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1 Introduction

What does it mean for a loss surface to be flat? A
flat minimum is one where the loss increases slowly
in many directions around the optimum. Intuitively,
a flat basin gives room for parameter perturbations
without harming performance, which suggests ro-
bustness to noise, and potentially better generalisa-
tion. A common quantitative measure is the trace
of the Hessian, which is the sum of its eigenvalues |1,
2]. Intuitively, large eigenvalues correspond to steep
curvature in some directions. Hence, penalising or
bounding those helps in finding flatter minima. Al-
ternatively, the scalar curvature of the loss has been
suggested [3] as a measure of flatness, carrying a
more geometric flavour. Instead of only measuring
individual directions, it combines curvature across
two-dimensional planes (sectional curvatures) into
a scalar at each point in the parameter space. In
that sense, it is more geometrically meaningful and
possibly more robust to coordinate changes. In this
work, we will derive a novel bound of the scalar
curvature in terms of the functional dimension and
the eigenvalues, which is stated in Theorem 4.1. For
coherence with related work, we only consider ar-
chitectures with ReLU activations. The results can
easily be stated more generally though.

Notation Assume we are given data points
{z;, i}, where 7, € X CR% and y; € Y C RP.
In machine learning, our goal is to find a function

jb X = )&

which best fits the data points and provides rea-
sonable predictions for new points from the same
distribution. We consider multi-layer perceptrons
(MLPs) of L layers with ReLU activation func-
tions, parametrised by 0 = {W;,b;};=1,..L € O.
Let f: © x R4 — RP . be the layer wise composition

fo(x) =wro(wr_1(...o(wix +b1) + br—1)) + br.
Here, 0(z) = max (0, z), and in each layer
w; € Rdedj’l,bj € Rdj7

where d;, = D, and dy = d. To evaluate which func-
tion fits best, we define the empirical loss function
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Flatness Has a Shape: Scalar Curvature and Functional Dimen-
sion in Neural Loss Landscapes

L : ©® — R. The mean squared error (MSE), for
example, is given by

N
£0) = 5+ > llfate) — il

2 The curvature of the loss
manifold

We consider the loss manifold, which is the graph
of the loss function:

M=(0,L(0)).
It can be equipped with the pull back metric
g(0) = I+ VoL'VyL,

which equips each point of M with a scalar prod-
uct, and hence a way to measure distances on the
manifold. Using the metric, we can also evaluate
the scalar curvature of M.

A more comprehensive introduction to the re-
quired tools of differential geometry will be provided
in a future version of this work. For now, we refer
the interested reader to the classic textbook [4].

Theorem 2.1. [3] The scalar curvature of M is
given by

K(0) B(trace(H)? — trace(H?))

+ 28%(VeL(0)'(H? — trace(H)H)VoL(H)),

where H = V3L(0), and 8 = (1+ ||V9£(9)H2)_1 :

We will call a point #* in the parameter space an
interpolation solution if fy« fits the training points
perfectly, i.e. for alli =1,..., N we have fg«(z;)
y;. In this case, it is easy to verify that 8 = 1 and
VoL = 0, and hence the second summand of K(6*)
vanishes.

3 Functional dimension

We will now define the functional dimension of a set
of parameters. It measures the number of indepen-
dent directions in the parameter space that change
the function fy.
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We first give a definition depending on the choice
of evaluation points. In the following we will assume
that they are parametrically smooth, i.e. they lie in
regions where the gradient of the function is well
defined. This is a realistic assumption, since the
complement of those regions has measure zero.

Definition 3.1. [5] Let Z = {1, ..
of points in R?, and

., Tn} be a set

Vo fo(z1)
Jog =
vOf@(xn)

We define the batch functional rank of fy as
rank(Jz(0)).

Taking the supremum over all possible finite sub-
sets Z, we obtain a more general definition.

Definition 3.2. [6] The functional dimension of
0 € O is given by

dimg,, (0) = s%p{rank(JZ(G)) | Z CR? Y,

where all Z are finite sets of parametrically smooth
points for 6.

We see that for a sufficiently large and spread
out data set Z, the batch functional rank over Z
approximates the functional dimension of a function

fe, i.e.
rank(Jz(0)) ~ dimg,,(6).

4 A new bound of the scalar
curvature

A simple computation shows that
1

V2L(0) = —JJe.
n

Hence, rank(Jy) = rank(J}Jp) equals the number
of non-zero eigenvalues of V2L(0).
This yields another bound for the scalar curvature:

Theorem 4.1. Let A4, denote the largest eigen-
value of V3L(0), and r = rank(Jz(0)) be the
batch functional rank of fy over the training points
Z ={x;}. The curvature K(0*) at an interpolation
solution is bounded as follows:

0 < K(0*) < (r—1)trace (V3L(0%)?) < (r—1)A

mazx*

Proof. From Theorem 2.1, we have that

K(0*) = trace(H)? — trace(H?)
(£ -5

r Z A2 — lef

= (r —11) : Z )\2

IN

Here we leveraged the Cauchy-Bunyakovski-Schwarz
inequality, which implies

(5] =

O

This shows that both the functional dimension
and the eigenvalues of the Hessian bound the scalar
curvature.

5 Future directions

The precise relationship between functional
dimensions and flatness. A lower functional di-
mension implies that there are more flat directions
and a higher-dimensional space of symmetries, as
conjectured in [6]. Intuitively, this should corre-
late with local flatness. However, it is not trivial
to show under which conditions this can be shown
algebraically. For example, it might be the case
that dimg,,(6) = 1, but the corresponding eigen-
value is very large, which implies a sharp minimum.
Conversely, for a large functional dimension we can
still obtain a flat minimum if all eigenvalues are
small. The aim of our work is to how we can bound
both quantities, and how they control the scalar
curvature.

Parameter space symmetries. As mentioned
above, symmetries of the parameter space induce flat
directions. They depend on the chosen architecture,
but have been extensively studied for ReLU archi-
tectures [7-9]. Can we leverage this information to
say something about the scalar curvature?

Empirical studies. What remains to work on is
an empirical study of the sectional curvature, eigen-
values and functional dimension during training. In
[6], it has been conjectured that a lower functional
dimension corresponds to local flatness of the loss.
This could yield insights into implicit regularisation
of stochastic gradient descent (SGD). As demon-
strated in [10], SGD implicitly regularises the terms
[|Vofo(z:)||.- We ask if SGD (or other training meth-
ods) also control functional dimension.
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