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Abstract

Large-scale generative models such as GPT and DALL-E have revolutionized the
research community. These models not only generate high fidelity outputs, but are
also generalists which can solve tasks not explicitly taught. In contrast, speech
generative models are still primitive in terms of scale and task generalization. In
this paper, we present Voicebox, the most versatile text-guided generative model for
speech at scale. Voicebox is a non-autoregressive flow-matching model trained to
infill speech, given audio context and text, trained on over 50K hours of speech that
are not filtered or enhanced. Similar to GPT, Voicebox can perform many different
tasks through in-context learning, but is more flexible as it can also condition on
future context. Voicebox can be used for mono or cross-lingual zero-shot text-
to-speech synthesis, noise removal, content editing, style conversion, and diverse
sample generation. In particular, Voicebox outperforms the state-of-the-art zero-
shot TTS model VALL-E on both intelligibility (5.9% vs 1.9% word error rates)
and audio similarity (0.580 vs 0.681) while being up to 20 times faster. Audio
samples can be found in https://voicebox.metademolab.com.

1 Introduction

Recent advances in large-scale generative models [6, 42, 50] have led to a major paradigm shift
towards building general-purpose models, which can perform many new tasks not explicitly trained
on. These generative models learn to predict the missing data given the context. Post training, we
can directly input a question, optionally with a few contextual question-answer examples, instead of
fine-tuning with labeled data. While the training objective appears simple, it subsumes many tasks
as one can convert them into some form of context. For the model to perform well at every task, it
implies that the estimation of p(missing data | context) needs to be accurate for every context. Hence,
scale and diversity are the most crucial factors for building general-purpose models [20, 1].

Despite the success of large-scale generative models in other areas, most speech models are still
trained on datasets at the scale of tens to hundreds of hours [51, 31, 32, 46, 24, 58, 7]. Previous works
consider highly curated datasets such as VCTK [64], which contains only clean audio recorded in
studio from about 100 speakers with little speaking style and text variation. Such models struggle to
synthesize speech with rich variation in emotion, voice, background noise, acoustic condition, and
have not been tested on the abilities to generalize to tasks not explicitly trained on.

This paper presents Voicebox, the most versatile text-conditioned speech generative model at scale.
Voicebox is trained on a text-guided speech infilling task, where the goal is to generate masked speech
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Figure 1: Task generalization via in-context learning.

Table 1: Comparing Voicebox
with baselines on task capabilities.
∗Through infilling, A3T and Voicebox
can remove transient noise but not
stationary background noise.

Model ZS TTS Denoise Edit Sampling
YourTTS ✓ ✗ ✗ ✓
VALL-E ✓ ✗ ✗ ✓
A3T ✓ * ✓ ✗
Demucs ✗ ✓ ✗ ✗

Voicebox ✓ * ✓ ✓

given its surrounding audio and text transcript. This can be considered as a guided in-context learning
problem, where audio style is inferred from the audio context and textual content is specified through
transcript. Voicebox does not require any audio style labels (e.g., speaker, emotion, and noise), which
differentiates Voicebox from the majority of prior work where such labels are used extensively. Prior
work uses labels to make the mapping between input (text and audio style) and output (speech) more
deterministic to reduce underfitting [60, 46]. We show that Voicebox’s text-guided speech infilling
approach is much more scalable in terms of data while subsuming many common generative tasks.

In terms of modeling, Voicebox is a non-autoregressive (NAR) continuous normalizing flow (CNF)
model [10]. Similar to diffusion models [19], CNFs model the transformation from a simple
distribution to a complex data distribution, parameterized by a neural network. We train Voicebox
with flow-matching [38], a recently proposed method that enables efficient and scalable training of
CNFs via a simple vector field regression loss. In contrast to auto-regressive models, Voicebox can
consume context not only in the past but also in the future. Moreover, the number of flow steps can
be controlled at inference time to flexibly trade off quality and runtime efficiency.

Voicebox is trained on 60K hours of English audiobooks and 50K hours of multilingual audiobooks in
6 languages for the mono and multilingual setups. Voicebox achieves state-of-the-art performance on
mono-lingual/cross-lingual zero-shot TTS, speech denoising, speech editing, diverse speech sampling
and an application to data creation for speech recognition. To tackle the lack of comparability due to
the use of subjective metrics, this paper presents a series of metrics using public models to facilitate
reproducible comparison and model development for speech generation studies.

2 Related Work

Generative speech models: Most speech generative models are task-specific and trained on different
datasets. One common type of task is audio style conversion, which aims to convert only a specific
attribute while keeping other attributes the same. Voice conversion [27, 39], emotion conversion [53,
34], speech enhancement [63, 11, 55] belong to this category. Many of these models are supervised
and trained on pairs of data that only differ in one attribute, for example, emotion [34]. It is hard to
obtain such data. Moreover, some attributes, such as speaking style, are hard to annotate. Hence,
these models are often trained on small datasets.

Controllable text-to-speech synthesis (TTS) is another common task, which aims to synthesize speech
in a target audio style given text. While some styles like voice can be specified through labels [32] or
pre-trained embeddings like YourTTS [7] and Jia et al. [25]; others like prosody are hard to annotate
or embed. Previous studies [62] tried to control them by learning a residual embedding. However,
these models encode style in a low-dimensional space and impose an overly simple distribution of
speech given text and residual embedding [51, 56]. They cannot generate realistic noisy speech given
a low dimensional vector, and performance degrades when conditioned on noisy references [21].

Infilling can be considered as another type of task. It aims to predict speech given context [36, 4]
and optionally text guidance [3, 5, 61]. Instead of learning an explicit embedding to control style,
infilling models predict speech coherent to the context. In other words, these models perform in-
context learning similar to Large Language Models (LLM). While this is a step toward building large
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scale generalist models using little explicit supervision, most prior work using text guidance still
assumes a deterministic mapping from text and context to target [3, 5], which is only realistic for
very short segments. Voicebox is a text-guided infilling model, but it leverages the CNF model that
can parameterize any distribution. Hence, Voicebox can infill speech of any length and can be trained
on in-the-wild datasets with rich variation, and provide a general solution that subsumes many tasks
in a text-guided fashion.

Large scale in-context learning models: With the advancement in neural codec for speech [22,
12, 67], many recent studies explore token-based language modeling for speech generation. The
GSLM-family [36, 28, 41] are textless language models built upon HuBERT units [22] for speech
continuation without using text. HuBERT units encode mostly content, and the generated speech
does not preserve the voice of the prompt. To tackle this, AudioLM [4] considers a cascaded
approach which first generates HuBERT-like tokens and then predicts SoundStream [67] tokens, a
reconstruction based codec that preserves style. These models are not conditioned on text and are
evaluated on spoken language modeling tasks.

VALL-E [61] is most related to Voicebox. It is a text conditioned LM trained on Encodec [12] tokens
(similar to SoundStream). Encodec encodes each frame with 8 ordered codebooks at 75Hz using a
residual quantization layer. VALL-E has two modules. The first is an auto-regressive (AR) model
that predicts the first code of each frame given text and the audio prompt. The second is an NAR
model that predicts the remaining seven codebooks sequentially.

VALL-E demonstrates state-of-the-art (SOTA) zero-shot TTS performance through in-context learn-
ing, where speech of the desired style is used as prompt. The model considers the prompt as part of
the whole utterance such that it generates the rest of the utterance containing the target text in the same
audio style. Voicebox has several design advantages compared to this. 1) Voicebox can use context
both in the past and future, which is useful for editing where only a segment in the middle needs to
be generated. 2) Voicebox can generate speech much faster than VALL-E because flow-matching can
produce high quality samples with less than 10 NAR steps, while VALL-E requires 1 AR and 7 NAR
steps. 3) Voicebox decouples duration and audio modeling, enabling finer grained alignment control.
4) Voicebox is compatible with any continuous features including Encodec embeddings.

3 Method

3.1 Background: Flow Matching with an optimal transport path

Let Rd be the data space with data points x ∈ Rd drawn from some unknown distribution q(x).
Continuous Normalizing Flows (CNFs) [10] are a family of generative models that learn the
transformation from a simple prior distribution p0 (e.g., normal distribution) to the data distri-
bution p1 ≈ q. CNFs parameterize a time-dependent vector field vt : [0, 1] × Rd → Rd that is
used to construct a flow: ϕt : [0, 1] × Rd → Rd that pushes points from the prior towards the
target distribution. The relationship is defined via the ordinary differential equation (ODE) as:
dϕt(x)/dt = vt(ϕt(x)) and ϕ0(x) = x. For a flow ϕt, the probability path (time-dependent proba-
bility density function) p : [0, 1]× Rd → R>0 can be derived via the change of variables formula:
pt(x) = p0(ϕ

−1
t (x)) det

[
∂ϕ−1

t (x)/∂x
]
. To sample from pt(x), we first draw x0 from p0 and then

solve the initial value problem (IVP) for ϕt(x0) given dϕt(x)/dt = vt(ϕt(x)) and ϕ0(x) = x0. We
use xt and ϕt(x0) interchangeably.

Let pt be a probability path and ut be the corresponding vector field that generates pt. The vector
field vt(x; θ) parameterized by a neural network θ can be trained with the Flow Matching objective:
LFM (θ) = Et,pt(x)||ut(x) − vt(x; θ)||2, where t ∼ U [0, 1] and x ∼ pt(x). While the objective
appears simple, in practice we do not have the prior knowledge of pt or vt, and cannot directly
compute the loss or its gradient estimator.

Let x1 be a random variable distributed according to data distribution q. Lipman et al. [38] first
notes that a probability path pt(x) can be constructed via a mixture of simpler conditional paths
pt(x | x1) whose vector field ut(x | x1) can be easily computed. To construct pt(x), a conditional
path is defined such that 1) p0(x | x1) = p0(x) and 2) p1(x | x1) = N (x | x1, σ

2I), a Gaussian
distribution centered at x1 with a sufficiently small σ (typically 10−5). The marginal path is computed
as

∫
pt(x | x1)q(x1)dx1, which closely approximates q(x1) at t = 1. With that, [38] presents the

Conditional Flow Matching (CFM) objective, LCFM (θ) = Et,q(x1),pt(x|x1)||ut(x | x1)− vt(x; θ)||2.

3



It is proven that FM and CFM have identical gradients w.r.t. θ. More importantly, one can easily
draw samples from pt(x | x1) and compute ut(x | x1) to derive an unbiased gradient estimator.

The next question is how to choose a conditional flow. A flow defines trajectories, which dictates
how each point moves between p0 and p1. Intuitively, a simpler trajectory (e.g., a straight line) can be
learned faster and the IVP can be solved more accurately and efficiently. Lipman et al. [38] presents
a conditional flow called optimal transport (OT) path, which has the form of pt(x | x1) = N (x |
tx1, (1 − (1 − σmin)t)

2I) and ut(x | x1) = (x1 − (1− σmin)x) / (1− (1− σmin)t). The flow is
arguably simple because points move with a constant speed and direction. We adopt it for Voicebox.

Lipman et al. [38] also presents another flow that recovers the path of diffusion models [57], which
is more complex than the OT path. We will present ablation studies comparing different paths (OT
vs diffusion) and different objectives (CFM vs score-matching). Results show the superiority in
performance and efficiency of CFM with OT path.

3.2 Problem formulation

Given a dataset of transcribed speech (x, y) where x and y denote an audio sample and its transcript,
respectively, the goal is to build a single model that can perform many text-guided speech generation
tasks through in-context learning. We propose to train such a generative model on the text-guided
speech infilling task, which predicts a segment of speech given its surrounding audio and the complete
text transcript. Let m be a binary temporal mask which is of the same length as x, and xmis = m⊙x
and xctx = (1−m)⊙ x be the complementary masked versions of x. The generative model learns
p(xmis | y, xctx). In other words, y and xctx are the context and xmis is the missing data.
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Figure 2: Illustration of Voicebox training and inference.

3.3 Model and Training

Motivated by the need that some applications require fine-grained alignment control between speech
and text, we decouple Voicebox into two components: an audio model and a duration model. Let
x = (x1, x2, · · · , xN ) be an audio sample of N frames, y = (y1, y2, · · · , yM ) be a text sequence
of M phones, and l = (l1, l2, · · · , lM ) be the per-phone duration where lj denotes how many audio
frames yj correspond to and

∑M
j=1 l

j = N . We further define z = rep(y, l) = (z1, z2, · · · , zN ) to
be the frame-level phone transcript, which repeats each yj by lj times such that zi denotes the phone
label of the audio frame xi. For a pair of (x, y), l and z can be estimated through forced alignment
using a speech recognition model. The estimation of q(xmis | y, xctx) is then broken down into the
audio model q(xmis | z, xctx) and the duration model q(lmis | y, lctx), where lmis and lctx denote l
masked by m′ and 1−m′, and m′ is downsampled from m based on l, detailed in Appendix A.2.

Audio Model: Given a context z and xctx of length N , the distribution of xmis is highly stochastic
especially when xmis has a large temporal span. Hence, we parameterize it with a CNF and train
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it using the flow matching objective with the optimal transport path. Audio x is represented as an
80-dimensional log Mel spectrogram (xi ∈ R80) extracted at a 100Hz frame rate. The audio context
xi
ctx = 0 where mi = 1 and xi

ctx = xi where mi = 0. For simpler conditioning, we model the
conditional distribution q(x | z, xctx) of all frames x instead of only masked frames xmis. A neural
network is used to parameterize the conditional vector field vt(xt, xctx, z; θ) that additionally takes
xctx and z as input. Note that xt is a sample at flow step t and x = x1.

Given as input xctx ∈ RN×F , xt ∈ RN×F , phone sequence z ∈ [K]N with K denoting the number
of phone classes, and a time step t ∈ [0, 1], we employ a Transformer model to parameterize the vector
field vt. A lookup table, denoted as L ∈ RK×H , is used to embed the phone sequence z, resulting
in the embedded sequence zemb ∈ RN×H where ziemb = L(zi) for i ∈ 1, . . . , N . Subsequently, the
three sequences (xt, xctx, and zemb) are concatenated frame-by-frame and projected by employing
matrix Wp ∈ R(2F+H)×D, thereby obtaining the sequence Hc ∈ RN×D where D represents the
embedding dimension of the Transformer model.

To embed the flow step, a sinusoidal positional encoding is applied to map t ∈ [0, 1] to ht ∈ RD.
The sequence H̃c ∈ R(N+1)×D, which serves as the input to the Transformer model, is derived
by concatenating Hc with the vector ht along the time dimension. Given the Transformer output
vt(xt, xmis, z; θ) ∈ RN×F , which is the sub-sequence corresponding to Hc, the loss is computed as:

Laudio-CFM(θ) = Et,m,q(x,z),p0(x0)||ut(xt | x)− vt(xt, xctx, z; θ)||2, (1)

by reparameterization. During training, given an audio sample x and a prior sample x0, we have
xt = (1− (1− σmin)t)x0 + tx and ut(xt | x) = x− (1− σmin)x0. This function computes the loss
on all frames, including those that are not masked and would not be required during inference. To
divert the model’s focus to masked frames, we present a masked version of Laudio-CFM:

Laudio-CFM-m(θ) = Et,m,q(x,z),p0(x0)||m⊙ (ut(xt | x)− vt(xt, xctx, z; θ)) ||2, (2)

where the loss is only computed on masked frames. Appendix B.3 shows it leads to better results

Duration model: We consider two solutions. The first one closely follows the audio model. It models
q(l | y, lctx) via a conditional vector field which swaps (x, xctx, z) with (l, lctx, y) and accordingly
for the flow, where l, lctx ∈ RM×1 and y ∈ [K]M . The masked version of the CFM loss is used for
training. On the other hand, previous studies have shown that regression duration models can produce
reasonable speech [51, 37]. Hence we consider a second solution that regresses the masked duration
lmis given the context duration lctx and phonetic transcript y. The same Transformer model is used,
except that there are only two input sequences instead of three, and the time embedding is not used.
The model is trained with an L1 regression loss on masked phones:

Ldur-regr-m(θ) = Em,q(l,y)||m′ ⊙ (lmis − g(lctx, y; θ)) ||1, (3)

where g denotes the regression-based duration model. This is similar to the duration model used in
FastSpeech2 [51], but with additional duration context lctx as input.

3.4 Inference

To sample from the the learned audio distribution p1(x | z, xctx), a noise x0 is first sampled from
p0, and then an ODE solver is used to evaluate ϕ1(x0) given dϕt(x)/dt = vt(ϕt(x), xctx, z; θ) and
the initial condition ϕ0(x0) = x0. Intuitively, the ODE solver computes ϕ1(x0) by evaluating vt at
multiple t to approximate the integration from t = 0 to t = 1 given the initial condition ϕ0(x0) = x0.
The number of function evaluation (NFE) is defined as how many times dϕt(x0)/dt is evaluated. A
higher NFE often leads to a more accurate solution of ϕ1(x0) at the cost of longer run time. This
provides great flexibility for users to decide the trade-off between speed and accuracy. Moreover, we
find that empirically Voicebox can already generate very high quality speech with less than 10 NFEs,
making it significantly faster compared to auto-regressive models.

3.5 Classifier-Free Guidance

Classifier guidance (CG) [14] is a technique used to trade off mode coverage and sample fidelity
for diffusion models post training. It modifies the score estimate of a diffusion model to include
the gradient of the log likelihood of an auxiliary classifier. Ho and Salimans [18] notes that CG
approximates sampling from p(x | c)p(c | x)α where c is the conditioner, and this can be simulated
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without a classifier by mixing the score estimate of a conditional model and an unconditional model.
The unconditional model can be jointly trained by dropping the conditioner c with some probability,
and the same model provides score estimates for both p(x) and p(x | c).
We extend the idea of classifier free guidance (CFG) to flow-matching models. The conditioner c
is equivalent to (z, xctx) for audio models and (y, lctx) for duration models, which is dropped with
puncond during training. During inference, the modified vector field ṽt for the audio model becomes
ṽt(w, xmis, z; θ) = (1+α) · vt(w, xctx, z; θ)−α · vt(w; θ), where α is the strength of the guidance,
and vt(w; θ) is obtained by dropping xctx and z. We use α and αdur for the CFG strengths for the
audio and the duration model, selected based on validation. Note that the computation is doubled for
the same NFE when using CFG, because the model forward is called twice to compute ṽt.

3.6 Applications

We demonstrate that Voicebox exhibits in-context learning abilities similar to LLMs by presenting
a few examples of how to create context to perform tasks Voicebox was not explicitly trained on.
Fig. A1 shows a detailed diagram of how inputs are formatted for each task.

Zero-shot TTS & alignment-preserved style transfer: Given a target text ŷ and a transcribed
reference audio (x, y), zero-shot TTS aims to synthesize speech resembling the possibly unseen
audio style of the reference. Voicebox performs the task by treating the reference audio and the
target speech as one utterance where the target speech is masked. Let l and z be phone duration and
frame-level transcript of (x, y). The target duration l̂ is sampled given the duration context l and
concatenated phone sequence cat(y, ŷ). The target speech x̂ is then sampled given the context x and
concatenated frame-level phones cat(z, rep(ŷ, l̂)).

Voicebox can also convert the audio style for speech x̄ while preserving its alignment z̄. This is
useful for editing audio that is synchronized with other modalities such as video. Similar to zero-shot
TTS, Voicebox can simply perform the task by sampling target speech x̂ given the context x and
concatenated frame-level phones cat(z, z̄)

Transient noise removal & content editing: When recording speech, one might misspeak a few
words or the recording my be interrupted by unexpected background noise. In these scenarios
it is desired to just edit the problematic segment instead re-recording the speech. Voicebox can
perform transient noise removal through re-generating the noise corrupted segment given the original
frame-level transcript and the surrounding clean audio.

For content editing, Voicebox first samples duration for the new phones given the edited phone
transcript and the duration of existing phones to create the edited frame-level phone transcript. Given
the new frame-level phone transcript and the audio for existing frames, Voicebox then samples the
audio for frames corresponding to the new phones.

Diverse speech sampling & alignment-preserved style shuffling: Voicebox can generate diverse
speech samples by infilling the whole utterance. We first use the duration model to sample l̂ given
the phone transcript ŷ. We then use the audio model to sample x̂ given ẑ = rep(ŷ, l̂). Similar to
style transfer, Voicebox can also shuffle the audio style while keeping the alignment by sampling x̂
conditioning on the frame-level transcript z̄ of the target speech clip x̄.

4 Metrics

The common goal of audio-conditioned tasks is to produce realistic speech that is coherent with the
context and has the correct textual content. For tasks not conditioned on audio context, it is desired
to generate diverse and realistic samples with distribution similar to training data. Prior studies often
adopt subjective metrics like mean opinion scores (MOS) [52] which are not comparable across
papers, or quantitative metrics like mel cepstral distortion [35] that assume the output is deterministic
given input, which is often not realistic [54]. In this paper, we advocate the following reproducible
model-based perceptual metrics.

Correctness and intelligibility: We measure it by the word error rate (WER) of the synthesized
speech’s transcription with respect to the input text, which has been adopted in prior work [62]. Public
automatic speech recognition (ASR) models are used for comparability. For English-only setups, we
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follow [61] and use HuBERT-L [22] pre-trained on 60K hours of Librilight [26] and fine-tuned on
960 hours of Librispeech [43]. For multilingual setups we use the Whisper large-v2 model [49].

Coherence: This is measured by the similarity between the embedding of generated speech and
that of the audio context, where different embedding models would reflect coherence of different
attributes. VALL-E proposed to use WavLM-TDCNN speaker embedding model, which maps an
audio clip to a fixed dimensional vector, to measure voice similarity. We consider the same model to
compare with VALL-E. In particular, VALL-E reports similarity with respect to resynthesized audio
context by its vocoder (Encodec-decoder), which we call SIM-resyn (SIM-r). SIM-resyn is not
comparable across models using different vocoders. Hence, we advocate for computing similarity
against the original audio context, which we call SIM-orig (SIM-o).

Diversity and quality: Fréchet Inception Score (FID) [17] is widely adopted for image generation
evaluations, which captures the similarity between generated and real images at the distribution level
in some feature space. A shorter distance implies the distributions are more similar and generally
reflects both higher sample quality and diversity. We adapt the metric for speech by using self-
supervised wav2vec 2.0 feature [2] and refer to it as Fréchet Speech Distance (FSD). We verify its
effectiveness in Appendix C.1 along with alternative features.

As supplementary metrics, we include quality MOS (QMOS) for subjective audio quality evaluation,
and similarity MOS (SMOS) for subjective audio similarity evaluation given pairs of prompt and
system-generated audio clips. Both of which are in the scale of 1 to 5 with 5 being the best. The
MOS instructions and standalone metrics for duration models can be found in Appendix C.

5 Experiment

Data: We train the English-only model on 60K hours ASR-transcribed English audiobooks and
the multilingual model on 50K hours of multilingual audiobooks from six languages: English (En),
French (Fr), German (De), Spanish (Es), Polish (Pl) and Portuguese (Pt). The two models are
abbreviated as VB-En and VB-Multi. The Montreal Forced Aligner (MFA) [40] is used to phonemize
and force align the transcript based on the MFA phone set. Word position postfixes are added. Audio
is represented as a 80-dimensional log Mel spectrogram and a HiFi-GAN vocoder trained on the same
60K hours English speech is used to generate waveform. More details about phone representation,
data transformation, and vocoder can be found in Appendix A1-A3.

Model: Transformer [59] with convolutional positional embedding [2] and symmetric bi-directional
ALiBi self-attention bias [48] are used for both the audio and the duration model. ALiBi bias for
the flow step xt is set to 0. More details in Appendix Appendix A.7. The audio model has 24
layers, 16 attention heads, 1024/4096 embedding/feed-forward network (FFN) dimension, 330M
parameters. The duration model has 8 heads, 512/2048 embedding/FFN dimensions, with 8/10 layers
for English/multilingual setup (28M/34M parameters in total).

Training: VB-En/VB-Multi audio models are trained for 500K/750K updates with an effective
batch size of 240K frames. For training efficiency, audio length is capped at 1,600 frames and
chunked randomly if length exceeds. Duration models are trained for 600K updates with an effective
batch size of 60K frames. The Adam [33] optimizer is used with a peak learning rate of 1e-4,
linearly warmed up for 5K steps and decays over the rest of training. The audio/duration sequence
is masked with pdrop = 0.3/0.2, and otherwise a segment of r% sequence length is masked, where
r ∼ U [70, 100]/U [10, 100]. puncond is set to 0.2 for audio/duration models.

Inference: The torchdiffeq [9] package is used, which implements both fixed and adaptive step
ODE solvers. By default, the midpoint solver is used with a step size of 0.0625 (NFE=32). The
regression duration model is used by default. Silence at both ends are trimmed to 0.1 second max.

Baselines: We consider three baselines: 1) VALL-E [61], SOTA for English zero-shot TTS trained
on Librilight. 2) YourTTS [7], SOTA multilingual zero-shot TTS model trained on VCTK, LibriTTS,
TTS-Portugese [8], and M-AILABS French. It is a flow-based model adapted from VITS [32] using
a pre-trained speaker embedder. 3) A3T [3], SOTA for NAR speech editing and infilling trained with
a regression loss on VCTK. We also consider Demucs [11], a SOTA speech enhancement model
trained with regression and adversarial losses for denoising experiments.
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5.1 Monolingual and cross-lingual zero-shot TTS

Table 2 presents the zero-shot TTS results of the English model VB-En. Following [61], the test set
is constructed by selecting 4 to 10 second long samples from Librispeech test-clean. We consider
cross-sentence prompting where a 3 second clip from another sample of the same speaker is used
as audio context, and continuation prompting where the first 3 seconds of each utterance is used.
Voicebox outperforms all baselines on all metrics in both cases. In particular, Voicebox transfers style
much more effectively (+0.101/+0.108 SIM-r on cross-sentence/continuation) than VALL-E, and the
gap is even bigger when compared against raw audio (+0.141 SIM-o on continuation). MOS studies
also confirm the quality and similarity of Voicebox are subjectively better than YourTTS.

Table 2: English zero-shot TTS results on filtered LS
test-clean. ∗obtained via personal communication.

Model WER SIM-o SIM-r QMOS SMOS
Ground truth 2.2 0.754 n/a 3.98± 0.14 4.01±0.09

cross-sentence
A3T 63.3 0.046 0.146 - -
YourTTS 7.7 0.337 n/a 3.27± 0.13 3.19±0.14

VALL-E 5.9 - 0.580 - -
VB-En 1.9 0.662 0.681 3.78± 0.10 3.71±0.11

continuation
A3T 18.7 0.058 0.144 - -
VALL-E 3.8 0.452∗ 0.508 - -
VB-En (α = 0.7) 2.0 0.593 0.616 - -

Table 3: Transient noise removal where noise
overlaps with 50% of the speech at a -10dB
SNR.

Model WER SIM-o QMOS
Clean speech 2.2 0.687 4.07±0.15

Noisy speech 41.2 0.287 2.50±0.15

Demucs 32.5 0.368 2.86±0.17

A3T 11.5 0.148 3.10±0.15

VB-En (α = 0.7) 2.0 0.612 3.87±0.17

Table 4 presents cross-lingual zero-shot TTS results, where the audio context and the target text are
in different languages. Note that VB-Multi is not trained on any sample with multiple languages
in an utterance spoken by the same speaker. The test set is constructed using filtered MLS test
split described in Appendix A.4. For each target text, we sample one 3-second long audio context
from each language, which creates 36 language transfer directions in total. Voicebox yields better
performance than YourTTS everywhere. Specifically, on En/Fr/Pt which YourTTS supports, Voicebox
obtains 3.1%/5.9%/8.1% lower WERs and 0.136/0.141/0.160 higher similarity averaged across audio
context in six languages. Addition studies on prompt lengths are presented in Appendix B.2

Table 4: Multilingual zero-shot TTS results on filtered MLS test sets. GT/YT/VB-Multi refers to
ground truth/YourTTS/multilingual Voicebox. “Ref” column shows the audio context language.

Ref De En Es Fr Pl Pt
WER SIM-o WER SIM-o WER SIM-o WER SIM-o WER SIM-o WER SIM-o

GT - 5.9 0.725 5.0 0.636 4.1 0.729 5.2 0.714 4.9 0.743 5.8 0.725

YT

De n/a n/a 7.3 0.373 n/a n/a 11.3 0.361 n/a n/a 13.7 0.263
En n/a n/a 7.0 0.403 n/a n/a 11.4 0.298 n/a n/a 14.1 0.234
Es n/a n/a 7.6 0.327 n/a n/a 11.6 0.316 n/a n/a 13.5 0.256
Fr n/a n/a 7.6 0.363 n/a n/a 10.7 0.459 n/a n/a 13.1 0.299
Pl n/a n/a 7.8 0.349 n/a n/a 11.8 0.370 n/a n/a 15.1 0.308
Pt n/a n/a 7.6 0.322 n/a n/a 11.8 0.297 n/a n/a 13.6 0.436

AVG n/a n/a 7.5 0.356 n/a n/a 11.4 0.350 n/a n/a 13.9 0.299

VB-Multi
(α = 1.0)

De 4.8 0.632 4.8 0.522 3.6 0.442 5.3 0.489 5.5 0.449 5.4 0.420
En 5.9 0.435 4.2 0.535 4.1 0.423 6.8 0.423 8.3 0.402 7.6 0.385
Es 4.9 0.460 4.3 0.479 3.6 0.613 5.3 0.473 5.2 0.436 5.4 0.435
Fr 4.9 0.476 4.3 0.485 3.7 0.479 5.1 0.602 4.8 0.408 5.4 0.418
Pl 4.7 0.491 3.8 0.503 3.5 0.528 5.1 0.503 4.0 0.641 4.9 0.476
Pt 4.9 0.422 4.6 0.426 3.7 0.476 5.5 0.453 4.8 0.406 5.2 0.620

AVG 5.0 0.486 4.4 0.492 3.7 0.494 5.5 0.491 5.5 0.457 5.7 0.459

5.2 Transient noise removal

We construct a noisy test set by mixing the filtered Librispeech test-clean from Section 5.1 with
non-speech noise such that it overlaps with 50% of the duration at a -10dB signal-to-noise ratio.
Additional conditions can be found in Appendix B.4. Table 3 presents the results comparing Voicebox
with A3T and Demucs. It should be noted that A3T and Voicebox utilize transcript and location of
the noise while Demucs does not. Compared to the baselines, Voicebox generates samples best on
all metrics. A3T is better than Demucs on intelligibilty and quality, but the infilled speech is not
coherent because it is only trained on VCTK.
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5.3 Diverse speech sampling and application to ASR data generation

Table 5 compares the ability to generate diverse samples for Librispeech test-other text. We con-
sider English Voicebox (VB-En) with regression (regr) or flow-matching (FM) duration models.
VITS-VCTK additionally conditions on a speaker ID, which we randomly sample for each sen-
tence. YourTTS conditions on text and a reference audio, which we draw from the LS train splits.
Qualitatively, A3T generates the same robotic voice and VITS-LJ generates high quality but from
a single voice, hence both yield high FSD (bad quality or diversity) but VITS-LJ has a low WER.
VITS-VCTK improves the voice diversity and FSD and YourTTS further advances it as it is trained
on more speakers. Voicebox models (with different duration samplers) outperform the baseline on
FSD by large margins, showing Voicebox’s ability to produce realistic and diverse samples whose
distribution is close to the training data. Among them, the FM duration model creates more varying
speaking styles compared to the regression one which ASR may struggle more to recognize.

Table 5: Diverse speech generation from LS
test-other text.

Model WER FSD
Ground truth 4.3 171.1

require additional input
VITS-VCTK 10.6 306.6
YourTTS (ref=LS train) 9.0 277.9

text-only
A3T 37.9 373.0
VITS-LJ 5.6 344.2
VB-En (α = 0, dur=regr) 3.1 155.7
VB-En (α = 0, dur=FM, αdur = 0) 5.6 159.8

Table 6: Performance of ASR models trained on
real or synthetic speech, tested on real speech and
decoded with or without a 4-gram language model.

WER on real data
No LM 4-gram LM

ASR training data test-c test-o test-c test-o

Real audio (100hr) 9.0 21.5 6.1 16.2
Real audio (960hr) 2.6 6.3 2.2 5.0

VITS-LJ 58.0 81.2 51.6 78.1
VITS-VCTK 33.8 55.5 30.2 53.1
YourTTS (ref=LS train) 25.0 54.6 20.4 51.2
VB-En (α = 0, dur=regr) 7.1 17.6 6.5 14.6
VB-En (α = 0, dur=FM, αdur = 0) 3.1 8.3 2.6 6.7

We next train an ASR model using only synthetic speech and evaluate it on real speech, which
has not been successful before because synthetic data were not realistic and representative enough.
Table 6 compares real and synthetic data from Voicebox and three baseline models. Each TTS model
generates one sample per text from the Librispeech training set, resulting in 281K utterances per
system. For real data, we consider train-960 and train-clean-100. Details about the ASR model and
training are in Appendix A.5. The results are highly correlated with the FSD scores for synthetic data.
In particular, the ASR model trained on Voicebox data with FM duration model reduces WERs by
over 85% compared to baselines, and only lags behind real data by 0.4% and 1.7% absolute.

5.4 Inference efficiency versus performance

We examine the trade-off between the metrics of interest (WER, SIM, FSD) for different settings of
guidance strength (α) and NFE specified by the user. Fig. 3a shows the Voicebox inference time to
generate an audio sample of 10 seconds (including vocoding and predicting duration) as NFE varies
and compares that to VALL-E.3 For NFE=2 without CFG, Voicebox takes about 0.31 seconds, about
20 times faster than VALL-E. At NFE=64, Voicebox is only 4% slower than VALL-E.

Next, we study the cross-sentence setup of Section 5.1 to analyze the impact on WER and SIM-r. We
find that for all settings Voicebox has better WER than VALL-E. WER remains stable with mean of
2.0 and variance of 0.005. WER plot can be found in Appendix B.5. As shown in Fig. 3b, in the case
of SIM-r, lower classifier guidance strength values (α = 0 or 0.3) produce higher speaker similarity
when operating in a lower NFE regime (≤ 4). However, starting from NFE=8, a higher classifier
guidance strength improves speaker similarity. Finally, in Fig. 3c we examine FSD by generating
samples for Librispeech test-other text. We find that lower classifier guidance strength produces lower
FSD scores and more diverse samples. Increasing the NFE for each setting improves FSD.

5.5 Ablation on generative modeling approaches

We compare three generative modeling approaches: the proposed flow-matching with the OT path
(FM w/ OT), flow-matching with the variance preserving (VP) diffusion path (FM w/ diff), and score-

3Re-implemented and confirmed with the authors that our re-implementation is faster (6.2 vs 10 seconds).
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Figure 3: Trade-off between NFE and different metrics. Inference time will be doubled with CFG.

Table 7: Comparing different objectives on training efficiency. 32 NFEs are used for inference. Each
model is evaluated on the monolingual zero-shot TTS task.

Method upd=50K upd=100K upd=150K
WER Sim-o WER Sim-o WER Sim-o

FM w/ OT (proposed) 2.5 0.424 2.2 0.487 2.1 0.508
FM w/ diff 76.0 0.066 3.1 0.344 2.6 0.478
SM w/ diff 73.3 0.062 17.4 0.176 5.1 0.349

Table 8: Comparing different objectives on inference efficiency. All models are trained for 150K
updates. Each model is evaluated on the monolingual zero-shot TTS task.

Method NFE=4 NFE=8 NFE=16 NFE=32
WER Sim-o WER Sim-o WER Sim-o WER Sim-o

FM w/ OT (proposed) 2.4 0.410 2.2 0.481 2.2 0.503 2.1 0.508
FM w/ diff 11.5 0.171 3.0 0.359 2.7 0.447 2.6 0.478
SM w/ diff 94.5 0.054 42.3 0.076 11.5 0.218 5.1 0.349

matching with the VP diffusion path (SM w/ diff). A reduced setup described in B.3 is adopted, with
a lowered learning rate (1e-4) and the loss in Eq. (1) to ensure convergence for all three objectives.

We vary the number of training and inference steps, and evaluate models on the zero-shot TTS
task (Section 5.1). Results in Table 7 shows that FM w/ OT trains significantly faster than the other
two objectives, achieving the best performance with 100K training steps, and even outperforms SM
w/ diff using only 50K updates. Results in Table 8 shows superior inference efficiency of FM w/ OT,
which can produce good results with just 8 NFEs, while FM w/ diff requires at least 8 NFEs and SM
w/ diff requires over 32 NFEs. Complete results are in Table B5

6 Conclusion

This paper presents Voicebox, the most versatile generative model for speech. By learning to solve a
text-guided speech infilling task on large scale multilingual datasets with a power model and training
objective Voicebox demonstrates impressive task generalization capabilities. Voicebox achieves
state-of-the-art performance on mono and cross-lingual zero-shot TTS, speech inpainting, and diverse
speech sampling, and can generate speech 20 times faster than the best autoregressive models.

With high fidelity speech generation models like Voicebox, it brings the potential of misuse and
unintended harm. To mitigate the risk, we also detail in Appendix B.1 that a highly effective classifier
can be built to distinguish between authentic and synthetic speech. Voicebox is now trained only on
read speech from audiobooks in six languages, and cannot transfer one attributes (e.g., emotion) from
a reference while transferring another attribute (e.g., voice) from another reference. Due to space
limit, we expand our discussion of limitation and broader impact in Appendix D. For future work, we
would continue scaling the model and the data to include more languages and diverse types of speech
such as conversations, and explore disentangled prompting for different attributes.
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A Additional Details of Experiment Setup

A.1 Vocoder

We adapt the HiFi-GAN V1 configuration to generate 16kHz audio from 80 dimensional log Mel
spectral features sampled at 100Hz. To compute the log Mel spectrogram, we use a 1024-point
short time Fourier transform with a 640-sample (40ms) analysis window, 160-sample (10ms) shift,
and the Hann windowing function to compute the amplitude spectrogram, and then apply an 80
dimension Mel filter with a cutoff frequency at 8kHz. The original HiFi-GAN V1 has four transposed
convolution blocks for upsampling. The upsampling factors are [8, 8, 2, 2] and the corresponding
kernel sizes are [16, 16, 4, 4]. Here we only need a total upsampling factor of 160 instead of 256, and
we adjust the upsampling factors to [5, 4, 4, 2] and kernel sizes to [11, 8, 8, 4] accordingly. The other
parameters are identical to the HiFi-GAN V1 configuration. Total number of parameters is 13M.
We train the adapted HiFi-GAN on the 60K hours of English audiobook data for 1.5M updates on 8
GPUs, which takes 7.5 days.

A.2 Phone representation

Ghost silence The frame-level phonetic transcript used for training is obtained through force-
aligning speech and phonetic transcript. In particular, a forced aligner may align some frames to a
special phone “SIL” for non-speech frames (silence or noise). For most forced aligners, only frames
between words and frames at the beginning and at the end of an utterance can be aligned to SIL.

During inference, we are only given the text transcript, which does not tell us where we should insert
silence to. Hence, it is desired to have the duration model not only predict the duration for each phone
(SIL included), but also predict the existence of SIL at eligible locations (between words and at the
two ends of the utterance). To tackle it, we introduce ghost silence to our phonetic transcript, which
are silences in between words with duration of zero frames.

To give an example, suppose the transcript contains three words: “Hey what’s up” with pronun-
ciation “{Hey:[A,B], what’s:[C], up:[D,E,F]}”, and the frame-level phonetic transcript z
obtained through forced alignment is z = (SIL A B B SIL C D D D E E F SIL SIL). The
phonetic transcripts becomes y = (SIL A B SIL C SIL D E F SIL), where the ghost silence is
highlighted in green. The corresponding duration would be l = (1, 1, 2, 1, 1, 0, 3, 2, 1, 2). A ghost
silence is inserted between what’s and up during training, and the duration model should predict the
duration of it as zero to indicate that there should not be a pause between the two words.

Word-position-dependent phone The possible absence of silence between words in the frame-
level phone transcript can make it hard for the audio model to identify word boundaries. To help
the audio model identify the word boundary which is important when reading a sentence, we in-
troduce word-position-dependent phones which are commonly used in Hidden Markov Model
based acoustic models for speech recognition [47]. This adds a postfix to each phone in the
transcript to denote where it is in the corresponding word. There are four postfixes: _B for be-
ginning, _E for end, _I for intermediate, and _S for singleton. The above example becomes
“{Hey:[A_B,B_E], what’s:[C_S], up:[D_B,E_I,F_E]}” with frame-level phonetic transcript
z = (SIL A_B B_E B_E SIL C_S D_B D_B D_B E_I E_I F_E SIL SIL).

Phone-level mask In terms of masking, given duration l, the relationship of phone-level mask m′

and frame-level mask m can be written as m = rep(m′, l). For the applications where a duration
model is involved (zero-shot TTS, content editing, diverse speech sampling), the frame-level mask
m is extended such that no phone is partially masked. In other words, all the frames corresponding
to a phone is either entirely masked or entirely unmasked. During training, we mask a contiguous
chunk of audio, infilling of which is a more challenging task compared to infilling multiple smaller
segments. All frames that are aligned to a phone are either entirely masked or unmasked. Note that
masking all frames for a phone is not a necessity but was chosen due to ease of implementation.

A.3 Data transformation

The Mel spectrogram is normalized with the global mean (-5.8843) and standard deviation (2.2615) to
stabilize training. The statistics are estimated on 30k random training samples from the 1K hours of
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English audio. Input and output duration are dequantized (x ∼ U [x− 0.5, x+ 0.5]) and transformed
with log(1 + x) following [51]. Prediction of duration is quantized and clipped such that the minimal
duration is greater than or equal to zero.

A.4 Cross-lingual zero-shot TTS test data filtering

We create a test set for each language by selecting samples from the MLS test split which have
Whisper transcription WER lower than 20% (or 30% for Polish and Portugueses test splits which
contains less than 1K samples), because we found MLS test set contains many examples with
incomplete transcriptions missing a large portion of the utterance. In addition, a small amount of
utterances were excluded due to MFA alignment failure. Table A1 lists the number of samples
remained for each language.

Table A1: Number of MLS test samples after filtering.
Language #samples before filtering #samples after filtering

English 3769 3535
Spanish 2385 2323
German 3394 3183
French 2426 2284
Polish 520 508

Portuguese 871 838

A.5 Setup for training ASR models with synthetic speech

To train an ASR model in Section 5.3, we extract 80-dimensional log Mel features with a 25ms
window and a 10ms frame shift, and then apply global mean-variance normalization. The ASR model
is an RNN-T with a Conformer-based encoder [16]. The conformer applies time scale reduction to
the input features with stride 6, embeds them into 512-dimensional vectors, passes these vectors
through a 20-layer conformer which has 8 attention heads and 2048-dimensional fully-connected
layers. The conformer output is further mapped to 1024 dimensions through a linear layer followed
by layer normalization before being passed to the joiner. The predictor of the network first embeds
wordpiece units into 512 dimensional embeddings, applies layer normalization, a 512-dimensional
LSTM, a dropout layer and a linear layer that maps the LSTM output to 1024 dimensions. The joiner
adds the encoder and predictor outputs, applies tanh non-linearity and uses a linear layer that maps
the 512-dimensional joiner input into wordpiece units. There are 4096 wordpiece units estimated
from the LibriSpeech 960hr training text.

We apply SpecAugment [44] in all ASR runs. The models are trained using PyTorch [45] with
Adam [33] optimizer for 120 epochs unless otherwise noted. The learning rate follows a tri-stage
schedule with a maximum of 0.001. We applied gradient clipping at 10 and a weight decay parameter
of 0.1. For the 960hr setting, we used a variable batch size capped at 1K utterances or 30K frames,
whichever is smaller. This corresponds to about 45K update steps for 120 epochs. For the 100hr
setting, we set the maximum learning rate to 0.0001 and used smaller batch size (capped at 200
utterances or 5K frames). In this case, 120 epochs corresponded to about 120K updates. For decoding,
we used n-best decoding with a beam-size of 15, and evaluated the WER on the 1-best path.

A.6 How to format input for different task

Fig. A1 shows how input are formatted to perform diverse speech sampling, content editing, and
zero-shot TTS using Voicebox.

A.7 Bi-directional ALiBi Bias

We use a symmetric variant bi-directional variant of ALiBi bias where any query Qi and key Kj with
|i− j| = N use the same representations 4. Furthermore, for any query Qi the bias corresponding

4Our implementation is similar to symmetric option.
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Figure A1: Detailed diagrams of diverse speech sampling, content editing, and style transfer. Text in
red and blocks in orange at the input of a model denote segments to be predicted. Numbers in blue
and spectrogram in cyan at the model output denote predicted duration and spectrogram.

to the flow step xt is set to 0. Similarly the bias from the flow-step xt to any other query 0. In our
experiments, we find ALiBi Bias to improve convergence and extrapolation to longer sequences.

B Additional Experiments

B.1 Detecting generated speech

We recognize the potential risks of a model capable of generating speech in the style of arbitrary users.
In an effort to diminish these risks we show that a binary classification model is able to consistently
distinguish between real world speech and that which is generated from our model.

Inspired by [29], we train a convolutional binary classification model to distinguish between real and
generated speech. The model consists of 6 blocks with hidden dimension sizes: [64, 128, 256, 256,
512, 512]. Each block contains a (3 x 1) convolution along the time axis, a (1 x 3) convolution along
the frequency axis, followed by a ReLU activation and batch normalization. After each block that
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increases the hidden dimension size we also apply max pooling with a stride of 2 across both the
time and frequency dimensions. Finally, global max pooling is applied and a linear layer projects to a
single value that is fed into a binary cross entropy loss. At inference time we create a sliding window
with hop length equal to 250ms and run each chunk of audio through the classifier and average the
outputs.

The model is tested on the dev-clean split of Librispeech. We then take a 100 hour subset of the 60K
hour-English data and set aside 2,703 random utterances (to match the size of dev-clean) which is
used as a validation split. The remaining utterances from the 100 hours subset are used as the ground
truth utterances for training. For each split we synthesize audio, conditioned on each utterance of
the split by masking out frames in the spectrogram corresponding to 90%, 50%, and 30% of the
phonemes of the utterance. All samples are generated using classifier-free guidance with w = 0.7,
midpoint ODE solver (step size 0.0625 / NFE=64), and the regression duration model.

We consider two detection tasks. The first one is to distinguish between original audio and Voicebox-
generated audio. The second one is to distinguish resynthesized audio and Voicebox-generated audio.
The resynthesized audio is created by extracting the Mel Spectrogram from original audio and then
vocoding it with the HiFi-GAN vocoder.

Table B2 presents the results for each setting. The model can trivially distinguish original audio
from Voicebox-generated audio. This results from the fact that a model can also trivially distinguish
original audio from resynthesized audio, most likely by recognizing artifacts produced by the vocoder.
The task of differentiating Voicebox-generated audio from resynthesized audio is much harder. When
90% of the audio is masked, the model is able to reliably classify the audio as Voicebox-generated.
In lower masking regimes this decreases a bit, but this is likely due to a naive inference method of
averaging the outputs of all sliding windows. Since the majority of windows are non-synthetic, this
leads to mis-classifications.

Table B2: Synthetic speech detection metrics
% Mask Accuracy Precision Recall
Original audio vs Voicebox-generated audio
30% 1.000 1.000 1.000
50% 1.000 1.000 1.000
90% 1.000 1.000 1.000

Resynthesized audio vs Voicebox-generated audio
30% 0.704 0.714 0.680
50% 0.809 0.796 0.831
90% 0.907 0.881 0.942

B.2 How context length affects monolingual and cross-lingual zero-shot TTS

Monolingual: For in-context zero-shot TTS in Section 5.1, we used 3.0 seconds of prompt audio.
Here we examine how WER / SIM-r vary with different amounts of prompt audio using duration from
regression duration model for the target text. If the desired prompt is longer than the available audio,
the shorter audio is used as the prompt. Results are shown in Figure B2. As expected, WER mildly
decreases and SIM-r grows quickly flattens with longer audio prompts. Comparing against VALL-E,
Voicebox is more efficient at leveraging an audio prompt, achieving the same speaker similarity as
VALL-E with roughly two thirds the input audio.

Cross-lingual: Here we examine the effect of increasing the prompt length for the case of cross-
lingual zero-shot TTS. As described in 5.1, this setting has a total 36 language transfer directions
for each pair of source and target language. For each target text in a given transfer setting, we
examine how WER / SIM-o5 vary as the prompt length increases. Similarly, the regression duration
model is used for the target text. Fig. B3 and Fig. B4 plot the SIM-o (speaker similarity) and WER
trends respectively. When concatenating the prompt to the target for MLS, we find that the samples
are quite a bit longer than what the model was trained on (16s max length), because MLS test set
samples are in average 15 seconds long. To alleviate this out of domain issue and focus the study

5Same trend is observed with SIM-r. We present SIM-o to be consistent with Table 4
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Figure B2: WER and SIM-r as a function of prompt audio time in seconds for the Zero-shot TTS task
5.1. Audio is generated using classifier-free guidance strength (α) of 0.7 and midpoint ODE solver
with a NFE of 32. The blue line is for Voicebox and the red star is VALLE at 3 seconds. The speaker
similarity (SIM-r) remains same for longer prompts (up to 10s).
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Figure B3: Each subplot considers one of the six target language and shows SIM-o (speaker similarity)
as a function of prompt audio duration in seconds for cross-lingual style transfer from different source
language. We set the classifier-free guidance strength (α) to 1.0 and use midpoint ODE solver with a
NFE of 32.

on varying the prompt length, we truncate the target sequences to 4 seconds (at word boundaries).
We notice that WERs are higher compared to Table 4, likely because the ASR model struggles with
incomplete sentences. Each subplot contains the trend for one of the target languages from all six
source languages.

The speaker similarity consistently improves as the prompt length is increased, similar to the mono-
lingual setting. In contrast, we find that WER increases as we increase the prompt length for most
directions. The WER increases much more for En → non-En directions. We hypothesize that this
is due to training data imbalance across languages, where English accounts for over 90% of the
multilingual training data. Hence, when transferring from English, the model is more likely to
assume that the whole sentence is in English as the prompt length increases and produce incorrect
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Figure B4: Each subplot considers one of the six target language and shows WER as a function of
prompt audio duration in seconds for cross-lingual style transfer from different source language. We
find WER remain reasonably low for all cases except for “English” to “X” style transfer.We set the
classifier-free guidance strength (α) to 1.0 and use midpoint ODE solver with a NFE of 32.

pronunciation for the non-English target. Note that during the training phase, the model was only
exposed to audio samples and phonemes originating from a single language.

B.3 Comparing audio model training objectives

While A3T is considered the regression-based speech infilling baseline, it is trained on a smaller
dataset and uses a smaller model compared to Voicebox. Here we present a controlled study comparing
the flow-matching and regression objectives, as well as the effectiveness of masked loss.

We consider a reduced setup for this ablation to save the compute. All models were trained on an
English audiobook dataset with 1K hours of speech using a smaller model configuration (12 layers,
1024-dimensional Transformer embedding, 2048-dimensional feed-forward layer, 8 attention heads)
for 150k steps with an effective batch size of 120k frames. These models are evaluated on the
cross-sentence zero-shot TTS setup (Section 5.1) and diverse speech sampling (Section 5.3).

Results in Table B3 show that while regression audio models produce comparable WER, the audio
similarity and diversity are significantly worse. Subjective listening also reveals that the audio quality
and audio similarity are much worse. On the other hand, masked loss improves audio similarity and
diversity while having little impact on intelligibility.

Table B3: Comparison of flow-matching and regression models, trained with loss computed on all
frames or only masked frames. Results of the proposed objective is boldfaced.

Method Loss Zero-Shot TTS (cross-sentence) Diverse sampling
WER SIM-r WER FSD

Flow Matching Masked 2.1 0.597 3.1 242.5
Flow Matching All 2.0 0.528 3.1 243.1
Regression Masked 2.0 0.520 2.9 278.8
Regression All 2.0 0.512 2.9 282.8
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B.4 Effectiveness on data scaling

We create four subsets of the 60K hour English data (0.1%, 1%, 10%, 100% in duration). In particular,
the x% subset would contain roughly x% of the speakers from the original set. We train one model
on each subset with a reduced setup described in Appendix B.3 and evaluate them on zero-shot
TTS (cross-sentence) and diverse sampling. Results show that scaling data constantly improves the
zero-shot TTS performance (WER and SIM-r) as well as WER on diverse sampling. For FSD it
shows regression when scaling from 6K hour to 60K hour, but this could result from the the reference
distribution is computed from the 1K hour English audiobook data that has less diverse samples.

Table B4: Experiments on the effect of scaling training data.

Train data (hr) Zero-Shot TTS Diverse sampling
WER SIM-r WER FSD

60 2.30 0.151 3.48 280.48
600 2.11 0.417 3.19 205.39

6,000 2.08 0.573 2.96 195.52
60,000 2.05 0.645 2.95 214.38

B.5 Complete results on comparing generative modeling approaches

Table B5 presents the full results of Section 5.5 on all combinations of training steps, inference
steps with results on both monolingual zero-shot TTS (Section 5.1) and diverse speech sampling
(Section 5.3) for the ablation study presented in Section 5.5. In all settings Flow Matching with OT
paths performs strictly better than both of the other approaches.

B.6 Transient noise removal in more conditions

We expand the experiments in Section 5.2 by comparing the models on two noise levels (low noise:
10dB and high noise: -10dB), three overlapping ratios (30%, 50%, 70%), and also two types of noise
(speech noise and non-speech noise).

Results are presented in Table B6. Voicebox consistently produces the most intelligible audio at all
conditions (indicating the percentage of speech to infill). In terms of audio similarity, Voicebox is
constantly better in the high noise condition with gains ranging from 0.265 to 0.324 compared to
Demucs, and is on par with Demucs in low noise condition.

B.7 Additional results on inference efficiency versus performance

As explained in Section 5.4, for the cross-sentence setup of Section 5.1, we find that WER remains
stable with mean of 2.0 and variance of 0.005. This can be also be observed from Fig. B5a.
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Figure B5: Trade-off between NFE and WER for different classifier-free guidance strengths (a)
presents the WER for cross-sentence zero-shot TTS (Section 5.1) and (b) presents the WER for
diverse speech sampling (Section 5.3).
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Table B5: Comparison of FM w/OT vs. FM w/Diffusion vs. SM.

Method Train Steps NFE ZS-TTS (cross-sentence) Diverse sampling
WER SIM-o SIM-r WER FSD

FM w/ OT

50000

4 2.7 0.303 0.362 4.8 276.499
8 2.5 0.353 0.412 4.8 235.958
16 2.4 0.366 0.425 4.7 227.485
32 2.5 0.364 0.424 4.7 225.931

100000

4 2.5 0.347 0.404 4.3 258.358
8 2.2 0.411 0.468 4.2 216.512
16 2.3 0.429 0.483 4.3 206.538
32 2.2 0.431 0.487 4.2 203.792

150000

4 2.4 0.356 0.410 4.0 249.712
8 2.2 0.430 0.481 4.0 208.511
16 2.2 0.453 0.503 4.0 198.040
32 2.1 0.458 0.508 3.9 195.304

FM w/ diff

50000

4 99.9 0.050 0.050 99.8 3478.910
8 99.9 0.047 0.047 99.9 4704.237
16 98.8 0.052 0.048 96.5 5336.591
32 76.0 0.060 0.066 49.5 2485.400

100000

4 98.9 0.048 0.048 96.6 4486.401
8 14.6 0.104 0.137 12.0 669.564
16 4.0 0.210 0.262 7.0 381.891
32 3.1 0.285 0.344 6.3 294.777

150000

4 11.5 0.132 0.171 11.4 692.560
8 3.0 0.305 0.359 5.6 334.237
16 2.7 0.391 0.447 5.4 244.067
32 2.6 0.423 0.478 5.2 224.963

SM w/ diff

50000

4 99.6 0.050 0.048 99.7 2816.083
8 99.3 0.051 0.048 99.6 3079.040
16 97.5 0.052 0.050 98.4 3710.340
32 73.3 0.057 0.062 86.2 3011.030

100000

4 99.4 0.050 0.050 99.3 3474.579
8 97.2 0.049 0.048 97.9 3600.423
16 53.9 0.064 0.071 69.6 2060.892
32 17.4 0.150 0.176 34.4 1071.579

150000

4 94.5 0.055 0.054 79.4 2953.417
8 42.3 0.070 0.076 27.5 1071.010
16 11.5 0.191 0.218 12.8 698.411
32 5.1 0.309 0.349 8.8 519.468

In Fig. B5b, we show the WER for the samples generated on Librispeech test-other text. We find
that for α = 0, WER increases slightly from 2.8 to 3.1 as NFE goes from 2 to 32. For a larger
classifier-free guidance strength, WER remains more stable. Subjective listening and FSD reveal
that 1) a lower NFE leads to less natural samples with lower diversity, and 2) a higher guidance
weight leads to lower diversity. In addition, we observe that ASR can perform well with unnatural
samples that contains artifacts, but degrades when the samples are more diverse and expressive (e.g.,
with whispering voice or with strong reverberation). As a result, we see that the combination of low
guidance weight and high NFE leads to a higher WER due to the higher diversity.

B.8 Choice of audio model output features

The performance of our model is upper bounded by how well the chosen acoustic features can be
reconstructed to waveform. The reconstruction performance is determined jointly by the encoding
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Table B6: Results of transient noise removal with varying overlapping percentage and noise level.
“sp” means added noise is speech, and “non-sp” means non-speech.

WER(↓) SIM(↑) WER(↓) SIM(↑)
sp non-sp sp non-sp sp non-sp sp non-sp

SNR=-10dB, overlap=30% SNR=10dB, overlap=30%
Noisy speech 26.7 24.9 0.202 0.238 3.7 3.1 0.605 0.603
Demucs 20.5 19.7 0.247 0.247 3.2 2.8 0.570 0.567
A3T 7.5 0.058 same as left
VB-En (α = 0.7) 2.2 0.566 same as left

SNR=-10dB, overlap=50% SNR=10dB, overlap=50%
Noisy speech 43.6 40.8 0.256 0.292 4.5 3.8 0.649 0.649
Demucs 34.3 32.5 0.291 0.288 3.8 3.3 0.616 0.613
A3T 11.5 0.064 same as left
VB-En (α = 0.7) 2.0 0.612 same as left

SNR=-10dB, overlap=70% SNR=10dB, overlap=70%
Noisy speech 60.0 56.0 0.260 0.303 6.3 4.6 0.595 0.592
Demucs 49.5 45.4 0.293 0.294 4.6 3.8 0.572 0.564
A3T 16.6 0.063 same as left
VB-En (α = 0.7) 2.0 0.559 same as left

process, as in how much information is lost when encoding waveform into the features, and the
decoding process, as in how well the vocoder can translate the encoded information into waveform.

To motivate the choice of the acoustic feature and the vocoder, we compare four combinations:
the first one is Mel spectrogram + HiFi-GAN which is what this paper adopts. The second is Mel
spectrogram + Parallel WaveGAN [65] that is used by A3T [3]. The third one is Encodec post-
quantization dense feature + Encodec decoder, which is analogous to VALL-E’s setup. The last
one is also Encodec but with pre-quantization dense feature, which we include to study how much
information is lost during quantization.

We also note that Mel spectrogram features are 80 dimensional encoded at 100Hz, which is 8K
dimensions per second, while Encodec features are 128 dimensional encoded at 75Hz, which is 9.6K
dimensions per second, higher than the Mel spectrogram features.

Table B7 presents the results evaluated on the Librispeech dev-clean and dev-other splits. All three
models have the same WER resynthesizing dev-clean split, but ParallelWaveGAN degrades the most
on dev-other. Interestingly Encodec even produces audio of lower WER than the ground truth.

In terms of audio similarity, besides the default audio feature extractor WavLM-TDCNN, we also
include results of similarity computed with another speaker encoder ECAPA [13]. Parallel WaveGAN
is consistently the worst. However, it is unclear whether HiFi-GAN or Encodec performs better.
Encodec prevails with the WavLM-TDCNN embedder and HiFi-GAN wins using ECAPA. It may
require subjective MOS test to conclude which one reconstructs the audio better, and we leave
exploration of modeling Encodec dense features for future study.

Table B7: Comparison of different audio features and vocoders on audio reconstruction. Librispeech
dev-clean (d-c) and dev-other (d-o) are used for evaluation. WER and audio similarity computed with
WavLM-TDCNN and ECAPA are reported.

Audio feature / Vocoder WER SIM-o (WavLM) SIM-o (ECAPA)
d-c d-o d-c d-o d-c d-o

Ground truth 2.1 4.7 1.000 1.000 1.000 1.000

Mel spectrogram / HiFi-GAN 2.1 4.7 0.915 0.909 0.766 0.762
Mel spectrogram / Parallel WaveGAN 2.1 5.2 0.868 0.847 0.721 0.711
Encodec post-quantized feature / Encodec decoder 2.1 4.5 0.943 0.944 0.724 0.722
Encodec pre-quantized feature / Encodec decoder 2.1 4.4 0.943 0.944 0.724 0.722

24



C Additional Details and Studies on Metrics

C.1 Measuring speech diversity and quality with FSD

Diversity We first validate if FSD reflects the diversity for a set of speech samples and study its
sensitivity to sample size. To achieve that, we design controlled experiments to compute FSD on sets
of samples with varying diversity and sample sizes. Specifically, we create two partitions from 1K
hours of English speech, where each partition has the same set of speakers and the same number of
utterances for each speaker. The first partition is considered the reference set.

To test the sensitivity to sample size, we use the second partition to create subsets by sampling r%
of utterances from each speaker in that partition. This sampling method is denoted as “utt”. We
computed that on average, each speaker contributed approximately 2.33 sessions, with each session
containing around 52.45 utterances. Therefore, the subsets created using the sampling method are
expected to have similar audio style distributions to the reference set and the FSD is expected to stay
low regardless of the subset size. We consider r ∈ {1, 5, 10, 25, 50, 100}.

To test the correlation with diversity, we again use the second partition to create subsets by sampling
r% of speakers and including all the utterances in the partition from those speakers. This sampling
method is denoted as “spk” where a smaller r leads to a subset with fewer speakers and hence lower
diversity. Therefore the FSD is expected to increase as r decreases. The same set of values for r is
considered. For the same r, the “utt” subset should always have a lower FSD than the “spk” subset.

We compare three different features for computing the FSD score. The first is the supervised
WavLM-TDCNN feature used for computing audio similarity (SIM-r and SIM-o). The second is the
self-supervised wav2vec 2.0 BASE [2] feature reduced to 128 dimensions using principle component
analysis (PCA). The last one is the supervised audio event classification model feature that is used to
compute FAD [30] for non-speech audio generation.

Figure C6 first compares using different layers of wav2vec 2.0 features. All of them yield similar
desirable results where “utt” stays low and “spk” increases drastically when the sample size reduces
and speaker diversity decreases. We then decide to use the middle layer (layer 6) as the default feature
for FSD computation.
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Figure C6: FSD based on different layers of wav2vec 2.0 BASE. utt: utterance-based sampling, spk:
speaker-based sampling. Vertical bars denote standard deviation.

Figure C7 further compares wav2vec 2.0-layer 6 with the two other features. WavLM-TDCNN and
wav2vec 2.0-layer 6 present similar trends and both have low variance. Both of them are suitable for
measuring diversity, and we decide to use wav2vec 2.0 features as it is self-supervised and would be
able to capture more holistic information of speech such as prosody and emotion.
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In contrast, FAD score [30] is not appropriate for measuring speech diversity. The score does not
increase much between r = 25% and r = 1% for “spk” sampling method, showing that the score
does not reflect the decreasing speaker diversity. On the other hand, “utt” sampling method observes
huge FAD score increase when reducing the sample size from r = 25% to r = 1% where the diversity
does not change much as the number of speakers remains the same. Moreover, at r = 1% both
sampling methods result in similar FAD score while the two subsets exhibit very different levels of
diversity. We hypothesize that this is because FAD score is computed based on features extracted
from an audio even classifier trained on AudioSet, which learns to distinguish between events like
lawn mower, car engine, and human speech, but does not learn to capture the variation within speech,
such as different voices.
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Figure C7: FSD with different sample size using supervised WavLM-TDCNN, self-supervised
wav2vec 2.0, and supervised audio event classifier features. utt: utterance-based sampling, spk:
speaker-based sampling. Vertical bars denote standard deviation.

Quality In addition to measuring diversity, Fréchet distance is a commonly used metric for assessing
quality in image generation [19]. To show its applicability for speech generation, we evaluate the
FSD score of speech utterances with varying levels of quality. The reference set samples are 1K hours
of English training data, and the hypothesis set is the Librispeech test-clean split with noise added.
We added Gaussian noise at different SNRs, ranging from 0 to 50 dB. Lower SNR values correspond
to lower quality. We use the default speech feature extractor (i.e., wav2vec 2.0, layer-6) throughout
the experiments.

Our results, summarized in Figure C8, show that a subset with a lower SNR has a higher FSD score.
Therefore, a lower FSD score indicates higher acoustic quality for the set of test samples when
diversity is fixed.
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Figure C8: FSD under different noisy levels. Feature: Wav2vec 2.0 layer-6 feature. Noise is added
upon model output from Voicebox under unconditional setting.
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C.2 Standalone metrics for duration models

As mentioned in the main text, we can utilize end-to-end metrics of WER, SIM, and FSD to evaluate
duration models, but also consider metrics specifically for duration.

First, we consider two metrics aimed at the quality of duration predictions, here denoted l̂(lctx, y).
For a regression model, we use l̂(lctx, y) = g(lctx, y; θ). For a flow matching model, we set l̂ as the
mean over 20 samples, ensuring a fairer comparison.

Duration correctness (MS-MAE) Our first metric, multi-sample mean-absolute error (MS-MAE),
is the masked absolute error per-utterance divided by the average number of masked phonemes
per-utterance

Em,l,y||m⊙
(
l − l̂(lctx, y)

)
||1

Em,l,y||m||1
(4)

Speaking rate correlation (MS-Corr) Our next metric, multi-sample correlation (MS-Corr),
computes the average masked predicted duration and unmasked duration context per utterance,
and computes their correlation across utterances. Comparing MS-Corr with the same correlation
computed from the ground truth, we observe to what extent predicted durations capture appropriate
correlations with the context.

Duration diversity and quality (FDD) Additionally, we evaluate the quality and diversity of
duration samples at the distribution level, similar to our audio evaluation of diversity and quality via
FSD. We produce one sample per utterance from a duration model and collect all sampled phoneme
durations, possibly many per-utterance, into an empirical distribution. We compare means and
variances of this sampled distribution versus the means and variances of the training distribution,
labeled µ, s, and µ′, s′ respectively. We define the Fréchet duration distance (FDD) as the Fréchet
distance between the distributions

(µ− µ′)2 + s+ s′ − 2
√
ss′, (5)

treated as though they were Gaussians. FDD depends on the sampled durations accurately reflecting
the training distribution of real durations. As for FSD, this metric is specific to unconditional
text-to-speech generation.

C.3 Duration model evaluation with standalone metrics

We evaluate three duration model variants. The first and second utilizes flow matching and re-
gression, trained using masked conditional flow matching and regression respectively as described
in Section 3.3. The third is a regression model that ignores duration context lctx and only uses
phonetic transcript y, referred to as unconditional regression below. This is the duration model used
in FastSpeech2 [51], A3T [3] and many other non-autoregressive speech synthesis models.

We evaluate our three duration model variants on the Librispeech test-other split on two tasks. The
first is unconditional TTS where we generate all durations from given phonemes (i.e. lctx is entirely
masked). The second task is infilling the second half of each utterance’s durations, where lctx are
durations from the unmasked half of the utterance. This second infilling task distinguishes between
the two regression model variants, since the unconditional regression ignores lctx, and hence predicts
identical durations for the tasks. Duration metrics are computed for TTS and infilling in Table C8
and C9. The prefix Phn or Sil indicates the associated metric was either computed across all non-
silence or all silence phonemes. Start and end silences were not trimmed for these duration metric
evaluations.

Starting with prediction quality metrics (MS-MAE and MS-Corr), the duration-conditional regression
performs slightly better on MS-MAE overall than the other models. Larger differences are seen on
Phn-MS-Corr where the unconditional regression has a correlation substantively below the other
models (Phn-MS-Corr of ground truth is 0.47), indicating conditioning on duration context lctx
is beneficial. Flow-matching shows the largest distinction versus regression on the distributional
comparison captured by FDD. The regression models have generally larger FDD because they
underestimate the standard deviation in phoneme and silence durations, and hence produce samples
with less duration diversity and more regular duration lengths.
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Table C8: English TTS duration metrics on LS test-other.
Duration Model Phn-MS-MAE Phn-FDD Sil-MS-MAE Sil-FDD
Unconditional Regression 2.53 0.72 5.32 2.39
Duration-conditional Regression 2.52 0.76 5.10 8.40
Duration-conditional Flow Matching 2.63 0.61 5.18 2.48

Table C9: English second-half infilling duration metrics on LS test-other.
Duration Model Phn-MS-MAE Phn-MS-Corr Sil-MS-MAE
Unconditional Regression 2.57 0.26 5.44
Duration-conditional Regression 2.45 0.35 5.20
Duration-conditional Flow Matching 2.52 0.41 5.32

C.4 Duration model evaluation with end-to-end metrics

We now present end-to-end metrics for our three duration variants for zero-shot TTS cross-sentence
and continuation, as well as diverse speech generation, corresponding to Sections 5.1 and 5.3.
Zero-shot TTS cross-sentence and continuation results are shown in Table C11 and diverse speech
generation results in Table C10. These results are not comparable with the main text as they utilize
the flow-matching model described in Appendix B.3, denoted as VB-En-1K.

Overall, FSD and SIM are similar across duration variants. On the other hand, WER is sensitive to the
choice of duration model, where the duration-conditional regression achieves a substantially lower
WER. Subjective listening from the duration-conditional regression and flow-matching confirms that
the regression model is producing more regular patterns of speech, that may be easier for ASR to
recognize, while sacrificing some duration diversity.

Table C10: Diverse speech generation from LS test-other text.
Duration Model with VB-En-1K WER FSD (LS-train)
Unconditional Regression 3.8 148.7
Duration-conditional Regression 3.7 148.1
Duration-conditional Flow Matching 5.4 155.1

C.5 MOS instructions

Table C12 shows the instruction presented to the raters for quality mean opinion score study. Table C13
shows the instruction presented to the raters for similarity mean opinion score study.

D Limitation and Broader Impact

Limitation Voicebox models presented in this paper are trained on read speech from audiobooks
in up to six written languages. Hence, the current models may not transfer well to conversational
speech [15], which is more casual and contains more non-verbal sounds such as laughing and back-
channeling (e.g., um-hmm). We plan to tackle the problem by scaling the training data to incorporate
more diverse speech.

On the other hand, Voicebox depends on a phonemizer and a forced aligner to produce frame-level
phonetic transcript. In addition, many existing phonemizers [40] are word-based, which does not take
neighboring words of the target into account when predicting the pronunciation. Such phonemizers
cannot accurately predict phonetic transcript given text because pronunciation is context-dependent
in many languages (e.g., liaisons in French). In the future, we will explore more end-to-end methods
where a model would be able to take raw text with punctuation as input [7], and eliminate the need of
phonemizers and forced aligners to improve the performance and increase the language coverage.
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Table C11: English zero-shot TTS results on filtered LS test-clean.
Duration Model with VB-En-1K WER SIM-o SIM-r
cross-sentence
Unconditional Regression 3.0 0.538 0.584
Duration-conditional Regression 2.7 0.545 0.591
Duration-conditional Flow Matching 3.4 0.528 0.578

continuation
Unconditional Regression 2.5 0.485 0.524
Duration-conditional Regression 2.2 0.491 0.533
Duration-conditional Flow Matching 2.7 0.481 0.525

Table C12: Quality mean opinion score (QMOS) instruction.

Introduction
Your task is to evaluate the subjective quality and intelligibility of the speech from short
(2-8 second) audio files. Each HIT can be completed in roughly around 120 seconds.

Task Instructions
In this task you will hear samples of speech recordings. The purpose of this test is to
evaluate the quality and intelligibility of each file in terms of its overall sound quality
and the amount of mumbling and unclear phrases in the recording.

Please keep in mind that speech samples can be distorted and noisy, however these are
only specific examples.

Please use a headset for listening and adjust your volume level to your comfort during
this training, and do not change later during the experiment.

You should give a score according to the following scale, known as the MOS (mean
opinion score) scales:

Score (Quality and Intelligibility of the speech)
5 (Excellent)
4 (Good)
3 (Fair)
2 (Poor)
1 (Bad)

Last but not least, while Voicebox yields impressive results on transferring audio style (voice, speaking
style, emotion, and acoustic condition), the model does not allow independent control of each attribute.
In other words, one cannot ask the model to generate speech that resembles voice of one sample
while resembling the emotion of another sample. We leave disentangled control of attributes through
prompting or text description for future work.

Broader impact A high-quality and versatile generalist speech generation model like Voicebox
can enable many applications that improve the quality of our life. For example, zero-shot TTS could
bring the voice back to people who suffer from diseases or underwent surgeries such as laryngectomy
the causes inability to speak. Zero-shot TTS can also be combined with visual speech recognition
systems [23] to avoid the need of typing. When paired with speech translation models, cross-lingual
zero-shot TTS enables everyone to speak any language in their own voice. Content editing and
speech denoising can be productivity tools for users to create content more effortlessly. Diverse
speech sampling, as shown in the paper, can significantly reduces the cost of creating data for training
speech-input models.

While Voicebox can bring many positive social impacts, it also carries the potential of misuse and
unintended harm. To mitigate the risk, we have presented a highly effective classifier showing that the
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Table C13: Similarity mean opinion score (SMOS) instruction.

Task Name
Rate the similarity of the synthesized speech samples to a given prompt.

Task Instructions
Your task is to evaluate the similarity of the synthesized speech samples to the given
speech prompt. You should focus on the similarity of the speaker, speaking style,
acoustic conditions, background noise, etc. You should rank the recordings on the scale
between 1-5, where 5 is the best quality and 1 is the worst.

In other words, please rank the recordings according to their acoustic similarity to the
given prompt, meaning as if they were recorded in the same place by the same speaker
speaking in similar styles. This task typically requires approximately 120 seconds to
complete.

Please use a headset for listening and adjust your volume level to your comfort during
this training, and do not change later during the experiment.

model can accurately distinguish between real and synthetic speech. For future work, we also plan to
investigate proactive methods for training the generative model such that the synthetic speech can
be more easily detected, such as embedding artificial fingerprints [66] that can be trivially detected
without hurting the speech quality.

To prevent Voicebox from learning biases, we also need to carefully select its training data. First,
if Voicebox is only trained on a smaller number of speakers from a specific group with similar
accents, it will not be able to generate diverse speech representing the accents around the globe,
and downstream models trained on Voicebox generated speech would perform worse on groups
with underrepresented accents. For zero-shot style transfer, the performance would also degrade for
underrepresented accents. To mitigate this, we have leveraged in-the-wild speech that includes a wide
variety of accents, and will continue investing in collecting diverse speech to avoid such biases.

Second, if Voicebox is trained on data where samples from one ethnic group always have lower audio
quality (e.g., more noise) while the other ethnic group always has higher audio quality samples, the
model would also learn undesired association. To mitigate this, we want the distribution of audio
quality (and other audio attributes) and ethnic group to be less correlated, which is usually the case
when we have larger scale data collected from in-the-wild sources. We can further tackle this by
leveraging data augmentation to decorrelate the distribution, such as adding noise and enhancing
speech to widen the audio quality distribution.
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