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Abstract

Associative memory (AM) and recognition memory (RM) are fundamental in
human and machine cognition. RM refers to an ability to recognize if the stimulus
has been seen before, or is novel. Neuroscience studies reveal that regions such as
the hippocampus, known for AM, are also involved in RM. Inspired by repetition
suppression in the brain, this work presents an energy-based approach to RM, where
a model learns by adjusting an energy function. We employed this energy-based
approach to Hopfield Networks (HNs) and Predictive Coding Networks (PCNs).
Our simulations indicate that PCN outperforms HNs in RM tasks, especially with
correlated patterns. In this work, we also unify the theoretical understanding of
HN and PCN in RM, revealing that both perform metric learning. This theory
is crucial in explaining PCN’s superior performance in handling correlated data
as it reveals that PCNs employ a statistical whitening step in its metric learning,
which refines the distinction between familiar and novel stimuli. Overall, the
superior performance of PCN, as well as the unique error neurons in its circuit
implementation matching repetition suppression, provide a plausible account of
how the brain performs RM, within the network architecture known to also support
AM.

1 Introduction

Associative memory (AM) and recognition memory (RM) are vital for both human and machine
intelligence. While AM retrieves detailed past patterns from incomplete queries, RM labels queries
as ‘novel’ or ‘familiar’ based on previous encounters. Both types of memory hinge on storing past
experiences and comparing them with current stimuli. Regions believed to manage AM, such as
the hippocampus, are also involved in RM [4]. Neurobiological research highlights novelty neurons
in various cortical areas such as infereotemporal cortex [9], perirhinal cortex and hippocampus
[16]. Named for their repetition suppression, these neurons are most active with new stimuli, with
declining activity upon repeated exposure. While their existence is well-documented [11, 13, 4, 15],
the underlying computational processes remain underexplored. In particular, limited number of
models have been able to demonstrate both biological plausibility and large capacity in RM tasks on
real-world patterns such as natural images.

In this work, we follow an energy-based approach to apply AM models for RM tasks. The model
adjusts its parameters to minimize an energy function when exposed to a pattern, essentially ‘learning’
or ‘memorizing’ it. Later, the energy value of a query indicates its familiarity, with a lower value
signaling familiarity and vice versa, aligning with repetition suppression seen in the brain. Previous
work [3] has applied this approach to Hopfield Network (HN) [8] and shows that it successfully
performs RM for binary patterns. Here, we extend this energy-based approach to Predictive Coding
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Networks (PCNs) [7, 14] as well as Modern Continuous Hopfield Network (MCHN) [10]. We observe
in experiments that PCN has a larger RM capacity than HNs, especially when the memorized patterns
have a correlated structure. To explain these results, we conducted a mathematical analysis that
unifies both PCN and HNs within the framework of metric learning. It reveals that PCN employs a
statistical whitening step that facilitates the discrimination between familiarity and novelty. Moreover,
while the energy-based approach generally offers a repetition suppression mechanism by associating
it with energy minimization, PCNs uniquely have error units resembling the novelty neurons observed
in neurobiology, providing a more plausible mechanism of how RM is achieved in the brain.

2 Methods & Results

Figure 1: An illustration of the general energy-based approach to RM.

Formally, assume a total of N , d-dimensional patterns (x1,x2, ...,xN ) are generated i.i.d from a
certain probability distribution p. During the training phase, patterns to be memorized (which
form the columns of the data matrix X ∈ Rd×N ) are fed to the model one by one, modifying
the weights/parameters (e.g., d by d weight matrix W ) in the process such that it becomes a local
minimum in the altered energy landscape. Then, in the testing phase, a single d-dimensional query
pattern q is provided to the network, and performing RM only requires reading out value of the
energy function, which indicates the familiarity of the query. This process is demonstrated in Fig 1.

2.1 Hopfield Networks for RM

HN is a classical energy-based model for AM [8], which has also been shown to demonstrate the
capacity of RM by measuring the degree of familiarity via its energy function after training [3]. In
this work, we extend this approach to MCHN. Formally, the energy functions of HN and MCHN are:

EHN (q,X) = −
∑N

µ=1
(qTxµ)2;EMCHN (q,X) = − log(

∑N

µ=1
exp(qTxµ)) +

1

2
∥q∥22 (1)

2.2 Predictive Coding Networks for RM

In this work, we focus primarily on a biologically plausible variant of PCN with recurrent connections
[14]. For simplicity, we refer to it as PCN here. PCN’s dynamics aim to minimize the total squared
prediction errors ϵi of all neurons predicting each other in a recurrent network, which can be
considered as an energy function:

EPCN (q,W ) =
1

2

∑d

i=1
ϵ2i =

1

2
∥q−WTq− ν∥22 (2)
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where W is the weight matrix implicitly encoding covariance [14] and ν is the bias vector. Notably,
this model has a biologically plausible neural implementation with local computations and employs
neurons signaling prediction errors and thus the degree of familiarity/novelty (Fig. 2).

2.3 Experiment Results

error
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Figure 2: An illustration of Predictive Coding
Network (PCN) in [14] for two-dimensional
inputs, which requires only local information
to perform its computations.

Fig. 3 summarizes the performances of PCN, HN,
and MCHN on numerically generated multivariate
Gaussian variables and the Tiny ImageNet dataset [6].
It also compares it with the experimentally observed
performance of humans in discriminating familiarity
of natural images [12]. The first row displays the
average accuracy as a function of the number of pre-
sented patterns or stimuli and the second row shows
the number of patterns retained in memory (defined
in [12] and given in Appendix A). In the leftmost
column, pixels are uncorrelated and the three models
have similar, decent accuracy. Remarkably, when
features become weakly correlated in the middle col-
umn, only PCN keeps a similar level of performance.
It is worth pointing out that real-world images tend
to have correlated pixels, especially among pixels that are spatially proximate to each other. This
is indeed what testing on the Tiny ImageNet reveals in the right column of Fig. 3: HN and MCHN
perform poorly even for a small number of stored patterns, implying that the Hopfield Networks may
perform poorly in real-world scenarios. By contrast PCN achieves accuracy even higher than human
participants obtained while classifying if presented images had been seen by them before [12].

Figure 3: Top row: Error probability as a function of the number of training samples. An error
probability of 0.5 corresponds to a baseline level equivalent to guessing. The first two columns are
produced with d = 500. In the second column, there is a 0.4 covariance/correlation between any two
distinct pixels. For the last column, d matches the dimensions of the dataset d = 4096 for (grayscale)
Tiny ImageNet [6]. Bottom row: Number of patterns retained in memory as a function of the number
of training samples. With both axes logarithmic, the plots reveal a power-law relationship observed
for human participants [12]. HN are not shown in the middle plot and both HN and MCHN are not
shown in the last plot due to their almost random performance. Classical results about the memory
capacity of HN can be found in [1, 2].
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3 Theoretical Analysis

Figure 4: The effect of various transformations when d = 2 and underlying distribution p is correlated.
The shade of blue indicates energy, which is inverted in B because of the negative sign with HNs.

Here we provide a unifying mathematical account for HN and PCN in RM, showing that they can
both be considered as measuring the Euclidean distance between a query and the mean of the training
data, but on different transformed planes. Formally, when the stored patterns X has mean x̄, there
exists a parameterized class of distance of the form

d2L,X(q) := (q− x̄)TLTL(q− x̄) = ∥L(q− x̄)∥22 (3)
which can be seen as the squared Euclidean distance from the q to x̄ on the space transformed by a
d× d matrix L. Using HN for RM can be seen as metric learning of this form since:

EHN (q,X) = −qTXXTq ∝ −qTΣq = −qT (Σ
1
2 )TΣ

1
2q = −∥Σ 1

2q∥22 (4)
where we used the fact that Σ = (X− x̄1T )T (X− x̄1T )/N and patterns are assumed to be centered
around 0. On the other hand, the energy function of PCN can be written as (derivation in Appendix):

EPCN (q,X) = ∥diagMat(1⊘ diag(Σ−1))Σ−1q∥22 (5)
where ⊘ is the Hadamard (element-wise) division, diag extracts the diagonal elements of a matrix
and converts them into a d-dimensional vector, and diagMat converts a vector into a diagonal matrix.
Note in this way, both Eq. 4 (HN) and Eq. 5 (PCN) can be seen as learning a metric from data through
the covariance matrix Σ. Fig. 4 visualizes what each model does, when trained on two-dimensional
patterns (grey dots), randomly generated from a normal distribution with a positive correlation. The
correlation makes RM challenging since a typical familiar point (black) and a typical novel point
(orange) may be equally away from the mean (0 here, Fig. 4A). Fig. 4B illustrates that HN first
transforms all points from Fig. 4A by L = Σ

1
2 , and then measures the negative distance to the mean

0. Because of the negative sign, the further the distance (away from the mean), the more familiar
is the query. Although this seems to address the particular problem of indistinguishable black and
orange dots, it will actually classify the closest dots to the origin as the most novel. Fig. 4C shows that
PCN also transforms all points from Fig. 4A, but by a different matrix. There, without the negative
sign, the further the distance (away from the mean), the more novel is the query. Importantly, this
has the effect of whitening the data cloud to an extent (i.e., pulling the orange dot from the origin),
making it easy to measure familiarity by the distance between the query and the origin.

4 Discussion & Conclusion

Partly inspired by the relationship between two related tasks—AM and RM, we end up discovering a
RM model in PCN that is attractive because (1) through an energy-based approach, it is an integrated
part of a general memory network that can also perform AM; (2) it requires only local computations
and plasticity [14] and thus has a degree of biological plausibility; (3) it performs more robustly
in RM tasks, especially when the patterns have an explicit correlated structure such as real-world
images. Moreover, we have shown analytically that this superior performance results from the inverse
covariance encoded in the recurrent weights of PCN, stretching any query patterns and the mean of
stored patterns accordingly before determining their novelty and familiarity. Overall, our work on
RM combines recent advances in energy-based models for AM with experimental observation in
neuroscience. This symbiosis eventually leads us to a plausible, effective, and general computational
mechanism underlying the discrimination of novel and familiar stimuli in the brain or artificial agents.
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A Details on the Experimental Procedure

To compare the model performances in Fig. 3, we

1. draw N i.i.d samples from p as stored patterns as the training set for the model.
2. draw N more i.i.d samples from p as novel patterns, each time making sure the samples are

different from any of the N stored patterns through rejection sampling—rejecting until the
sample drawn satisfy this requirement.

3. feed a pair of patterns—one seen, one unseen—into the model as queries (i.e., keep the
weights, W , constant) and evaluate each model’s energy value on these two patterns. A
model’s judgment on this pair is correct if its energy value for the novel pattern is higher,
and vice versa.

4. Repeat this step for all N seen-unseen pairs and calculate the error rate of a model as the
number of incorrect judgments divided by N .

In particular, we calculate the number of patterns retained Nretained for the bottom row of fig. 3 as

Nretained = (1− 2r)N (6)

following [12], where r ∈ [0, 1] is the error rate.

B Comparing variants of Hopfield Networks for RM

To analyze how HN or MCHN performs RM, let us first consider a simple algorithm of RM for
comparison—calculating the squared Euclidean distance between the query q and the mean of all
stored patterns.

∥q− x̄∥22 =

d∑
i=1

(qi − x̄i)
2

=

d∑
i=1

q2i + x̄2
i − 2qix̄i

= ∥q∥22 + ∥x̄∥22 − 2

d∑
i=1

qix̄i

= ∥q∥22 + ∥x̄∥22 −
2

N

N∑
µ=1

d∑
i=1

qix
µ
i

where x̄ = (x̄1, x̄2, ..., x̄d) stands for the mean of all stored patterns in matrix X.

In the classical setting [8] where patterns are binary—i.e., a neuron can either take value 1 or −1, it
is always the case that ∥q∥22 = N . Since both N and ∥x̄∥22 do not depend on the query q, for RM,
we can safely ignore them as well as the multiplicative constants 2

N . This effectively gives us

Eeuc(q,X) = −
N∑

µ=1

d∑
i=1

qix
µ
i = −

N∑
µ=1

qTxµ (7)

This shares a similar form with HN energy in eq. 1,

EHN (q,X) = −
N∑

µ=1

(qTxµ)2 (8)

And also with MCHN energy, ignoring 1
2∥q∥

2
2 term we have

EMCHN (q,X) = − log(

N∑
µ=1

exp(qTxµ)) (9)
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Notice that in [5], eq. 9 is obtained as the limit of −
∑N

µ=1(
∑d

i=1 qix
µ
i )

n as n → ∞. We can now
see how these models perform RM: each stored pattern, say xµ, contributes to the evaluation of
familiarity through a similarity score determined by dot product with query q. The more similar
the two patterns are under the dot product, the lower the energy, the more familiar is the query.
The difference between using squared Euclidean distance with the mean as opposed to HN is the
weighting of these scores. Consider the case for MCHN where F (x) = xn, as n → ∞, the energy
value becomes dominated by the contribution of the most similar pattern to the query, which is
exactly what the task of RM asks for.

Even when we drop the binary assumptions deal with continuous patterns instead, although the ∥q∥22
are no longer constant and depends on the query now, notice that they are on the same order of
magnitude with qTxµ, which is just one summand out of N . Thus, in most cases, the overall energy
function will be dominated by the sum anyway.

C PCN Performs Metric Learning

The training phase of PCN can be seen as a constrained optimization problem from Eq. 2,

min
W

1

2
∥X−XW∥2F s.t. diag(W ) = 0 (10)

we can equivalently write the constraints into the Lagrangian

L(W,λ) =
1

2
∥X−XW∥2F + λT diag(W ) (11)

where λ = (λ1, ..., λd) is a vector of Lagrangian multipliers. Taking gradient w.r.t W yields that,

∂L
∂W

=
∂

∂W
(
1

2
Tr(XTX−XTXW −WTXTX+WTXTXW ) + λT diag(W ))

= − ∂

∂W
Tr(WXTX) +

∂

∂W
Tr(WTXTXW ) + diagMat(λ)

= −XTX+XTXW + diagMat(λ)

= XTX(W − I) + diagMat(λ)

setting it to 0 yields
λ̂ = 1⊘ diag(Σ−1) (12)

and
Ŵ = I − Σ−1diagMat(λ̂) (13)

where Eq. 12 follows from the constraints that diag(Ŵ ) = 0. It can also be verified that (Ŵ , λ̂) is
indeed the global minimum by plugging it in Eq. 10.

Now, to obtain PCN as performing metric learning in the form Eq. 3, note that

EPCN (q,W ) ∝ ∥q− ŴTq∥22
= ∥(I − Ŵ )Tq∥22
= ∥diagMat(1⊘ diag(Σ−1))Σ−1q∥22

as desired.
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