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Abstract

Existing work on fairness modeling commonly assumes that sensitive attributes for all in-
stances are fully available, which may not be true in many real-world applications due to the
high cost of acquiring sensitive information. When sensitive attributes are not disclosed or
available, it is needed to manually annotate a small part of the training data to mitigate bias.
However, the skewed distribution across different sensitive groups preserves the skewness of
the original dataset in the annotated subset, which leads to non-optimal bias mitigation.
To tackle this challenge, we propose Active Penalization Of Discrimination (APOD), an
interactive framework to guide the limited annotations towards maximally eliminating the
effect of algorithmic bias. The proposed APOD integrates discrimination penalization with
active instance selection to efficiently utilize the limited annotation budget, and it is theo-
retically proved to be capable of bounding the algorithmic bias. According to the evaluation
on five benchmark datasets, APOD outperforms the state-of-the-arts baseline methods un-
der the limited annotation budget, and shows comparable performance to fully annotated
bias mitigation, which demonstrates that APOD could benefit real-world applications when
sensitive information is limited. The source code of the proposed method is available at:
https://anonymous.4open.science/r/APOD-fairness-4C02.

1 Introduction

Although deep neural networks (DNNs) have been demonstrated with great performance in many real-world
applications, it shows discrimination towards certain groups or individuals (Caton & Haas, 2020; Tolmeijer
et al., 2020; Rajkomar et al., 2018; Bobadilla et al., 2020), especially in high-stake applications, e.g., loan
approvals (Steel & Angwin, 2010), policing (Goel et al., 2016), targeted advertisement (Sweeney, 2013),
college admissions (Zimdars, 2010), or criminal risk assessments (Angwin et al., 2016). Social bias widely
exists in many real-world data (Mehrabi et al., 2021; Chen et al., 2018; Li & Vasconcelos, 2019; Chuang &
Mroueh, 2021). For example, the Adult dataset (Dua & Graff, 2017a) contains significantly more low-income
female instances than males. Recent studies revealed that training a DNN model on biased data may inherit
and even amplify the social bias and lead to unfair predictions in downstream tasks (Dwork et al., 2012;
Creager et al., 2019; Sun et al., 2019; Kusner et al., 2017; Dai & Wang, 2021).

The problem of bias mitigation is challenging due to the skewed data distribution (Hashimoto et al., 2018;
Azzalini & Valle, 1996; Azzalini, 2005) across different demographic groups. For example, in the Adult
dataset, instances of female with high income are significantly less than the ones with low income (Dua
& Graff, 2017a). Also, in the German credit dataset, the majority of people younger than 35 show a bad
credit history (Dua & Graff, 2017b). The effect of the skewed distribution on model fairness is illustrated
in a binary classification task (e.g. positive class denoted as gray + and •, negative class as red + and •)
with two sensitive groups (e.g. group 0 denoted as + and +, group 1 as • and •) shown in Figure 1. In
Figure 1 (a), the positive instances (+) are significantly less than negative instances (+) in group 0, which
leads to a classification boundary deviating from the fair one. Existing work on fairness modeling can be
categorized into two groups with or without sensitive attributes (Du et al., 2020; Kleinberg et al., 2018).
The first group relied on full exposure of sensitive attributes in training data, such as Fair Mixup (Chuang &
Mroueh, 2021), Rationale regularization (Du et al., 2019; Zafar et al., 2017), Adversarial learning (Arduini
et al., 2020) and Group DRO (Sagawa et al., 2019). However, the sensitive information may not be disclosed
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Figure 1: (a) The general classification boundary without bias mitigation deviates from the fair boundary due to the
skewed distribution across four underlying subgroups (i.e. +, +, • and •). (b) The annotation budget is set as 30.
The randomly annotated data subset follows the same skewed distribution across the subgroups. The classification
model is still unfair on the entire dataset. (c) With the same annotation budget, the optimal solution should select
a more representative subset, which mitigates algorithmic bias on the entire dataset.

or available in some real world scenarios (Zhao et al., 2021; Dai & Wang, 2021; Chen et al., 2019; Kallus
et al., 2021), and the cost of annotating sensitive attributes by human experts is high (Anahideh et al.,
2020), which leads to the limited applications of this group of work to the real-world scenarios.

The second group of work formulates the fairness without dependency on sensitive information, such as
ARL (Lahoti et al., 2020), ReBias (Bahng et al., 2020), LfF (Nam et al., 2020) and JTT (Liu et al., 2021).
However, those works rely on heuristic clustering of training instances to form potential demographic groups
for the bias mitigation, which may deteriorate the fairness performance to some extent (Wang et al., 2020).
To tackle the issue, some work involves the human expert providing a partially annotated dataset for the
bias mitigation (Anahideh et al., 2020). However, only a small portion of the dataset is annotated due to
the limitation of human labor efforts. An intuitive solution is to randomly select a small portion of instances
for annotation and target semi-supervised bias mitigation (Jung et al., 2021; Awasthi et al., 2021). However,
as shown in Figure 1 (b), the randomly selected instances will follow the same skewed distribution across
sensitive groups, which still preserves the bias information in the classifier. In such a manner, it is highly
likely to achieve a non-optimal solution, which is fair only on the annotated dataset but not the entire dataset.
Therefore, it is needed to have a unified framework, which integrates the selection of a representative subset
for annotation with model training towards the global fairness, as shown in Figure 1 (c).

In this work, we propose Active Penalization Of Discrimination (APOD), a novel interactive framework
which integrates the penalization of discrimination with active instance selection, for bias mitigation in the
real-world scenarios where sensitive information is limited. Specifically, APOD iterates between the model
debiasing and active instance selection to gradually approach the global fairness. For debiasing the model,
APOD enables bias penalization in an end-to-end manner via adopting a fairness regularizer. In the active
instance selection, an annotated data subset is constructed via recursive selections of representative data
instances from the subgroup where the model shows the worst performance, such that it can maximally expose
the existing bias of the model for subsequent debiasing. Finally, we provide theoretical and experimental
analysis to demonstrate the effectiveness of APOD. The contributions of this work are summarized as follows:

• We propose an interactive framework APOD to integrate the bias mitigation with efficient active instance
selection when the annotation of sensitive attributes is very limited.

• We propose the relaxed reformulation of the fairness objective, and theoretically prove that APOD could
improve model fairness via bounding the relaxed fairness metric.

• The effectiveness of APOD is thoroughly demonstrated by the experiments on five benchmark datasets,
which shows APOD is competitive with state-of-the-art methods using fully disclosed sensitive attributes.
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2 Preliminaries

In this section, we first introduce the notations used in this work, and give the problem definition of bias
mitigation in the active scenario. Then, we introduce the fairness metrics.

2.1 Notation and Problem Definition

Without loss of generality, we follow the existing work (Chuang & Mroueh, 2021; Zhang et al., 2018; Lahoti
et al., 2020) to consider a classification task in this work. Specifically, we aim to learn a DNN classifier f
with the input feature x ∈ X , label y ∈ Y = {0, 1} and sensitive attribute a ∈ A = {0, 1}, where X and Y
denote the feature and label space, respectively. The instances with sensitive attribute A = 0 and A = 1
belong to the unprivileged and privileged groups, respectively. Let D = {(xi, yi) | 1 ≤ i ≤ N} denote the
entire dataset, which consists of the annotated set S = {(xi, yi, ai)} and unannotated set U = {(xi, yi)},
i.e., the value of the sensitive attribute is known for instances in S, but it is unknown for instances in U.
The proposed interactive bias mitigation is illustrated in Figure 2 (a). Specifically, in each iteration, an
instance (x∗, y∗) is selected from unannotated dataset U for human experts; the experts essentially do the
job of mapping X × Y → X × Y ×A, by providing the annotation of sensitive attribute a∗ for the selected
instance (x∗, y∗). After that, the classifier is updated and debiased using the partially annotated dataset
including the newly annotated instance (x∗, y∗, a∗), where the new classifier will then be involved for the
instance selection in the next iteration. This loop terminates if the human-annotation budget is reached.

Such an active scenario to debias f is time-consuming for deep neural networks, due to the fact that f is
retrained in each iteration. To improve the efficiency of learning, the classifier f is split into body fb : X →
RM and head fh : RM → R|Y|, where the body fb denotes the first several layers, and the head fh denotes the
remaining layers of the classifier such that ŷi = arg max{fh(fb(xi|θb)|θh)}. The body fb learns the instance
embedding hi = fb(xi|θh), where hi ∈ RM denotes the embedding of xi, and M denotes the dimension of
embedding space. The head fh contributes to fair classification via having ŷi = arg max{fh(hi|θh)}, where
fh(hi|θh) ∈ R|Y| and ŷi ∈ Y. Instead of updating the entire classifier, the classifier body fb is pretrained
and fixed during the bias mitigation, where fb is pretrained to minimize the cross-entropy loss without
annotations of sensitive attributes. In such a manner, the mitigation of unfairness relies on debiasing the
classifier head fh. This strategy with a fixed classifier body during the bias mitigation has been proved to
be effective enough in existing works (Du et al., 2021; Slack et al., 2020).

2.2 Fairness Evaluation Metrics

In this work, we follow the existing work (Mehrabi et al., 2021; Gajane & Pechenizkiy, 2017; Chuang &
Mroueh, 2021; Du et al., 2021) to consider two metrics to evaluate fairness: Equality of Opportunity (Hardt
et al., 2016; Verma & Rubin, 2018) and Equalized Odds (R. et al., 2020; Verma & Rubin, 2018). These
two metrics are measured based on the true positive rate TPRA=a = P(Ŷ = 1|A = a, Y = 1) and the false
positive rate FPRA=a = P(Ŷ = 1|A = a, Y = 0) for a ∈ A.

Equality of Opportunity requires the unprivileged group (A = 0) and privileged groups (A = 1) have
equal probability of an instance from the positive class being assigned to positive outcome, which is defined
as P(Ŷ = 1|A = 0, Y = 1) = P(Ŷ = 1|A = 1, Y = 1). In this work, we apply EOP given as follows to
evaluate Equality of Opportunity,

EOP = TPRA=0

TPRA=1
= P(Ŷ = 1 | A = 0, Y = 1)

P(Ŷ = 1 | A = 1, Y = 1)
. (1)

Equalized Odds expects favorable outcomes to be independent of the sensitive attribute, given the ground-
truth prediction, which can be formulated as P(Ŷ = 1|A = 0, Y = y) = P(Ŷ = 1|A = 1, Y = y) for y ∈ Y.
To evaluate Equalized Odds, ∆EO combines the difference of TPR and FPR across two sensitive groups as

∆EO = ∆TPR + ∆FPR, (2)

where ∆TPR = TPRA=0 − TPRA=1 and ∆FPR = FPRA=0 − FPRA=1. Under the above definitions, EOP
close to 1 and ∆EO close to 0 indicate fair classification results.
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Figure 2: (a) The APOD pipeline alternates between POD and AIS. (b) Individual selection: The annotated and
unannotated instances from subgroup Uc̃

ã, where ã = 0 and c̃ = 1. (c) Each unannotated instance is connected to
an annotated instance determined by minxj ∈S ||hi − hj ||2 (marked as blue arrows). The red δ denotes the largest
distance pair which selects the best candidate for annotation.

3 Active Penalization Of Discrimination

In this section, we introduce the Active Penalization Of Discrimination (APOD) framework to mitigate al-
gorithmic bias under a limited annotation budget. As shown in Figure 2 (a), APOD integrates Penalization
Of Discrimination (POD) and Active Instance Selection (AIS) in a unified and iterative framework. Specif-
ically, in each iteration, POD focuses on debiasing the classifier head fh on the partially annotated dataset
{(xi, yi, ai) ∈ S} and {(xi, yi) ∈ U}, while AIS selects the optimal instance (x∗, y∗) from the unannotated
dataset U that can further promote bias mitigation. Sensitive attributes of the selected instances will be
annotated by human experts: (x∗, y∗) → (x∗, y∗, a∗). After that, these instances will be moved from the
unannotated dataset U ← U \ {(x∗, y∗)} to the annotated dataset S ← S ∪ {(x∗, y∗, a∗)} for debiasing the
classifier in the next iteration. The POD and AIS are introduced as follows.

3.1 Penalization Of Discrimination (POD)

POD learns a fair classifier head fh via bias penalization on both annotated instances {(xi, yi, ai) ∈ S} and
unannotated instances {(xi, yi) ∈ U}. To be concrete, POD considers a regularization term, consisting of
the true and false positive rate difference1, to balance the model performance on different subgroups. In this
way, given hi = fb(xi|θb), fh is updated to minimize the hybrid loss function given by

L =
N∑

i=1
l(hi, yi; θh) + λ(∆TPR2 + ∆FPR2), (3)

where l(hi, yi; θh) denotes the cross-entropy loss, and the term ∆TPR2 + ∆FPR2 penalizes the bias in fh to
improve fairness, controlled by the hyper-parameter λ.

However, Equation (3) is not feasible to debias fh in an end-to-end manner, since neither TPR nor FPR is
differentiable with respect to the parameters θh. It is thus necessary to reformulate ∆TPR and ∆FPR, which
involves the parameterization of true and false positive rate with respect to θh, respectively. For notation
convenience and without the loss of generality, we unify the formulation of true and false positive rates by

pa(y, c) = P(Ŷ = c | Y = y, A = a), (4)

1The combination of TPR and FPR is representative enough accross different fairness metrics. POD is flexible to use other
metrics as the regularizer for the bias mitigation.
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where we take y = 1, c = 1 to have pa(1, 1) = TPRA=a and y = 0, c = 1 to have pa(0, 1) = FPRA=a. To
parameterize pa(y, c) with respect to θh, we reformulate it as follows

pa(y, c) =
∑

(xi,yi,ai)∈Sy
a

1ŷi=c

|Sy
a |

=

∑
(xi,yi,ai)∈Sy

a

sgn(f c
h(hi)− f1−c

h (hi))

|Sy
a |

(5)

≈

∑
(xi,yi,ai)∈Sy

a

λ(f c
h(hi)− f1−c

h (hi))

|Sy
a |

≜ λp̃a(y, c), (6)

where sgn(x) = 0 for x < 0 and sgn(x) = 1 for x ≥ 0. Here we relax sgn(x) with a linear function2 λx in
the approximation of Equation (5) to make pa(y, c) differentiable with respect to θh; Sy

a = {(xi, yi, ai) ∈ S |
ai = a, yi = y} for a ∈ A, y ∈ Y; and f i

h(h) denotes element i of fh(h) for i ∈ Y. Based on the relaxed
regularization term, fh is updated to minimize the loss function given by

L = 1
N

N∑
i=1

l(hi, yi; θh) + λ
∑
y∈Y

[
p̃0(y, 1)− p̃1(y, 1)

]2
, (7)

where the estimation of cross-entropy 1
N

∑N
i=1 l(hi, yi; θh) includes both annotated and unannotated in-

stances; the regularization term [p̃0(y, 1) − p̃1(y, 1)]2 is calculated using the annotated instances; and the
hyper-parameter λ controls the importance of regularization.

3.2 Active Instance Selection (AIS)

In each iteration, AIS selects instances from the unannotated dataset U to annotate the sensitive attribute
values. The newly annotated instances are merged with the dataset for debiasing the classifier head in
subsequent iterations. The AIS process consists of two steps: (1) Group selection is to select the subgroup
Uc̃

ã = {(xi, yi) ∈ U | ai = ã, yi = c̃} on which the model has the worst performance; (2) Individual
selection is to select the optimal instance from Uc̃

ã, which can mostly expose the existing bias of the model
for promoting the bias mitigation in the next iteration.

3.2.1 Group Selection

The group selection is motivated by the observation that adding more instances to the subgroup having
the worst classification accuracy can improve the fairness by increasing its contribution to the average
loss (Hashimoto et al., 2018; Lahoti et al., 2020). Specifically, for group selection, the unannotated dataset
U is splitted into {Uc

a}a∈A,c∈Y , where Uc
a = {(xi, yi) ∈ U|ai = a, yi = c} denotes a subgroup of unannotated

instances. We estimate the classification accuracy pa(c, c) = P(Ŷ = c|A = a, Y = c) to evaluate f on
each subgroup Uc

a for a ∈ A and c ∈ Y, respectively, following Equation (4). In this way, the subgroup
Uc̃

ã = {(xi, yi) ∈ U|ai = ã, yi = c̃} which suffers from the worst accuracy is selected by

ã, c̃ = arg min
a∈A,c∈Y

p∗
a(c, c), (8)

where p∗
a(c, c) = pa(c, c)−(p0(c, c)+p1(c, c))/2 denotes the centralized classification accuracy after considering

the performance divergence of the classifier on different classes. For example, in Figure 1 (b), we select the
subgroup with the worst accuracy U1

0 which corresponds to the positive instances from group 0, due to the
fact that p∗

0(1, 1) < p∗
0(0, 0), p∗

1(0, 0), p∗
1(1, 1).

Note that p∗
a(c, c) cannot be estimated without the annotations of sensitive attribute. We thus learn another

classifier head fa : RM → R|A| to predict the sensitive attribute â = arg max fa(hi|θa) for the unannotated
instances xi ∈ U, where fa is updated on the annotated dataset S by minimizing the cross-entropy loss

θ∗
a = 1
|S|

∑
(xi,yi,ai)∈S

l(hi, ai; θa). (9)

2It also has other choices for the relaxation, e.g. sigmoid and tanh functions. The linear function is chosen for simplicity.
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3.2.2 Individual Selection

Individual selection aims to proactively select the most representative instances for annotation, which can
maximally promote bias mitigation. Since the classifier f has the worst accuracy on subgroup Uc̃

ã, reducing
the classification error on Uc̃

ã would improve fairness, where ã and c̃ are chosen through group selection in
Equation (8). The strategy of individual selection is to expand the annotated dataset to reduce δ-cover of
subgroup Uc̃

ã (Sener & Savarese, 2018). Specifically, the annotated dataset S enables δ-cover of the entire
dataset D if ∀xi ∈ D, ∃xj ∈ S such that ||xi − xj ||2 ≤ δ, where δ denotes the coverage radius given by

δ = max
xi∈D

min
xj∈S

||xi − xj ||2. (10)

Furthermore, it is observed that the generalization error of a model approaches the training error3 if the
coverage radius δ is small (Sener & Savarese, 2018). Following such scheme, we select the instance in subgroup
Uc̃

ã, which could decrease δ-coverage to reduce the classification error on Uc̃
ã. To be concrete, the distance

between xi and xj is measured by ||hi−hj ||2, where hi = fb(xi|θb) and hj = fb(xj |θb) are the embeddings
of xi and xi, respectively. We have the instance (x∗, y∗) selected for annotation following the max-min rule

(x∗, y∗) = arg max
(xi,yi)∈Uc̃

ã

min
(xj ,yj)∈S

||hi − hj ||2. (11)

The individual selection strategy is illustrated in Figures 2 (b) and (c), where δ reduction guides the individual
selection. The candidate instances in Uc̃

ã and annotated instances are shown in Figure 2 (b). The distances
between each candidate instance and annotated instances are measured in embedding space ||hi − hj ||2,
where the minimal one is marked as a blue arrow. The red instance marked by (x∗, y∗) in Figure 2 (c)
indicates the best instance candidate to be annotated.

Algorithm 1: Active Penalization Of Discrimination.
1 Input: initial annotated dataset S.
2 Output: classifier body fb and head fh.
3 θ∗

b , θ∗
h = arg min

∑N

i=1 l(xi, yi; θb, θh).
4 while within budget limit do
5 # Penalization Of Discrimination.
6 θ∗

h = POD(S, fb, fh)
7 # Active Instance Selection.
8 (x∗, y∗) = AIS(fb, fh)
9 S = S ∪ {(x∗, y∗, a∗)} and U = U \ {(x∗, y∗)}

Algorithm 2: Penalization Of Discrimination (POD)
1 Input: annotated dataset S, classifier body fb and

classifier head fh.
2 Output: fair classifier head f∗

h .
3 while not converged do
4 For a ∈ A and y ∈ Y, estimate p̃a(y, 1) given by

Equation (6).
5 Update the classifier head fh to minimize the

loss function in Equation (7).
6 return f∗

h

3.3 The APOD Algorithm

The details of APOD are summarized in Algorithm 1. Initially, APOD learns the biased fb and fh, and
randomly samples a small set of annotated instances S. In each iteration, APOD first learns fa to predict the
sensitive attribute of unannotated instances; then debiases fh via POD (line 5); after this, APOD selects the
optimal instance (x∗, y∗) for annotation via AIS (line 6) and merges the selected instance with the annotated
dataset (line 7); POD and AIS are given in Algorithms 2 and 3, respectively; the iteration stops once the
number of annotated instance reaches the budget.

3.4 Theoretical Analysis

We theoretically investigate the proposed APOD to guarantee that bias mitigation is globally achieved, as
shown in Theorem 1. We then demonstrate the effectiveness of AIS (both group selection and individual
selection) in Remark 1. The proof of Theorem 1 is given in Appendix A.

3The training error is less than generalization error in most cases.
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Algorithm 3: Active Instance Selection (AIS).
1 Input: classifier body fb and classifier head fh.
2 Output: the selected instance (x∗, y∗).
3 Update fa to minimize 1

|S|

∑
(xi,yi,ai)∈S l(hi, ai; θa).

4 Estimate the sensitive attribute âi = arg max fa(hi | θa) for xi ∈ U.
5 For a ∈ A and c ∈ Y, estimate the classification accuracy pa(c, c) = P(Ŷ = c|Â = a, Y = c) on subgroup Uc

a.
6 For a∈A and c∈Y, centralize pa(c, c) into p∗

a(c, c) by p∗
a(c, c) = pa(c, c) − p0(c,c)+p1(c,c)

2 .
7 Execute the group selection by

ã, c̃ = arg min
a∈A,c∈Y

p∗
a(c, c).

8 Execute the individual selection by

(x∗, y∗) = arg max
(xi,yi)∈Uc̃

ã

min
(xj ,yj ,aj )∈S

||hi − hj ||2.

Theorem 1. Assume the loss value on the training set satisfies 1
|S|

∑
(xi,yi,ai)∈S l(hi, yi; θh) ≤ ϵ4, and

l(h, y; θh) and fh satisfy Kl- and Kh-Lipschitz continuity5, respectively. The generalization loss difference
between unprivileged group and privileged group has the following upper bound with probability 1− γ,∣∣∣∣∫

X0

∫
Y

p(x, y)l(h, y; θh)dxdy−
∫

X1

∫
Y

p(x, y)l(h, y; θh)dxdy

∣∣∣∣
≤ ϵ + min

{√
−L2 log γ(2Nã)−1, (Kl + KhL)δã

}
, (12)

where ã=arg maxa∈A
∫

Xa

∫
Y p(x, y)l(h, y; θh)dxdy; Xa ={xi ∈ D|ai =a}; δã =maxxi∈Xãmin(xj ,yj ,aj)∈S||hi−

hj ||2; Nã = |{(xi, yi, ai)|ai = ã, (xi, yi, ai)∈S}|; L=max(xi,yi)∈U l(hi, yi; θh); and hi = fb(xi|θb).

In Theorem 1, the global fairness is formalized via considering the generalization error difference between
the unprivileged and privileged group as the relaxed fairness metric, and APOD contributes to the global
fairness via explicitly tightening the upper bound of the relaxed fairness metric. We demonstrate the details
that AIS can iteratively tighten the bound in Remark 1.
Remark 1. In each iteration of APOD, the group selection reduces the value of

√
−L2 log γ(2Nã)−1 by

merging a new instance (xi, yi, ai)|ai=ã to the annotated dataset S to increase the value of Nã = |{(xi, yi, ai)∈
S|ai = ã}|. Here, we adopt an approximation given by Equation (13) due to the negative relationship between
the accuracy and the generalization loss,

ã = arg min
a∈A

p∗
a(c, c) ≈ arg max

a∈A

∫
Xa

∫
Yc

p(x, y)l(h, y; θh)dxdy, (13)

where Yc ={y =c | y∈Y} for c∈Y. Meanwhile, the individual selection reduces the value of δã by selecting an
instance following Equation (11). With the combination of group selection and individual selection, APOD
contributes to the decline of min{

√
−L2 log γ(2Nã)−1, (Kl + KhL)δã}, which leads to tightening the upper

bound of the fairness metric in Equation (12).

Remark 1 reveals that both group selection and individual selection of the two-step AIS are effective in
tightening the upper bound of relaxed fairness metric. Compared to AIS, we consider two compositional
instance selection methods: one with group selection alone, where we randomly select an instance (x∗, y∗)
from the subgroup Uc̃

ã satisfying ã, c̃ = arg mina∈A,c∈Y p∗
a(c, c); and another with individual selection alone,

where an instance is selected via (x∗, y∗) = arg max(xi,yi)∈U min(xj ,yj ,aj)∈S ||hi−hj ||2 without the selection
of subgroup. According to Remark 1, the compositional methods merely enable to reduce one of the terms
(2Nã)−1 or δã in Equation (12), which are less effective than the two-step AIS as an unit.

4ϵ can be very small if the classifier head fh has been well-trained on the annotated dataset S.
5l(h, y; θh) and fh satisfy |l(hi, y; θh) − l(hj , y; θh)| ≤ Kl||hi − hj ||2 and |p(y|xi) − p(y|xj)| ≤ Kh||hi − hj ||2, respectively,

where the likelihood function p(y | xi) = softmax(fh(hi|θh)).
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4 Experiment

In this section, we conduct experiments to evaluate APOD, aiming to answer the following research questions:
RQ1: In terms of comparison with state-of-the-art baseline methods, does APOD achieve more effective
mitigation of unfairness under the same annotation budget? RQ2: Does APOD select more informative
annotations for bias mitigation than baseline methods? RQ3: How does the ratio of annotated instances
affect the mitigation performance of APOD? RQ4: Do both group selection and individual selection in the
AIS contribute to bias mitigation?

4.1 Experimental Setup

Datasets. The experiments are conducted on the MEPS, Loan default, German credit, Adult and CelebA
datasets. The details about the datasets including the size and spliting of the datasets, the predicted and
sensitive attributes, and the annotation budget are given in Appendix B.

Implementation Details. The experiment on each dataset follows the pipeline of pre-training, debias-
ing, and head-selection. Each step is shown as follows.

Pre-training: We pre-train fh(fb(• | θb) | θh) on the whole training set without sensitive annotations for 50
epochs; and pre-train fa(fb(• | θb) | θa) for 10 epochs using two randomly selected annotated instances from
each group. The pre-trained fb, fh and fa provide initial solutions of the classifier for the bias mitigation.

Debiasing: We adopt APOD to debias the classifier head fh(• | θh) for several iterations. Specifically,
the number of iterations equals the available annotation number, where APOD selects one instance for
annotation, debiases fh(• | θh) and retrains fa(• | θa) for 10 epochs in each iteration, and back up the
snapshot parameter θh and θa in the last epoch of each iteration. In the Pre-training and Debiasing stages,
the parameters θb, θh and θa are updated using the Adam optimizer with a learning rate of 10−3, mini-batch
size 256 and a dropout probability of 0.5. The DNN architectures and detailed hyper-parameter settings on
different datasets are given in Appendix C.

Head-selection: We use the trained fa(fb(• | θb) | θa) to generate the proxy sensitive annotations for the
validation dataset so that the fairness metrics can be estimated on the validation dataset. The optimal
debiased classifier head fh is selected to maximize the summation of accuracy and fairness score on the
validation dataset. We merge the selected fh with the pre-trained fb and test the classifier fh(fb(• | θb) | θh)
on the test dataset. This pipeline is executed five times to reduce the effect of randomness, and the average
testing performance and the standard deviation are reported in the remaining sections.

4.2 Bias Mitigation Performance Analysis (RQ1)

In this section, APOD is compared with state-of-the-art baseline methods of bias mitigation.

Baseline Methods. Vanilla: The classifier is trained to minimize the cross-entropy loss without bias
mitigation. Group DRO (Sagawa et al., 2019): Group DRO utilizes all sensitive information to minimize the
classification loss on the unprivileged group to reduce the performance gap between different sensitive groups.
Learning from Failure (LfF) (Nam et al., 2020): As a debiasing method that relies on proxy sensitive
annotations, LfF adopts generalized cross-entropy loss to learn a proxy annotation generator, and proposes
a re-weighted cross entropy loss to train the debiased model. Fair Active Learning (FAL) (Anahideh
et al., 2020): The instance selection in FAL is to maintain a subset of annotated instances for model training,
which is not guided by gradient-based model debiasing. More details are given in the Appendix D.

To have a fair comparison, we unify the splitting of datasets for all methods, and set the same annotation
budget for APOD and FAL. The mitigation performance is indicated by the fairness-accuracy curves (Chuang
& Mroueh, 2021), where the hyperparameter λ of APOD varies in the range of (0, 2], and the hyperparameter
setting of baseline methods can be referred to Appendix C. We give the fairness-accuracy curves of each
method on the five benchmark datasets in Figures 3 (a)-(f), respectively, where , and indicate the
bias mitigation relies on entire-, zero- or partial- annotation of the training dataset, respectively. Finally, we
follow existing work (Bechavod & Ligett, 2017) to evaluate mitigation performance using the fairness metric
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Figure 3: Accuracy-fairness curve; Algorithm: Vanilla training, Group DRO, LfF, FAL and APOD; Dataset:
(a) MEPS, (b) German credit, (c) Loan default, (d) Adult, (e) CelebA-wavy hair, (f) CelebA-young.

EOP on the MEPS, German credit and Loan default datasets, and using the fairness metric ∆EO on the
remaining datasets (Du et al., 2021). In general, we have the following observations:

• APOD outperforms FAL on the five datasets under the same annotation budget in terms of the mitigation
performance at the same level of accuracy. This demonstrates the superiority of APOD applied to the
scenarios with limited sensitive information.

• APOD needs very few (less than 3% of the dataset) sensitive annotations, and shows comparable mitigation
performance to Group DRO (Group DRO requires a fully annotated dataset). This indicates the capacity
of APOD for bias mitigation under a limitation of sensitive annotations.

• APOD outperforms LfF which relies on the proxy annotation of sensitive attributes. It indicates that the
limited human-annotated sensitive information in our framework is more beneficial than proxy annotations
on the entire dataset to bias mitigation.

4.3 Annotation Effectiveness Analysis (RQ2)

In this section, APOD is compared with a semi-supervised method and two state-of-the-art active learning
methods to demonstrate that AIS contributes to more informative sensitive annotations for the bias mitiga-
tion. Specifically, the Semi-supervised bias mitigation (SSBM) works based on a partially annoatated
dataset without instance selection during bias mitigation. The active learning-based methods adopt existing
selection strategies to replace the AIS in APOD including POD+Active learning with uncertainty sam-
pling (POD+AL) (Ren et al., 2020; Coleman et al., 2019), and POD+Active learning with Core-set
Approach (POD+CA) (Sener & Savarese, 2018).

Baselines Methods. Vanilla: The classifier is trained to minimize the cross-entropy loss without bias
mitigation. SSBM: The semi-supervised bias mitigation initially samples a data subset for annotations via
random selection, then adopts POD to debias the classifier on the partially annoatated dataset. POD+AL:
The AIS in APOD is replaced by active learning with uncertainty sampling, where an instance is selected
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Figure 4: Accuracy-fairness curve; Algorithm: Vanilla training, SSBM, POD + AL, POD + CA and APOD;
Dataset: (a) MEPS, (b) German credit, (c) Loan default, (d) Adult, (e) CelebA-wavy hair, (f) CelebA-young.

to maximize the Shannon entropy of model prediction. POD+CA: AIS is replaced by active learning with
core-set approach, where an instance is selected to maximize the coverage of the entire unannotated dataset.
More details on the baseline methods are given in the Appendix D.

To unify the experiment condition, all methods have the same annotation budget and have λ in the range
of (0, 2]. The fairness-accuracy curves on the five datasets are given in Figures 4 (a)-(f), respectively. Based
on the mitigation performance, we have the following observations:

• Compared to the semi-supervised method and the active learning-based methods, APOD achieves better
mitigation performance at the same level of accuracy, indicating the proposed AIS selects more informative
annotations than those methods for bias mitigation.

• Different from POD+AL and POD+CA which sample the annotated instances from the whole dataset
in each iteration, APOD interactively selects more representative instances from different subgroups in
different iterations, i.e. Uy

a for a ∈ A and y ∈ Y, which contributes to more effective bias mitigation.

• SSBM shows almost the worst mitigation performance among all of the methods, because the initially
randomly selected subset preserves the skewness of the original dataset, leading to non-optimal bias miti-
gation, which is consistent with our discussion in Section 1.

4.4 Annotation Ratio Analysis (RQ3)

We now evaluate the effect of the the annotation ratio (that is, the ratio of the annotated instances to
the training instances) on bias mitigation. Specifically, we tune λ in the range of (0, 2], and find that
λ = 0.5 and 0.1 can provide a good accuracy-fairness trade-off on the Adult and Loan default datasets,
respectively. In addition to the existing baseline methods, we also consider replacing AIS in APOD into
random selection (POD+RS) for comparison. Since one instance is selected for annotation in each iteration
of APOD, the Equalized Odds of the snapshot model in each iteration is estimated and plotted versus the

10



Under review as submission to TMLR

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Annotated instance ratio 1e 3

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
Eq

ua
liz

ed
 O

dd
s

1e 1

Vanilla
POD+RS
POD+AL
APOD

(a) Adult.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Annotated instance ratio 1e 3

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Eq
ua

liz
ed

 O
dd

s

1e 2

Vanilla
POD+RS
POD+AL
APOD

(b) Loan default.

0 1 2 3 4 5 6 7
Annotated instance ratio 1e 3

5

4

3

2

1

0

Eq
ua

liz
ed

 O
dd

s

1e 2

Vanilla
POD+Group selection
POD+Individual selection
APOD

(c) MEPS. Ablation result.

Figure 5: Effect of the annotation ratio to APOD, POD+RS and POD+AL on (a) Adult and (b) Loan default
dataset. (c) Mitigation performance of APOD, POD+Group selection and POD+Individual selection.
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Figure 6: Comparison of APOD and Random selection in terms of the annotated instances from different
groups. (a) Annotated instances by Random selection. (b) Annotated instances by APOD. (c) Annotated
positive instances (Y=1) by Random selection. (d) Annotated positive instances (Y=1) by APOD.

annotation ratio on the Adult and Loan default datasets in Figures 5 (a) and (b), respectively. We also give
the error bar to show the standard deviation of each method. Overall, we have the following observations:

• All methods achieve better mitigation performance as the annotation ratio increases due to the distribution
of the annotated set becoming consistent with the entire dataset.

• APOD shows better mitigation performance than POD+AL and POD+RS at the same level of annotation
ratios. This indicates the selection of annotated instances by AIS significantly leads to a reduction of bias.
In contrast, the bias mitigation of POD+RS merely derives from the increasing annotations.

• APOD shows significantly higher improvement in bias mitigation than the baseline methods even when
the annotation ratio is small, and enables the mitigation to converge to a higher level at smaller annotation
ratios (i.e., earlier) than baseline methods.

4.5 Ablation Study (RQ4)

To demonstrate the effectiveness of group selection and individual selection, APOD is compared with two
compositional methods: POD+Group selection and POD+Individual selection. The three methods are
tested with the same hyperparameter setting on the MEPS dataset. The value of the fairness metric is
given in Figure 5 (c). It is observed that both POD+Group selection and POD+Individual selection show
considerable degradation in mitigation performance compared to APOD. It empirically validates Remark 1
that both group selection and individual selection in AIS contribute to tightening the upper bound of the
relaxed fairness metrics, thus contributing to bias mitigation.
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4.6 Visualization of Annotated Instances

We visualize the tSNE embeddings of the annotated instances to trace the active instance selection of
APOD. Specifically, Figures 6 (a)-(d) illustrate the the tSNE embeddings of the annotated instances selected
by APOD and random selection on the MEPS and Adult datasets, respectively. We use different colors
to indicate different groups, where positive instances (Y=1) are less than negative ones (Y=0), and the
unprivileged group (A=0) is smaller than the privileged group (A=1). According to Figures 6 (a)-(d), we
have the following observations:

• The annotated instances of Random selection in Figures 6 (a) and (c) are consistent with Figure 1 (b),
which follows the skewed distribution of original dataset, and leads to non-optimal mitigation of bias.

• The annotated instances of APOD in Figures 6 (b) and (d) are consistent with the optimal annotating in
Figure 1 (c), where the annotated subset shows less skewness compared to the original distribution.

• APOD selects more annotated instances from the unprivileged group {(xi, yi, ai)|yi = 1, ai = 0} than
random selection. In such a manner, APOD improves the contribution of unprivileged group to the
average loss, which contributes to the bias mitigation.

5 Conclusion

In this paper, we propose APOD, an iterative framework for active bias mitigation under the limitation of
sensitive annotations. In each iteration, APOD guides the active instance selection to discover the optimal
instance for annotation, and maximally promotes bias mitigation based on the partially annotated dataset
through penalization of discrimination. Theoretical analysis indicates that APOD contributes to effective
bias mitigation via bounding the relaxed fairness metrics. Experiment results further demonstrate the
effectiveness of APOD on five benchmark datasets, where it outperforms baseline methods under the same
annotation budget and has a desirable outcome of bias mitigation even when most of the sensitive annotations
are unavailable. This also indicates its benefit to real-world applications, especially when the disclosed or
available sensitive information is very limited.

Broader Impact Statement

Machine learning systems require a mitigation of algorithmic bias to have fair decisions in the high-stake
scenarios, e.g. loan approvals, college admissions, and criminal risk assessments, etc. However, the sensitive
annotation may be related with user private information in the high-stake scenarios. It may increase the
risk of user privacy being leaked to use a fully annotated dataset for bias mitigation. This work proposes
a solution to debias a machine learning algorithm using less 3% sensitive annotations, solving the fairness
problem in the high-stake scenarios while protecting the sensitive information of most users. It remains a
challenge to take advantage of various modalities of expert knowledge to improve bias mitigation.
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Appendix

A Proof of Theorem 1

In this section, we first propose Corollary 1, then adopt the corollary to prove Theorem 1.
Corollary 1. For p(y), f(y), g(y) > 0, we have∫

Y
p(y)f(y)dy ≤

∫
Y

q(y)f(y)dy +
∫

Y
|p(y)− q(y)|f(y)dy∫

Y
p(y)f(y)dy ≤

∫
Y

p(y)g(y)dy +
∫

Y
p(y)|f(y)− g(y)|dy

Proof. ∫
Y

p(y)f(y)dy =
∫

Y
q(y)f(y)dy +

∫
Y

[p(y)− q(y)]f(y)dy

≤
∫

Y
q(y)f(y)dy +

∫
Y
|p(y)− q(y)|f(y)dy∫

Y
p(y)f(y)dy =

∫
Y

p(y)g(y)dy +
∫

Y
p(y)[f(y)− g(y)]dy

≤
∫

Y
p(y)g(y)dy +

∫
Y

p(y)|f(y)− g(y)|dy

After proving Corollary 1, we return to prove the theorem.
Theorem 1. Assume the loss value on the training set satisfies 1

|S|
∑

(xi,yi,ai)∈S l(hi, yi; θh) ≤ ϵ6, and
l(h, y; θh) and fh satisfy Kl- and Kh-Lipschitz continuity7, respectively. The generalization loss difference
between unprivileged group and privileged group has the following upper bound with probability 1− γ,∣∣∣∣∫

X0

∫
Y

p(x, y)l(h, y; θh)dxdy−
∫

X1

∫
Y

p(x, y)l(h, y; θh)dxdy

∣∣∣∣
≤ ϵ + min

{√
−L2 log γ(2Nã)−1, (Kl + KhL)δã

}
, (14)

where ã=arg maxa∈A
∫

Xa

∫
Y p(x, y)l(h, y; θh)dxdy; Xa ={xi ∈ D|ai =a}; δã =maxxi∈Xãmin(xj ,yj ,aj)∈S||hi−

hj ||2; Nã = |{(xi, yi, ai)|ai = ã, (xi, yi, ai)∈S}|; L=max(xi,yi)∈U l(hi, yi; θh); and hi = fb(xi|θb).

Proof. According to the upper bound of generalization error, the generalization error for group x ∈ Xa for
∀a ∈ A is bounded with probability 1− γ,

ga =
∫

Xa

∫
Y

p(x, y)l(h, y; θh)dxdy≤ϵ +
√
−L2 log γ(2Na)−1,

where L = max(xi,yi)∈U l(hi, yi; θh). Moreover, we consider the upper bound of absolute gap |g0 − g1| ≤
maxa∈A ga. The generalization error difference between the two groups is bounded with probability 1− γ as
follow, ∣∣∣∣ ∫

X0

∫
Y

p(x,y)l(h, y; θh)dxdy−
∫

X1

∫
Y

p(x,y)l(h, y; θh)dxdy

∣∣∣∣ ≤ ϵ +
√
−L2 log γ(2Nã)−1, (15)

where ã = arg maxa∈A
∫

Xa

∫
Y p(x, y)l(h, y; θh)dxdy.

6ϵ is small if the classifier head fh has been well-trained on the annotated dataset S.
7l(h, y; θh) and fh satisfy |l(hi, y; θh) − l(hj , y; θh)| ≤ Kl||hi − hj ||2 and |p(y|xi) − p(y|xj)| ≤ Kh||hi − hj ||2, respectively,

where the likelihood function p(y | xi) = softmax(fh(hi|θh)).
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To prove the second bound of the generalization error difference, let N (xi) denote the nearest neighbour of
xi ∈ X which belongs to the annotated dataset, i.e. N (xi) = arg min(xj ,yj ,aj)∈S ||hj − hi||2; let hN

i denote
the embedding of N (xi); and let dxi denote the distance between xi and N (xi) in the embedding space,
i.e. dxi

= min(xj ,yj ,aj)∈S ||hi − hj ||2. Accoding to Corollary 1, with p(y) = p(y|xi), q(y) = p(y|N (xi)) and
f(y) = l(hi, y; θh), the generalization error can be bounded by∫

Y
p(y|xi)l(hi, y; θh)dy ≤

∫
Y

p(y|N (xi))l(hi, y; θh)dy +
∫

Y

∣∣p(y|xi)− p(y|N (xi))
∣∣l(hi, y; θh)dy. (16)

Note that the classifier head fh satisfies Kh-Lipschitz continuity |p(y|xi)− p(y|N (xi))| ≤ Kh|||hi−hN
i ||2 =

Khdxi
and l(h, y; θh) ≤ L, the second term in the right-side of Equation (16) is bounded by∫

Y

∣∣p(y|xi)− p(y|N (xi))
∣∣l(hi, y; θh)dy ≤ KhLdxi . (17)

Furthermore, taking p(y)=p(y|N (xi)), f(y) = l(hi, y; θh) and g(y) = l(hN
i , y; θh) into Corollary 1, we have

the first term in the right-side of Equation (16) can be bounded by∫
Y
p(y|N (xi))l(h,y;θh)dy≤

∫
Y
p(y|N (xi))l(hN

i , y; θh)dy+
∫

Y
p(y|N (xi))|l(h,y;θh)−l(hN

i , y; θh)|dy ≤ ϵ+Kldxi
,

(18)
where we have

∫
Y p(y|N (xi))l(hN

i , y; θh)dy ≤ ϵ due to the upper bound of training error; and we have∫
Y

p(y|N (xi))|l(hi, y; θh)− l(hN
i , y; θh)|dy ≤ Kldxi

, (19)

due to the Kl-Lipschitz continuity of the loss function.

Taking Equations (17) and (18) into Equation (16), the generalization error on group x ∈ Xa can be bounded
by ∫

Xa

∫
Y

p(x, y)l(hi, y; θh)dydx ≤ ϵ + (Kl + KhL)δa, (20)

where δa = maxxi∈Xa
dxi

= maxxi∈Xa
minxj∈S ||hi − hj ||2 denotes the max-min distance between

the unannotated and annotated instances in the embedding space. Note that a ∈ A, we take ã =
arg maxa∈A

∫
Xa

∫
Y p(x, y)l(h, y; θh)dydx. The generalization error difference between the two groups can

be bounded by∣∣∣∣ ∫
X0

∫
Y

p(x, y)l(h, y; θh)dxdy−
∫

X1

∫
Y

p(x, y)l(h, y; θh)dxdy

∣∣∣∣ ≤ ϵ + (Kl + KhL)δã. (21)

Combine Equation (21) with (15), we have the generalization error gap between group x ∈ X0 and group
x ∈ X1 bounded as follow with probability 1− γ,∣∣∣∣ ∫

X0

∫
Y

p(x, y)l(h, y; θh)dxdy −
∫

X1

∫
Y

p(x, y)l(h, y; θh)dxdy

∣∣∣∣
≤ ϵ + min

{√
−L2 log γ(2Nã)−1, (Kl + KhL)δã

}
.

B Details about the Datasets

The experiments are conducted on the MEPS8, Loan default9, German credit10, Adult11 and CelebA12

datasets to demonstrate the proposed framework is effective to mitigate the socially influential bias such as
8https://github.com/Trusted-AI/AIF360/tree/master/aif360/data/raw/meps
9https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

10https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
11http://archive.ics.uci.edu/ml/datasets/Adult
12http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 1: Details about the datasets.

Adult MEPS Loan default German credit CelebA
Domain Social Medical Financial Financial Social
Data formate Tabular Tabular Tabular Tabular Image
Predicted attribute Salary Utilization Defaulting Credit Wavy hair, Young
Sensitive attribute Gender Race Age Age Gender
Number of instance 30162 15830 30000 4521 5000
Number of attribute 13 41 8 16 160×160
Train, Validate, Test splitting 0.25, 0.25, 0.5 0.25, 0.25, 0.5 0.25, 0.25, 0.5 0.25, 0.25, 0.5 0.25, 0.25, 0.5
Annotation budget 4‰ 8‰ 4‰ 2% 3%

Table 2: Detailed hyper-parameter setting.

Adult MEPS Loan default German Credit CelebA-hair CelebA-young
Classifier body fb Perceptron Perceptron Perceptron Perceptron ResNet-18 ResNet-18
Classifier head fh 2-layer MLP 3-layer MLP 2-layer MLP 3-layer MLP 3-layer MLP 3-layer MLP
Classifier head fa Perceptron Perceptron Perceptron Perceptron Perceptron Perceptron
Embedding dim M 64 32 64 32 256 256
Hidden-layer dim 32 32 32 32 64 128

the gender, race or age bias. The statistics of the datasets is given in Table 1. The details about the datasets
are described as follows.

• MEPS: The task on this dataset is to predict whether a person would have a high or low utilization
based on other features (region, marriage, etc.). The Race of each person is the sensitive attribute, where
the two sensitive groups are white and non-white (Cohen, 2002). The vanilla model shows discrimination
towards the non-white group. The annotation budget is 8‰ 13.

• Loan default: The task is to predict whether a person would default the payment of loan based on
personal information (Bill amount, education, etc.), where the sensitive attribute is age, and the two
sensitive groups are people above 35 and those below 35 (Bellamy et al., 2018). The vanilla trained model
shows discrimination towards the younger group. The annotation budget is 4‰.

• German credit: The goal of this dataset is to predict whether a person has good or bad credit risks based
on other features (balance, job, education, etc.). Age is the sensitive attribute, where the two sensitive
groups are people older than 35 and those not older than 35 (Dua & Graff, 2017b). The vanilla trained
model shows discrimination towards the younger group. The annotation budget is 2%.

• Adult: The task for this dataset is to predict whether a person has high (more than 50K/yr) or low
(less than 50K/yr) income based on other features (education, occupation, working hours, etc.). Gender
is considered as the sensitive attribute for this dataset (Dua & Graff, 2017a). Thus, we have two sensitive
groups male and female. The vanilla trained classification model shows discrimination towards the female
group. The annotation budget is 4‰.

• CelebA: This is a large-scale image dataset of human faces (Liu et al., 2015). We consider two tasks
for this dataset: i) identifying whether a person has wavy hair; ii) identifying whether a person is young.
Gender is the sensitive feature, where the two sensitive groups are male and female. The vanilla trained
model shows discrimination towards male in task i) and female in tasks ii), respectively. The annotation
budget is 3%.

C Detailed Hyper-parameter Setting

The detailed hyper-parameter setting is given in Table 2.

13The cost of annotating 8‰ of training instances is affordable.
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D Details about the Baseline Methods

We introduce details on the baseline methods in this section.

• Group DRO: Group DRO maintains a distribution q = [q0, q1] over the sensitive groups a ∈ A, and
updates the classifier f(• | θf ) via the min-max optimization given by

θf = arg min
θ

max
q

∑
a∈A

qa

Na

∑
(xi,yi)∼Da

l(xi, yi; θ), (22)

where Da = {xi, yi | ai = a} depends on fully-annotated training set to generate the sensitive groups.

• FAL: Original FAL depends on the annotation of sensitive attribute to have active instance selection.
Hence, we consider an improved version of the original framework to adapt to the problem in this work.
Specifically, our improved FAL updates the classifier to minimize the cross-entropy loss on the annotated
dataset. The annotated instances are selected by

(x∗, y∗) = arg max
(x,y)∈U

αACC(ft) + (1−α)[F(ft)−F(ft−1)], (23)

where ft denotes the classifier learned on the annotated dataset S; F(ft) denotes the fairness score of
classifier ft, which is the value of Equalized Odds in our experiment; α controls the trade-off between
accuracy and fairness; and we have α in the range of [0.5, 1] in our experiments.

• LfF: LfF adopts generalized cross entropy loss to learn the biased model fB to provide proxy annotation,
and simultaneously learn the debiased model fD towards minimizing the cross entropy re-weighted by the
proxy annotation. fB and fD are updated by

θ∗
B = min

θB

N∑
i=1

1− p(xi; θB)q

q
,

θ∗
D = arg min

θD

N∑
i=1

l(xi, ŷ; θB)l(xi, ŷ; θD)
l(xi, ŷ; θB) + l(xi, ŷ; θD) ,

(24)

where we control the hyper-parameter q in the range of [2.5, 3] in our experiments.

• SSBM: This method initially randomly select a subset for annoatation, then adopts POD for the bias
mitigation.

• POD+RS: Different from SSBM, this method randomly selects an annotated instance and adopts POD
for bias mitigation in each iteration. The random instance selection and POD executes iteratively. This
method is designed for studying the effect of annotation ratio to the mitigation performance.

• POD+AL: This method adopts POD for bias mitigation. Different from APOD, the annotated instances
are selected by uncertainty sampling. Specifically, we calculate the Shannon entropy of the model prediction
for each instance in the unannotated dataset. For xi ∈ U, we have the entropy given by

H(xi) = −pŷi=1 log2 pŷi=1 − pŷi=0 log2 pŷi=0. (25)

where [pŷi=1, pŷi=0] = softmax[f(hi|θh)]; and f(hi|θh) ∈ Y. The instance for annotation is selected by

(x∗, y∗) = arg max
(xi,yi)∈U

H(xi). (26)

• POD+CA: This method adopts POD for bias mitigation. Different from APOD, POD+CA selects the
instance for annotation following the max-min rule given by

(x∗, y∗) = arg max
xi∈U

min
xj∈S

||hi − hj ||2, (27)

where S and U denote the annotated and unannotated datasets, respectively.
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