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1 Introduction001

What does it mean for a loss surface to be flat? A002

flat minimum is one where the loss increases slowly003

in many directions around the optimum. Intuitively,004

a flat basin gives room for parameter perturbations005

without harming performance, which suggests ro-006

bustness to noise, and potentially better generalisa-007

tion. A common quantitative measure is the trace008

of the Hessian, which is the sum of its eigenvalues [1,009

2]. Intuitively, large eigenvalues correspond to steep010

curvature in some directions. Hence, penalising or011

bounding those helps in finding flatter minima. Al-012

ternatively, the scalar curvature of the loss has been013

suggested [3] as a measure of flatness, carrying a014

more geometric flavour. Instead of only measuring015

individual directions, it combines curvature across016

two-dimensional planes (sectional curvatures) into017

a scalar at each point in the parameter space. In018

that sense, it is more geometrically meaningful and019

possibly more robust to coordinate changes. In this020

work, we will derive a novel bound of the scalar021

curvature in terms of the functional dimension and022

the eigenvalues, which is stated in Theorem 4.1. For023

coherence with related work, we only consider ar-024

chitectures with ReLU activations. The results can025

easily be stated more generally though.026

Notation Assume we are given data points
{xi, yi}Ni=1, where xi ∈ X ⊆ Rd and yi ∈ Y ⊆ RD.
In machine learning, our goal is to find a function

fθ : X → Y,

which best fits the data points and provides rea-027

sonable predictions for new points from the same028

distribution. We consider multi-layer perceptrons029

(MLPs) of L layers with ReLU activation func-030

tions, parametrised by θ = {Wj , bj}j=1,...L ⊆ Θ.031

Let f : Θ×Rd → RD, be the layer wise composition032

fθ(x) = wLσ(wL−1(. . . σ(w1x+ b1) + bL−1)) + bL.033

Here, σ(z) = max (0, z), and in each layer

wj ∈ Rdj×dj−1 , bj ∈ Rdj ,

where dL = D, and d0 = d. To evaluate which func-034

tion fits best, we define the empirical loss function035
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L : Θ → R. The mean squared error (MSE), for 036

example, is given by 037

L(θ) = 1

2
·

N∑
i=1

||fθ(xi)− yi||2. 038

2 The curvature of the loss 039

manifold 040

We consider the loss manifold, which is the graph
of the loss function:

M = (Θ,L(Θ)) .

It can be equipped with the pull back metric

g(θ) = I +∇θLt∇θL,

which equips each point of M with a scalar prod- 041

uct, and hence a way to measure distances on the 042

manifold. Using the metric, we can also evaluate 043

the scalar curvature of M. 044

A more comprehensive introduction to the re- 045

quired tools of differential geometry will be provided 046

in a future version of this work. For now, we refer 047

the interested reader to the classic textbook [4]. 048

Theorem 2.1. [3] The scalar curvature of M is 049

given by 050

K(θ) = β(trace(H)2 − trace(H2)) 051

+ 2β2(∇θL(θ)t(H2 − trace(H)H)∇θL(θ)), 052

where H = ∇2
θL(θ), and β =

(
1 + ||∇θL(θ)||2

)−1
. 053

We will call a point θ∗ in the parameter space an 054

interpolation solution if fθ∗ fits the training points 055

perfectly, i.e. for all i = 1, . . . , N we have fθ∗(xi) = 056

yi. In this case, it is easy to verify that β = 1 and 057

∇θL = 0, and hence the second summand of K(θ∗) 058

vanishes. 059

3 Functional dimension 060

We will now define the functional dimension of a set 061

of parameters. It measures the number of indepen- 062

dent directions in the parameter space that change 063

the function fθ. 064
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We first give a definition depending on the choice065

of evaluation points. In the following we will assume066

that they are parametrically smooth, i.e. they lie in067

regions where the gradient of the function is well068

defined. This is a realistic assumption, since the069

complement of those regions has measure zero.070

Definition 3.1. [5] Let Z = {x1, . . . , xn} be a set
of points in Rd, and

Jθ =

∇θfθ(x1)
...

∇θfθ(xn)

 .

We define the batch functional rank of fθ as071

rank(JZ(θ)).072

Taking the supremum over all possible finite sub-073

sets Z, we obtain a more general definition.074

Definition 3.2. [6] The functional dimension of
θ ∈ Θ is given by

dimfun(θ) = sup
Z

{rank(JZ(θ)) | Z ⊆ Rd },

where all Z are finite sets of parametrically smooth075

points for θ.076

We see that for a sufficiently large and spread
out data set Z, the batch functional rank over Z
approximates the functional dimension of a function
fθ, i.e.

rank(JZ(θ)) ≈ dimfun(θ).

4 A new bound of the scalar077

curvature078

A simple computation shows that

∇2
θL(θ) =

1

n
J t
θJθ.

Hence, rank(Jθ) = rank(J t
θJθ) equals the number079

of non-zero eigenvalues of ∇2
θL(θ).080

This yields another bound for the scalar curvature:081

Theorem 4.1. Let λmax denote the largest eigen-
value of ∇2

θL(θ), and r = rank(JZ(θ)) be the
batch functional rank of fθ over the training points
Z = {xi}. The curvature K(θ∗) at an interpolation
solution is bounded as follows:

0 ≤ K(θ∗) ≤ (r−1)trace
(
∇2

θL(θ
∗)2
)
≤ (r−1)λ2

max.

Proof. From Theorem 2.1, we have that082

K(θ∗) = trace(H)2 − trace(H2)083

=

(∑
i

λi

)2

−
∑
i

λ2
i084

≤ r ·
∑
i

λ2
i −

∑
i

λ2
i085

= (r − 1) ·
∑
i

λ2
i .086

Here we leveraged the Cauchy-Bunyakovski-Schwarz
inequality, which implies(∑

i

λi

)2

≤ r ·
∑
i

λ2
i .

087

This shows that both the functional dimension 088

and the eigenvalues of the Hessian bound the scalar 089

curvature. 090

5 Future directions 091

The precise relationship between functional 092

dimensions and flatness. A lower functional di- 093

mension implies that there are more flat directions 094

and a higher-dimensional space of symmetries, as 095

conjectured in [6]. Intuitively, this should corre- 096

late with local flatness. However, it is not trivial 097

to show under which conditions this can be shown 098

algebraically. For example, it might be the case 099

that dimfun(θ) = 1, but the corresponding eigen- 100

value is very large, which implies a sharp minimum. 101

Conversely, for a large functional dimension we can 102

still obtain a flat minimum if all eigenvalues are 103

small. The aim of our work is to how we can bound 104

both quantities, and how they control the scalar 105

curvature. 106

Parameter space symmetries. As mentioned 107

above, symmetries of the parameter space induce flat 108

directions. They depend on the chosen architecture, 109

but have been extensively studied for ReLU archi- 110

tectures [7–9]. Can we leverage this information to 111

say something about the scalar curvature? 112

Empirical studies. What remains to work on is 113

an empirical study of the sectional curvature, eigen- 114

values and functional dimension during training. In 115

[6], it has been conjectured that a lower functional 116

dimension corresponds to local flatness of the loss. 117

This could yield insights into implicit regularisation 118

of stochastic gradient descent (SGD). As demon- 119

strated in [10], SGD implicitly regularises the terms 120

||∇θfθ(xi)||. We ask if SGD (or other training meth- 121

ods) also control functional dimension. 122
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