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ABSTRACT

In this study, we introduce Pairwise-IBISA (P-IBISA), a novel extension of the
Information Bottleneck with Input Sampling for Attribution (IBISA). Unlike tra-
ditional approaches, P-IBISA generates explanations directly from encoder rep-
resentations, eliminating the need for task-specific logits. This design enables
interpretability across a wide range of applications, including image retrieval and
vision—language grounding, and is compatible with models trained for classifica-
tion as well as those pre-trained using self-supervised learning strategies. P-IBISA
operates by computing a mask over the input image using a pairwise loss that
aligns the embeddings of the masked image with a target embedding. This target
can be derived from another image, the image itself, or a different modality—such
as text in models like CLIP. We conducted a quantitative evaluation of P-IBISA
on models designed for three distinct tasks: image classification, vision—language
grounding, and image retrieval. Across these tasks, P-IBISA consistently demon-
strated superior or competitive performance compared to state-of-the-art methods,
despite being task- and model-agnostic. In particular, for visual-language ground-
ing, we surpass the current state-of-the-art on the Confidence Increase (at least
0.300 pts) and Confidence Drop (at least 12 pts) metrics across multiple datasets.
Qualitative analysis further reveals that P-IBISA produces sharper and semanti-
cally richer saliency maps, effectively highlighting meaningful features in both
CNNs and ViTs pre-trained on unlabeled data. By decoupling explanations from
final outputs, P-IBISA advances the field of XAl beyond task-specific evaluation,
offering a unified framework for attribution across diverse scenarios.

1 INTRODUCTION

Explainable artificial intelligence (xAI) has emerged as a vital discipline, striving for human-
interpretable insights into model behavior without compromising predictive accuracy (Rio-Torto
et al.,2020). Beyond building trust, XAl facilitates regulatory compliance, aids in debugging errors,
and ensures ethical Al deployment in sensitive contexts (Bras et al.,|2025).

In computer vision, XAl primarily centers on attribution methods, which aim to identify the input
image regions most influential to a model’s predictions (Miiller,2024). These techniques are broadly
classified into two categories: non-agnostic methods, which leverage the model’s internal structure
(model-dependent), and agnostic methods, which operate independently of the model’s architecture.

Coelho & Cardoso| (2025)) recently introduced the Information Bottleneck with Input Sampling for
Attribution (IBISA), a state-of-the-art (SOTA) computationally efficient model-agnostic method to
generate saliency maps for classification models. In this study, we advance this line of research by
proposing P-IBISA (Pairwise-IBISA), a novel XAl paradigm for application-agnostic explainability
based on pairwise explanations (see Figure[T). P-IBISA generates explanations using only the model
encoder, rendering it decoder-agnostic and independent of output logits.

Decoupling explanations from application-specific outputs enables P-IBISA to tackle a broader
range of interpretability questions, such as “Why was this image encoded this way?”, “What makes
these two images similar?” or “What aspects of this image align with the given text?”. This flexi-
bility allows for unprecedented insight into complex systems across diverse contexts.
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In summary, this work makes the following contributions:

1. A novel decoder-agnostic xAl technique for saliency map generation;

2. A new approach to qualitatively evaluate models trained using self-supervised strategies
with only unlabeled data;

3. The use of P-IBISA as a method to generate explanations for visual-language (CLIP) and
image retrieval models;

4. A comparative analysis of P-IBISA against SOTA xAI methods on different tasks.

The remainder of this paper is structured as follows: Section |2] surveys the existing XAl methods
for saliency map generation; Section [3] describes the P-IBISA methodology; Section [6] presents
experimental results and comparisons; and Section [7] concludes with findings and future directions.
The implementation code is publicly available in a GitHub repositoryﬂ to support reproducibility.
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Figure 1: Flowchart of P-IBISA. Our method can identify the similarities between two images, as
presented in the figure, but it is not limited to it. The target embedding may be obtained from the Pair
image itself, or even from the encoding of other modalities, such as text in visual language models.
Saliencies generated for the ViT-B/16 model trained with the self-supervised strategy iBOT.

2 RELATED WORKS

Among non-agnostic approaches, SOTA techniques often extend the foundational concepts of Grad-
CAM (Selvaraju et al, 2017). These methods rely on access to the models’ internal layers to com-
pute derivatives that quantify the sensitivity of a model’s decision to specific input regions
topadhay et al.| 2018)). Although straightforward, derivative-based methods can suffer from limi-
tations such as gradient saturation and susceptibility to noise, potentially yielding inconsistent or
unreliable explanations.

Methods based on the Information Bottleneck Principle (IBP) (Tishby et al [2000), such as In-
formation Bottleneck for Attribution (IBA) (Schulz et al., [2020) and Comprehensive Information
Bottleneck for Attribution (ColBA) (Hong et al.,[2025), overcame the issues of Grad-CAM, produc-
ing more accurate and interpretable explanations. However, these methods still have model-specific
constraints, which renders it impractical when internal structures are unavailable.

To address these limitations, model-agnostic methods (e.g, LIME (Ribeiro et al.},[2016), RISE

2018)) focus solely on the model’s input-output relationship, offering explanations by
analyzing changes in the input and corresponding shifts in output logits. In practice, this requires

'https://github.com/future_repo_PIBISA
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simulating a wide range of input masking scenarios to capture fine-grained feature importance, re-
sulting in high computational costs.

More recently, |Coelho & Cardoso| (2025)) introduced IBISA, transforming the baseline IBA into a
model-agnostic method by shifting the bottleneck from the model’s internal architecture to the input
level, enabling the computation of saliency maps for any classification model that one can back-
propagate through. This approach reduced the computational costs associated with other model-
agnostic methodologies, while preserving performance.

A new challenge that is drawing attention from the xAI community is the explainability of visual-
language models. Zhu et al|(2025) and |Wang et al.| (2023) introduced NIB and M2IB, leverging
the IBP to generate saliency maps that highlight the image regions related to a given text input in
CLIP (Radford et al.,[2021), improving the interpretability of this widely used architecture. Never-
theless, these methods are still non-agnostic, being only publicly available for CLIP with a ViT-B/32
backbone.

In this spirit, our current study extends IBISA (Coelho & Cardoso,2025)) by transforming the model-
agnostic bottleneck into a task-agnostic approach, where we can directly interpret the encoder in-
dependent of output logits, enabling us to generate explanations for CNNs and ViTs trained with
different self-supervised or fully-supervised strategies.

3 PROPOSED METHOD

To provide a clear and structured overview, the proposed method is organized into three key compo-
nents: overview and motivation, mask generation, and mask optimization.

3.1 OVERVIEW AND OBJECTIVE

The goal of P-IBISA is to generate saliency masks that reveal the most semantically relevant re-
gions of an input image, as determined by a target embedding. The masks are optimized such that,
when applied to the image, the resulting masked input yields an embedding close to a reference
target—either the original image’s own embedding or one from a different modality (e.g., text in
vision-language models).

Formally, let f : REXW>H _ R4 denote an encoder that maps an image to a d-dimensional
embedding space, and let h; € RY denote a target embedding. The objective is to determine a mask
m € [0, 1] >#  such that the distance between f(z®m) and h, is minimized as expressed in Eq.

m* = argmin  D(f(x ©@m), hs), (1)

me[0,1]WxH

where D(+, -) denotes a dissimilarity or distance function in the embedding space and x ® m is the
element-wise multiplication between the mask and every channel of the input image.

After optimizing each mask, P-IBISA generates multiple masks from different random initializa-
tions to ensure robustness and capture diverse semantically relevant regions. These optimized
masks are aggregated by averaging to produce a final saliency map. Given N optimized masks
{my,ma,...,my}, where each m,, € [0,1]" > the saliency map s is computed as Eq.

1 N
SZNZmn, )

n=1

where s € [0, 1] > represents the final saliency map, with higher values indicating regions most
influential to the encoder’s embedding. This averaging step enhances explanation stability by mit-
igating the effects of local optima. For a more straightforward understanding of the procedure, we
provide an overview of the P-IBISA algorithm in Algorithm|I}

Further details about the mask generation and optimization processes, along with the associated loss
functions, are presented in the following sections.
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Algorithm 1 P-IBISA Saliency Map Generation

1: Input: Image x € RE*W*H encoder f : RE*WxH _ R? target embedding h;, € RY,
number of masks N, grid size rate [, hyperparameters «, 3, ¢, iterations 7', learning rate 7).

2: Output: Saliency map s € [0, 1] >,

3: Initialize empty list M to store optimized masks.

4: forn =1to N do

5 Sample low-resolution grid g € R**", where w = W/I, h = H/I, and gij ~U(—a, ).
6:  Upsample g to m’ € R *H ysing bicubic interpolation.

7: Compute initial mask m; ; = o(mj ;), where m € [0, 1]" >,
8: fort =1to T do

9: Compute embedding f(z ® m).
10: Compute alignment loss Lajign (f(x © m), hy).
11: Compute regularization terms for sparsity and smoothness.
12: Compute total loss Lp_pisa (m).
13: Update m using Adam optimizer with learning rate 7.
14: end for
15: Append optimized mask m to M.
16: end for

17: Compute final saliency map s; ; = % Y ment Mg
18: Return s.

3.2 MASK INITIALIZATION

Mask generation is a critical step in P-IBISA, designed to initialize masks that steer the optimization
process toward semantically relevant regions of an input image. For an input image x € RE>*W>xH
we generate an initial mask m € [0, 1]V *# following the methodology of IBISA (Coelho & Car-
dosol [2025)).

The mask initialization process begins by sampling a low-resolution grid ¢ € R¥*" where w =
W/l and h = H/I (typically | = 32), from a uniform distribution as in Eq.

9i,j Nu(—Oé,O[), (3)

where o > 0 controls the sampling range, ensuring varied initializations. This grid is up-sampled
to the full input resolution R" *# using bi-cubic interpolation, producing an intermediate mask m’.
To ensure the mask remains bounded and differentiable, we apply a logistic sigmoid transformation

given in Eq. 4
1

= TTep(Cm) ™€ [0, 1]W>H, )
/LL]

!/
mij = U(mi,j)
This approach yields a smooth, gradient-friendly mask suitable for optimization. Bi-cubic interpo-
lation promotes spatial coherence, reducing abrupt transitions, while random sampling of the grid
encourages diverse exploration across multiple optimization runs, enhancing the robustness of the

resulting saliency maps.

3.3 MASK OPTIMIZATION

After generating the initial mask, P-IBISA projects the masked input into an embedding space to
align it with a target embedding. Let f : R*"W*H _; R? be an encoder mapping an input image
x to a d-dimensional embedding space. Given a target embedding h; € R%—which may represent
the embedding of the unmasked input f(z), another image, or a different modality (e.g., text in
vision-language models)—the goal is to optimize a mask m € [0, 1] *# such that the embedding
of the masked input, f(x ® m), with closely approximates h;.

We model this task using the Information Bottleneck Principle, as formalized in Eq. [5}

= min (Ifz; (z © m)] = Ihs; f(x © m)]) (5)

where we seek to find the mask m that minimizes the mutual information between the original
image and its masked version, while preserving the relevant information on the input to reconstruct
the target embedding h;.
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To achieve this objective, we used a modified version of the loss function introduced by IBISA,
which has been shown to indirectly solve the IBP in this setup, presented in Eq. [6}
¢

Loamsa(m) = Laiga( F(2 @ m), h) + 2 s + £ - Tv(m), ©

in which the first term Laiign (-, -) is the cosine embedding loss used to maximize I[h; f(z © m)], as
used in M2IB (Wang et al.| 2023) and NIB (Zhu et al., 2025). The second term [|m||1 = >, ; [m; ;|
enforces sparsity, and the third term TV (m) promotes spatial coherence via total variation regular-
ization as denoted in Eq.

TV(m) = (Imi; — mi—1] + [may —majal), (7
0,J
In Eq. [f] the constant £ = C' x W x H serves as a normalization for the mask complexity terms.
In contrast to IBISA, which optimizes masks using a cross-entropy loss tied to model predictions,
P-IBISA operates solely in the embedding space, using L,jign, Which makes it task-agnostic, as it
eliminates the need to access output logits.

The 8 and ¢ parameters, which control the sparsity of the final attribution, are defined a priori
by the user in IBISA. In this work, we introduce a framework that treats 5 and ¢ as learnable
parameters during mask optimization. To accommodate this new objective, we adapt Eq.[6]following
the strategy described by (Kendall et al.,[2018]), resulting in the final loss function presented in Eq.

B+
t
where we introduce the new t parameter to prevent e~ ? and e~? from reaching values that over-

penalize mask complexity, which would result in explanations that are too sparse.

Lppisa(m) = Laign(f(x @ m), he) + e P|lm|l1 +e7¢ - TV(m) + +e ®)

The P-IBISA loss function, as Eq. [§| indicates, can produce negative values through the interplay
of learnable 8 and ¢ parameters, which dynamically weight regularization terms against the align-
ment objective, mirroring negative log-likelihood formulations in density estimation where nega-
tivity arises when predicted densities exceed unity, indicating a strong data fit (Wang et al., 2020;
Simeone et al.| 2018)). This is beneficial for mask optimization in our application, as it encourages
sparse, high-confidence attributions by rewarding precise alignments over conservative penalties,
thereby enhancing interpretability and robustness (Terven et al.,2025). Moreover, the resulting neg-
ative losses provide a stable gradient signal that promotes efficient convergence without requiring
non-negativity constraints, supporting adaptive sparsity control in XAl frameworks (Wu et al., 2024;
Ye et al., 2024).

With this in mind, as we introduce the new strategy, it is important to note that P-IBISA inherits from
IBISA its low computational cost and its ability to control the sparsity of the attribution. Specifi-
cally, the 8 and ¢ values can be set directly by the user, rather than being learned during the mask
optimization process (see Appendix [C).

In terms of the optimization, a standard gradient descent (e.g., Adam) with backpropagation is suf-
ficient to perform the process, as all operations, including the up-sampling and sigmoid normal-
ization, are differentiable. Furthermore, multiple random initializations are used to produce robust
and diverse saliency maps, which are later aggregated for stability. For more detailed information,
we must once again highlight that the full implementation details, and more information, including
hyperparameter, are available in the project repository.

4 EVALUATION METRICS

We evaluate the performance of P-IBISA on three different tasks: image classification, text-image
alignment, and image retrieval. To evaluate P-IBISA for classification, we first generate the saliency
maps and then compute the commonly used MoRF and LeRF metrics (Petsiuk et al., |2018). For
text-image alignment, we computed the Confidence Increase (CI) and the Confidence Drop (CD)
metrics introduced by (Chattopadhay et al.,|2018]), and adopted in previous works (Zhu et al., 2025;
‘Wang et al.| 2023) that addressed this task.

We also introduced a new metric, Cap MoRF and Cap LeRF, where we adapted the MoRF and
LeRF metrics for the captioning problem and used them to assess the generated attributions. For
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this, we applied BLIP (Li et al.l 2022)) to generate captions for 1000 images sampled from the MS-
COCO 2017 validation set (Lin et al.,[2014). These captions were used as target text to generate the
saliency maps for the CLIP model. We then compute the BLEU (Papineni et al.| 2002), METEOR
(Banerjee & Lavie, 2005) and ROUGE (Linl [2004) scores between the original caption and the
caption resulting from degraded versions of the image input, following the same procedure used to
compute MoRF and LeRF.

To evaluate the retrieval task, we again used the CI and CD, where we replaced the observed output
for the similarity between the embeddings of the query and the retrieved images. Since the model is
trained to retrieve the images based on the Euclidean distance (see next section), we used the inverse
of the Euclidean distance to measure the similarity between the embeddings.

5 EXPERIMENTAL SETUP

The masks are initialized with w = W/32, h = H/32 and o« = 3. To compute the final saliency
map, we average 20 different masks optimized for 15 iterations using the Adam optimizer with
a learning rate equal to one. Unless otherwise specified, we used the setup where the S and ¢
parameters are learned during the mask optimization procedure and the cosine embedding loss as an
alignment function. The parameters are initialized with 5 = ¢ =0 and ¢t = 1.

We qualitatively compared the attributions generated for the ResNET-50 and ViT-B/16 architectures
when trained using the self-supervised strategies: DINOv1 (Caron et al., [2021]), DINOv2 (Oquab
et al.,|2023)), Barlow Twins (Zbontar et al.,[2021), SwWAV (Caron et al.,[2020) and iBOT (Zhou et al.,
2021) to evaluate if these models extract human-relatable features from the input. In these cases, the
target embedding h; is the input vector for the classifier head.

For the classification task, we evaluated P-IBISA for CNNs and ViTs on 10,000 images from the
ImageNet validation set (Deng et al., [2009). For CNNs, we compared our approach against the
SOTA methods Grad-CAM (Selvaraju et al., [2017), RISE (Petsiuk et al.,[2018])), IBA (Schulz et al.,
2020) and IBISA (Coelho & Cardosol 2025) on the VGG-16 and ResNET-50 models. We also
evaluated P-IBISA on the ViT-B/16 model, where we compared our technique with the Attention
Rollout (Abnar & Zuidemal [2020), Guided Attention (Leem & Seol|[2024), and Chefer (Chefer et al.,
2021)), which are methods designed to generate saliencies for ViTs.

The MoRF and LeRF metrics were computed using 8 x 8 pixel blocks, which were removed from
the input by turning their values to zero. For the visual-language task, we evaluated the metrics
for the CLIP (Radford et al., 2021 with a ViT-B/32 backbone. We compared the performance of
P-IBISA against the previous SOTA methods RISE (Petsiuk et al., [2018)), M2IB (Wang et al., [2023))
and NIB (Zhu et al.,2025) on the validation sets of MS-COCO 2017, Flickr8k (Cui et al., 2024} and
MS-CXR (Boecking et al.,[2022) datasets.

To assess the performance of P-IBISA in a domain specific scenario, we evaluated our method on a
medical image retrieval system developed to support the prediction of aesthetic outcomes in breast
cancer (BrCa) patients following locoregional treatments (Zolfagharnasab et al.,|2024). The dataset
is private, and consists of 2,193 images of patients’ upper torsos, each paired with clinical annota-
tions identifying the 10-15 most similar cases per query, based on expert evaluations of aesthetic
outcomes using the Harris scale (Rose et al., [1989). This curation process yielded over 150 non-
overlapping catalogues, with each query image linked to a ranked set of clinically similar cases. The
retrieval model is based has a BeiT backbone (Bao et al., [2021), and we compare P-IBISA against
the Integrated Gradients (Sundararajan et al., 2017) and SBMS (Dong et al.,[2019) methods. Since
the model trained for this task retrieves the images based on the Euclidean Distance, we needed to
replace the cosine similarity in Eq. [6]by the mean squared error.

6 RESULTS

Figure 2] presents the saliency maps generated for the ResNET-50 and ViT-B models, when the
target embedding is obtained from the image itself. We used P-IBISA to evaluate the semantics
of the features extracted by the encoders trained with labeled data (fully-supervised) and with only
unlabeled data (self-supervised). By analyzing the attention values, the authors of iBOT (Zhou
et al.,[2021) and DINOv1 (Caron et al.,|2021)) showed that ViT architectures can learn semantically
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relevant features when pre-trained with only unlabeled data. Nevertheless, their analysis is limited
to ViT models. With P-IBISA, we show that other architectures, such as the ResNET-50, trained in
an SSL fashion, can also learn semantically relevant features.

Supervised DINOv1 B. Twins

ResNET-50

Supervised DINOv1 DINOv2

ViT

Figure 2: Saliencies generated to explain the encoder of the ResNET-50 and ViT models when
trained with different strategies. For the supervised case, we the are models trained for classification
on the ImageNET dataset, while others cases are care for models only pre-trained on unlabeled data.
We see that all the attributions highlight regions that correspond to the target object. We use the ViT-
B/16 in all our experiments, except for DINOv2, whose weights are only available for the ViT-B/14
architecture.

6.1 NUMERICAL EVALUATION FOR IMAGE CLASSIFICATION MODELS

Table |I| presents the MoRF and LeRF metrics computed for ViT-B/16, VGG-16 and ResNET-50.
Despite being model agnostic and not relying on the model’s final prediction, our method shows
competitive performance with full guided approaches that rely on model’s final prediction, achieving
the best or second-best results in half of the experiments, showing that the model’s final output can
be explained only based on the encoder’s behavior.

Table 1: Metrics computed for the ViT-B/16, VGG-16 and ResNET-50 models on 10,000 images
from ImageNET validation set. Results presented for the scenario where 3 and ¢ are learned during
optimization. Appendix presents the results for fixed values of the hyper-parameters.

ViL-B/16 VGG-16 ResNET-50
MORF() LeRF(D MoRF (]) LeRF(f) MOoRF(]) LeRE (1)
GradCAM  0.079 0.546 0.338 0.637
AlCR. 0.218 0.643 RISE 0.082 0.601 0.296 0.687
AGCAM  0.190 0.645
IBA 0.077 0.594 0.286 0.665
LRPbased  0.215 0.619
CBeY 0ol 076 IBISA 0.078 0.621 0.233 0.679
: PIBISA  0.079 0.616 0.254 0.674

6.2 USE CASE FOR VISUAL-LANGUAGE MODELS

P-IBISA establishes a new SOTA in explaining vision-language models. Figure [3] shows how our
method can highlight regions of the image based on a text description. The text inputs indicated
above each image are provided by BLIP 2022). These phrases are then tokenized and
passed through CLIP’s text encoder, with the resulting embedding used as the target to compute the
pairwise explanation.

Table 2] presents the CI and CD metrics computed for the text-image alignment task. We see that
our method outperforms the current SOTA by a large margin on all datasets. Table 3] shows that our
method also achieves the best performance in the Cap MoRF and Cap LeRF metrics, and that all
methods overcome the random baseline, showing that these visual-textual explanations are relevant.
We also observe that the random baseline reaches similar metrics for Cap MoRF and Cap LeRF,
which is expected since the importance of the pixels is determined randomly.
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'a little girl holding 'a horse pulling 'a man riding ‘a small kitten sitting
an umbrella in the rain’

a carriage down a street' a wave on a surfboard' on a wooden bench'

Figure 3: Images taken from the MS-COCO 2017 validation set. Saliencies generated using 5 = 2
and ¢ = 1. Attributions generated for other values for the hyper-parameters, including the case
where they are learned during the optimization process, are found in the Appendix El

Table 2: Confidence increase and confidence drop results for all tested datasets and models. The
results presented in the table are for saliencies generated for = 2 and ¢ = 1; results for other
hyper-parameters values, including the case where they are learned during the optimization process,
are found on Appendix

MS-CXR Flickr8k MS-COCO
C.Drop({) C.Inc.(t) C.Drop(}) C.Inc. () C.Drop(l) C.Inc. (1)
RISE 0.935 34.259 1.708 19.503 1.611 21.740
M2IB 1.231 36.111 2.017 18.107 1.764 23.800
NIB 0.642 52.778 1.947 18.712 1.657 23.500
P-IBISA 0.300 64.815 0.890 49.277 0.821 53.620

6.3 IMAGE RETRIEVAL

Owing to its task-agnostic and decoder-independent paradigm, image retrieval represents another
well-suited application for our P-IBISA method, as we naturally focus on the encoder output and
compare the generated embeddings rather than relying on a decoder component. In this context,
P-IBISA facilitates the interpretation of pairwise similarities between images within the embedding
space, effectively addressing the question: “Based on which regions of the image did the model
determine these images to be similar?”

As shown in Figure [ P-IBISA demonstrates more coherent patterns in areas indicating similarity
between each retrieved image and its associated query, whereas the other XAl such as Saliency Map
(SBSM) techniques display weaker similarity relevance and greater sensitivity to
noise. Applying P-IBISA provides an interpretable and clinically grounded indication of the extent
to which the retrieval model emphasizes features that align with expert judgment when determining
similarity; thereby, enabling clinicians and researchers to effectively identify the problems within
the developed retrieval framework.

In terms of metrics, as presented in Table ] we observe that P-IBISA consistently surpasses Inte-
grated Gradients method (Sundararajan et al.l [2017), and only falls second to SBSM in one case.
These results highlight P-IBISA’s capabilities for the retrieval task, presenting itself as the competi-
tive choice for this application.

7 CONCLUSION

This work introduced P-IBISA, a new model-agnostic XAl method to generate attribution maps for
various applications, such as image classification, visual-language grounding, and image retrieval.
Despite its model-agnosticism, we showed that P-IBISA achieves competitive performance on all
of these tasks and sets the new SOTA for explaining visual-language grounding, outperforming the
current methods by a large margin. P-IBISA also reveals that models trained with only unlabeled
data learn human-relatable features, which was only known for ViTs, but P-IBISA also allows us to
state this for CNNG.
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Table 3: Cap MoRF and Cap LeRF metrics for the saliency maps generated for CLIP. We observe
that the random masks obtain similar results for Cap MoRF and Cap LeRF, which is expected, since
the ordering of these pixels is arbitrary. We evaluated the METEOR (M), BLEU (B), ROUGE1
(R1), ROUGE2 (R2) and ROUGEL (RL) scores. The results presented in the table are for saliencies
generated for § = 2 and ¢ = 1; results for other hyper-parameters values, including the case where
they are learned during the optimization process, are found on Appendix.

Cap MoRF (]) Cap LeRF (1)
M B R1 R2 RL M B R1 R2 RL

P-IBISA 0.334 0.154 0.389 0.253 0.363 0.651 0.482 0.683 0.593 0.663
M2IB  0.337 0.157 0395 0256 0.369 0.629 0.461 0.662 0.568 0.641
NIB 0.398 0.206 0.450 0317 0425 0568 0.383 0.607 0.499 0.583
Random 0493 0307 0.534 0418 0.511 0494 0308 0.535 0.419 0.510

u

/

N ... S - B

SaliencyMap

Integrated Grad

P-IBISA

Figure 4: Since P-IBISA method only depends on the outputs of an encoder, its capabilities can be
easily extended to image retrieval models. Saliencies generated using 5 = ¢ = 1 and the mean
squared error as the alignment loss. The saliency map on the query is the result of averaging the
attributions generated on the query, having each retrieved image as the target.

Table 4: Confidence increase and confidence drop results for retrieval (Inverse Euclidean Distance).

Query Retrieved
Method C.Drop({) C.Inc.(t) C.Drop({) C.Inc. (1)
Integrated Gradients 4.258 3.511 4.186 5.143
Saliency Map (SBSM) 2.571 10.480 3.731 6.097
P-IBISA 1.996 5.568 1.461 29.270

As a limitation, we address that P-IBISA cannot generate a saliency for the text input in visual-
language grounding, which M2IB and NIB are capable of. We also highlight that this limitation
comes from the model-agnostic nature of P-IBISA. Even though we could place a mask on top of
a phrase embedding and optimize it as we do for images, generating an attribution for each word of
the phrase using only this information is not possible. We would have to access the tokenizer inter-
mediate outputs to have such saliencies, giving up on the model-agnostic advantages of P-IBISA.
We suggest this variation of our method as future work.
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A CONTRASTIVE EXPLANATIONS

P-IBISA is also suitable for contrastive explanations, such as identifying regions that differentiate
f(xz ® m) from h;. For this, the cosine embedding loss is now used to promote dis-alignment
between the embeddings:

Edis-align(f(m O] m)a ht) = max (07 COS<f($ ®© m), ht>) (9)

By replacing Lyjign With Lgis-align in Eq. |§|, the optimization now promotes the dis-alignment objec-
tive. Subtracting the saliency maps generated to explain “Why similar?” from the one generated
to explain “Why different?” results in a contrastive attribution map for a given pair of images, as
shown in Figure

Contrastive

Figure 5: Beyond highlighting what regions are relevant to encode an image for its predicted em-
bedding, our method can also find what makes two images similar or dissimilar. We compute
the so-called contrastive explanation by subtracting the positive saliency from the negative one,
with the blue regions representing what is most different and the red regions what is most similar.
The saliency maps were obtained for the ResNET-50 model trained with unlabeled data using the

DINOv1 (Caron et al., 2021) framework.
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B NUMERICAL EVALUATION FOR FIXED PARAMETERS

Table 5: Metrics computed for the VGG-16, ResNET-50 and ViT-B/16 models on 10,000 images

from ImageNET validation set.

VGG-16 ResNET-50 ViT-B/16
B/ MORF (]) LeRF() MoORF(]) LeRF(1) MoRF(]) LeRF (1)
Learnable 0.079 0.616 0.254 0.674 0.217 0.676
B=1/p=1 0.078 0.608 0.275 0.664 0.220 0.673
B=10/¢ =1 0.086 0.596 0.227 0.683 0.213 0.679
B=100/p=1  0.122 0.406 0.296 0.678 0.266 0.629

Table 6: Results for the Confidence Increase and Confidence Drop metrics using learnable and fixed

hyper-parameters.

MS-CXR Flickr8k MS-COCO
B/¢ C.Drop({) C.Inc.(t) C.Drop(}) C.Inc. () C.Drop(}) C.Inc. (1)
Learnable 0.300 64.815 1.039 44,383 0.942 48.440
B=1/p=1 0.139 77.778 0.382 67.680 0.948 48.800
B=2/¢p=1 0.439 61.574 0.885 49.746 0.839 53.000
B=3/p=1 1.308 37.500 1.769 31.998 0.945 48.280

Table 7: Results for the Cap MoRF and Cap LeRF metrics using learnable and fixed hyper-

parameters.
Cap MoRF ({) Cap LeRF (1)
B/¢ M B R1 R2 RL M B R1 R2 RL
Learnable 0.353 0.168 0407 0.269 0.380 0.640 0.472 0.673 0.582 0.653
B=1/¢=1 0341 0154 0397 0.259 0370 0.645 0477 0.680 0.588 0.659
B=2/¢=1 0334 0154 0.389 0.253 0.363 0.651 0.482 0.683 0.593 0.663
B=3/6=1 0346 0.165 0.399 0266 0.374 0.646 0474 0.679 0.587 0.658

C CONTROLLING THE FINAL ATTRIBUTION

Figure [6] presents the behavior of the saliency maps as a function of 3 for all the studied models.
We see that increasing 3, while keeping ¢ fixed, results in more sparse attributions. One should
also notice that choosing a value too high for 5 ends up deteriorating the explanation (the case for
the VGG-16 model), which is expected, since in the term that promotes sparsity in Eq. [6] becomes
dominant over the others. For comparison, we also present the results for the case where 3 and ¢

are learned during the optimization using Eq.
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B=100,¢=1

ResNET-50

VGG-16

DINOv1 DINOv2 iBOT SwAV ViT-B/16

B. Twins

Figure 6: Explanations as a function of the S parameter. In the image, the rows labeled as ResNET-
50, VGG-16 and ViT-B/16 represent these models trained on a fully-supervised manner. The back-
bone of iBOT and DINOvV2 are vision transformers, while for DINOv1, Barlow Twins and SWAV
use the ResNET-50 as backbone.
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