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ABSTRACT

Rigorousness and clarity are both essential for interpretations of DNNs to engen-
der human trust. Path methods are commonly employed to generate rigorous at-
tributions that satisfy three axioms. However, the meaning of attributions remains
ambiguous due to distinct path choices. To address the ambiguity, we introduce
Concentration Principle, which centrally allocates high attributions to indispens-
able features, thereby endowing aesthetic and sparsity. We then present SAMP, a
model-agnostic interpreter, which efficiently searches the near-optimal path from
a pre-defined set of manipulation paths. Moreover, we propose the infinitesimal
constraint (IC) and momentum strategy (MS) to improve the rigorousness and op-
timality. Visualizations show that SAMP can precisely reveal DNNs by pinpoint-
ing salient image pixels. We also perform quantitative experiments and observe
that our method significantly outperforms the counterparts. 1

1 INTRODUCTION

The lack of transparency in deep neural networks (DNNs) hinders our understanding of how these
complex models make decisions (Bodria et al., 2021; Zhang & Zhu, 2018; Gilpin et al., 2018),
which poses significant risks in safety-critical applications like autonomous driving and healthcare.
Numerous interpretation methods (Zeiler & Fergus, 2014; Bach et al., 2015; Zhou et al., 2016; Sel-
varaju et al., 2017) have been proposed to shed light on the underlying behavior of DNNs. These
methods attribute model outputs to specific input features to reveal the contributions. In this way,
attribution methods serve as valuable debugging tools for identifying model or data mistakes. How-
ever, despite these efforts, users often lack confidence in attributions, which can be blamed on lack
of rigorousness and clarity in current methods. Attributions are influenced by three types of arti-
facts (Sundararajan et al., 2017), namely data artifacts, model mistakes, and interpretation faults. To
enhance user trust, it is crucial to sever the impact of the last factor.

One way to enhance the reliability of interpretations is ensuring their theoretical rigorousness. Given
a complex mapping function f : X 7→ R, we define the target point xT ∈ X and the baseline point
x0. Interpretations aim at explaining how the baseline output y0 gradually becomes yT when base-
line x0 changes to xT . Early interpretation methods (Selvaraju et al., 2017; Montavon et al., 2018)
employ Taylor expansion on the baseline as yT = y0 +∇f(x0)T (xT − x0) + R1(x

T ). However,
the local linear approximation can hardly interpret nonlinear models due to non-negligible errors of
the Lagrangian remainder R1(x

T ), which makes attributions less convincing. An intuitive solution
is to split the path from x0 to xT into small segments, each of which tends to be infinitesimal. In this
formulation, the variation ∆y can be formulated in integral form as ∆y = yT −y0 =

∫
l
∇f(x)T dx.

The attributions ai of each feature xi is gradually accumulated through the line integral, which is
commonly referred to as path methods (Friedman, 2004; Sundararajan et al., 2017; Xu et al., 2020;
Kapishnikov et al., 2021). Game theory research (Friedman, 2004) has proved that path methods are
the only method satisfying three axioms, namely dummy, additivity, and efficiency.

Ensuring rigorousness alone is insufficient for convincing interpretations. Distinct path choices in
existing path methods highly impact attributions and lead to ambiguity in interpretations. Integrated
Gradients (IG) (Sundararajan et al., 2017) adopts a simple straight line from x0 to xT for symmetry.
BlurIG (Xu et al., 2020) defines a path by progressively blurring the data xT adhering to additional
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scale-space axioms. GuidedIG (Kapishnikov et al., 2021) slightly modifies the straight line to by-
pass points with sharp gradients. However, the question of which path choice is better remains
unanswered. The lack of research on the optimal path selection hampers the clarity of attributions.

Input IG SAMP (Ours)

Figure 1: we propose SAMP to eliminate
ambiguity of attributions by path methods,
which can precisely pinpoint important pix-
els and produce clear saliency maps. Quanti-
tative results show a consistent improvement
in Deletion/Insertion metrics.

To the best of our knowledge, we are the first to
consider the optimal path for clarity. To start with,
we define the Concentration Principle. This prin-
ciple guides the interpreter to identify the most es-
sential features and allocate significant attributions
to them, resulting in aesthetic and sparse interpre-
tations. Subsequently, we propose SAMP (Salient
Manipulation Path), which greedily searches the
near-optimal path from a pre-defined set of manip-
ulation paths. Moreover, we constrain the l1-norm
of each manipulation step below an upper bound to
ensure the infinitesimal condition for the line inte-
gral and employ the momentum strategy to avoid
converging to local solutions. Visualizations on
MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al.,
2009), and ImageNet (Deng et al., 2009) demon-
strate the superiority of SAMP in discovering salient
pixels. We also conduct quantitative experiments
and observe a clear improvement compared with other interpretation methods as shown in Figure 1.
We highlight our contributions as follows:

• Concentration Principle for Clear Attributions. We introduce Concentration Principle,
which enhances the clarity of attributions by prioritizing sparse salient features.

• A Model-agnostic Interpreter, SAMP. The proposed interpreter SAMP is able to effi-
ciently discovers the near-optimal path from a pre-defined set of manipulation paths.

• Two Play-and-plug Auxiliary Modules. We design infinitesimal constraint (IC) and the
momentum strategy (MS) to ensure rigorousness and optimality.

• Consistent Improvement in Explainability. Qualitative and quantitative experiments
show SAMP pinpoints salient areas accurately and consistently outperforms counterparts.

2 RELATED WORK

Considerable attempts expect to reveal the mysterious veil of DNNs by different techniques. Ad-hoc
methods (Zhang et al., 2018b; Liang et al., 2020; Agarwal et al., 2021; Wan et al., 2020; Wang &
Wang, 2021; Shen et al., 2021; Barbiero et al., 2022) try to observe or intervene in latent variables
of DNNs, which rely on specific model types. On the contrary, post-hoc methods (Simonyan et al.,
2014; Bach et al., 2015; Zhou et al., 2016; Selvaraju et al., 2017; Lundberg & Lee, 2017) ignore con-
crete implementations and focus on imitating the outside behavior. According to how attributions are
generated, we mainly divide post-hoc methods into two categories: perturbation methods (Ribeiro
et al., 2016; Fong & Vedaldi, 2017; Petsiuk et al., 2018) and back-propagation methods (Zeiler &
Fergus, 2014; Bach et al., 2015; Selvaraju et al., 2017).

Perturbation Methods. An intuitive idea for attributions is to perturb the inputs and observe the
output variations. Occlusion method (Zeiler & Fergus, 2014) simply covers up partial areas of input
and examines the score change. LIME (Ribeiro et al., 2016) interprets the local space around the
prediction by linear regression. Prediction difference analysis (Zintgraf et al., 2017) describes the
output variation from a probabilistic perspective. Meaningful perturbation (Fong & Vedaldi, 2017)
aims at discovering the deletion regions with compact information, which is further extended by
RISE (Petsiuk et al., 2018) by the weighted average of multiple random masks. DANCE (Lu et al.,
2021) introduces a subtle perturbation to input without influence on internal variables. Most pertur-
bation methods require multiple iterations, which leads to a heavy computation burden. Moreover,
most of these methods lack rigorous axiomatic guarantees.

Back-propagation Methods. Another kind of interpretations recovers signals or generates attri-
butions by back-propagating information layer by layer. Early research (e.g, Deconvolution (Zeiler
& Fergus, 2014) and Guided-BP (Springenberg et al., 2015)) reverses the forward procedure and
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recover active signals in input space. Recent attempts generate attributions by propagating gradi-
ents (Shrikumar et al., 2016), relevance (Bach et al., 2015), and difference-from-reference (Shriku-
mar et al., 2017). Most methods choose gradients as the propagation intermediary for ease. Grad-
CAM (Selvaraju et al., 2017) and its variants (Chattopadhay et al., 2018) directly interpolate gradi-
ents from the top layer to input size as the saliency map. SmoothGrad (Smilkov et al., 2017) aims at
removing noise by averaging multiple gradients at neighbor points. The first-order Taylor decompo-
sition (Montavon et al., 2018) assigns attributions by linearization with the gradient around the given
root point. Since the difference between the data and the root is often not infinitesimal, expansion
based on a single-point gradient results in a large error (Lagrangian remainder), which damages the
rigorousness of interpretations. Path methods (Sundararajan et al., 2017; Xu et al., 2020; Kapish-
nikov et al., 2021) fix this issue by dividing the integral path into small segments. Game theory
guarantees that path methods are the only method satisfying three fundamental axioms (see Propo-
sition 1 in Friedman et al. (Friedman, 2004)). However, different path choices (e.g., straight line
in space (Sundararajan et al., 2017) or frequency (Xu et al., 2020) and guided path along flat land-
scape (Kapishnikov et al., 2021)) indicate distinct attribution allocations, which makes the meaning
of attribution ambiguous. Therefore, we introduce the Concentration Principle and discuss how to
obtain a near-optimal path through the proposed SAMP method.

3 METHOD

In this section, we first summarize the canonical path methods (Friedman, 2004). Then we define
Concentration Principle in Section 3.2. Subsequently, we propose the Salient Manipulation Path
and derive an efficient algorithm under Brownian motion assumption in Section 3.3. Finally, we
introduce infinitesimal constraint (IC) for rigorous line integrals and momentum strategy (MS) to
escape from local sub-optimal solutions in Section 3.4.

Concentration Principle

Gradient Direction
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Figure 2: (a) Concentration Principle prioritizes attributions (green point A) with large distance from
mean point P . (b) SAMP chooses the directions with max gradient projection (colored in red), and
attributions allocated along this path mainly concentrate on salient pixels.

3.1 PRELIMINARY: PATH METHOD

Path methods (Friedman, 2004) for additive cost-sharing methods are derived from Aumann-
Shapley (Aumann & Shapley, 1974), which is first introduced to machine learning by IG (Sundarara-
jan et al., 2017). We define the many-to-one mapping as f : X → R, where input xT ∈ X has d fea-
tures and yT denotes its output. An intuitive idea of interpreting models is to analyze how the output
y0 turns to yT when gradually changing baseline x0 to xT . Considering the difference between x0

and xT is not infinitesimal, the naive Taylor decomposition yT = y0+∇f(x0)T (xT−x0)+R1(x
T )

suffers from large Lagrangian remainder R1(x
T ). Therefore, it is a natural improvement to divide

path from x0 to xT into multiple segments, which should be small enough. Assuming the model f
is differentiable, the output variation ∆y can be expanded as

∆y = yT − y0 =

∫ 1

ρ=0

∂f(γ(ρ))

∂γ(ρ)

∂γ(ρ)

∂ρ
dρ, (1)

where γ(ρ) is path function x = γ(ρ) and γ(0) = x0,γ(1) = xT . We define each feature’s
attribution as ai and ∆y equals sum of ai (namely completeness (Sundararajan et al., 2017)):

ai ≜
∫ 1

ρ=0

∂f(γ(ρ))

∂γi(ρ)

∂γi(ρ)

∂ρ
dρ, ∆y =

d∑
i=1

ai. (2)
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Game theory research (Friedman, 2004) has proved that the path method is the only interpretation
method satisfying three fundamental axioms (i.e., completeness, additivity, and dummy). However,
choices of path function γ(ρ) highly impact the attribution allocation, which hampers the clarity of
the interpretations. In this paper, we explore an explicit selection criterion among candidate paths.

3.2 CRITERION AND CANDIDATE SET

Existing path methods lack clarity due to various path choices. In Eq. (2), the attribution a is a
function of the selected path γ as a = g(γ) given xT ,x0, f . However, conventional interpreta-
tions often scatter the attributions over all pixels (Kapishnikov et al., 2021; Smilkov et al., 2017)
due to unpredictable distractors. To address this, we propose the Concentration Principle, which
introduces a selection preference for the allocation of attributions. Instead of scattering attributions
across all features, we aim to concentrate them centrally on the indispensable features.
Definition 1 (Concentration Principle). A path function γ∗ is said to satisfy Concentration Prin-
ciple if the attribution a achieves the max Var(a) = 1

d

∑d
i=1(ai − ā)2.

Remark. Considering
∑d

i=1 ai is a constant C = ∆y, the variance of a could depict the concen-
tration degree. For a 3-feature case, this principle prefers a = (0.7, 0.2, 0.1) to (0.4, 0.3, 0.3). For
image input in Figure 1, this principle achieves aesthetic and sparsity. Our method clearly pinpoints
important pixels while IG (Sundararajan et al., 2017) spreads attributions over most pixels. We also
conduct a counting model example in Appendix A.2 to illustrate the potential challenge.

Under this principle, we explore to formulate a tractable optimization problem. To maintain consis-
tency in our formulation, we introduce the start point xS and the end point xE . To approximate the
line integral in Eq. (1), we use Riemann sum by dividing the path into n segments as:

∆y =

n∑
k=1

∇f(xk)T dxk, (3)

where dxk is the kth segment along the path and xk = xS +
∑k

l=1 dx
l. Analogous to Eq. (2),

we calculate each attribution ai as ai =
∑n

k=1(∇f(xk))i(dx
k)i. However, it is intractable to

directly find the optimal path from the infinite set Γ of all path functions. Thus we construct a
finite Manipulation Path set Γs ⊆ Γ, along which we manipulate images by inserting or deleting
s = d/n pixels per step. The formal definition is as follows:
Definition 2 (Manipulation Path). The kth segment dxk of a manipulation path γ ∈ Γs satisfies

(dxk)i =

{
xE
i − xk

i , i ∈ Ωk

0, Otherwise
, (4)

where |Ωk| = s and all Ωk consist of a non-overlapping partition of all pixel indices which satisfy
that ∀k ̸= l, Ωk

⋂
Ωl = ∅ and

⋃n
k=1 Ωk = {1, · · · , d}.

Remark. Γs is a finite set and |Γs| equals to d!/(s!)n.
Following Definitions 1 and 2, we formulate the optimal path selection problem as follows:

γ∗ = argmax
γ∈Γs

V ar(a) =
1

d

d∑
i=1

(
ai −

C

d

)2

. (5)

Solving Equation 5 directly is computationally challenging. To overcome this, we propose SAMP
algorithm, which leverages Brownian motion assumption to efficiently search for the optimal path.

3.3 SALIENT MANIPULATION PATH

The intuition of Eq. (5) is to enlarge the distance Dap between a (limited in the hyperplane∑d
i=1 ai = C) and the center point (C/d, · · · , C/d) in Figure 2a. We need to introduce prior

knowledge to accelerate the search process. Without loss of generality, we set s = 1 for ease of
derivation. Since the attributions are assigned sequentially, we regard the allocation process as a
stochastic process 2. We define the partial sum uk as

∑k
i=1 ai and make the following assumption:

2We use lowercase letters to denote random variables for consistency.
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Assumption 1 (Allocation as Brownian motion). We assume the additive process {ut, t ≥ 0} as
the Brownian motion and ut ∼ N (0, σt) if without any constraint condition.

We now explain the rationality of the assumption. In the model-agnostic case, we consider the input
space to be isotropic. If without any constraint condition, we assume E(ai) = E(dyi) = 0 with
randomly sampled step dxi and ai, aj for any i ̸= j are independent. It is important to note that we
do NOT directly assume the ai, aj as conditional independent given the condition

∑d
i=1 ai = C.

Then we assume that every ai complies with a Gaussian distribution (i.e., ai ∼ N (0, σ)). If we
subdivide time infinitely, the additive process {ut, t ≥ 0} tends to a Brownian motion.
Proposition 1. By Brownian motion assumption, the conditional joint distribution P (ã|C) =
P (a1, · · · , ad−1|ud = C) is a multivariate Gaussian distribution as:

P (ã|C) =
1

(2π)
d−1
2
√

|Σ|
exp

{
−1

2

∥∥∥∥ã− C

d
1

∥∥∥∥2
Σ−1

}
, (6)

where Σ = σ(I − J
d ) ∈ R(d−1)×(d−1) and J is all-one matrix.

Remark. See proof in Appendix A.1. Eq. (6) reveals that the conditional distribution is centered
at point P in Figure 2a. For any i ̸= j, Cov(ai, aj |ud = C) = −σ/d indicates that allocating
more to ai results in less to aj . Moreover, E(uk|ud = C) = kC/d reveals that a randomly selected
path tends to produce a linear variation in output. Surprisingly, we observe the curve shapes of
IG (Sundararajan et al., 2017), XRAI (Kapishnikov et al., 2019), and Grad-CAM (Selvaraju et al.,
2017) in Figure 1 are nearly straight lines, which is consistent with theoretical analysis.

Algorithm 1: The SAMP++ algorithm.

Input: Start point xS ; End point xE ; Upper
bound η; Momentum coefficient λ.

Output: Attribution a; Path segments D.

1 Reset k = 0 and set of path segments D = ∅;
2 Initialize xk = xS , ak = 0, gk = ∇f(xS);
3 while xk ̸= xE do
4 Increase index k by 1;
5 Update gk = λgk−1 + (1− λ)∇f(xk);
6 Compute αj = gkj (x

E
j − xk

j ) if xE
j ̸= xk

j
and −∞ otherwise;

7 Construct Mk = {i | i ∈ tops{αj}};
8 Compute (dxk)i = xE

i − xk
i if i ∈ Mk and

0 otherwise;
9 If ∥ dxk∥1 > η: dxk = η

∥ dxk∥1
dxk;

10 Move current point xk = xk−1 + dxk;
11 Update attribution ak = ak−1 + gk · dxk;
12 Expand D = D

⋃
{dxk};

13 Return ak, D.

As the dimension of images is always
high, we investigate the asymptotic prop-
erty of P (ã|C) as:
Proposition 2. Since limd→∞ Σ = σI ,
conditional covariance Cov(ai, aj |ud =
C) is nearly zero with high dimension d.
Thus we can approximate Eq. (6) as:

P̂ (ã|C) =
exp

(
−D2

ap

2σ

)
(2π)

d−1
2
√
|Σ|

(7)

Remark. P̂ (ã|C) = P (ã|C)ea
2
d/(2σ). As

the last attribution ad tends to 0 if d is
high enough, the approximation error of
P̂ (ã|C) is tolerable.

Since image dimension is always high, we
regard any two attributions ai, aj as nearly
independent by Proposition 2. Therefore,
we can maximize each attribution sepa-
rately with negligible error while reducing
the computational complexity from facto-
rial O(d!) to linear O(d). Specifically, we choose s pixels with the largest projection of gradient
∇f(xk) onto dxk. We name this greedy selection strategy as Salient Manipulation Path (SAMP)
and take insertion direction as an example to formulate SAMP as:

(dxk)i =

{
xE
i − xk

i , i ∈ Mk

0, Otherwise
, (8)

where Mk = {i | i ∈ tops{αj}} (tops(·) means the largest s elements) and αj = (∇f(xk))j(x
E
j −

xk
j ) if xE

j ̸= xk
j and −∞ otherwise. It is obvious that the path defined above belongs to Γs.

3.4 TOWARDS RIGOROUSNESS AND OPTIMALITY

Two potential issues still remain in our proposed SAMP interpreter. First, if the step size |dxk| is
too large, the infinitesimal condition may be violated, thereby breaking the completeness axiom in
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Eq. (2). Besides, most greedy algorithms tend to get stuck in the local sub-optimal solution. To
address these, we propose the infinitesimal constraint and the momentum strategy respectively.

Infinitesimal Constraint (IC). To ensure the completeness axiom, we need to restrict each step
size below a given bound η > 0. Therefore we rectify dxk in Eq. (8) as:

dx̂k =


η

∥ dxk∥1
dxk, if ∥dxk∥1 > η

dxk, Otherwise
(9)

Note that the above constraint does not affect the convergence of SAMP. According to the definition
of manipulation paths, it is easy to know the sum of L1 norm of all steps is a constant value as∑n

k=1 ∥dxk∥1 = ∥xS − xE∥1 = C. As long as η > 0, the constrained SAMP can certainly
converge after finite iterations.

Momentum Strategy (MS). Due to the nature of greedy algorithms, SAMP runs the risk of falling
into a local optimum. Inspired by the gradient descent with momentum, we incorporate the momen-
tum strategy to coast across the flat landscape through the inertia mechanism as follows:

gk = λgk−1 + (1− λ)∇f(xk). (10)

By substituting dxk with dx̂k and ∇f(xk) with gk, we formulate SAMP++ in Algorithm 1.

4 EXPERIMENT

In this section, we conduct qualitative and quantitative experiments to demonstrate the superiority of
our proposed SAMP method. Due to the wide variety of interpretability methods, they often need to
be evaluated from multiple dimensions (Nauta et al., 2022). Our proposed SAMP method belongs
to attribution methods. We first perform qualitative experiments to verify the Concentration Prin-
ciple claimed above and compare the visualization results with other counterparts in Section 4.2.
Subsequently, we employ Deletion/Insertion metrics (Petsiuk et al., 2018) to examine SAMP quan-
titatively and conduct a completeness check with the Sensitivity-N metric (Ancona et al., 2018) in
Section 4.3. Extensive ablation studies demonstrate the effectiveness of each feature in Section 4.4.

4.1 EXPERIMENTAL SETTING

Datasets and Models. We evaluate SAMP on the widely used MNIST (Deng, 2012), CIFAR-
10 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). For MNIST and CIFAR-10 datasets,
we simply build two five-layer CNNs (c.f. Appendix A.3) and train them to convergence using
AdamW optimizer (Loshchilov & Hutter, 2017). For ImageNet dataset, we use the pre-trained
ResNet-50 model (He et al., 2016) from PyTorch torchvision package (Paszke et al., 2019).
Metrics. Interpretations should faithfully reveal the attention of model decisions. One evaluation
for judging attributions is to check whether features with large attribution have a significant effect
outputs. Therefore, we choose the Deletion/Insertion metrics (Petsiuk et al., 2018) for quantitative
comparison. We delete/insert pixels sequentially in the descending order of attributions, plot the
output curve, and calculate the area under the curve (AUC). For Deletion, a smaller AUC indicates
better interpretability; for insertion, a larger AUC is expected. Moreover, we wish to examine the
effect of the infinitesimal constraint (IC) on the rigorousness of SAMP. Therefore, we adopt the
Sensitivity-N metric (Ancona et al., 2018) by calculating the Pearson correlation between the sum
of attributions and the model output for completeness check.
Implementation Details. We compare Deletion/Insertion metrics of SAMP with 12 mainstream
interpretation methods. 3 Following the configuration (Petsiuk et al., 2018), we set the baseline point
as a zero-filled image for Deletion and a Gaussian-blurred image for Insertion. We randomly select
100 images from each dataset and report the mean and standard deviation of AUCs. Specifically,
for MNIST and CIFAR-10, we set the Gaussian blur kernel size sg to 11 the variance σg to 5, and
the step size for calculating metrics sm to 10; for ImageNet, sg = 31, σg = 5, and sm = 224 × 8.
If without special specifications, we fix the step size s in SAMP as 224 × 16 for ImageNet and 10
for other datasets, the ratio of the infinitesimal upper bound η to ∥∆x∥1 as 0.1, and the momentum
coefficient λ as 0.5. We perform all experiments with PyTorch on one NVIDIA 3090 card.

3The benchmark code will be released together with SAMP.
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Figure 3: Verification of Concentration Principle. (a) Visualizations of intermediate points and
corresponding attributions along the path solved by SAMP. (b) The output score curve from the
baseline point to the target image.
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Figure 4: Visualizations on MNIST, CIFAR-10, and ImageNet compared with other methods.

4.2 QUALITATIVE VISUALIZATION

4.2.1 VERIFICATION OF PROPERTIES

We first verify whether SAMP can reach an expected path towards Concentration Principle. For clear
visualization, we set the baseline point as zero-filled, and choose the manipulation direction from
x0 to xT . Along the path solved by SAMP, the intermediate points and corresponding attributions
at different stages are visualized separately, as shown in Figure 3a. We can see that the first 25% of
the path has precisely pinpointed the subject animal. Besides, we plot the output scores at different
stages along the manipulation path in Figure 3b. A rapid rise can be observed at the start, which
indicates that SAMP tends to capture the most salient pixels first. At the same time, there is a small
drop at the end. We ascribe this to background pixels, which interfere with the output score.

4.2.2 VISUALIZATION COMPARISON

We compare the visualization results of SAMP with other mainstream interpretation meth-
ods (Ribeiro et al., 2016; Selvaraju et al., 2017; Sundararajan et al., 2017; Smilkov et al., 2017;
Shrikumar et al., 2017; Bach et al., 2015; Petsiuk et al., 2018; Kapishnikov et al., 2019; Xu et al.,
2020; Kapishnikov et al., 2021). After randomly selecting input images on MNIST, CIFAR-10, and
ImageNet, we calculate the attribution results of each method. We first convert the attributions to a
grayscale image for visualization and also superimpose the attribution values with the original im-
age. Figure 4 shows the comparison of the SAMP method with existing methods. As can be seen,
the attribution results allocated by our method pinpoint important pixels and localize all pixels on
salient objects most completely. Additionally, the attribution results of the SAMP++ approach are
broadly similar to SAMP, but the results of SAMP++ are more fine-grained due to the infinitesimal
constraints (for instance, the subject is more separated from the background).

4.3 QUANTITATIVE ANALYSIS

We conducted quantitative experiments to assess the performance of SAMP, including metrics such
as Deletion/Insertion and Sensitivity-N check. In addition, we also carried out evaluations such as
µFidelity (Novello et al., 2022) and pointing game (Zhang et al., 2018a) in Section A.5.4.
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Table 1: Deletion/Insertion metrics on MNIST, CIFAR-10, and ImageNet.

Method
MNIST CIFAR-10 ImageNet

Deletion↓ Insertion↑ Deletion↓ Insertion↑ Deletion↓ Insertion↑

LRP -0.003 (±0.13) 0.808 (±0.10) -0.257 (±0.49) 1.452 (±0.37) 0.210 (±0.13) 0.575 (±0.15)
CAM 0.221 (±0.15) 0.715 (±0.11) 0.314 (±0.31) 0.863 (±0.23) 0.313 (±0.129) 0.897 (±0.13)
LIME 0.282 (±0.14) 0.597 (±0.09) 0.479 (±0.29) 0.722 (±0.24) 0.312 (±0.13) 0.898 (±0.14)
Grad-CAM 0.221 (±0.15) 0.715 (±0.11) 0.314 (±0.31) 0.863 (±0.23) 0.313 (±0.13) 0.897 (±0.13)
IG -0.038 (±0.14) 0.795 (±0.11) -0.372 (±0.54) 1.452 (±0.40) 0.197 (±0.13) 0.725 (±0.20)
SmoothGrads 0.003 (±0.13) 0.547 (±0.11) 0.777 (±0.55) 0.517 (±0.28) 0.300 (±0.13) 0.605 (±0.17)
DeepLIFT -0.025 (±0.14) 0.791 (±0.11) -0.300 (±0.51) 1.443 (±0.38) 0.216 (±0.12) 0.688 (±0.18)
RISE 0.059 (±0.11) 0.651 (±0.12) 0.149 (±0.35) 0.904 (±0.27) 0.282 (±0.13) 0.849 (±0.15)
XRAI 0.120 (±0.12) 0.754 (±0.10) 0.248 (±0.33) 0.910 (±0.21) 0.346 (±0.16) 0.865 (±0.14)
Blur IG 0.021 (±0.02) 0.804 (±0.17) -0.107 (±0.39) 1.407 (±0.47) 0.261 (±0.14) 0.712 (±0.22)
Guided IG -0.041 (±0.14) 0.762 (±0.10) -0.276 (±0.47) 1.209 (±0.35) 0.167 (±0.13) 0.699 (±0.21)

SAMP (ours) -0.093 (±0.14) 1.074 (±0.18) -0.733 (±0.67) 1.458 (±0.40) 0.154 (±0.12) 0.984 (±0.20)
SAMP++ (ours) -0.137 (±0.151) 1.050 (±0.18) -0.899 (±0.72) 1.514 (±0.43) 0.145 (±0.12) 1.116 (±0.24)

 

x

(a)
 

x

(b)
Figure 5: Sensitivity-N check for IC.

 

(a)
 

(b)
Figure 6: Impact of momentum coefficient λ.

4.3.1 DELETION/INSERTION COMPARISON

To precisely compare the performance, we calculate the Deletion/Insertion metrics (Petsiuk et al.,
2018). We randomly sampled 100 images and report the mean and standard deviation of the AUCs
(see Table 1), where “SAMP” represents the original algorithm described in Eq. (8) and “SAMP++”
denotes Algorithm 1 with the infinitesimal constraint (IC) and momentum strategy (MS). Our
method consistently outperforms all other methods on three datasets. We ascribe this to Concen-
tration Principle that facilitates our method to perform clear saliency rankings. In addition, the
improved version significantly improves the original one in most cases. We believe that the momen-
tum strategy plays an essential role in prompting the algorithm to break free from the local point
(c.f. Section 4.4 for ablation studies.).

4.3.2 SENSITIVITY-N CHECK

In this part, we show the importance of the infinitesimal constraint (IC) on rigorousness (or com-
pleteness (Sundararajan et al., 2017)). Sensitivity-N (Ancona et al., 2018) checks the completeness
by calculating the Pearson correlation of

∑
j aj and ∆y. We gradually increase β = ∥x∥1/η (i.e.,

decrease the upper bound η in Eq. (9)) and draw the curve of the correlation w.r.t. β (see Figure 5).
With the decrease of η, the correlation increases significantly. This is because IC limits each step to
be infinitesimal, which ensures that Lagrangian remainder tends to 0, thereby enhancing rigorous-
ness of Eq. (3). Interestingly, Figure 5a shows that with the further decrease of η, the numerical error
becomes the main error source, and the correlation no longer rises; because η is not small enough at
the start of Figure 5b, most steps are not cropped, thereby leading to a flat correlation curve.

4.4 ABLATION STUDY

4.4.1 INFLUENCE OF IC AND MS

We perform ablation studies on the infinitesimal constraint (IC) and momentum strategy (MS), as
shown in Table 2. As we can see, the improvement of SAMP in Deletion/Insertion metrics mainly
comes from MS. According to Figure 6, SAMP achieves the largest improvement when λ ≈ 0.3.
Table 3 shows that IC has no significant impact on Deletion/Insertion metrics, which can be at-
tributed to the fact that IC is primarily designed to maintain rigor and lacks a direct connection with

8
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Table 2: Ablation study on IC and MS.

Setting
ImageNet

Deletion↓ Insertion↑

SAMP 0.154 (±0.118) 0.984 (±0.195)

+MS 0.144 (±0.115) 1.088 (±0.251)
+IC 0.159 (±0.121) 1.056 (±0.185)

+MS/IC 0.145 (±0.116) 1.116 (±0.241)

Table 3: Influence of upper bound η

Bound−1 ImageNet
(∥∆x∥1/η) Deletion↓ Insertion↑

1/10 0.159 (±0.121) 1.056 (±0.185)

1/50 0.218 (±0.133) 1.130 (±0.168)
1/100 0.249 (±0.142) 1.031 (±0.155)

1/200 0.279 (±0.147) 0.939 (±0.159)

enhancing metrics. In addition, smaller eta (e.g., η = 1/200) leads to finer-grained visualization
(see Figure 8), which is due to the shortened step size that focuses more on details.

4.4.2 CHOICE OF BASELINE POINTS
Image B+B B+W B+GB+U

Figure 7: Visualization of different baseline.
Image IG GuidedIG

1/10 1/50 1/200

SAMP (Ours)

Figure 8: Results with different upper bound η.

We wonder whether different baseline choices
affect the performance of SAMP. Therefore, we
set four different sets of baseline points with
η = ∥x∥1/50. “B” means padding with zero,
“W” means padding with one, “U” denotes uni-
formly random initialization, and “G” denotes
Gaussian random initialization. In the symbol
”X+Y”, X represents the deletion direction, and
Y represents the insertion direction. Figure 7
shows that the impact of different baselines on
the explanations is not significant compared to
different methods in Figure 4. Specifically, dif-
ferent baselines have little impact on the contour information, but they do significantly affect the
overall intensity (e.g., brightness), which leads to visual differences.

4.4.3 CHOICE OF PATHS

Table 4: Influence of path choices.

Path ImageNet
to x0 to xT Deletion↓ Insertion↑

✓ 0.108 (±0.107) 0.659 (±0.171)

✓ 0.199 (±0.135) 1.330 (±0.230)
✓ ✓ 0.159 (±0.121) 1.056 (±0.185)

The choice of path also has a certain influence
on Deletion/Insertion (as shown in Table 4). We
discover that only using the path xT → x0

achieves the best Deletion; only using x0 →
xT reaches the highest Insertion. We actually
use both directions at the same time, and sum
attributions generated by two directions to ob-
tain a trade-off between two metrics.

5 CONCLUSION

To obtain user trust, interpretations should possess rigorousness and clarity. Even though path
method (Sundararajan et al., 2017) identifies fundamental axioms for rigorousness, attributions re-
main ambiguous due to indeterminate path choices. In this paper, we first define Concentration
Principle. Subsequently, we propose Salient Manipulation Path (SAMP), which is a fast and
greedy interpreter for solving the approximate optimal path efficiently, To enhance the rigorousness
and optimality of SAMP, we propose the infinitesimal constraint (IC) and momentum strategy (MS)
respectively. Visualization experiments show that the attribution generated by our method accu-
rately discovers significant pixels and completely pinpoints all pixels of salient objects. Quantitative
experiments demonstrate that our method significantly outperforms the current mainstream interpre-
tation methods. Moreover, qualitative experiments also reveal that SAMP can obtain higher-quality
semantic segmentations by visualizing the attribution values only employing class-level annotations.
Investigating the utility of saliency-based explanations in annotation-limited tasks (such as weakly-
supervised object recognition) and other promising domains (with a focus on NLP and medical
image analysis) represents an exciting direction for further study.
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A APPENDIX

A.1 THEORETICAL SUPPLEMENTARY

A.1.1 PROOF OF PROPOSITION 1

Proof. By assumption, {ut, t ≥ 0} is a Brownian motion and ut ∼ N (0, σt):

P (ut) =
1√
2πσt

exp

{
− u2

t

2σt

}
To treat attributions equally, we consider the subset {ut, t ∈ N} with uniform time intervals (u0 =
0). According to the Markov property, we can get ∀ k ∈ N, uk − uk−1 ∼ N (0, σ). Thus we can
formulate the joint probability distribution as follows:

P (u1, u2, · · · , ud)

=

d∏
k=1

P (uk|uk−1, · · · , u1)

=

d∏
k=1

P (uk − uk−1|uk−1)

=

d∏
k=1

1√
2πσ

exp

{
− (uk − uk−1)

2

2σ

}

=
1

(2πσ)
d
2

exp

{
−

d∑
k=1

(uk − uk−1)
2

2σ

}
. (11)

As ∀k ∈ {1, · · · , d}, ak = uk − uk−1, we have

(a1, a2, · · · , ad) = J(u1, u2, · · · , ud)

=


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



u1

u2

u3

...
ud

 .

Thus P (a1, a2, · · · , ad) = P (u1, u2, · · · , ud)/|J | = P (u1, u2, · · · , ud). If dividing
P (a1, a2, · · · , ad) by P (ud), we get the conditional distribution P (ã|C) = P (a1, · · · , ad−1|ud =
C) as follows:

P (a1, a2, . . . , ad−1|ud = C)

=P (a1, a2, · · · , ad|ud = C)

=P (a1, a2, · · · , ad)/P (ud = C)

=

√
d

(2πσ)
d−1
2

exp

{
u2
d

2σd
−

d∑
k=1

a2k
2σ

}

=

√
d

(2πσ)
d−1
2

exp

{
C2

2σd
−

(C −
∑d−1

k=1 ak)
2

2σ
−

d−1∑
k=1

a2k
2σ

}

=

√
d

(2πσ)
d−1
2

exp

{
−1

2σ

[
ãT ã+ (C − 1T ã)2 − C2

d

]}
=

√
d

(2πσ)
d−1
2

exp

{
−1

2σ

[
ãT (I + 11T )ã− 2C1ã+

(d− 1)C2

d

]}
. (12)
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Let Σ = σ
d (dI−11T ) ∈ R(d−1)×(d−1). We can easily get that |Σ| = σd−1

d and Σ−1 = 1
σ (I+11T ).

Thus we can simplify Eq. (12) as:

P (a1, a2, . . . , ad−1|ud = C)

=

√
d

(2πσ)
d−1
2

exp

{
−1

2

[
ãTΣ−1ã− 2

C

d
1Σ−1ã+

C2

d2
1TΣ−11

]}

=

√
d

(2πσ)
d−1
2

exp

{
−1

2

(
ã− C

d
1

)T

Σ−1

(
ã− C

d
1

)}

=
1

(2π)
d−1
2

√
|Σ|

exp

{
−1

2

∥∥∥∥ã− C

d
1

∥∥∥∥2
Σ−1

}
. (13)

Therefore, ã|ud ∼ N (Cd 1,Σ) where Σ = σ
d (dI − 11T ).

A.1.2 SUPPLEMENTARY OF PROPOSITION 2

(1) How to derive Eq. (7): We can reformulate Eq. (13):

P (ã|C) = P (a1, a2, . . . , ad−1|ud = C)

=

√
d

(2πσ)
d−1
2

exp

{
− 1

2σ

(
ã− C

d
1

)T (
ã− C

d
1

)

− 1

2σ

(
ã− C

d
1

)T

11T

(
ã− C

d
1

)}

=

√
d

(2πσ)
d−1
2

exp

−
D2

ap

2σ
− 1

2σ

(
C −

d−1∑
k=1

ak

)2


=

√
d

(2πσ)
d−1
2

exp

{
−
D2

ap + a2d
2σ

}
=P̂ (ã|C)e−a2

d/(2σ), (14)

where P̂ (ã|C) is the estimation of P (ã|C). By Proposition 1 we know that ad|ud ∼ N (Cd , σ
d−1
d ).

Although the expectation of ad gradually approaches zero with the increase of d, the variance gradu-
ally approaches σ. Thus the approximation error cannot be completely zero. Fortunately, the experi-
mental results show that the attribution allocation is not completely homogeneous. Figure 3b reveals
that the last allocated ad is usually approximately zero due to the saturation region. Therefore, the
approximation error in Proposition 2 is generally acceptable.

(2) Element-wise limit: Note that limd→ Σ = σI actually means the element-by-element limit
rather than the limit in terms of the matrix norm. Given Σ(d) = σ

d (dI − 11T ), we can easily get
that

∀i, j ∈ N, lim
d→∞

Σij =

{
σ, i = j

0, i ̸= j
. (15)

It is hard to find a norm ∥ · ∥ such that limd→∞ ∥Σ− σI∥ = 0. For example, ∥Σ− σI∥m∞ = (d−
1)maxij |Σij − σIij | is always 1, not tending to 0. Therefore, Proposition 2 has certain limitations.
The continuous mapping such as the determinant (det(·)) and the limit operation (limd→∞(·)) are
not commutative.

A.2 POTENTIAL CHALLENGE OF CONCENTRATION PRINCIPLE

As a path method, SAMP generates attributions with three axioms (linearity, dummy, and effi-
ciency). These axioms ensure that SAMP does not blindly pursue high variance path and only
ignores ambiguous elements rather than essential ones. We visualize a blue-pixel counting model in
Fig.9, and SAMP achieves consistent attributions.
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Counting Model:

Figure 9: Counting model examples for Concentration Principle.

A.3 MODEL ARCHITECTURE

The architecture of 5-layer CNNs adopted on the MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky
et al., 2009) datasets is shown in Table 5. We employ the most common ReLU activation function
and an adaptive max-pooling layer to reduce the spatial dimension to 1.

Table 5: CNNs for MNIST and CIFAR-10.

Layer
5-layer CNNs

for MNIST for CIFAR-10
Input 1× 28× 28 Input 3× 32× 32

conv1 5× 5, 8 + ReLU 5× 5 + ReLU
conv2 2× 2, 24, stride 2 2× 2, 64, stride 2
conv3 4× 4, 288 + ReLU 4× 4, 512 + ReLU
conv4 2× 2, 864, stride 2 2× 2, 1536, stride 2
conv5 3× 3, 2592 + ReLU 3× 3, 4608 + ReLU
pool adaptive max pool

A.4 EVALUATION DETAIL

A.4.1 EVALUATION PROTOCOL

We employ classification models for Deletion/Insertion evaluation. Conventional classification mod-
els output the final scores with a soft-max layer as

ỹi =
eyi∑
j e

yj
.

However, ỹi is coupled with the output score yj (j ̸= i) of other classes. Therefore, we directly
utilize the output score yi before the soft-max layer to compute metrics.

Given any input data x, we employ the interpretation method to obtain the attribution a. We first
rank the attribution a in descending order. Then we select sm pixels to delete or insert according to
the sorting, so as to obtain a series of output scores as:

y =

{
{yT , yK−1, · · · , y1, y0} For Deletion

{y0, y1, · · · , yK−1, yT } For Insertion
.

where y0 and yT are path-independent values. We can normalize the series of scores as

ŷk = yk/yT ,

and the normalized area under the curve is computed as sauc = 1
K+1

∑K
i=0 ŷ. Note that Note that

sauc is not necessarily constrained between 0 and 1. For Deletion, the intermediate yk may be
greater than yT ; for insertion, the intermediate yk may be less than 0.

A.4.2 HYPERPARAMETER CHOICE

λ setting: λ ≈ 0.3 in Section 4.4.1 is only optimal on ImageNet, so we set λ = 0.5 for all three
datasets in Section 4.1.
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(a) (b)
Figure 10: (a) Visualization results of images with high classification confidence. (b) Images with
low classification confidence.
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Image B+B B+W B+GB+U

Figure 11: Additional visualization of different baseline.

Table 6: Influence of baseline choices.

Baseline ImageNet
−−−→
xTx0

−−−→
x0xT Deletion↓ Insertion↑

B B 0.254 (±0.137) 0.779 (±0.178)

B W 0.272 (±0.137) 0.743 (±0.166)

B U 0.257 (±0.130) 0.681 (±0.179)

B G 0.218 (±0.133) 1.130 (±0.168)

η setting: Since smaller η needs more computation, we set a balanced η = 0.1 in Section 4.1.
Besides, we set η = 0.02 for visual comparison because Figure 8 shows that smaller η produces
more subtle visualizations.

A.4.3 REIMPLEMENTED BENCHMARK FOR FAIRNESS

Results of different works (Bodria et al., 2021; Petsiuk et al., 2018) are quite distinct. To compare
fairly, we reimplement all methods and fix some bugs in the public code. We remove the final
softmax layer to avoid interaction of classes and N = 100 can already produce stable results. We
will also release benchmark code after the paper is accepted.

A.5 ADDITIONAL EXPERIMENT

A.5.1 CONSISTENCY ON OUTPUTS AND ATTRIBUTIONS

The ultimate goal of attributions is to monitor the potential mistakes of models and data. We nor-
malize the final scores through a soft-max layer and visualize the attributions of images with high
confidence and low confidence shown in Figure 10a and Figure 10b respectively. It can be seen
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that for images with high confidence, the corresponding attributions are concentrated on the salient
objects, while for images with low confidence, the corresponding attributions are scattered on both
the objects and the background.

A.5.2 ADDITIONAL COMPARISON WITH COUNTERPARTS

To further illustrate the significance of the improvement of the SAMP method compared with other
interpretation methods, we show more comparison examples, as shown in Figure 16 and Figure 17.
We can observe a clear improvement in the granularity of attributions.

A.5.3 ADDITIONAL ABLATION STUDY ON BASELINE CHOICES

We show more visualization here to further illustrate that the choice of baselines has a marginal
impact in Figure 11. We also test the Deletion/Insertion metrics as Table 6. Different from the
visualization results, the choice of baselines will significantly affect metrics. Specifically, for the
Deletion/Insertion metrics, we refer to the open-source code4 from RISE (Petsiuk et al., 2018). In
calculating these metrics, RISE uses a black image (i.e., “B”) as the baseline for the Deletion metric
and a Gaussian blurred image (i.e., “G”) as the baseline for the Insertion metric. Therefore, based
on the results in Table 6, if we also adopt the “B+G” baseline to generate explanations, which aligns
with the metric calculation setup in RISE, the Deletion/Insertion metric would be best.

A.5.4 ADDITIONAL VISUALIZATION ON DIFFERENT BOUND η

Image IG GuidedIG
1/10 1/50 1/200

SAMP (Ours)

Figure 12: Additional visualization with different upper bound η.

Here we show more visualization results with different upper bound η, and compare them with the
mainstream IG (Sundararajan et al., 2017) and GuidedIG (Kapishnikov et al., 2021), as shown in

4https://github.com/eclique/RISE
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Input ApproShapley Deep SHAP SAMP++

Figure 13: Visual comparison with Shapley values.

Figure 12. We can see that SAMP can locate salient pixels more clearly, and as η decreases, the
fineness of localization is higher.

A.5.5 OTHER EVALUATIONS

Why Deletion/Insertion: Explainability evaluations are still an open problem (Bodria et al.,
2021). It is controversial to compare explanations against ground truth since there is no guaran-
tee that models use the same features as humans. Therefore, we choose to employ self-comparison
evaluations (e.g., Deletion/Insertion), even though they have potential information leakage.

µFidelity and Pointing game results: Despite the controversy, we conduct pointing game exper-
iments for the test set of PASCAL VOC2007 shown in Table 7. We can see that RISE is the most
accurate method. RISE has an inherent advantage in pointing game because the block-level methods
like RISE (with 7x7 resolution) are not sensitive to outliers. Compared with other path methods (IG,
BlurIG and GuidedIG), SAMP still has a significant improvement. We also evaluate the µFidelity on
MNIST. We can see that SAMP++ achieves competitive performance compared with other methods.

Table 7: µFidelity on MNIST and pointing game on VOC2007.

MWP SG RISE IG BlurIG GuidedIG SAMP++
µFidelity↑ - 0.327 0.286 0.453 0.292 0.453 0.461
Pointing Acc.↑ 76.90 - 87.33 76.31 76.19 72.82 80.75
Time(s) (on MNIST) - 0.204 0.191 0.207 0.205 0.344 0.235

A.5.6 COMPARISON WITH SHAPLEY VALUES

Table 8: Comparison with Shapley-based methods on MNIST.

ApproShapley Deep SHAP (Lundberg & Lee, 2017) SAMP++
Deletion↓ / Insertion↑ 0.014 / 0.808 0.029 / 0.955 -0.137 / 1.050
Time(s) (on MNIST) 14.390 0.748 0.235

we compare SAMP with two Shapley-based methods. ApproShapley computes the Shapley value by
the Monte Carlo method and Deep SHAP (Lundberg & Lee, 2017) is a high-speed approximation.
Tab.8 shows that SAMP++ achieves better Deletion/Insertion with less computation burden and
Fig.13 visualizes the attributions.

A.5.7 VISUALIZATION ON MULTI-LABEL CLASSIFICATION

To comprehensively explore the application for more complex scenarios, we constructed 2x2 image
combinations using images from the MNIST dataset, where each image contained multiple digits.
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Figure 14: Visualizations on multi-label classification.

Then, we utilized CNNs to classify these images and applied the SAMP method for visualizing the
attributions of each classification. The visualization results in Figure 14 demonstrate that SAMP
can accurately pinpoint specific data related to certain categories (for example, in synthetic images
containing 0, 5, and 7, when attributing to the 0 class, SAMP only attributes to the 0 digit). This
suggests that the SAMP method can be effectively applied to multi-class classification problems.

A.5.8 VISUALIZATION ON FINE-GRAINED DATASET: CUB-200-2011

The CUB-200-2011 (Wah et al., 2011) dataset is a widely used fine-grained bird dataset consisting of
200 types of birds. We employ a ResNet50 network pre-trained on the ImageNet dataset to fine-tune
on the CUB-200-2011 dataset until training convergence, achieving an accuracy rate above 98% on
the training set. To evaluate the impact of the SAMP method on fine-grained data, we randomly
select 5 images from various categories in the CUB-200-2011 dataset and compute attributions on
these images with their corresponding 5 category labels, generating a total of 25 visualized images
arranged in a 5x5 grid, as shown in Figure 15. In this figure, the diagonal is outlined in green
borders, representing the attribution result for the image’s corresponding category, while non-
diagonal elements are outlined in red borders, denoting attribution results for other categories. It
is evident that the attribution results for the image’s corresponding category are significantly more
prominent compared to those for other categories. However, we acknowledge the presence of some
intensity in the attribution results of other categories, suggesting that attributions for fine-grained
datasets have not yet fully decoupled from the category, which is also a futher direction we aim to
further investigate.

A.6 LIMITATIONS AND FUTURE DIRECTIONS

In this section, we will briefly outline the limitations of the SAMP approach and suggest potential
future research directions.

• Theoretically, our paper presents the concentration principle to address the issue of am-
biguous path selection in traditional path methods. However, directly solving the con-
centration principle involves an exponentially complex combinatorial optimization prob-
lem. To address this, we proposed the SAMP algorithm based on the Brownian motion
assumption, which reduces the exponential complexity to linear complexity and can obtain
a near-optimal solution to the original problem. Nonetheless, this paper does not pro-
vide a thorough investigation of the optimality of the SAMP algorithm in solving the
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Figure 15: Visualizations on CUB-200-2011.

problem, and we intend to conduct rigorous theoretical analysis of the optimality of the
SAMP algorithm in the future and explore if more efficient and accurate algorithms exist
for solving the problem.

• Experimentally, the SAMP algorithm reduces the original exponentially complex problem
to linear complexity and maintains comparability with mainstream path methods (e.g., IG,
BlurIG, GuidedIG). However, the SAMP algorithm still requires multiple forward and
backward passes for each sample, leading to a certain computational overhead in
practical applications, and its calculation speed is slower than CAM and Grad-CAM. In
the future, we plan to explore if there are more efficient approximation algorithms that can
improve execution efficiency while maintaining explanation accuracy.
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Input              LIME          Grad-CAM            IG          SmoothGrads     DeepLIFT          RISE               XRAI             BlurIG          GuidedIG     SAMP (Ours)

Figure 16: Additional visualization comparison with counterparts.
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Input              LIME          Grad-CAM            IG          SmoothGrads     DeepLIFT          RISE               XRAI             BlurIG          GuidedIG     SAMP (Ours)

Figure 17: Additional visualization comparison with counterparts.
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