
Non-autoregressive Streaming Transformer for Simultaneous Translation

Zhengrui Ma1,2, Shaolei Zhang1,2, Shoutao Guo1,2, Chenze Shao1,2

Min Zhang3, Yang Feng1,2∗

1Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3School of Future Science and Engineering, Soochow University

{mazhengrui21b,fengyang}@ict.ac.cn zhangminmt@hotmail.com

Abstract

Simultaneous machine translation (SiMT) mod-
els are trained to strike a balance between la-
tency and translation quality. However, train-
ing these models to achieve high quality while
maintaining low latency often leads to a ten-
dency for aggressive anticipation. We argue
that such issue stems from the autoregressive
architecture upon which most existing SiMT
models are built. To address those issues, we
propose non-autoregressive streaming Trans-
former (NAST) which comprises a unidirec-
tional encoder and a non-autoregressive de-
coder with intra-chunk parallelism. We enable
NAST to generate the blank token or repeti-
tive tokens to adjust its READ/WRITE strat-
egy flexibly, and train it to maximize the non-
monotonic latent alignment with an alignment-
based latency loss. Experiments on various
SiMT benchmarks demonstrate that NAST out-
performs previous strong autoregressive SiMT
baselines. Source code is publicly available at
https://github.com/ictnlp/NAST.

1 Introduction

Simultaneous machine translation (SiMT; Cho and
Esipova, 2016; Gu et al., 2017; Ma et al., 2019; Ari-
vazhagan et al., 2019; Zhang and Feng, 2023), also
known as real-time machine translation, is com-
monly used in various practical scenarios such as
live broadcasting, video subtitles and international
conferences. SiMT models are required to start
translation when the source sentence is incomplete,
ensuring that listeners stay synchronized with the
speaker. Nevertheless, translating partial source
content poses significant challenges and increases
the risk of translation errors. To this end, SiMT
models are trained to strike a balance between la-
tency and translation quality by dynamically de-
termining when to generate tokens (i.e., WRITE
action) and when to wait for additional source in-
formation (i.e., READ action).

∗Corresponding author: Yang Feng

However, achieving the balance between latency
and translation quality is non-trivial for SiMT mod-
els. Training these models to produce high-quality
translations while maintaining low latency often
leads to a tendency for aggressive anticipation (Ma
et al., 2019), as the models are compelled to output
target tokens even before the corresponding source
tokens have been observed during the training stage
(Zheng et al., 2020). We argue that such an is-
sue of anticipation stems from the autoregressive
(AR) model architecture upon which most existing
SiMT models are built. Regardless of the specific
READ/WRITE strategy utilized, AR SiMT models
are typically trained using maximum likelihood es-
timation (MLE) via teacher forcing. As depicted
in Figure 1, their training procedure can have ad-
verse effects on AR SiMT models in two aspects:
1) non-monotonicity problem: The reference used
in training might be non-monotonically aligned
with the source. However, in real-time scenarios,
SiMT models are expected to generate translations
that align monotonically with the source to reduce
latency (He et al., 2015; Chen et al., 2021). The
inherent verbatim alignment assumption during the
MLE training of AR SiMT models restricts their
performance; 2) source-info leakage bias: Follow-
ing the practice in full-sentence translation systems,
AR SiMT models deploy the teacher forcing strat-
egy during training. However, it may inadvertently
result in the leakage of source information. As il-
lustrated in Figure 1, even if the available source
content does not contain the word "举行 (hold)",
the AR decoder is still fed with the corresponding
translation word "held" as the ground truth context
in training. This discrepancy between training and
inference encourages the AR SiMT model to make
excessively optimistic predictions during the real-
time inference, leading to the issue of hallucination
(Chen et al., 2021).

To address the aforementioned problems in au-
toregressive SiMT models, we focus on developing
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Figure 1: Illustration of the non-monotonicity problem and the source-info leakage bias in the training of autore-
gressive SiMT models. In this case, the AR SiMT model learns to predict at the third time step based on the source
contexts "布什 (Bush)", "与 (and)", "沙龙 (Sharon)", and the ground truth contexts "Bush", "held". Although the
source token "举行 (hold)" has not been read yet, it is exposed to the AR SiMT model through its corresponding
token "held" in the ground truth context.

SiMT models that generate target tokens in a non-
autoregressive (NAR) manner (Gu et al., 2018) by
removing the target-side token dependency. We ar-
gue that an NAR decoder is better suited for stream-
ing translation tasks. Firstly, the target tokens are
modeled independently in NAR models, which fa-
cilitates the development of a non-monotonic align-
ment algorithm between generation and reference,
alleviating the non-monotonicity problem. Addi-
tionally, the conditional independence assumption
of the NAR structure liberates the model from the
need for teacher forcing in training, thereby elimi-
nating the risk of source-side information leakage.
These advantageous properties of the NAR struc-
ture enable SiMT models to avoid aggressive antic-
ipation and encourage the generation of monotonic
translations with fewer reorderings that align with
the output of professional human interpreters.

In this work, we propose non-autoregressive
streaming Transformer (NAST). NAST processes
streaming input and performs unidirectional en-
coding. Translations are generated in a chunk-by-
chunk manner, with tokens within each chunk be-
ing generated in parallel. We enable NAST to gen-
erate blank token ϵ or repetitive tokens to build
READ/WRITE paths adaptively, and train it to
maximize non-monotonic latent alignment (Graves
et al., 2006; Shao and Feng, 2022) with a further de-
veloped alignment-based latency loss. In this way,
NAST effectively learns to generate translations
that are properly aligned with the source in a mono-
tonic manner, achieving high-quality translation
while maintaining low latency.

Extensive experiments on WMT15 German →
English and WMT16 English → Romanian bench-

marks demonstrate that NAST outperforms previ-
ous strong autoregressive SiMT baselines.

2 Preliminaries

2.1 Simultaneous Translation
Simultaneous machine translation models often
adopt a prefix-to-prefix framework to start gen-
erating translation conditioned on partial source
input. Given a source sentence x = {x1, ..., xm},
previous autoregressive SiMT models factorize the
probability of target sentence y = {y1, ..., yn} as:

pg(y|x) =
|y|∏
t=1

p(yt|x≤g(t), y<t), (1)

where g(t) is a monotonic non-decreasing func-
tion of t, denoting the number of observed source
tokens when generating yt. A function g(t) rep-
resents a specific READ/WRITE policy of SiMT
models.

In addition to translation quality, latency is a cru-
cial factor in the assessment of SiMT models. The
latency of a policy g(t) is commonly measured us-
ing Average Lagging (AL; Ma et al., 2019), which
counts the number of tokens that the output lags
behind the input:

AL(g;x) =
1

τg(|x|)

τg(|x|)∑
t=1

(g(t)− t− 1

r
), (2)

where τg(|x|) is the cut-off function to exclude the
counting of problematic tokens at the end:

τg(|x|) = min{t|g(t) = |x|}, (3)

and r = |y|
|x| represents the length ratio between the

target and source sequences.



2.2 Non-autoregressive Generation
2.2.1 Parallel Decoding
Non-autoregressive generation (Gu et al., 2018) is
originally introduced to reduce decoding latency1.
It removes the autoregressive dependency and gen-
erates target tokens in a parallel way. Given a
source sentence x = {x1, ..., xm}, NAR mod-
els factorize the probability of target sentence
y = {y1, ..., yn} as:

p(y|x) =
|y|∏
t=1

p(yt|x). (4)

2.2.2 Connectionist Temporal Classification
Unlike autoregressive models that dynamically con-
trol the length by generating the <eos> token,
NAR models often utilize a length predictor to pre-
determine the length of the output sequence before
generation. The predicted length may be imprecise
and lacks adaptability for adjustment. Connection-
ist Temporal Classification (CTC; Graves et al.,
2006) addresses this limitation by extending the
output space Y with a blank token ϵ. The genera-
tion a ∈ Y∗ is referred to as the alignment. CTC
defines a mapping function β(y;T ) that returns a
set of all possible alignments of y of length T and
a collapsing function β−1(a) that first collapses all
consecutive repeated tokens in a and then removes
all blanks to obtain the target. During training,
CTC marginalizes out all alignments:

p(y|x) =
∑

a∈β(y;T )

p(a|x), (5)

where T is a pre-determined length and the align-
ment is modeled in a non-autoregressive way:

p(a|x) =
T∏

t=1

p(at|x). (6)

3 Approach

We provide a detailed introduction to the non-
autoregressive streaming Transformer (NAST) in
this section.

3.1 Architecture Overview
NAST consists of a unidirectional encoder (Ari-
vazhagan et al., 2019; Ma et al., 2019; Miao et al.,

1Note that the concept of latency differs between NAR
generation and SiMT. It refers to the delay in generating all
target tokens once all source tokens are observed in the first
case and to the level of synchronization between target-side
generation and source-side observation in the latter case.

2021) and a non-autoregressive decoder with intra-
chunk parallelism. The model architecture is de-
picted in Figure 2. When a source token xi is read
in, NAST passes it to the unidirectional encoder,
allowing it to attend to the previous source contexts
through causal encoder self-attention:

SelfAttn(xi,x≤i). (7)

Concurrently, NAST upsamples xi λ times and
feeds them to construct the decoder hidden states
as a chunk. Within the chunk, NAST handles λ
states in a fully parallel manner. To further clar-
ify, we introduce h to represent the sequence of
decoder states. Thus, the j-th hidden state in the
i-th chunk can be denoted as h(i−1)λ+j , subject to
1 ≤ i ≤ |x| and 1 ≤ j ≤ λ. Those states can
attend to information from all currently observed
source contexts through cross-attention:

CrossAttn(h(i−1)λ+j ,x≤i), (8)

and to information from all constructed decoder
states through self-attention:

SelfAttn(h(i−1)λ+j ,h≤iλ). (9)

Following CTC (Graves et al., 2006), we extend
the vocabulary to allow NAST generating the blank
token ϵ or repeated tokens from decoder states to
model an implicit READ action. We refer to the
outputs from a states chunk h(i−1)λ+1:iλ as partial
alignments a(i−1)λ+1:iλ, where NAST generates
them in a non-autoregressive way:

p(a(i−1)λ+1:iλ|h(i−1)λ+1:iλ)

=

λ∏
j=1

p(a(i−1)λ+j |h(i−1)λ+j).
(10)

To obtain the translation stream, we first apply the
collapsing function β−1 to deal with the partial
alignments generated from the i-th chunk:

ychunki = β−1(a(i−1)λ+1:iλ). (11)

Then NAST concatenates the outputs from the cur-
rent chunk to generated prefix ypre according to
the following rule:{

ypre = ypre ⊕ ychunki
2: , if ypre

−1 = ychunki
1

ypre = ypre ⊕ ychunki , otherwise
(12)

where ypre
−1 denotes the last token in the generated

prefix. Consequently, upon receiving a token in the
input stream, NAST is capable to generate 0 to λ
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Figure 2: Overview of the proposed non-autoregressive streaming Transformer (NAST). Upon receiving a source
token, NAST upsamples it λ times and feeds them to the decoder as a chunk. NAST can generate blank token ϵ or
repetitive tokens (both highlighted in gray) to find reasonable READ/WRITE paths adaptively. We train NAST
using the non-monotonic latent alignment loss (Shao and Feng, 2022) with the alignment-based latency loss to
achieve translation of high quality while maintaining low latency.

tokens at a time, endowing it with the ability to ad-
just its READ/WRITE strategy flexibly. Formally,
each full alignment a ∈ β(y;λ|x|) can be con-
sidered as a concatenation of all the partial align-
ments, and implies a specific READ/WRITE pol-
icy to generate the reference y. Therefore, NAST
jointly models the distribution of translation and
READ/WRITE policy by marginalizing out latent
alignments:

p(y|x) =
∑

a∈β(y;λ|x|)

p(a|x)

=
∑

a∈β(y;λ|x|)

∏
1≤i≤|x|
1≤j≤λ

p(a(i−1)λ+j |x≤i).
(13)

3.2 Latency Control

While NAST exhibits the ability to adaptively de-
termine an appropriate READ/WRITE policy, we
want to impose some specific requirements on the
trade-off between latency and translation quality.
To accomplish this, we introduce an alignment-
based latency loss and a chunk wait-k strategy to
effectively control the latency of NAST.

3.2.1 Alignment-based Latency Loss
Considering NAST models the distribution of
READ/WRITE policy by capturing the distribu-
tion of latent alignments, it is desirable to measure
the averaged latency of all latent alignments and
further regularize it. Specifically, we are interested
in the expected Average Lagging (AL; Ma et al.,
2019) of NAST:

AL(θ;x) = Ea∼pθ(a|x)[AL(ga;x)], (14)

where ga is the policy induced from alignment a.
Due to the exponentially large alignment space, it

is infeasible to enumerate all possible ga to obtain
AL(θ;x). This limitation motivates us to delve
deeper into AL(θ;x) and devise an efficient esti-
mation algorithm.

To simplify the estimation process of AL(θ;x)
while still excluding the lag counting of problem-
atic words generated after all source read in, we
deploy a new cut-off function that disregards to-
kens generated after all source observed, i.e., to-
kens from the last chunk:

τga(|x|) = min{t|ga(t) = |x|} − 1. (15)

Then we introduce a moment function m(i) to de-
note the number of observed source tokens when
generating the i-th position in the alignment. Given
the fixed upsampling strategy of NAST, it is clear
that:

m((i− 1)λ+ j) = i, 1 ≤ j ≤ λ. (16)

We further define an indicator function 1(ai) to
denote whether the i-th position in the alignment is
reserved after collapsed by β−1. With its help, it is
convenient to express the lagging of alignment a:

AL(ga;x)

=
1

τga(|x|)
(

τga (|x|)∑
t=1

g(t)−
τga (|x|)∑

t=1

t− 1

r
)

=
1

τga(|x|)
(

(|x|−1)λ∑
i=1

m(i)1(ai)−
τga(|x|)(τga(|x|)− 1)

2r
)

≈ 1

τga(|x|)
(

(|x|−1)λ∑
i=1

m(i)1(ai)−
|x|(τga(|x|)− 1)

2
).

(17)

Equation 17 inspires us to estimate the expected av-
erage lagging AL(θ;x) by separately calculating
the expected values of the numerator and denomi-
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Figure 3: Illustration of cross-attention with different
chunk wait-k strategies.

nator:

AL(θ;x)

≈
Ea[

∑(|x|−1)λ
i=1 m(i)1(ai)]− |x|

2
(Ea[τga(|x|)]− 1)

Ea[τga(|x|)]
.

(18)

It relieves us from the intractable task of enumer-
ating ga. Instead, we only need to handle two
expectation terms: Ea[

∑(|x|−1)λ
i=1 m(i)1(ai)] and

Ea[τga(|x|)], which can be resolved efficiently:2{
Ea[τga(|x|)] =

∑(|x|−1)λ
i=1 p(1(ai))

Ea[
∑(|x|−1)λ

i=1 m(i)1(ai)] =
∑(|x|−1)λ

i=1 m(i)p(1(ai))

(19)

where p(1(ai)) represents the probability that the
i-th token in the alignment is reserved after collaps-
ing and can be calculated simply as:

p(1(ai)) = 1− p(ai = ϵ)−
∑

v∈Y/ϵ

p(ai = v)p(ai−1 = v).

(20)

With the assistance of the aforementioned deriva-
tion, it is efficient to estimate the expected average
lagging of NAST. By applying it along with a tun-
able minimum lagging threshold lmin, we can train
NAST to meet specific requirements of low latency:

Llatency = max(AL(θ;x), lmin). (21)

3.2.2 Chunk Wait-k Strategy
In addition to the desiring property of shorter lag-
ging, there may be practical scenarios where we
aim to mitigate the risk of erroneous translations
by increasing the latency. To this end, we propose
a chunk wait-k strategy for NAST to satisfy the
requirements of better translation quality.

2We leave the detailed derivation of Equation 19 in Ap-
pendix A.

NAST is allowed to wait for additional k source
tokens before initializing the generation of the first
chunk. The first chunk is fed to the decoder at
the moment the (k + 1)-th source token is read in.
Subsequently, NAST feeds each following chunk
as each new source token is received. The partial
alignment generated from each chunk is consis-
tently lagged by k tokens compared with the corre-
sponding source token until the source sentence is
complete.

Formally, the moment function for the chunk
wait-k strategy can be formulated as:

m((i− 1)λ+ j) = min{i+ k, |x|}, 1 ≤ j ≤ λ. (22)

As depicted in Figure 3, decoder states can fur-
ther access information from additional k observed
source tokens through cross-attention:

CrossAttn(h(i−1)λ+j ,x≤min{i+k,|x|}), (23)

which leads NAST to prioritize better translation
quality at the expense of longer delay.

3.3 Non-monotonic Latent Alignments
While CTC loss (Graves et al., 2006) provides
the convenience of directly applying the maxi-
mum likelihood estimation to train NAST, i.e.,
L = − log p(y|x), it only considers the mono-
tonic mapping from target positions to alignment
positions. However, non-monotonic alignments are
crucial in simultaneous translation. SiMT mod-
els are expected to generate translations that are
monotonically aligned with the source sentence to
achieve low latency. Unfortunately, in the train-
ing corpus, source and reference pairs are often
non-monotonically aligned due to differences in
grammar structures between languages (e.g., SVO
vs SOV). Neglecting the non-monotonic mapping
during training compels the model to predict to-
kens for which the corresponding source has not
been read, resulting in over-anticipation. To ad-
dress these issues, we apply the bigram-based non-
monotonic latent alignment loss (Shao and Feng,
2022) to train our NAST, which maximizes the F1
score of expected bigram matching between target
and alignments:

LNMLA(θ) = −
2 ·

∑
g∈G2

min{Cg(y), Cg(θ)}∑
g∈G2

(Cg(y) + Cg(θ))
, (24)

where Cg(y) denotes the occurrence count of bi-
gram g = (g1, g2) in the target, Cg(θ) represents
the expected count of g for NAST, and G2 denotes
the set of all bigrams in y.



3.4 Glancing

Due to its inherent conditional independence struc-
ture, NAST may encounter challenges related to
the multimodality problem3 (Gu et al., 2018). To
address this issue, we employ the glancing strategy
(Qian et al., 2021) during training. This involves
randomly replacing tokens in the decoder’s input
chunk with tokens from the most probable latent
alignment. Formally, the glancing alignment is the
one that maximizes the posterior probability:

a∗ = argmax
a∈β(y;λ|x|)

p(a|x). (25)

Then we randomly sample some positions in the
decoder input and replace tokens in the input se-
quence with tokens from the glancing alignment
sequence at those positions in training.

3.5 Training Strategy

In order to better train the NAST model to adapt
to simultaneous translation tasks with different la-
tency requirements, we propose a two-stage train-
ing strategy. In the first stage, we train NAST using
the CTC loss to obtain the reference monotonic-
aligned translation with adaptive latency:

Lstage−1 = LCTC = − log p(y|x). (26)

In the second stage, we train NAST using the com-
bination of the non-monotonic latent alignment loss
and the alignment-based latency loss:

Lstage−2 = LNMLA + Llatency. (27)

This further enables NAST to generate translations
that are aligned with the source in a monotonic
manner, meeting specific latency requirements.

4 Experiments

4.1 Experimental Setup

Datasets We conduct experiments on the following
benchmarks that are widely used in previous SiMT
studies: WMT154 German → English (De→En,
4.5M pairs) and WMT165 English → Romanian
(En→Ro, 0.6M pairs). For De→En, we use new-
stest2013 as the validation set and newstest2015
as the test set. For En→Ro, we use newsdev-2016

3The multimodality problem arises when a source sentence
has multiple possible translations, which a non-autoregressive
system is unable to capture due to its inability to model the
target dependency.

4https://www.statmt.org/wmt15/
5https://www.statmt.org/wmt16/

as the validation set and newstest-2016 as the test
set. For each dataset, we apply BPE (Sennrich
et al., 2016) with 32k merge operations to learn a
joint subword vocabulary shared across source and
target languages.

Implementation Details We select a chunk up-
sample ratio of 3 (λ = 3) and adjust the chunk
waiting parameter k and the threshold lmin in
alignment-based latency loss to achieve varying
quality-latency trade-offs.6 For the first stage of
training, we set the dropout rate to 0.3, weight
decay to 0.01, and apply label smoothing with a
value of 0.01. We train NAST for 300k updates
on De→En and 100k updates on En→Ro. A batch
size of 64k tokens is utilized, and the learning rate
warms up to 5 · 10−4 within 10k steps. The glanc-
ing ratio linearly anneals from 0.5 to 0.3 within
200k steps on De→En and 100k steps on En→Ro.
In the second stage, we apply the latency loss only
if the chunk wait strategy is disabled (k = 0). The
dropout rate is adjusted to 0.1 for De→En, while no
label smoothing is applied to either task. We further
train NAST for 10k updates on De→En and 6k up-
dates on En→Ro. A batch size of 256k tokens is uti-
lized to stabilize the gradients, and the learning rate
warms up to 3 · 10−4 within 500 steps. The glanc-
ing ratio is fixed at 0.3. During both training stages,
all models are optimized using Adam (Kingma and
Ba, 2014) with β = (0.9, 0.98) and ϵ = 10−8.
Following the practice in previous research on non-
autoregressive generation, we employ sequence-
level knowledge distillation (Kim and Rush, 2016)
to reduce the target-side dependency in data.7 We
adopt Transformer-base (Vaswani et al., 2017) as
the offline teacher model and train NAST on the
distilled data.

Baselines We compare our system with the follow-
ing strong autoregressive SiMT baselines:

Offline AT Transformer model (Vaswani et al.,
2017), which initiates translation after reading all
the source tokens. We utilize a unidirectional en-
coder and employ greedy search decoding for fair
comparison.

6Further details regarding the settings of k and lmin can be
found in Appendix B.

7Note that the purpose of offline knowledge distillation is
to reduce the dependency between target-side tokens in the
data, in order to facilitate the learning of non-autoregressive
models. This is different from the goal of performing mono-
tonic knowledge distillation in the field of SiMT, which aims
to obtain monotonic aligned data.

https://www.statmt.org/wmt15/
https://www.statmt.org/wmt16/


0 2 4 6 8 10 12
Average Lagging (AL)

18

20

22

24

26

28

30

32

B
LE

U

Offline AT
NAST
HMT
MoE Wait-k
MMA
Wait-k

(a) De→En

0 1 2 3 4 5 6 7 8
Average Lagging (AL)

20

22

24

26

28

30

32

B
LE

U

Offline AT
NAST
HMT
MOE Wait-k
MMA
Wait-k

(b) En→Ro

Figure 4: Results of translation quality (BLEU) against latency (Average Lagging) on De→En and En→Ro.

Wait-k Wait-k policy (Ma et al., 2019), which
initially reads k tokens and subsequently alternates
between WRITE and READ actions.

MoE Wait-k Mixture-of-experts wait-k policy
(Zhang and Feng, 2021), which involves employing
multiple experts to learn multiple wait-k policies
during training. MoE Wait-k is the current SOTA
fixed policy.

MMA Monotonic multi-head attention (MMA;
Ma et al., 2020) employs a Bernoulli variable to
predict the READ/WRITE action and is trained
using monotonic attention (Raffel et al., 2017).

HMT Hidden Markov Transformer (HMT;
Zhang and Feng, 2023), which treats the moments
of starting translating as hidden events and con-
siders the target sequence as the observed events.
This approach organizes them as a hidden Markov
model. HMT is the current SOTA adaptive policy.

Metrics To compare SiMT models, we evaluate
the translation quality using BLEU score (Papineni
et al., 2002) and measure the latency using Aver-
age Lagging (AL; Ma et al., 2019). Numerical
results with more latency metrics can be found in
Appendix B.

4.2 Main Results

We compare NAST with the existing AR SiMT
methods in Figure 4. On De→En, NAST outper-
forms all AR SiMT models significantly across all
latency settings, particularly in scenarios with very
low latency. With the latency in the range of [0, 1],
where listeners are almost synchronized with the
speaker, NAST achieves a translation quality of
27.73 BLEU, surpassing the current SOTA model
HMT by nearly 6 BLEU points. Moreover, NAST

k 0 3 5 7

NAST BLEU 30.69 31.58 31.70 31.94
w/o LNMLA 28.84 29.72 30.12 30.68

∆ 1.85 1.86 1.58 1.26

Table 1: Results of BLEU scores on De→En test set
with or without LNMLA under different chunk wait-k
strategy. Llatency is not applied here.

k 0 3 5 7

NAST AL 4.02 5.83 6.85 8.44
w/o LNMLA 3.42 5.11 6.56 8.20

Table 2: Results of Average Lagging on De→En test set
with or without LNMLA under different chunk wait-k
strategy. Llatency is not applied here.

demonstrates superior performance compared to
the offline AT system even when the AL is as low
as 6.85, showcasing its competitiveness in scenar-
ios where higher translation quality is desired. On
En→Ro, NAST also exhibits a substantial improve-
ment under low latency conditions. On the other
hand, NAST achieves comparable performance to
other models on En→Ro when the latency require-
ment is not stringent.

5 Analysis

5.1 Importance of Non-monotonic Alignments

NAST is trained using a non-monotonic alignment
loss, enabling it to generate source monotonic-
aligned translations akin to human interpreters.
This capability empowers NAST to achieve high-
quality streaming translations while maintaining
low latency. To validate the effectiveness of non-
monotonic alignment, we conduct further experi-
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Figure 5: Results of hallucination rate against latency
(Average Lagging) on De→En test set.

ments by studying the performance of NAST with-
out LNMLA. We compare the translation quality
(BLEU) and latency (AL) of models employing
different chunk wait-k strategies. The results are
reported in Table 1 and Table 2. Note that Llatency

is not applied here for clear comparison.
We observe that incorporating LNMLA signifi-

cantly enhances translation quality by up to 1.86
BLEU, while maintaining nearly unchanged la-
tency. We also notice that the improvement is
particularly substantial when the latency is low,
which aligns with our motivation. Under low la-
tency conditions, SiMT models face more severe
non-monotonicity problems. The ideal simulta-
neous generation requires more reordering of the
reference to achieve source sentence monotonic
alignment, which leads to greater improvements of
applying non-monotonic alignment loss.

5.2 Analysis on Hallucination Rate

NAST mitigates the risk of source information leak-
age during training, thereby minimizing the occur-
rence of hallucination during inference. To demon-
strate this, we compare the hallucination rate (Chen
et al., 2021) of hypotheses generated by NAST with
that of the current SOTA model, HMT (Zhang and
Feng, 2023). A hallucination is defined as a gen-
erated token that can not be aligned to any source
word. The results are plotted in Figure 5.

We note that the hallucination rates of both mod-
els decrease as the latency increases. However,
NAST exhibits a significantly lower hallucination
rate compared to HMT. We attribute this to the fact
that NAST avoids the bias caused by source-info
leakage and enables a more general generation-
reference alignment, thus mitigating compelled pre-
dictions during training.
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Figure 6: Performance on De→En test subsets catego-
rized by difficulty.

5.3 Performance across Difficulty Levels

To further illustrate NAST’s effectiveness in han-
dling non-monotonicity problem, we investigate
its performance when confronted with samples of
varying difficulty levels. It is intuitive to expect
that samples with a higher number of cross align-
ments between the source and reference texts pose
a greater challenge for real-time translation. There-
fore, we evenly partition the De→En test set into
subsets based on the number of crosses in the align-
ments, categorizing them as easy, medium, and
hard, in accordance with the approach by Zhang
and Feng (2021). We compare our NAST with pre-
vious HMT model, and the results are presented in
Figure 6.

Despite the impressive performance of NAST,
a closer examination of Figure 6 reveals that the
superiority is particular on the challenging subset.
Even when real-time requirements are relatively
relaxed, the improvement in handling the hard sub-
set remains noteworthy. We attribute this to the
stringent demand imposed by the hard subset, re-
quiring SiMT models to effectively manage word
reorderings to handle the non-monotonicity. NAST
benefits from non-monotonic alignment training
and excels in addressing these challenges, thus en-
hancing its performance in handling those harder
samples.

5.4 Concerns on Fluency

While the non-autoregressive nature endows NAST
with the capability to tackle the non-monotonicity
problem and source-info leakage bias, it also ex-
poses NAST to the risk of potential fluency degra-
dation due to the absence of target-side dependency.
To have a better understanding of this problem, we
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Figure 7: Results of fluency (Perplexity) against latency
(Average Lagging) on De→En test set.

evaluate the fluency of the De→En test set out-
put from NAST in comparison to previous HMT.
Specifically, we employ the Perplexity value re-
ported by an external pre-trained language model
transformer_lm.wmt19.en8 to measure the flu-
ency of the generated texts. A lower Perplexity
value implies more fluent translations. The results
are presented in Figure 7.

Though NAST exhibits significantly improved
translation quality, we find its non-autoregressive
nature does impact fluency to some extent. How-
ever, we consider this trade-off acceptable. In prac-
tical scenarios like international conferences where
SiMT models are employed, the language used by
human speakers is often not perfectly fluent. In
such contexts, the audience tends to prioritize the
overall translation quality under low latency, rather
than the fluency of generated sentences.

6 Related Work

SiMT Simultaneous machine translation requires a
READ/WRITE policy to balance latency and trans-
lation quality, involving fixed and adaptive strate-
gies. For the fixed policy, Ma et al. (2019) proposed
wait-k, which first reads k source tokens and then
alternates between READ/WRITE action. Elbayad
et al. (2020) introduced an efficient training method
for the wait-k policy, which randomly samples k
during training. Zhang and Feng (2021) proposed
a mixture-of-experts wait-k to learn a set of wait-k
policies through multiple experts. For the adap-
tive policy, Gu et al. (2017) trained an agent to
decide READ/WRITE via reinforcement learning.
Arivazhagan et al. (2019) introduced MILk, which
incorporates a Bernoulli variable to indicate the

8https://github.com/facebookresearch/fairseq/
tree/main/examples/language_model

READ/WRITE action. Ma et al. (2020) proposed
MMA to implement MILk on Transformer. Liu
et al. (2021) introduced CAAT, which leverages
RNN-T and employs a blank token to signify the
READ action. Miao et al. (2021) proposed GSiMT
to generate the READ/WRITE actions. Chang et al.
(2022) proposed to train a casual CTC encoder with
Gumbel-Sinkhorn network (Mena et al., 2018) to
reorder the states. Zhang and Feng (2023) pro-
posed HMT to learn when to start translating in the
form of HMM, achieving the current state-of-the-
art SiMT performance.

NAR Generation Non-autoregressive models gen-
erate tokens parallel to the sacrifice of target-side
dependency (Gu et al., 2018). This property elim-
inates the need for teacher forcing, motivating re-
searchers to explore flexible training objectives that
alleviate strict position-wise alignment imposed by
the naive MLE loss. Libovický and Helcl (2018)
proposed latent alignment model with CTC loss
(Graves et al., 2006), and Shao and Feng (2022)
further explored non-monotonic latent alignments.
Shao et al. (2020, 2021) introduced sequence-level
training objectives with reinforcement learning and
bag-of-ngrams difference. Ghazvininejad et al.
(2020) trained NAT model using the best mono-
tonic alignment and Du et al. (2021) further ex-
tended it to order-agnostic cross-entropy loss. In
addition, some researchers are focusing on strength-
ening the expression power to capture the token
dependency. Huang et al. (2022) proposed directed
acyclic graph layer and Gui et al. (2023) introduced
probabilistic context-free grammar layer. Build-
ing upon that, Shao et al. (2022) proposed Viterbi
decoding and Ma et al. (2023) further explored
fuzzy alignment training, achieving the current
state-of-the-art NAR model performance. Apart
from text translation, the NAR model also demon-
strated impressive performance in diverse areas
such as speech-to-text translation (Xu et al., 2023),
speech-to-speech translation (Fang et al., 2023) and
text-to-speech synthesis (Ren et al., 2021).

7 Conclusion

In this paper, we propose non-autoregressive
streaming Transformer (NAST) to address the non-
monotonicity problem and the source-info leakage
bias in existing autoregressive SiMT models. Com-
prehensive experiments demonstrate its effective-
ness.

https://github.com/facebookresearch/fairseq/tree/main/examples/language_model
https://github.com/facebookresearch/fairseq/tree/main/examples/language_model


Limitations

We have observed that the performance of NAST
is less satisfactory when translating from English
to Romanian (En→Ro) compared to translating
from German to English (De→En). This can be
attributed to the fact that Romanian shares the
SVO (Subject-Verb-Object) grammar with English,
while German follows an SOV (Subject-Object-
Verb) word order. NAST excels in handling word
reordering in translating from SOV to SVO, es-
pecially there is a strict requirement for low la-
tency. But it is relatively less effective in SVO-to-
SVO translation scenarios where there is typically
a monotonic alignment between the source and ref-
erence.
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A Derivation of Equation 19

We present the detailed derivation of Equation 19
in this section.

Ea[τga(|x|)] =
∑
a

p(a|x)
(|x|−1)λ∑

i=1

1(ai)

=

(|x|−1)λ∑
i=1

∑
a

p(a|x)1(ai)

=

(|x|−1)λ∑
i=1

p(1(ai)),

(28)

Ea[

(|x|−1)λ∑
i=1

m(i)1(ai)] =
∑
a

p(a|x)
(|x|−1)λ∑

i=1

m(i)1(ai)

=

(|x|−1)λ∑
i=1

m(i)
∑
a

p(a|x)1(ai)

=

(|x|−1)λ∑
i=1

m(i)p(1(ai)),

(29)

where p(1(ai)) denotes the probability that the i-th
token in the alignment is reserved after collapsing.

B Numerical Results with More Metrics

In addition to Average Lagging (AL; Ma et al.,
2019), we also incorporate Consecutive Wait (CW;
Gu et al., 2017), Average Proportion (AP; Cho and
Esipova, 2016), and Differentiable Average Lag-
ging (DAL; Arivazhagan et al., 2019) as metrics to
evaluate the latency of NAST.

We adjust lmin in Llatency and k in chunk wait-k
strategy to achieve varying quality-latency trade-
offs. For clarity, we present the numerical results
of NAST using specific hyperparameter settings in
Table 3 and Table 4. Note that Llatency is applied
to achieve lower latency, while the chunk wait-k
strategy is employed to improve translation quality.
Therefore, we apply Llatency only when k = 0.

Table 3: Numerical results of NAST on De→En. "-"
indicates that Llatency is not applied.

WMT15 De→En
lmin k CW AP AL DAL BLEU

0 0 1.44 0.52 0.65 1.96 27.73
1 0 1.51 0.57 1.87 3.24 29.82
3 0 1.60 0.62 2.97 4.60 30.46
- 0 1.74 0.66 4.02 5.89 30.69
- 3 2.03 0.72 5.83 7.64 31.58
- 5 2.18 0.75 6.85 8.39 31.70
- 7 2.59 0.79 8.44 9.88 31.94

Table 4: Numerical results of NAST on En→Ro. "-"
indicates that Llatency is not applied.

WMT16 En→Ro
lmin k CW AP AL DAL BLEU

0 0 1.41 0.50 0.36 1.77 24.79
- 0 1.46 0.55 1.58 3.24 26.30
- 3 1.54 0.65 3.90 5.34 30.01
- 5 1.81 0.72 5.89 7.25 30.98
- 7 2.24 0.77 7.85 9.14 31.30

C Case Study

To gain further insights into NAST’s behavior, we
examine the generation processes of two different
cases within the De→En test set. We visualize the
generation by plotting the generated partial align-
ments and the collapsed outputs at each step.

Reference

Step

die Premierminister Indiens und Japans trafen sich in Tokio . </s>
Source

1

2

3

4

5

.

</s>

12

13

6

7

8

9

10

11 io

the Prime Minister  India  and  Japan       met     in Tokyo

India and Japan prime ministers meet in Tokyo . </s>

Premierminister

die

Inputs Alignments

met

in

Outputs

Indiens

und

Japans

tra@@

fen

sich

in

Tok@@

India

the
the
the
the
the
the
the

prime
ministers

of
of

Japan

India
and
and
and
and

Japan
Japan

met
<blank>

in

Japan

Japan
Japan

<blank>
met
met

Japan

Japan
Japan
Japan
Japan

the

prime

ministers

of

India

and

Tokyo

.

</s>

Tokyo
.

</s>

in
in

Tokyo

Figure 8: Case study of #0 in De→En test set, where
we configure NAST with lmin = 1 and k = 0.

In Figure 8, we illustrate a case in which NAST
reorders words at the phrase-level compared to the
reference. With the streaming input "die Premier-
minister Indiens und Japans", NAST produces "the
prime ministers of India and Japan" instead of



the reference "India and Japan prime ministers".
This output represents a source-monotonic-aligned
phrase, thereby effectively reducing latency.
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Figure 9: Case study of #1083 in De→En test set, where
we configure NAST with k = 0 and Llatency not ap-
plied.

In Figure 9, we depict another generation case
where NAST manages word reorderings at the sen-
tence level in comparison to the reference. In order
to ensure low latency, NAST adjusts the sentence
structure while maintaining meaning consistency
with the reference. When NAST processes the
source words "es sieht so au", it promptly gener-
ates "it looks as if " and continues generating the
subsequent words within this grammatical struc-
ture. This ensures listeners keep synchronized with
the speaker.


