same. For EvoControl, that trains its high-level policy with PPO and its low-level policy with
Neuroevolution, this means that the high-level policy trained with PPO now receives less high-level
update steps compared to the baselines, to account for the low-level step budget used by the low-level
Neuroevolution component. This is different from the main results within the paper (Section 5.1)
which trained each baseline for 1M high-level steps, thus meaning that the high-level policy p was
trained for 1M steps, not accounting for the potentially differing number of low-level steps used by
updating or using the lower-level policy.

To set the total number of low-level environment steps for all the baselines to be the same, we first com-
pute the total number of low-level steps that EvoControl uses, where we train EvoControl’s high-level
policy for 1M steps, and then now train the baseline methods for this increased number of equivalent
high-level steps. Specifically if we consider a PD position baseline, originally training this for 1M
high-level environment steps, with a lower-level PD position controller, operating at a higher fre-
quency with G = 16, meaning that the number of low-level environment steps used in the environment
are 1M x 16 = 16 M. Here EvoControl, when the high-level is trained for 1M steps, the lower-level
policy also receives updates, therefore the total number of low-level environment steps used within the
training of EvoControl is K X es_rollouts x es_sub_generations x es_pop_size X episode_length. To
simplify the comparison, we explicitly set es_rollouts = 1 and leave the other inputs the same as they
were for the main results (that of K = 8, es_sub_generations = 8, episode_length = 1000). This
leaves the input parameter of es_pop_size that we can vary. Therefore the total number of low-level
environment steps used by EvoControl is 1M x 16464 K X es_pop_size. Therefore, for the following
experiments we train all the other non-EvoControl baselines for 1M x 16 + 64K X es_pop_size
low-level environment steps, by specifically determining how many high-level steps this is by dividing
by G and using that as the input as the total number of high-level steps to train for each baseline.

For the results, as discussed, we vary es_pop_size = {16, 32,64, 128,256} and re-run each non-
EvoControl baseline with the equivalent number of low-level steps as EvoControl—which means as
EvoControl uses Neuroevolution to update the low-level policy, the high-level policy now receives
less equivalent updates compared to the high-level policy of the non-EvoControl baselines. We
observe in Tables 10 to 14 that EvoControl even when limited to use the same number of low-level
environment steps as all the baselines, on average achieves a higher normalized evaluation return
than all the baselines fixed controllers and direct torque control.

Table 10: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 16. Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a
higher normalized evaluation return than the baselines of fixed controllers and direct torque control. Results
are averaged over 6400 random seeds, with =+ indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher Reacher Reacher | Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D
R1 R1 R1 R R R1 R R1 R R1T R

Fixed Cont. - PD Position 100+1.75 62.140.115 | 97.5+0.246 | 10040.629 100£0.144 100+0.00784 100+3.74e-07 | 100£2.91 100+£0.337 86+0.672 83.1£0.0441
Fixed Cont. - PD Position Delta 411£0.503 | 2840022 | 100+0.679 | 96.7£0.391 | 27300111 | 55940412 | 100+£3.74e-07 | 33+3.84 | 42250705 | 18.6+1.74 | 93.8+0.052
Fixed Cont. - PD Int. Velocity 2.05+0.504 | 2.53+0.0229 | 76.1+0319 | 86.5+0.315 00 48.1+0.388 | 86.6+0.496 00 00 00 73.1+0.633
Fixed Cont. - Random 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.04+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Direct Torque Cont, - High Freq. (S00Hz) 00 24140233 | 12.3£0336 00 313+0434 | 3.34£0.797 602+1.07 | 2432254 | 1744122 | 7265121 | 364+0.7
Direct Torque Cont. - Low Freq. (31.25Hz) | 46.5+1.42 100+0.359 78.340.148 | 97.14+0.627 | 81.3+0.292 10040.00823 99.740.0278 | 80.6+3.86 | 59.8+0.801 100+0.504 100+0.272
EvoControl (Full State) 1455251 | 89.7+£0.661 | 127+0.596 | 96.2+0.651 | 88.9+0.111 | 100-£0.0083 | 100+£3.74c-07 | 423341 | 1070.192 | 106-0.183 | 134:0.491
EvoControl (Residual State) 1244245 | 12550595 | 83540719 | 117+0.768 | 101£0.159 | 99.6+0.0159 | 100£3.74c-07 | 445+:3.61 | 105+0.178 | 105+0.227 | 188-0.831
EvoControl (Target + Proprio.) 148+2.81 99.240.719 146+0.998 | 122+0.707 99.140.452 99.74+0.0748 95.44+0.29 468-+3.31 107+0.177 106+0.18 132+0.498
EvoControl (Target) 1414279 | 10630993 | 135:0.621 | 124+0.713 | 100+£0.374 | 99.9+0.0148 | 100+3.74c-07 | 4204317 | 65.320.802 | 103+0.29 | 137+0.697
EvoControl (Learned Gains) 7984243 | 52310487 | 10911 | 8530732 | 93.6+0.178 | 7255124 | 100£3.74c-07 | 409345 | 99.5+0.421 | 97.9£0.449 | 114:0.909
EvoControl (Delta Position) 1394281 | 992+0.85 | 141:0.382 | 97.6:0.764 | 68.8+0.63 | 87.6+0.565 | 100+£3.74c-07 | 398+332 | 63.2+0.802 | 1020337 | 1500529

32

Table 11: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 32. Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a
higher normalized evaluation return than the baselines of fixed controllers and direct torque control. Results
are averaged over 6400 random seeds, with £ indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy of Standup Pendulum Pendulum 1D
R R R R R R R R R R R

Fixed Cont. - PD Position 100£1.23 | 59.6£0.195 | 99.5:0.0651 | 83.220.473 | 100+0.275 | 99.9+0.00874 | 100£3.74e-07 | 100£2.71 | 100£0.258 | 863+0.645 | 74.8+0.128
Fixed Cont. - PD Position Delta 3.4240.447 | 2.72+40.0204 100+0.266 96.24+0.411 | 3.03+0.00787 56.64+0.395 100+43.74e-07 | 50.7+3.73 | 42.6+0.682 18.5+1.72 | 93.34+0.072
Fixed Cont. - PD Int. Velocity 4.62+0.453 | 245500214 | 82.5+0.702 | 79.4+0275 00 50.6£0.404 | 96.9+0.226 00 00 00 100£0.519
Fixed Cont, - Random 0.0£0.0 0.0+0.0 0.0+0.0 0.0:£0.0 0.0:£0.0 0000 0000 00400 | 00£00 | 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 44.340.269 33.840.449 | 27.940.605 55+0.664 34.7+047 92.74+0.287 3924235 18.7+1.21 T7£1.13 47.540.404
Direct Torque Cont. - Low Freq. (31.25Hz) | 42.9+1.15 | 100£0.257 | 99.4+0.446 | 100+£0.449 | 963%0.133 | 100£0.0082 | 100+3.74c-07 | 91.8+3.56 | 62.6£0.749 | 100+0475 | 84.1+0.306
EvoControl (Full State) 158424 | 14330502 | 14220195 | 93+0.663 | 965+0.144 | 100+£0.00707 | 100+3.74e-07 | 411287 | 107+0.163 | 106=0.17 | 149-0.484
EvoControl (Residual State) 15842.18 | 1120433 | 942+0.114 | 112+0.68 | 123+0.683 | 99.5:0.0196 | 100+3.74c-07 | 424£3.31 | 97.4£0.435 | 105:0.209 | 200-£0.515
EvoControl (Target + Proprio.) 1524+2.39 1200848 127+0.427 123+0.614 116+0.405 99.3+0.0701 100£3.74e-07 | 444:+3.27 | 57340813 | 106:+0.165 | 145:+0.792
EvoControl (Target) 1544233 | 103+0.521 | 141039 | 122+0.579 | 117:0.609 8840494 | 100+3.74c-07 | 404+3.29 | 96.4£0.309 | 1040219 | 136::0.557
EvoControl (Learned Gains) 1044231 | 67.1£0.518 | 155+1.98 | 96.9+0.657 | 100+0.209 | 962+0.142 | 100£3.74c-07 | 360+2.9 | 1020281 | 1020.31 | 161-0.705
EvoControl (Delta Position) 1614253 | 105£0.707 | 1274091 | 101£0.674 | 740479 100:£0.0103 | 100+3.74e-07 | 429+3.24 | 59.5+0.774 | 102+0.316 | 1490361

Table 12: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 64. Normalized
evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves a
higher normalized evaluation return than the baselines of fixed controllers and direct torque control. Results
are averaged over 6400 random seeds, with £ indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
aLow-Level Policy 5 of Standup Pendulum Pendulum 1D

R1T R1T R1T R1T R1T R1T R1T R1 R1T R1T
Fixed Cont. - PD Position 1004£5.17 | 6620555 | 90.2£0.489 | 92.8+2.9 | 87.8£13 | 99.6+0.0357 £153¢-06 | 10049.4 | 100£124 | 88.7+2.6 | 68.70.285
Fixed Cont. - PD Position Delta 4.93+1.67 | 2.88£0.0891 | 843+0.854 | 100+1.79 | 3.1620.024 | 57.1+1.6 344998 | 42.8+2.99 | 27.9£748 | 8540513
Fixed Cont. - PD Int. Velocity 59418 | 25000938 | 56.9+2.3 | 72.6£0.872 00 61.3£1.59 0+0 0+£0 | 9.58+7.72 | 100+0.681
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0-£0.0 0.0+£0.0 0.0£0.0 0.0-£0.0 0000 | 0.0£00 | 00+00 | 00+0.0
Direct Torque Cont. - High Freq. (500Hz) 00 440794 | 4294053 | 6364237 | 53+2.15 97.8+0.387 9.18=7.69 | 10.8+5.42 | 81.1+4.24 | 322+1.27
Direct Torque Cont. - Low Freq. (31.25Hz) | 704+6.52 | 100£1.22 | 100£126 | 87.2+1.35 | 100£0.204 | 100+£0.0178 83.1=10.2 | 67.2+3.05 | 100£1.79 | 69.2+1.38
EvoControl (Full State) 18812 118224 | 111£159 | 90.2£66 100+0.306 100+0 296+42.6 | 109186 | 104+2.14 | 127126
EvoControl (Residual State) 152117 1255118 | 108+43 | 112+142 | 99.2+0.304 1000 302+18.1 | 102+1.08 | 104+2.07 | 169+59.6
EvoControl (Target + Proprio.) 183+69.2 130+£55.2 | 126+12.1 | 124+588 87.1£53.3 1000 300+42.6 | 107277 | 104+2.23 | 130+12.7
EvoControl (Target) 201+27.5 1314935 | 125+4.52 | 109+12.2 99.5+1.7 1000 286+27 | 83.5+634 | 103+32 | 122438
EvoControl (Learned Gains) 10323.1 . 141845 | 1112289 | 102+15 93.9+26 1000 263+46.8 | 104114 | 102+4.85 | 149+35.2
EvoControl (Delta Position) 168+£29.9 | 1234752 | 95.9+40.8 | 104£923 | 9424868 | 100:£0.491 1000 3004616 | 59+5.93 | 99.9+7.07 | 160+12.4

Table 13: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 128. Normal-
ized evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves
a higher normalized evaluation return than the baselines of fixed controllers and direct torque control. Results are
averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized to a 0-100
scale, where O represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl
baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher ‘Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt Rt Rt Rt Rt RT Rt RT RT
Fixed Cont. - PD Position 100+9.19 | 73.240.419 | 86+0.878 | 89.5+2.72 78.4+1.31 99.7+0.0353 100+£1.53¢-06 | 100+£8.67 | 100+0.928 86+2.76 100+0.935
Fixed Cont. - PD Position Delta 3.3342.59 | 3.12+0.101 | 48.8+1.06 89+1.69 3.22+0.0153 70.24+1.95 10.2+9.63 | 43.6+2.74 | 19.9+7.52
Fixed Cont. - PD Int. Velocity 8.12:4£2.69 | 2.82:£0.107 | 42.2+1.94 | 57.84+0.929 0+0 52.241.66 0+0 0£0 0.651+7.83
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.04:0.0 0.040.0 0.04£0.0 0.0+0.0 0.0+0.0 0.0£0.0
Direct Torque Cont. - High Freq. (500Hz) 4.16£15.4 | 66.542.22 | 46.6+1.49 | 54.8+1.15 75.742.04 93.4+0.598 14.2+5.96 | 33.54+5.21 83.8+4.27 75
Direct Torque Cont. - Low Freq. (31.25Hz) | 53.947.67 100+1.74 10043.31 100+1.87 10040.397 10040.029 10041.53e-06 | 85.2+46.7 | 68.1+2.89 10041.53 | 88.54+0.724
EvoControl (Full State) 328+88.2 148+68.4 105+2.16 87.1+8 97.1£13.4 101+0.0993 10040 252+16.8 | 106+0.66 105+2.23 127+57.7
EvoControl (Residual State) 197+40.1 191+33 942120 120+20.9 121+42 99.8+0.474 100+0 239+18.6 | 102+4.38 104:£6.29 138+127
EvoControl (Target + Proprio.) 274+75.2 202+14.7 121+£51.5 127+19.1 152+89.5 90.6+37.6 100+0 253+44.6 | 107+2.27 105+2.33 135+23.9
EvoControl (Target) 313+6.88 204+2.9 113+47.8 122+10.3 13599 92.4+31.5 100+0 2454222 | 101+2.17 104:£1.27 128+53.9
EvoControl (Learned Gains) 242+90.9 116+1.47 142+94.7 104+18.6 104+2.93 99.6+3.18 100+0 236+21.6 | 105+9.62 103+£5.11 134-£55.8
EvoControl (Delta Position) 296+14.1 15150 61.54287 | 98.8+4.74 9334245 101+0.13 100+0 238+19.7 | 60.2+24.1 | 95.6+19.8 123+41.4

Table 14: Ablation. Equivalent Number of Low-Level Environment Steps, with es_pop_size = 256. Normal-
ized evaluation return R for the benchmark methods, across each environment. EvoControl on average achieves
a higher normalized evaluation return than the baselines of fixed controllers and direct torque control. Results are
averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized to a 0-100
scale, where O represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl
baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid | Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D
RT RT RT RT RT RT Rt Rt RT R T RT

Fixed Cont. - PD Position 100+5.67 60+0.402 47.3+1.17 100£1.78 | 96.2+0.628 100+0.0379 100+£1.53e-06 | 100+6.56 | 100+0.959 | 85.442.66 | 100+0.253
Fixed Cont. - PD Position Delta 2.7140.0777 | 27.6+0.461 | 98.3+1.56 | 3.03+0.024 8: 4944242 | 21.947.31 | 57.2+2.07
Fixed Cont. - PD Int. Velocity 6. 2.4640.0836 | 24.5£0.943 | 57.3+1.29 0+0 0+0 3.3347.57 | 66.1+0.156
Fixed Cont. - Random 0.0+0.0 0.040.0 0.040.0 0.0+0.0 0.1 0.00. 0.0+0.0 .0-£0.0 0.0+£0.0
Direct Torque Cont. - High Freq. (500Hz) 2! 62.2+1.3 58.7+0.756 | 65.7+2.62 | 75.14£2.23 99.5+0.0862 60.9+3.02 1 4574495 | 83.443.99 | 43. .66
Direct Torque Cont. - Low Freq. (31.25Hz) | 52.: 100+0.992 100+0.664 94+1.3 100+0.435 100+0.0472 100£1.53e-06 | 89.8+3.93 | 81.2+2.41 100£1.34 | 79.1£0.946
EvoControl (Full State) 302+40.8 144+17.5 69.9+18.2 | 97.1+14.5 | 109+19.4 101+0.524 100+0 206+15.8 89+64.6 103+2.1 123+3.79
EvoControl (Residual State) 138+28.7 162+22.8 374331 124449 129+37.4 101+0.561 100+0 2154219 | 99.9+7.45 | 103+2.89 128+94.1
EvoControl (Target + Proprio.) 281+39.5 130+7.09 90.1£11.2 | 125+42.8 141+70.8 99.2+5.02 76.9+99.4 205+11.8 | 104+3.39 | 103+2.14 118+30.7
EvoControl (Target) 241+42.1 150+19.8 75.1438.2 | 1244215 118+8.06 99.742.18 100+0 198+21.5 | 75.7456.7 | 1024+2.93 | 92.7+30.3
EvoControl (Learned Gains) 197+86.2 96.3+13.9 59.14£50.9 | 1114+21.7 107+1.18 101+0.202 100+£0 190+45.5 | 104+0.793 | 102+2.65 135440
EvoControl (Delta Position) 257+50.6 116:+23.7 1024225 | 98.4+14.1 | 98.5+11.2 101+£1.57 10040 206+25.4 | 65.3+40.5 95+15 130+48.7

33

J.3.2 Equivalent Number of Sequential Low-level Environment Steps

Here we set the total number of sequential low-level environment steps for all the baselines to be the
same. This is approach is different from setting the total number of low-level environment steps to be
the same, as it acknowledges the more realistic scenario of performing parallel environment rollouts
on modern GPUs. With parallelized rollouts, the computational bottleneck becomes the number
of sequential steps within each environment, as the overhead of increasing the number of parallel
environments is negligible compared to increasing the number of sequential steps—assuming a user
has a sufficiently large GPU to perform parallelized rollouts of the environment. Such an assumption
is common in practice [68], with many implementations of PPO and simulation environments natively
supporting parallelized rollouts for the environment [74].

To set the total number of sequential low-level environment steps for all the baselines to be the
same, we follow a similar setup as described in Appendix J.3.1, now only accounting for the
sequential low-level environment steps that EvoControl uses. Specifically, we first compute the
total number of sequential low-level steps that EvoControl uses, where we train EvoControl’s high-
level policy for 1M steps, and then now train the baseline methods for this increased number of
equivalent high-level steps. Specifically if we consider a PD position baseline, originally training
this for 1M high-level environment steps, with a lower-level PD position controller, operating at
a higher frequency with G = 16, meaning that the number of low-level environment steps used
in the environment are 1M x 16 = 16M. Here EvoControl, when the high-level is trained for
1M steps, the lower-level policy also receives updates, therefore the total number of sequential
low-level environment steps used within the training of EvoControl is K X es_sub_generations X
episode_length. As es_rollouts and es_pop_size are parallelized, they are not counted in the total
number of sequential low-level steps, therefore we leave them as the default values as defined
in Appendix G. We leave the other parameters the same as they were for the main results (that
of K = 8, es_sub_generations = 8, episode_length = 1000). This leaves the input parameter of
es_pop_size that we can vary. Therefore the total number of sequential low-level environment steps
used by EvoControl is 1M x 16 + 64K, a fixed amount. Therefore, for the following experiments we
train all the other non-EvoControl baselines for 1M x 16 + 64K low-level environment steps, by
specifically determining how many high-level steps this is by dividing by G and using that as the
input as the total number of high-level steps to train for each baseline.

For the results, as discussed, we vary es_pop_size = {16, 32,64, 128,256} and re-run each non-
EvoControl baseline with the equivalent number of sequential low-level steps as EvoControl—which
means as EvoControl uses Neuroevolution to update the low-level policy, the high-level policy now
receives less equivalent updates compared to the high-level policy of the non-EvoControl baselines.
We observe in Tables 15 to 19 that EvoControl even when limited to use the same number of sequential
low-level environment steps as all the baselines, on average achieves a higher normalized evaluation
return than all the baselines fixed controllers and direct torque control—which remains consistent
with the results seen throughout.

Table 15: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 16.
Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average
achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with + indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid | Humanoid | Inverted Double Inverted Pusher Reacher Reacher ‘Walker2D
a Low-Level Policy of Standup Pendulum Pendulum ID
R1 R R 1 R1 R 1 R Rt R Rt R

Fixed Cont. - PD Position 100+7.29 | 69.3+0.723 | 93.7+1.28 100+2.75 100+0.194 99.9:£0.0347 100+1.53e-06 | 100+8.47 100+1.39 85+2.93 82.8+0.176
Fixed Cont. - PD Position Delta 4814178 | 3.14+0.101 | 100£155 | 97.7+1.85 | 2.6£0.0436 | 53.9+2.1 100£1.53¢-06 | 0+£0 | 403+3.19 | 152+7.6 | 9330235
Fixed Cont. - PD Int. Velocity 4.8+1.82 2.84+0.106 | 75.240.875 84+1.34 0+0 48.84+1.93 87.8£1.97 0+0 0+0 00 84.1+3.36
Fixed Cont. - Random 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 040 19.3+0.355 | 3.85+0.273 | 13.442.62 15.3+£1.23 040 0+0 2.95+7.81 0+0 45.34+6.74 1.15+4.13
Direct Torque Cont. - Low Freq. (31.25Hz) | 55.6+6.39 100+2.73 75.9:40.496 | 89.7+2.27 71.942.3 100+0.041 100+1.53e-06 | 75.4+12.8 | 59.2+3.7 100+£1.94 | 100+0.384
EvoControl (Full State) 116£62.6 104+22 127+£52.3 | 94.7£32.6 88.2+6.4 100+0.553 1000 272+112 | 95.5£65.5 | 105+3.31 130£63.9
EvoControl (Residual State) 163118 153:£55 96.54+5.44 | 93.8+40.1 95.64+30.9 99.2+2.81 1000 314:£43.1 107£1.46 | 105+2.39 194:£3.42
EvoControl (Target + Proprio.) 121+54.9 92.1420.7 131+16.9 117+10.2 101+3.66 99.4+12.5 100+0 311+59.8 110+5.76 | 106+2.39 137+1.04
EvoControl (Target) 129+78.2 115+59.4 133+2.96 110+13.1 87.8+£5.32 100+2.15 1000 303+£53.2 | 71.3+46.9 | 104+4.91 143382
EvoControl (Learned Gains) 46.8454.2 | 58.6+8.22 128+74.8 82.6+£7.06 | 91.1+8.77 75.6£139 1000 228+41.4 | 103£13.9 | 97.3£1.76 111307
EvoControl (Delta Position) 117+33.8 104:£57.3 154-+41.2 84.9+23.5 | 67.6+56.7 98.1+24.1 100+0 285:£52.1 | 58.6+6.77 | 99.7+3.16 135£68.1

34

Table 16: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 32.
Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average
achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy of Standup Pendulum Pendulum 1D

RT Rt Rt R RT RT Rt R RT
Fixed Cont. - PD Position 10045.89 | 60.8+0.558 89.5+1.2 89.243.27 10041.83 99.8:£0.0361 10041.53¢-06 | 100+8.47 100+1.8 854+2.93 76.8+0.193
Fixed Cont. - PD Position Delta 2.14£1.8 | 2.7740.0891 10041.93 100£1.7 | 2.73£0.0726 53.942.1 10041.53e-06 0+0 41+£3.24 152+£7.6 | 89.6+0.171
Fixed Cont. - PD Int. Velocity 1.82:£1.66 | 2.47-£0.0937 | 73+0.882 85+1.21 0+0 48.8+1.93 86.4+2.01 0+0 0+0 0+0
Fixed Cont. - Random 0.04:0.0 0.0+0.0 0.0+0.0 0.0+£0.0 0.04:0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (500Hz) 0+0 16.9+0.325 | 3.54+0.253 | 8.28+2.31 21.942.06 040 0+0 2.95+7.81 0+0 45.3+6.74 0+0
Direct Torque Cont. - Low Freq. (31.25Hz) | 45.1+4.76 100+1.7 79.3+1.22 | 93.742.87 69.6:+2.38 10040.041 10041.53e-06 | 73.1:£12.7 | 59.1+3.75 | 10041.94 10040.637
EvoControl (Full State) 150+46.9 147+10 132:4£27.3 | 97.8433.7 | 105+17.5 100-£0.451 1000 305+32.8 | 115+2.56 | 105+1.89 | 138+75.6
EvoControl (Residual State) 1554102 121+11.3 93.7+4.42 116+19 121+9.93 10041.45 10040 323+60.3 94466.9 105+3.69 161+327
EvoControl (Target + Proprio.) 156+33.6 111+49.3 141:+20.5 126+12.3 117422 99.3+0.367 10040 324+40.8 | 58.1+2.89 | 106+2.35 137+79.6
EvoControl (Target) 164+56.5 116+2.59 136:+27.6 129+4.94 110+16.7 98.7+12.2 10040 291+104 | 88.7+62.8 | 105+0.546 139423
EvoControl (Learned Gains) 86.3+84.9 59.9+11.8 162+171 10: 8.5 103+21.7 99.1+12.1 10040 303+57.5 110+6.3 102:+4.43 155160
EvoControl (Delta Position) 156+78.1 101+35.5 111+49.3 101+£7.07 99.7+8.03 100-+£3.02 10040 302+28.8 | 58.9+531 | 102+9.45 127+60.5

Table 17: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 64.
Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average
achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with + indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D

RT Rt R1T Rt Rt RT R RT RT RT
Fixed Cont. - PD Position 100+£5.05 | 64.2+0.518 91.8+1.13 984+2.75 100+0.123 99.9+0.03 100+8.47 100£1.8 8542.93
Fixed Cont. - PD Position Delta 3.6+1.66 | 2.9+0.0928 100+£1.55 100£1.79 | 2.49+0.0711 53.8+1.57 0+0 41+£3.24 152476
Fixed Cont. - PD Int. Velocity 4+£1.56 2.57+0.0976 | 75.2+0.875 | 90.1£1.48 0+0 49.7£1.55 0+0 0+0 0+0
Fixed Cont. - Random 0.0+0.0 . 0 0.0+0.0 0.0£0.0 0.0+0.0 . 0.0£0.0 0.0£0.0 0.0+0.0
Direct Torque Cont. - High Freq. (S00Hz) 0£0 1. 36 | 39.3+4.2 11.4+0.92 0£0 0+0 4.36+7.75 0£0 45.3+6.74
Direct Torque Cont. - Low Freq. (31.25Hz) | 48.2+5.32 77.5£0.571 | 95.6+2.64 74.5£1.78 100+0.0311 100+1.53e-06 | 75.4%12.8 | 59.1£3.75 | 100£1.94
EvoControl (Full State) 175+5.49 148+32.6 115+25.4 103+27.3 101+0.306 100+0 348+3.02 | 114+5.95 | 106+2.17 166+85.1
EvoControl (Residual State) 143+73.5 170+162 144+7.81 116+10.2 99.4+0.305 100+0 349+8.24 108+1.2 105+3.87 228+27.1
EvoControl (Target + Proprio.) 183+124 164+48.3 137+13 114+12.7 87.3+53.4 100+0 335+48.2 | 114+2.93 106+2.3 157+51.3
EvoControl (Target) 180+67.6 132+18.4 138+6.19 126+66 99.7£1.7 100+0 326+41.6 | 91.2+72.9 | 105+3.25 157479
EvoControl (Learned Gains) 107+26.7 198+195 110+29.7 104+1.37 94.1£26.1 100+0 291£19 112+6.83 | 104+1.37 211+37.8
EvoControl (Delta Position) 180+18.7 117+25.1 131+36.6 112+9.84 59.4+30.5 101+0.492 100+0 342+70 61.7£9.32 | 101+7.19 159+36.7

Table 18: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 128.
Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average
achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with + indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
a Low-Level Policy 8 of Standup Pendulum Pendulum 1D

R1T Rt Rt R1T R1 R1T R1 R1T Rt R1T Rt
Fixed Cont. - PD Position 100+£5.68 | 67.5£0452 | 822+1.12 | 100£2.82 | 100+0.151 | 999003 | 100=1.53c-06 | 100£8.47 | 100+1.8 | 85.2+2.87 | 75.5£0.396
Fixed Cont, - PD Position Delta 375168 | 3.04+0.0975 | 100<1.17 | 9295159 | 24+0064 | 53 100+1.53¢-06 | 0£0 | 41.1+£3.24 | 152+7.6 | 92.9+0.185
Fixed Cont. - PD Int. Velocity 181£1.6 | 2740103 | 67.2+0.812 | 81.41.29 0+0 49 86.5+2 0+0 0+0 0+0 86.5£2.67
Fixed Cont. - Random 0.0+0.0 0.0+£0.0 00+£00 | 0.0£0.0 | 0.0+0.0 0.0:£0.0 0.0£0.0 00400 | 0.0£00 | 00£00 | 00400
Direct Torque Cont. - High Freq. (500Hz) 0+0 18.8+0.359 | 12740479 | 10+£1.85 | 15.9+0.789 00 00 295+7.81 040 | 45.3£6.74 00
Direct Torque Cont. - Low Freq. (31.25Hz) | 36.8+4.92 | 100+2.11 | 65.2+0.505 | 90.4=2.1 | 874102 | 100£0.0311 | 100£1.53¢-06 | 73.1£127 | 60.6+3.71 | 100£1.94 | 100+£0.416
EvoControl (Full State) 258+60.9 | 124+13.1 | 1574624 | 99.4=13.6 | 9344577 | 101=0.0993 1000 346+3.75 | 115+3.34 | 106228
EvoControl (Residual State) 166-86.1 | 180+23.9 | 128163 | 147+17.9 | 140+915 | 99.8+0.474 1000 340:£30.4 | 109+4.07 | 104+5.95
EvoControl (Target + Proprio.) 2414451 | 19849 | 1724689 | 139+13 | 134+106 100£0 363125 | 116+2.5 | 106+2.07
EvoControl (Target) 2184533 | 1974549 | 165+93.1 | 1324207 | 134995 1000 335:640.4 | 109+2.03 | 105+1.27
EvoControl (Learned Gains) 1654851 | 1071001 | 170+174 | 124117 | 98.1+7.44 1000 3096497 | 112+8.66 | 104+5.15 4-:87.8
EvoControl (Delta Position) 216+20.1 | 125+27 114153 | 1154121 | 9444219 1000 334165 | 59.446.88 | 9594217 | 190+74.7

Table 19: Ablation. Equivalent Number of Sequential Low-Level Environment Steps, with es_pop_size = 256.
Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average
achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with + indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

R1T R1T R1T R R1T R1 R1T R R1T
Fixed Cont. - PD Position 1004625 | 632+0.599 | 893+1.2 | 926+2.05 | 100+0.208 99.9+0.03 | 100£1.53¢-06 | 1004847 | 100£1.77 | 85+2.93 | 81.7+0384
Fixed Cont. - PD Position Delta 2574174 | 2.86+0.092 | 100+1.84 | 100£1.78 | 2.54+0.0542 | 538+157 | 100£1.53e-06 | 0+0 | 40.8+3.23 | 15247.6 | 96340219
Fixed Cont. - PD Int. Velocity 246+151 | 255400967 | 73.1+£0.844 | 86.61.33 00 49.7+1.55 86.5+2 00 00 00 93.7+2.77
Fixed Cont. - Random 0.0:£0.0 0.0£0.0 0 0.0-£0.0 0.0+0.0 0.0-£0.0 0.0+0.0 00400 | 00+00 | 0.0£0.0 | 0.0+00
Direct Torque Cont, - High Freq. (500Hz) 00 180353 793194 | 10.1£0.357 00 00 4362775 0+0 | 45.3+6.74 00
Direct Torque Cont, - Low Freq. (3125Hz) | 63£7.07 | 100154 85.6+1.41 | 80+1.73 1004£0.0311 | 100+1.53¢-06 | 75.4+12.8 | 58.8+3.74 | 100+1.94 | 100=1.06
EvoControl (Full State) 285:527 | 161+195 126929 | 105+29.9 101+0.522 10040 349+27.4 | 97.9£70.9 | 106216 | 169+58.1
EvoControl (Residual State) 161+49.5 | 188191 957458 | 153+13.7 | 175+160 100-+0.559 100£0 3514543 | 1124146 | 105297 | 204::60.3
EvoControl (Target + Proprio.) 2934108 | 134214 | 202+134 | 165+36.2 | 140+76.2 98.8+5 76.9+99.4 | 338+45 | 114+3.76 | 106+2.18 | 179+30.8
EvoControl (Target) 248+255 | 165311 | 1754866 | 152318 | 150+148 99.3+2.17 1000 356:14.6 | 95.6+23.8 | 105+2.87 | 148+313
EvoControl (Learned Gains) 2145127 | 111£112 128469 | 1255722 | 102+8.52 100-0.201 100+0 327+81.4 | 115+0.874 | 105+2.67 -56.9
EvoControl (Delta Position) 2814768 | 1414314 | 202+848 | 1214827 | 963163 101+1.56 100+0 3424127 | 7194446 | 974+154 | 173324

35

J.4 Ablation: No annealing with PD Controller

Here we conduct an ablation of removing the gradual annealing with a PD controller throughout
training. Specifically, to do this we set a = 0, therefore meaning that within EvoControl the high-
level policy p output latent action ay, directly goes into the initially un-trained low-level neural
network policy 5. We observe in Table 20, that EvoControl as presented in the main paper, the
inclusion of annealing with a PD controller throughout learning does help EvoControl to achieve a
higher normalized return on average compared to no annealing with a PD controller, as shown in
the ablation. This provides empirical evidence for it’s inclusion, which could be explained by the
intuitive arguments presented in the paper, of helping the higher-level policy p to learn a stable policy
using an initial goal-tracking sub-policy of a PD controller, and then switch to an improved learned
low-level controller throughout training. We also note, that although EvoControl performs well with
the inclusion of the annealed PD controller, not having the PD controller, it also performs acceptably
compared to the baselines. However, for best performance we recommend users to use the annealing
with a PD controller.

Table 20: Main table of results (Table 3), with the ablation of EvoControl with no PD controller annealing
(by setting o = 0). Normalized evaluation return R for the benchmark methods, across each environment.
EvoControl on average achieves a higher normalized evaluation return than the baselines of fixed controllers and
direct torque control. Results are averaged over 384 random seeds, with £ indicating 95% confidence intervals.
Returns are normalized to a 0-100 scale, where O represents a random policy, and 100 represents the highest
reward achieved by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. with Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt Rt R1 R1 R1 R T R R1 R R1 Rt
Fixed Cont. - PD Position 1006656 | 6120441 | 916=1.23 | 100£2.96 | 100+0974 9994003 | 100£153¢:06 | 100847 | 100+18 | 852287 | 75.7+0.633
Fixed Cont. - PD Position Delta 24191 | 276300888 | 100+135 | 96.6+1.71 | 2.96£0.0397 | 538157 | 100+153¢06 | 0+0 | 4094323 | 152+7.6 | 90240239
Fixed Cont. - PD Int. Velocity 359178 | 2.46:0.0932 | 74740903 | 83.4+1.13 00 497155 86,542 00 00 040 85.9+2.55
Fixed Cont. - Random 0000 0.0£0.0 00£00 | 00£00 | 00+£0.0 0.0£0.0 0,000 00£00 | 00200 | 00£00 | 0.0+0.0
Direct Torque Cont. - High Freq. (S00Hz) 040 17240316 | 142£0.533 | 1042219 | 10.3:£0.586 040 00 1342789 | 208584 | 45316.74 00
Direct Torque Cont. - Low Freq. (31.25Hz) 5454715 | 100£121 | 728064 | 984255 | 80.6£2.56 | 100£0.0311 | 1004153e-06 | 7324129 | 5924372 | 1004194 | 1004+2.68
EvoControl (Full State) 368+732 | ISTE183 | 2743206 | 123419 | 116+18.4 1010.859 1000 362125 | 114=751 | 106275 | 203137
EvoControl (Residual State) 182161 | 1824631 | 101+554 | 170182 | 212145 99.241.25 1000 3755948 | 106258 | 104342 | 205574
EvoControl (Target + Proprio.) 3194350 | 168147 | 1715155 | 165+7.19 | 165+150 99.741.19 1000 353284 | 96.8+78.6 | 1054471 | 1784637
EvoControl (Target) 203587 | 1624235 | 2831250 | 164=212 | 205+147 99.6::0.949 1000 3536434 | 112£173 | 1054165 | 188488.2
EvoControl (Learned Gains) 2665104 | 113£105 | 2064302 | 150+15.1 | 1174244 99.542.48 1000 330£17.8 | 1162162 | 1054245 | 196=118
EvoControl (Delta Position) 3620477 | 1331346 | 2254829 | 119418 | 10514.64 101:0.394 1000 267+30.2 | 655421 | 99.14127 | 1834344
Ablation - No PD controller annealing (o = 0) - EvoControl (Full State) 359487 | 1484278 | 23142 | 121£17.3 | 116£17.1 101:0.51 1000 34915 | 655416 | 1043452 | 218+39.7
Ablation - No PD controller annealing (= 0) - EvoControl (Residual State) 1645195 | 1214277 | 160:181 | 166282 | 1224256 99.741.47 1000 366:+86.2 | 684435 | 10247 | 185109

Ablation - No PD controller annealing (o = 0) - EvoControl (Target + Proprio.) | 294::46 148382 | 2424193 | 173+184 | 165+147 89.3+43.8 100+0 3574442 | 63.2£12.6 | 104584 | 188106
Ablation - No PD controller annealing (o = 0) - EvoControl (Target) 2984315 | 1454714 | 121109 | 1744898 | 128+16.6 68.778.1 100+£0.0223 | 356109 | 7442413 | 91.6+39.9 | 195+74.4
Ablation - No PD controller annealing (e = 0) - EvoControl (Learned Gains) 2554582 | 1404199 | 957+127 | 156+23.9 | 119+5.95 100::0.554 10040 340+49.4 | 87.9+£40.1 | 9274495 | 179+£117
Ablation - No PD controller annealing (o = 0) - EvoControl (Delta Position) 328+110 | 151467.6 | 2554116 | 12742.02 | 12048.73 101::0.365 10040 3344309 | 60+133 | 96.3+133 | 236+10.8

36

J.5 Ablation: Main Results for More High-level Steps

In the following, we increase the high-level number of steps that each baseline is trained for. Initially
in the main results presented in the paper we trained all the results for 1M high-level p policy steps.
Therefore we ask the question, how do all the results compare if we run all the baselines for the
high-level steps of 100M and 1B high-level steps. We tabulate these results in Tables 21 to 23.

Table 21: Additional Experiment. Training all the baselines for a larger amount of high-level p policy steps of
10M steps. Normalized evaluation return R for the benchmark methods, across each environment. EvoControl
on average achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque
control. Results are averaged over 384 random seeds, with =+ indicating 95% confidence intervals. Returns are
normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward achieved
by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

R1T Rt R1T Rt Rt Rt Rt Rt Rt Rt R1T
Fixed Cont. - PD Position 60.84+2.01 | 68.9+0.858 100+1.23 100+0.281 100:0.308 100+0.033 89.6£1.48 100+4.99 93.842.48 84.9.£2.56 100£0.775
Fixed Cont. - PD Position Delta 0+0 4.13+0.107 | 45.4+0.0546 | 86.5+1.22 1.4+0.0198 98.2+0.485 100£1.53e-06 | 0.226+7.09 | 65.5+1.68 25.747.17 | 46.5+0.0729
Fixed Cont. - PD Int. Velocity 0+0 4.154+0.145 | 45.9+0.0263 | 58.840.93 | 1.59+0.0629 13.440.43 99.6+0.244 0£0 0£0 9.68+7.5 5340.887
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0£0.0 0.0+£0.0 0.0£0.0 0.0+£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0£0.0
Direct Torque Cont. - High Freq. (S00Hz) 0.36+4.11 70£1.51 35+1.66 2.1£1.2 73.4+1.91 97.8+0.148 42.6+1.48 10.74+4.39 36.9+3.9 83.8+3.45 29.8+1.18
Direct Torque Cont. - Low Freq. (31.25Hz) | 100+4.06 100£1.39 94.6+3.91 96.3+0.355 79.5+2.01 100£0.0336 10041.53e-06 | 41.7+3.83 100£1.33 100£1.66 74.842.44
EvoControl (Full State) 208+4.54 231+1.11 187+0.629 104:£0.802 118+0.172 102:£8.45¢-05 100+£1.53e-06 22343.06 | 97.1+0.738 99.7+1.4 2224+1.12
EvoControl (Residual State) 113+£3.74 | 208+1.23 128+4.11 124:£0.865 228445 101£0.0953 100+1.53¢-06 | 228+3.03 103+0.646 | 101+0.634 150+0.501
EvoControl (Target + Proprio.) 178+3.88 | 230+0.842 177+0.467 169+0.922 206+6.11 83.6+1.65 100£0.000679 | 222+2.92 | 96.7+0.865 | 97.8+1.2 226+1.36
EvoControl (Target) 174+4.38 | 231+0.617 185+0.815 148+1.19 25446.5 87.3+£1.89 100+£1.53e-06 224+2.84 92.74+1.08 99.541.04 203+1.72
EvoControl (Learned Gains) 147+4.81 194+£1.13 172+0.682 110+1.06 112-+£0.506 102+0.0572 100£1.53e-06 | 200+4.62 | 102+0.651 | 99.8+0.836 186+1.55
EvoControl (Delta Position) 187+4.08 | 209+1.55 185+0.188 | 98.6+0.824 | 11540.389 102:£6.05¢-05 100£1.53e-06 155+5.18 93.4+1.03 | 98.4+0.777 | 179+0.635

Table 22: Additional Experiment. Training all the baselines for a larger amount of high-level p policy steps of
100M steps. Normalized evaluation return R for the benchmark methods, across each environment. EvoControl
on average achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque
control. Results are averaged over 384 random seeds, with + indicating 95% confidence intervals. Returns are
normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward achieved

by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D

RT RT RT R1T RT R1T RT RT R1T Rt R1T
Fixed Cont. - PD Position 625514 | 38620485 | 85.142.69 | 100+£0.289 | 36+2.01 100+0.19 98.9+0.418 | 100+458 | 100+1.97 | 855525 | 75.7+2.56
Fixed Cont. - PD Position Delta 234£0431 | 4.14:£0.0897 | 53.9£0.362 | 948+1.17 | 1.09£0.0471 | 99.9£025 | 100£1.53¢-06 | 85.6+5.35 | 78.1=1.84 | 20.4+739 | 4430.0682
Fixed Cont. - PD Int. Velocity 2615103 | 4.08+0.132 | 24.9+2.14 | 68.4+1.68 | 35+1.03 34.6+2.79 4462401 | 3774642 | 0£0 12047 | 524+1.14
Fixed Cont. - Random 0.0£0.0 0.0£0.0 0.0+£0.0 0.0+£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+£0.0
Direct Torque Cont. - High Freq. (500Hz) | 29.8+4.11 | 100+1.82 | 77.1£2.23 | 75.1£2.87 | 100+2.88 86.5+1.06 632+2.86 | 9.0626.19 | 84274 | 653+6.04 | 72.7+2.65
Direct Torque Cont. - Low Freq. (31.25Hz) 100+3.6 60.6+1.53 100+5.62 96.3+0.501 77.7+£1.17 99.9+0.281 100+1.53e-06 | 72.5+4.49 92.743.2 100+2.19 100+3.95
EvoControl (Full State) 188319 | 191+0.581 | 227036 | 159164 | 199+3.11 | 100+3.24e-05 | 100+1.53c-06 | 278+3.5 | 102+0.708 | 1020.577 | 264=1.06
EvoControl (Residual State) 109:3.06 | 1514244 | 186195 | 1630807 | 194+6.19 | 100-:0.000688 | 100:1.53c-06 | 284314 | 104+147 | 102+0.826 | 211+3.09
EvoControl (Target + Proprio.) 155315 | 192+0.605 | 216=179 | 192+1 241483 96.7£0.226 | 100+0.0112 | 283+2.86 | 103+0.782 | 96.8+13 | 257+1.58
EvoControl (Target) 147+2.77 192+0.499 213423 189+1.66 261+2.19 96.4+0.314 98.94+0.791 279+3.23 | 96.9+1.03 | 88.1+2.05 260-+0.723
EvoControl (Learned Gains) 117368 | 1514137 | 21540793 | 123+0.874 | 63.6+2.6 | 10044.2¢-05 | 100+1.53c-06 | 259+4.17 | 103+0.844 | 101=-0.848 | 1802.09
EvoControl (Delta Position) 1804345 | 1864103 | 2254132 | 122+1.86 | 111+0.265 | 10043.4e-05 | 100+1.53c-06 | 253579 | 104+0.65 | 102£0.586 | 207+2.45

Table 23: Additional Experiment. Training all the baselines for a larger amount of high-level p policy steps of
1B steps. Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on
average achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque
control. Results are averaged over 384 random seeds, with =+ indicating 95% confidence intervals. Returns are
normalized to a 0-100 scale, where 0 represents a random policy, and 100 represents the highest reward achieved
by a non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy § of Standup Pendulum Pendulum 1D

RT RT Rt RT RT 7 RT RT RT RT
Fixed Cont. - PD Position 4544272 | 29.8+0.662 | 65.8+1.03 | 100+0.542 | 100+0.959 98.1+0.743 98.2+0.595 100+1.6 10041.84 10042.82 50.2+2.42
Fixed Cont. - PD Position Delta 1.63:£0.459 | 4.240.0834 | 60.9.£0.057 | 90.941.02 | 1.13:£0.0683 100-£0.353 100£1.53e-06 | 46.5£5.03 | 76.6+1.77 | 22.1+8.77 | 33.24£0.0273
Fixed Cont. - PD Int. Velocity 4.86+0.755 0£0 17.242.89 | 56.5£1.92 | 36.5+0.488 83.6+2.23 19.6+3.86 30.4+2.04 0+0 6.56+8.56 4.81+1.27
Fixed Cont. - Random 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Direct Torque Cont. - High Freq. (S00Hz) 40.8+3.72 + 100£1.74 | 86.3+2.36 52.9+3.39 93.8+0.622 95.3£0.751 + 88.6+2.27 | 82.9+6.85 +
Direct Torque Cont. - Low Freq. (31.25Hz) 100£3.25 10040.983 + 93.4+0.18 T44+1.41 95.9+1.17 98.4:+0.557 86.9+2.08 + + 100+0.646
EvoControl (Full State) 220+4.55 197+0.54 | 285+0.424 | 159+0.844 185+1.02 101+5.28e-05 | 100+1.53e-06 | 106+1.63 | 104+0.61 | 120+0.664 | 196+0.435
EvoControl (Residual State) 1341324 149+2.34 270+1.21 159+1.79 365+0.986 101:£0.000788 | 100+1.88¢-06 | 111+1.31 | 9534241 | 120+0.727 | 155+0.924
EvoControl (Target + Proprio.) 18243.71 194+0.564 | 269+0.707 | 183+1.01 340+4.46 96.5+0.391 100+1.88¢-06 | 114+1.14 | 98.7+1.19 | 1124+1.43 181+0.835
EvoControl (Target) 174+4.07 194+0.527 269+0.71 | 180+0.805 355+1.42 97.5+0.179 100+1.53e-06 | 113+1.22 | 96.5+1.21 112+1.5 198+0.428
EvoControl (Learned Gains) 87.3+1.98 | 39.3+0.435 | 80.7+0.277 | 103+0.745 83.1+2.83 101+0.0651 99.94+0.204 | 76.9£3.27 | 94.74+2.51 103+2.44 78.9+3.05
EvoControl (Delta Position) 215+3.81 195+0.499 269+1.15 | 121+0.526 158+1.55 101+4.84e-05 | 100+1.53¢-06 | 1124+1.35 | 108+0.478 | 120+0.667 | 167+0.592

37

J.6 Main Table of Results Additional Metrics

For the main table of results presented in the paper (Table 3), we also provide un-normalized results
in Table 24 and the time taken to train the policies in Table 25. Regarding the training time, the
wall-clock time for EvoControl can be substantially improved, as the PPO implementation we use
to train the high-level policies is implemented in Jax, and was pre-compiled, across a batch of
environments, using Jax based environments (Brax). Whereas the Neuroevolution could further
be compiled, however for our implementation it was not, and only the population of rollouts was
compiled in Jax. Ideally for optimal performance the entire Neuroevolution step could be compiled in
Jax leading to speed improvements, however given that all the baselines, including EvoControl could
finish training their policies within a time interval of approximately one hour, further optimization
was not necessary.

Table 24: Un-normalized evaluation return R for the benchmark methods, across each environment. EvoControl
on average achieves a higher evaluation return R than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with + indicating 95% confidence intervals.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid Inverted Double | TInverted Pusher Reacher Reacher ‘Walker2D
a Low-Level Policy 3 of Standup Pendulum Pendulum 1D

Rt R1 R1 R1 R1 R1 R1 R1 Rt R1 R1
Fixed Cont. - PD Position 1.47e+03=31 1.09e+03+8.22 1.05e+03£12.7 3.52e+03£74 | 1.88e+05+1.43e+03 | 9.21e+03£1.97 -2.36e+03£26.2 | -46.6+2.44 | -20.3+£2.08 895+7.13
Fixed Cont. - PD Position Delta 1.01e+03+9.04 3.6+1.66 1.14e+03£13.9 3.43e+03+42.9 4.51e+044+58.3 6.18e+03£103 -2.73e+034+26.6 | -127+4.38 | -70.945.5 1.06e+03+2.69
Fixed Cont. - PD Int. Velocity 1.01e+03£8.43 -2.1441.74 876+9.33 3.1e+03+28.2 4.05e+04417.5 5.91e+03+102 -2.67e403+26.2 | -22947.85 | -84.7+5.62 1.01e+03£28.7
Fixed Cont. - Random 0.0+£0.0 0.0+0.0 0.0+£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0+£0.0 0.0£0.0
Direct Torque Cont. - High Freq. (S00Hz) 273+5.89 119£5.5 1.28e+03£54.8 5.59e+04£862 722+1.23 -2.67e+03+£24.4 | -179£7.92 | -49.1+£4.87 -36.9+24.9
Direct Torque Cont. - Low Freq. (31.25Hz) 1.82e+03+22.5 848+6.61 3.47e+03263.6 | 1.59e+05+3.76e+03 | 9.22¢+03+2.05 -2.44e+03+£39.9 | -102+5.04 | -9.55+1.41 1.17e+03£30.1
EvoControl (Full State) 2.88e+03+341 2.94e+03£212 4.08e+03£474 | 2.11e+05£2.71e+04 | 9.28e+03+56.5 -1.55e+03£38.7 | -27.6+10.2 | -5.44:£1.99 | 2.32e+03£1.54e+03
EvoControl (Residual State) 3.35e+03=118 1.15e+03+57.3 5.27e+032456 | 3.52e+05+2.13e+05 | 9.17e+03+82.2 -1.51e+03+£293 | -38.5£35 | -6.69+2.47 e+03:646
EvoControl (Target + Proprio.) 3.08e+03£274 | 1.88e+03£1.6e+03 | 5.15e+0: 2.83e+0542.21e+05 | 9.2e+03+78.3 -1.58e+03+88 | -50.94+107 | -5.74+3.4 2.05e+03£716
EvoControl (Target) 2.96e+03+438 | 3.03e403:+2.68e+03 | 5.11e+03:£53 3.42e405+2.16e405 | 9.2e403+62.4 -1.58e+03£134 | -30.842.35 | -5.78£1.19 2.15e+03 3
EvoControl (Learned Gains) 2.06e+03£195 | 2.23e+03+3.12e403 | 4.77e+03£378 | 2.13e+05£3.58e+03 | 9.19e+03£163 | le+ -1.65e+03+55 | -24.942.19 -6+1.77 2.25e+03£1.32e+03
EvoControl (Delta Position) 2.43e+031644 2.43e+03£856 4e+03£450 1.95¢+05+6.82e+03 | 9.27e+03+£26 1e+0320 | -1.84e+03+93.5 | -93.4£28.5 | -10.249.16 2.1e+03£387

Table 25: Time Taken to train in minutes for each baseline against each environment, for the main table of
results in Table 3. All the baselines including EvoControl can train their policies on average within an hour.
Results are averaged over 384 random seeds, with £ indicating 95% confidence intervals. As the random
baseline does not perform any training, we put a placeholder of O for it.

Same PPO high-level alg. p with Ant Halfcheetah Hopper Humanoid Humanoid | Inverted Double Inverted Pusher Reacher Reacher Walker2D
a Low-Level Policy /3 of Standup Pendulum Pendulum 1D
RT RT Rt Rt Rt Rt RT Rt RT RT RT
Fixed - PD Position 0.671+0.0112 | 1.1540.0309 | 0.886:+£0.0451 | 0.574:0281 | 1.36:£0.297 | 0.536+0.0173 | 0.503:+£0.011 | 0.799+0.285 | 0.587+0.00373 | 0.519+0.00276 | 1.06::0.0154
Fi - PD Position Delta 0.668+0.0118 | 1.08+0.00826 | 0.879+0.0303 | 0.576+0.285 | 1.19+£0.283 | 0.542£0.00226 | 0.475+0.00815 | 0.847+0.332 | 0.595+0.0164 | 0.473+£0.0101 | 1.16+0.0178
. - PD Int. Velocity 0.662+0.0253 | 1.06+0.00543 | 0.888+0.0169 0.574+0.3 1.11+0.303 0.53+0.0161 0.506+0.0181 0.679+0.27 | 0.573+0.0182 | 0.503+0.0125 1.240.0349

Fixed Cont. - Random 0+0 +0 0+0
Direct Torque Cont. - High Freq. (500Hz) | 0.597+0.0392 | 0.963+0.0137 | 0.738+0.0213 | 0.51340.273 | 1.06+0.277 | 0.457+0.00473 | 0.424+0.0121 | 0.67940.291 0.58540.02 0.501+0.00844 | 0.899+0.0231

Direct Torque Cont. - Low Freq. (31.25Hz) | 0.663+0.041 1.14:£0.0165 | 0.908::0.00972 | 0.582+0.277 | 1.4+0.281 0.583+0.016 0.513£0.0115 | 0.917+0.274 | 0.736+0.0267 0.58+0.0301 1.09+0.0476
EvoControl (Full State) 12.84+0.0925 23.3:0.11 14.840.0829 20.4+£0.505 | 77.3+0.481 8.334+0.0986 6.93+0.0438 31.4+£1.34 5.74+0.0747 4.6:0.0386 25.4+0.226
EvoControl (Residual State) 11.240.0999 23.240.106 14.340.0904 18-£0.466 76.1+0.407 7.94:£0.0885 7+0.0656 31.1+0.725 5.84:0.331 4.59+£0.00888 23.7+£0.112
EvoControl (Target + Proprio.) 12.70.0899 | 23.14+0.0987 14.5+0.103 19.5+0.499 | 76.7+£0.205 | 8.25+0.0224 | 6.89+0.00579 | 31.5+0256 | 5.71+0.231 455£0.0514 | 24.1+0.154
EvoControl (Target) 11.4+0.0776 22.9+0.156 14.5+0 19.4+0467 | 76.7+0.399 8.33+0.139 7.09+0.0406 30.7+1.27 5.66+0.119 4.55+0.0235 24+0.279

EvoControl (Learned Gains) 12.9+0.106 23.1:£0.0689 13.3+1.06 20340517 | 76.840.173 8.09+0.0643 7.13+0.0462 27.4+41.52 5.64+0.16 4.5140.0625 25.3+0.34

EvoControl (Delta Position) 12.8+0.124 22.3+0.162 14.8+0.175 20.5+0.479 | 73.24+0.733 8.39+0.0537 6.93+0.0197 29.241.25 5.72+0.151 4.59+0.0536 25.7+0.0329

38

J.7 Learning Curves for All Baselines

We provide the learning curves for all environments presented in the main table of results in the paper,
that of Table 3. Specifically, we provide these plots in Figures 3 to 12. We observe that EvoControl
on average consistently outperforms the non-EvoControl baselines and achieves a higher evaluation
return.

2500
2000
o
1500
1000
0.0 0.2 0.4 0.6 0.8 1.0
p (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
" _Low Freq. (31.25Hz) “®° _ PD Position “* _PD Position Delta (Target + Proprio.) (Learned Gains) ~* (Target)

Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl

“*" - High Freq. (500Hz) ~* -PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 3: Evaluation return R versus p policy steps on Ant, for main table of results Table 3.

3000
2000
o
1000
0
0.0 0.2 0.4 0.6 0.8 1.0
o (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" . Low Freq. (31.25Hz) ~*" - PD Position “*" - PD Position Delta (Target + Proprio.) (Learned Gains) ~* (Target)

Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" - High Freq. (500Hz) “®° _PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 4: Evaluation return R versus p policy steps on Halfcheetah, for main table of results Table 3.

3000
2000
o
1000
0
0.0 0.2 0.4 0.6 0.8 1.0
o (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“* . Low Freq. (31.25Hz) ~* - PD Position ~*" _PD Position Delta (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
- - High Freq. (500Hz) “*° _PD Int. Velocity “* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 5: Evaluation return R versus p policy steps on Hopper, for main table of results Table 3.

39

300000

o 200000
100000
0.0 0.2 0.4 0.6 0.8 1.0
p (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" . Low Freq. (31.25Hz) ~*" - PD Position “*" _PD Position Delta " (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
- - High Freq. (500Hz) " -PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 6: Evaluation return R versus p policy steps on Humanoid Standup, for main table of results Table 3.

8000
6000
o
4000
2000
,,,,,,,,,, L S,
0.4 0.6 0.8 1.0
o (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“®" - Low Freq. (31.25Hz) ~* - PD Position “®° - PD Position Delta ~* (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
- - High Freq. (500Hz) " -PDInt. Velocity ~* (Full State) “*" (Residual State) " (Delta Position)

Figure 7: Evaluation return R versus p policy steps on Inverted Double Pendulum, for main table of results
Table 3.

1000
800
600
o
400
200
\\ »»»»»» S
,,,,,, . —
0
0.0 0.2 0.4 0.6 0.8 1.0
p (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" _Low Freq. (31.25Hz) " - PD Position “*" _PD Position Delta " (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
- - High Freq. (500Hz) " -PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 8: Evaluation return R versus p policy steps on Inverted Pendulum, for main table of results Table 3.

40

—-1500
—2000
o
—2500
—-3000
0.0 0.2 0.4 0.6 0.8 1.0
p (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" . Low Freq. (31.25Hz) ~*" - PD Position “*" _PD Position Delta " (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" - High Freq. (500Hz) " -PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 9: Evaluation return R versus p policy steps on Pusher, for main table of results Table 3.

=50
-100
ag
-150
-200
-250
0.0 0.2 0.4 0.6 0.8 1.0
p (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“®* - Low Freq. (31.25Hz) ~* - PD Position “®° - PD Position Delta ~* (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
- - High Freq. (500Hz) " -PDInt. Velocity ~* (Full State) " (Residual State) “%" (Delta Position)

Figure 10: Evaluation return R versus p policy steps on Reacher, for main table of results Table 3.

-20
-40
o
-60
-80
0.0 0.2 0.4 0.6 0.8 1.0
p (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
- - Low Freq. (31.25Hz) " - PD Position “*" - PD Position Delta ~“ (Target + Proprio.) (Learned Gains) ~*" (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
“®" - High Freq. (500Hz) ~® -PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 11: Evaluation return R versus p policy steps on Reacher 1D, for main table of results Table 3.

2000
& 1000
0
0.0 0.2 0.4 0.6 0.8 1.0
o (Policy Steps) le6
Direct Torque Cont. Fixed Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" . Low Freq. (31.25Hz) ~*" - PD Position “*" _PD Position Delta " (Target + Proprio.) (Learned Gains) ~* (Target)
Direct Torque Cont. Fixed Cont. EvoControl EvoControl EvoControl
“*" - High Freq. (500Hz) " -PDInt. Velocity ~* (Full State) “*" (Residual State) “*" (Delta Position)

Figure 12: Evaluation return R versus p policy steps on Walker2D, for main table of results Table 3.

41

J.8 Ablation: Training High-Level Policy with Neuroevolution

In the following we perform an ablation whereby we train the high-level policy with Neuroevolution
rather than PPO. We provide two variations: first, using Neuroevolution to train the high-level policy
with the same fixed low-level controllers for all non-EvoControl baselines (Table 26), and second,
within EvoControl modifying training the high-level policy with Neuroevolution instead of PPO.

First, we replace the high-level PPO policy, keeping the same high-level policy architecture and
network as originally used in the main paper, and instead using the same Neuroevolution as was
used to train the low-level policy. For this we provide two versions, A) that of training the high-level
policy with the same number of high-level p steps as the core baselines presented in the paper, with
IM p steps—Ilabelled Neuroevolution (1M p steps). Specifically, this uses es_rollouts = 1, K =
8, es_pop_size = 256, es_sub_generations = 8. Second, B) training the high-level policy with
the same number of environment steps as was used to train the low-level policy within EvoControl—
labelled Neuroevolution (same as EvoControl low-level). Specifically this uses more low-level environ-
ment steps than A), with es_rollouts = 16, K = 8, es_pop_size = 512, es_sub_generations = 8.
The results are tabulated alongside the original main table of results for ease of comparison in
Table 26. We observe on average that EvoControl still outperforms the competitive baselines, and on
average achieves a higher normalized evaluation return R than the baselines of fixed-controllers and
direct torque control.

Table 26: Ablation. Training the high-level policy with Neuroevolution instead of PPO. Normalized evaluation
return R for the benchmark methods, across each environment. EvoControl on average achieves a higher
normalized evaluation return than the baselines of fixed controllers and direct torque control. Results are
averaged over 384 random seeds, with £ indicating 95% confidence intervals. Returns are normalized to a 0-100
scale, where 0 represents a random policy, and 100 represents the highest reward achieved by a non-EvoControl
baseline in each environment. Scores bolded are greater than 100.

Method Name High-level Low-level Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inveried Pusher | Reacher | Reacher | Walker2D
pwith 5 with Standup Pendulum Pendulum 1D
Rt R1 R1 Rt Rt Rt R Rt R Rt Rt

- PD Position PPO PD Position 1005625 | 63250599 | 89312 | 9265205 | 100+0.208 9995003 | 100515306 | 1005847 | 100177 | 855293 | 817=0.384
- PD Position Delta. PPO PD Position Delta | 257174 | 28650092 | 100£1.84 | 100178 | 254400542 | S38+1.57 | 100515306 | 0+0 | 40.8+323 | 152476 | 9630219

PD Int. Velocity PO PDInt. Velocity | 2465151 | 25500967 | 7310844 | 86.6+133 00 00 00 | 937277
Random Random Direct Torque | 0000 | 00+00 0000 | 0000 | 00:00 0000 | 00200 | 00:00 | 00:00
nt. - High Freq. (S00H?) PO Direct Torque 0+0 1840353 | 088240533 | 7934194 | 10.140.357 436775 | 050 | 4535674 | 0%0
nt_ - Low Freg, (31.25Hz) PO Direct Torque | 63:7.07 | 100154 | 70650548 | 8565141 | 80173 754128 | s88:374 | 1005194 | 1005106
EvoControl (Full State) PPO Newoevolution | 3682732 | IS7L183 | 2741206 | 123419 | 116:184 3620125 | 1141751 | 1062275 | 2031137
EvoControl (Residual State) PPO Newroevolution | 182£16.1 | 1824631 | 1014554 | 1705182 | 2124145 3751948 | 1064258 i 2051:57.4
EvoControl (Target + Proprio.) PPO Newroevolution | 319:35.1 | 168+147 | 1704155 | 165+7.19 | 1654150 3536284 | 968786 1782637
EvoControl (Target) PPO Neuroevolution | 29387 | 1624235 | 2832250 | 1642212 | 2054147 3530434 | 124173 | 1 188882
EvoControl (Learned Gains) PPO Newoevolution | 266104 | 113105 | 2064302 | 150:15.1 | 117:2.44 304178 | 16LL62 | 1052245 | 196118
EvoControl (Delta Position) PO Newoevolution | 362:47.7 | 1334346 | 250829 | 119418 | 105:464 2674302 | 655221 | 9915127 | 1834344
Ablation: Fixed Cont. - PD Position Neuroevolution (IM p stcps) PD Position | 1365102 | 52520881 | 104=L1 | I54:0.149 | 11850205 | 101=0.0186 | 100£L08e-06 | 390133 | 69.1=037 | 86.7=0.179 | I79:LI8

Ablation: Fixed Cons. - PD Position Delta Neuroevolution (1M p steps) PD Position Delta | 36.10.185 | 4.4830.00862 | 133+0.835 | 1370.738 | 4612000116 | 97.7+0.782 | 100+0.0504 | 279+3.12 | 520174 | 1225083 | 126+0.512
Ablation: Fixed Cont. - PD Int. Velocity Neuroevolution (M p steps) PDInt Velocity | 128231 | 6762085 | 96:0941 | 156:0381 | 120021 97.9:+1.22 5524181 | 256119 | 61.2+50.179 | 59.740.869 | 130:£173
Ablation: Fixed Cont Random Direct Torque | 0.0+0.0 0.0+0.0 00400 | 00+00 00400 0.0+0.0 0.0+0.0 00400 | 00£00 | 00+00 | 0000
Ablation: Di - High Freq. (S00Hz) Neuroevolution (1M p steps) Direct Torque | 224201 | 13550509 | 1174105 | 15912 | 118+0.891 1020323 | 100-1.086-06 | 344:0.985 | 73.150509 | 104017 | 189302
Ablation: Diy - Low Freq. (31.25Hz) Neuroevolution (1M steps) Direct Torque | 198312 | 11950556 | 1180349 | 1680497 | 11540.863 | 100+0.0525 | 100:£1.08e-06 | 305462.54 | 70240267 | 105£0.113 | 184228

Ablation: Fix Position Neuroevolution (EvoControl 1 steps) PD Position | 22040.748 | 52520881 | I04:L1 | 15820395 | 11940.158 | 10150.0186 | 100£108e-06 | 3901133 | 6912037 | 8670179 | 1524138
Ablation: Fixed Cont, - PD Position Delta Neuroevolution (EvoControl neuro. steps) | PD Position Delia | 36.2:£0.172 | 448:0.00862 | 133£0.535 | 143:+0.337 | 46:0.00358 | 97740782 | 10040.0594 | 2794312 | 5220174 | 1224083 | 122::0.452
Ablation: Fixed Cont. - PD Int. Velocity Neuroevolution (EvoControl neuro. steps) | PD Int. Velocity | 827197 | 67.6+0.85 | 96£0941 | 17240.689 | 1180124 | 97.9+122 S524181 | 2564119 | 61240179 | 59.740.869 | 1404256
Ablaion: Fixed Cont, Random Direct Torque | 0.0+0.0 0.0£00 00£00 | 0.0£00 0.0£0.0 0000 00200 0000 | 00£00 | 00£00 | 00:00
Ablation: Direct Torgue Cont. - High Freq. (500Hz) | Neuroevolution (EvoControl neuro. steps) | Direct Torque | 2884308 | 1350509 | 117105 | 156102 | 116+0.851 | 10240323 | 100-108¢-06 | 3440985 | 73120509 | 1042017 | 1694298

‘Ablation: Direct Torgue Cont. - Low Freq. (31.25Hz) | Neuroevolution (EvoControl neuro. steps) | Direct Torque | 2234156 | 11940556 | 11840349 | 15840574 | 11940314 | 100400535 | 100+108¢-06 | 3054254 | 70240267 | 10540.113 | 18042.17

Second, within EvoControl we perform the ablation of training the high-level policy with Neuroevo-
lution instead of PPO, using the same high-level policy architecture as used in the main paper. Again,
we provide two versions, A) tha of training the A) that of training the high-level policy with the same
number of high-level p steps as the core baselines presented in the paper, with 1M p steps—Iabelled
Neuroevolution (IM p steps). Specifically, this uses es_rollouts = 1, K = 8, es_pop_size =
256, es_sub_generations = 8. Second, B) training the high-level policy with the same number of
environment steps as was used to train the low-level policy within EvoControl—labelled Neuroevolu-
tion (same as EvoControl low-level). Specifically this uses more low-level environment steps than
A), with es_rollouts = 16, K = 8, es_pop_size = 512, es_sub_generations = 8. The results are
tabulated alongside the original main table of results for ease of comparison in Table 27. Crucially
we observe that on average EvoControl using PPO to train the high-level outperforms (on average
achieves a higher normalized evaluation return R) training the high-level with Neuroevolution, con-
firming the main framework and EvoControl method presented in the paper, and the advantages of
the unique combination of a high-level PPO learned policy with a neuroevolved low-level policy. Fur-
thermore, we also observe that on average these variations of EvoControl outperform the respective
non-EvoControl baselines of fixed-controllers and direct torque control.

42

Table 27: Ablation. Training the high-level policy with Neuroevolution instead of PPO for EvoControl.
Normalized evaluation return R for the benchmark methods, across each environment. EvoControl on average
achieves a higher normalized evaluation return than the baselines of fixed controllers and direct torque control.
Results are averaged over 384 random seeds, with + indicating 95% confidence intervals. Returns are normalized
to a 0-100 scale, where O represents a random policy, and 100 represents the highest reward achieved by a
non-EvoControl baseline in each environment. Scores bolded are greater than 100.

Method Name High-level Low-level Ant Halfcheetah | Hopper | Humanoid | Humanoid | Inverted Double | Inverted Pusher | Reacher | Reacher | Walker2D
p with # with Standup Pendulum Pendulum D
R Rt Rt R Rt Rt 1 Rt Rt Rt Rt
Fixed Cont. - PD Position PPO PD Position | 1004625 | 632+0599 | 893+12 | 926205 | 10050208 | 99.9+003 | 100415306 | 100847 | 1005177 | 85293 | 8170384
Fixed Cont. - PD Position Delta PPO PD Position Delta | 2.57+1.74 | 28640092 | 100£184 | 100178 | 254200542 | S38+1.57 | 100£153e:06 | 0+0 | 4084323 | 15276 | 96340219
Fixed Cont. - PD Int. Velocity PPO PD Int. Velocity | 246151 | 255200067 | 73.1+0.844 | 86.6:£1.33 00 497155 86,542 020 00 0£0 | 937277
Fixed Cont. - Random Random Direct Torque | 0,000 | 00400 0000 | 0000 | 00+£0.0 00200 00400 00£00 | 0000 | 00400 | 00£00
Direct Torgue Cont. - High Freq. (S00Hz) PPO Direct Torque 00 1820353 | 0.882+0.533 | 7.93+1.94 | 10.1:0.357 00 00 436+775 | 0%0 [4532674 | 00
Direct Torgue Cont. - Low Freq. (31.25Hz) PPO Direct Torque | 63+7.07 | 1004154 | 70.6+0.548 | 85.6141 | 80173 100£0.0311 | 100:£1.53¢-06 | 7541238 | 5884374 | 100£194 | 100106
EvoControl (Full State) PPO Neuroevolution | 368732 | 157+18.3 123519 | 1164184 101:£0.859 10050 | 362125 | 1144751 | 1064275 | 203137
EvoControl (Residual State) PPO Neuroevolution | 182+16.1 | 1826631 1704182 | 2124145 99.2+1.25 10050 | 375:948 | 1064258 | 1044342 | 205:57.4
EvoControl (Target + Proprio.) PPO Neuroevolution | 319435.1 | 168+14.7 16547.19 | 1654150 99.741.19 10060 | 3534284 | 9684786 | 1054471 | 1784637
EvoControl (Target) PPO Neuroevolution | 293487 | 1624235 1645212 | 2054147 | 99.6+0949 10020 | 3530434 | 1124173 | 1054165 | 188882
EvoControl (Learned Gains) PPO Neuroevolution | 266+104 | 1134105 | 206302 | 1504151 | 1174244 99.542.48 10050 | 330178 | 1165162 | 1054245 | 196118
EvoControl (Delta Position) PPO Neuroevolution | 362+47.7 | 133346 | 225829 | 11918 | 105464 101:0.394 10050 | 2675302 | 655521 | 9914127 | 183:344
voControl (Full State) (IM p steps) 1514429 | 134693 1154333 | 110£18.1 99.61.66 1000 | 320842 | 554164 | 422563 | 1442724
voControl (Residual State) (IM p steps) 136135 | 99.44213 13813 | 115:3.68 617389 1754661 | 2924223 | 5234115 | 2984212 | 117349
voControl (Target + Proprio.) (IM p steps) N 1304139 | 1514325 1214207 | 1074228 444522 234486 | 296749 | 5394124 | 738176 | 1263244
“ontrol (Target) (IM p steps) i 1354757 | 10119 1235143 | 10322 65,4405 511424 | 342460 | 5233981 | 26:40.1 | 130422
voControl (Learned Gains) (IM p steps) 1744389 | 894603 114239 | 113231 467£233 764101 | 2524101 | 5384836 | 2624294 | 113184
voControl (Delta Position) (IM p steps) 156157 | 1304955 194176 | 107£17.1 90.6:40.5 10050 | 322126 | S49+118 | 3194726 | 1124989
voControl (Full State) Neuroevolution (EvoControl Il steps) | Neuroevolution | 1764659 | 143124 | 944156 | 1234243 | 108:134 95.8£9.58 10020 | 334529 | 5546164 | 1574283 | 1532435
‘ontrol (Residual State) | Neuroevolution (EvoControl Il steps) | Neuroevolution | 169-£51.8 | 1544419 | 0114864 | 1314441 | 142458 4294694 8584594 | 3004501 | 523%10.1 | 4562808 | 1423218
“ontrol (Target + Proprio.) | Neuroevolution (EvoControl ll steps) | Neuroevolution | 15313 | 1374193 | 946:00 | 1224264 | 1024232 6275188 4384657 | 2914164 | 5394123 | 2734524 | 122426
“ontrol (Target) Neuroevolution (EvoControl Il steps) | - Neuroevolution | 152461 | 131109 | 63.5+77.1 | 1204229 | 99.6:+25.1 484247 204415 | 3134748 | 5414147 | 1884254 | 116113
Ablation: EvoControl (Learned Gains) | Neuroevolution (EvoControl Il steps) | Neuroevolution | 145166 | 90.5+352 | 1394803 | 126+126 | 1074218 7184183 975128 | 2374997 | 5384139 | 459£198 | T6.1£155
Ablation: EvoControl (Delta Position) | Neuroevolution (EvoControl Il steps) | Neuroevolution | 168460 | 140+13.5 14727 | 1184828 | 1074846 95.8+16.6 1000 3154103 | 5564132 | 504832 | 1724675

J.9 Rollout Trajectory Plots of High-level Action for Baselines

In the following we plot rollout trajectories, including the high-level latent action aj over one
evaluation episode in the Reacher 1D environment for all baselines. We take the trained policies, as
trained in the main table of results in the paper (Table 3), and evaluate them for one random seed
to produce the rollout trajectory plot. To facilitate simpler comparison, we use the same random
seed across the baseline trajectory plots. Moreover, we use the Reacher 1D environment as it is
straightforward to plot and understand what an optimal policy 7 should do. In this case the initial
reacher arm starts in a random position (as defined on a circle gy € (—m, 7)), with a random velocity,
and its goal is to move the arm to a randomly sampled goal location (goal ¢gour € (—7, 7))—in the
trajectory plots we plot the goal location with the red line, which is constant throughout the episode.
Therefore an optimal policy is one that moves the arm to the goal location, quickly and keeps it there
to maximize reward, where the reward is defined as —||xy_tip_of_arm(gq) — xy_tip_of_arm(qgoa) ||3-
We provide the plots for each respective baseline in Figures 13 to 23. We observe that the EvoControl
variants on average consistently outperform the other non-EvoControl baselines and achieve a higher
evaluation return R—which is also given on each plot.

Fixed Cont.
- PD Position
0.5 jL
0.0 —_
— Goal qo -
g_*l.S
-2.0
0.0 e
<-0.2 [
— R=-1.049
_J
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

Figure 13: Evaluation Trajectory Rollout for Reacher 1D, for baseline Fixed Cont. - PD Position. Environment
runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds.
Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the red-line
indicating the random goal g0 for the episode, 7; the instantaneous reward and R the total return for the
episode.

43

Fixed Cont.
- PD Position Delta

1.0 _
N
©
05
—— Goal qo

-0.1
= -0.2
-0.3 R=-11559

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 14: Evaluation Trajectory Rollout for Reacher 1D, for baseline Fixed Cont. - PD Position Delta.
Environment runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of
2.0 seconds. Where ay, is the high-level policy p latent action, go is the reacher arm’s angle in radians, with the

red-line indicating the random goal ggoa for the episode, r; the instantaneous reward and R the total return for
the episode.

Fixed Cont.
- PD Int. Velocity

0.50
~
©0.25

-2.0

— Goal qo

0
|
-
vl

-0.2

R=-23.981
~-0.3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 15: Evaluation Trajectory Rollout for Reacher 1D, for baseline Fixed Cont. - PD Int. Velocity.
Environment runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of
2.0 seconds. Where ay, is the high-level policy p latent action, go is the reacher arm’s angle in radians, with the

red-line indicating the random goal gg.. for the episode, r; the instantaneous reward and R the total return for
the episode.

Direct Torque Cont.
- High Freq. (500Hz)

— Goal g

o-1.5
-2.0
—0.0200 R=-21223
<
—-0.0225

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 16: Evaluation Trajectory Rollout for Reacher 1D, for baseline Direct Torque Cont. - High Freq.
(500Hz). Environment runs at 500Hz, with an 1,000 low-level environment steps, corresponding to a episode
duration of 2.0 seconds. Where ay, is the high-level policy p latent action, g is the reacher arm’s angle in radians,
with the red-line indicating the random goal ggoa for the episode, r; the instantaneous reward and R the total
return for the episode.

44

Direct Torque Cont.
- Low Freq. (31.25Hz)

— Goal qo

-2.0

0.0
<-0.2 J_I_I_I/—‘
R=-0756

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 17: Evaluation Trajectory Rollout for Reacher 1D, for baseline Direct Torque Cont. - Low Freq.
(31.25Hz). Environment runs at 500Hz, with an 1,000 low-level environment steps, corresponding to a episode
duration of 2.0 seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians,
with the red-line indicating the random goal ggoa for the episode, r; the instantaneous reward and R the total
return for the episode.

EvoControl
(Full State)
2.5
~
©0.0
S-15
— Goal qo
-2.0
0.0
&0z Jf~
R=-0770
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

Figure 18: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Full State). Environment
runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds.
Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the red-line
indicating the random goal g0 for the episode, 7; the instantaneous reward and R the total return for the
episode.

EvoControl
(Residual State)

2.5

& 0.0

-2.5
—— Goal qo

0.0
¢ 0z JTMW,’VM
R=—0.949

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 19: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Residual State). Envi-
ronment runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0
seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the
red-line indicating the random goal gg.a for the episode, r; the instantaneous reward and R the total return for
the episode.

45

EvoControl
(Target + Proprio.)

— Goalgo

0.0
<-0.2 J—I—I,
R=-0.844

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 20: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Target + Proprio.).
Environment runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of
2.0 seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the
red-line indicating the random goal ggoa for the episode, r; the instantaneous reward and R the total return for
the episode.

EvoControl
(Target)

2.5
~
©0.0

-1
°
S

—— Goal qo
-2
0.0
<-0.2 J—I—Im
R=-0.984
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

Figure 21: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Target). Environment runs
at 500Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0 seconds. Where
ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the red-line indicating
the random goal ggoa for the episode, 7; the instantaneous reward and R the total return for the episode.

EvoControl
(Learned Gains)

2.5
<
® 0.0

— Goalgo

0.0
R=-0.697

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 22: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Learned Gains). Envi-
ronment runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0
seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the
red-line indicating the random goal ge.. for the episode, r; the instantaneous reward and R the total return for
the episode.

46

EvoControl
(Delta Position)

& 4
-2 ﬁ;‘%
o-15
— Goalgo
=2.0
0.0 —
S-02 J’_‘ R=-0637
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

Figure 23: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Delta Position). Envi-
ronment runs at 500Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of 2.0
seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the
red-line indicating the random goal g for the episode, 7; the instantaneous reward and R the total return for
the episode.

J.10 Ablation: Removing Communication Between the Layers in EvoControl

We performed a further ablation, which tests the hypothesis of if within EvoControl, whether
there is useful communication between the high-level and low-level policy. Specifically for the
EvoControl variants that we considered, in some variations the low-level policy receives only a
restricted observation (just the joint positions of the robot, and not the random goal location if one
exists), compared to receiving the full observation (which includes any random goal location if one
exists for that environment).

Specifically, we consider two variants of EvoControl, where the low-level policy receives the full
observation (EvoControl - (Full State)), and where the low-level policy only receives a restricted
observation without any goal location—necessitating effective communication from the high-level
to the low-level (EvoControl (Target)). We compare these on the Reacher 1D task, visualizing the
rollouts for a random high-level policy, and a zero high-level policy, as observed in Figures 24
and 25. We observe that for both variations after the standard EvoControl training, removing the
communication (by making the high-level policy either a random policy or a null policy) significantly
reduces the performance (return), and leads to an unstable low-level policy, even when the low-level
policy receives the full observation (s;). Intuitively, it could be the case that the low-level policy
learns a form of a PD controller, and the high-level policy, as trained initially with a PD position
controller, could converge to treat the low-level policy as a form of PD controller.

47

EvoControl
(Full State)

2.5
~
©0.0
S-1.5
— Goal qo
-2.0
0.0
&0z JTN
R=-0770
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t
EvoControl
1 (Full State) - Ablation; Random High-level policy p
& 0
-1
2.5 — Goal qo
S 0.0
=25
0 =
g
-2
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t
EvoControl
0.05 (Full State) - Ablation; Zero High-level policy p
& 0.00
—0.05
2.5 — Goal g
°
S0.0
0 e
g
-2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

Figure 24: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Full State), with ablation
of a random high-level and a null (zero action) policy. Here the observation for the low-level policy is
St, Gk, €¢,Gt, G, t/T. We observe that even with the low-level policy receiving the full observation it still relies
on the communication from the high-level latent action ay, and without it, the return significantly reduces.
Environment runs at S00Hz, with an 1,000 low-level environment steps, corresponding to a episode duration of
2.0 seconds. Where ay, is the high-level policy p latent action, qo is the reacher arm’s angle in radians, with the
red-line indicating the random goal gg.a for the episode, r; the instantaneous reward and R the total return for
the episode.

48

EvoControl

(Target)
2.5
~
©0.0
-1
°
S
—— Goal go
-2
0.0
<-0.2 J—'—Ijh
R=-0.984
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t
EvoControl
1 (Target) - Ablation; Random High-level policy p
& 0
-1
0.0 — Goal qo
°
S
=25
0 R=-67.823
o m
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t
EvoControl
0.05 (Target) - Ablation; Zero High-level policy p
< 0.00
—0.05
-1
82
—3| — Gealao
0 R=-32.390
- W
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

t

Figure 25: Evaluation Trajectory Rollout for Reacher 1D, for baseline EvoControl (Target), with ablation of a
random high-level and a null (zero action) policy. Here the observation for the low-level policy is ax, g¢, g¢, /T
We observe that the low-level policy relies on the communication from the high-level latent action ag, and
without it, the return significantly reduces. Environment runs at 500Hz, with an 1,000 low-level environment
steps, corresponding to a episode duration of 2.0 seconds. Where ay, is the high-level policy p latent action, go
is the reacher arm’s angle in radians, with the red-line indicating the random goal ggoa for the episode, r; the
instantaneous reward and R the total return for the episode.

49

K Limitations & Future Work

While EvoControl demonstrates promising results for high-frequency continuous control, several
limitations and avenues for future research warrant exploration.

« Still relies on the existence of a fixed-PD controller for the continuous-time control task.
Although we demonstrate robustness to some degree of PD parameter misspecification
(Table 5), the reliance on a PD controller as a starting point poses a limitation. In domains
where designing a suitable PD controller is challenging or impossible (e.g., systems with non-
actuated joints, highly nonlinear dynamics, or discrete action spaces), applying EvoControl
in its current form may be difficult. We do perform an ablation where we show that
EvoControl can still learn performant policies without the existence of a fixed-PD controller
Appendix J.4, however other approaches to stabilize and initialize policy learning are
promising directions for future work.

» EvoControl can require more computational complexity compared to only performing PPO,
which can be readily parallelized in practice with modern accelerated compute platforms, and
restricting EvoControl to use the same computational complexity, whilst still outperforming
the baselines is also possible, Appendix J.3.

In addition, promising future directions include exploring more complex nested hierarchies, direct
low-level to high-level information flow, and ensembles of policies.

L. Reproducibility Statement

In the following we outline all the sections where the reader can find full information to fully
reproduce all the main results. We also clearly state the following of the assumptions of the method
in Appendix G, experimental settings in Appendices E to I, and the limitations of the work in
Appendix K.

M Ethics Statement

In this paper we present EvoControl, a novel bi-level policy learning framework for learning both a
slow high-level policy and a fast low-level controller using PPO and Neuroevolution, respectively,
for continuous-control tasks, to control continuous control tasks, such as robotic control. However
misuse of such a policy learning framework could occur when training on a miss-specified task,
and or the behavior of the policy should always be evaluated, checked with a human expert, and
appropriate safety controls put in place to avoid any unintended behavior.

N Common Questions and Discussion

N.1 Why Not Simply Pre-train with a PD Controller and Imitate?

One might consider using a PD position controller as a policy to collect rollout trajectories and
then using imitation learning to train a neural network to replicate its behavior. However, this
approach has limitations. The learned network would only be as capable as the PD controller itself,
inheriting its limitations in expressiveness and inability to learn complex, high-frequency interaction
behaviors. EvoControl, by directly optimizing the low-level policy with Neuroevolution, aims to
surpass the capabilities of the initial PD controller and discover more nuanced and adaptive control
strategies. Furthermore, imitation learning requires a substantial amount of demonstration data, while
EvoControl learns directly from the environment reward signal.

50

N.2 Relationship to Pulse-Width Modulation

The benefits of high-frequency control, as highlighted by Proposition 2.1, share a conceptual similarity
with Pulse-Width Modulation (PWM) in electrical engineering. In PWM, a high-frequency signal
with varying pulse widths is used to effectively represent a lower-frequency analog signal. Similarly,
in EvoControl, high-frequency actions generated by the low-level policy can represent and achieve
the lower-frequency targets set by the high-level policy with greater precision and responsiveness
compared to a fixed-frequency PD controller. While not a direct analogy, this parallel highlights the
ability of high-frequency signals to enhance control and achieve desired outcomes more effectively.

51

	Introduction
	Problem
	Higher Frequency Actions Can Be More Optimal
	Background: Fixed PD Controllers

	EvoControl: Evolved low-level controller framework
	Promise and Challenges of Policy Hierarchies
	Efficient High-Level Policy Exploration
	Neuroevolving a Fast Low-level Policy

	Related Work
	Experiments and Evaluation
	Main Results
	Insight Experiments

	Conclusion and Future Work
	Appendix
	 Appendix
	Expanded Problem
	Proof of Proposition 2.1: Optimality of High-Frequency Control
	Intuitive Continuous Control Safety-Critical Example

	Expanded Background: Fixed PD Controllers
	Extended Related Work
	Environment Selection and Implementation Details
	Standard Gym MuJuCo Tasks
	Reacher 1D
	Safety Critical Reacher

	Benchmark Method Implementation Details
	High-Level Policy and PPO Implementation
	PD Controller Implementation
	Fixed Controllers
	Direct Torque Control

	EvoControl Implementation Details
	EvoControl PseudoCode
	Detailed Analysis of EvoControl
	Mathematical Setting and Assumptions
	Complexity Analysis

	Computational Considerations

	Evaluation Metrics
	Additional Experimental Setup
	Efficient Exploration Experimental Setup
	High-frequency Interaction Control in Safety Critical Reacher

	Additional Experiments
	Ablation Using PPO to Train the Lower-level Policy
	ES Outperforms Direct Torque Control at High-frequency
	Ablation Equal Computational Complexity for All Baselines
	Equivalent Number of Low-Level Environment Steps
	Equivalent Number of Sequential Low-level Environment Steps

	Ablation: No annealing with PD Controller
	Ablation: Main Results for More High-level Steps
	Main Table of Results Additional Metrics
	Learning Curves for All Baselines
	Ablation: Training High-Level Policy with Neuroevolution
	Rollout Trajectory Plots of High-level Action for Baselines
	Ablation: Removing Communication Between the Layers in EvoControl

	Limitations & Future Work
	Reproducibility Statement
	Ethics Statement
	Common Questions and Discussion
	Why Not Simply Pre-train with a PD Controller and Imitate?
	Relationship to Pulse-Width Modulation

