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Abstract

Causal machine learning (CML) is quickly gaining recognition in medical research
because it offers better strategies to estimate treatment effects in complex real-
world data, helping guide treatment optimization. Causal survival forests (CSF)
are a powerful CML method for estimating heterogeneous treatment effects on
survival outcomes, which are essential for informed healthcare decision-making.
However, they only estimate at a fixed horizon, rather than at multiple time points.
We introduce Causal Analysis for Survival Trajectories (CAST), a novel extension
of CSF that models treatment effects as continuous parametric and non-parametric
effect trajectories over time. Applied to the RADCURE dataset [[I]] of 2,651
head and neck cancer patients, CAST reveals how the effects of chemotherapy
(added to radiotherapy) evolve over time at the population and individual levels. By
capturing the temporal dynamics of treatment response, CAST can help clinicians to
determine when and for which patient subgroups treatment benefits are maximized.

1 Introduction

Methodological gap: Traditional statistical and machine learning models are based on correlations,
making them unsuitable to answer causal questions critical to clinical research [2]]. Such approaches
cannot disentangle confounding factors or provide interpretable estimates of causal relationships,
leaving a significant methodological gap [3|.

Causal machine learning (CML) addresses this by modeling causal effects to estimate individualized
or subgroup-specific treatment responses [4]. Causal survival forests (CSF) extend CML to survival
outcomes and flexibly estimate heterogeneous treatment effects - critical for medical applications -
but estimate effects only at a fixed time, missing how effects evolve over time [5. 16} [7].

Proposed approach: We present CAST (Causal Analysis for Survival Trajectories), which extends
causal survival forests to model treatment effects continuously over time. We build on previous
work by Shuryak et al. [8] to extend it to chemotherapy and continuous-time causal modeling.
Combining parametric and nonparametric methods, CAST models the full trajectory of treatment
response (Figure 1), which is critical to understanding the complex and time-varying effects of cancer
therapy [9, 10, [11]]. Figure 1 includes imaging for context, though only clinical and treatment data
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were modeled here. This is key: biological responses unfold through complex temporal dynamics
that include initial tumor control followed by potential diminishing returns due to repopulation, late
toxicities, and other factors [9} [10, [11]. Because all patients received radiation therapy, the treatment
being modeled is yes/no chemotherapy only.

Clinical motivation: We apply CAST to head and neck squamous cell carcinoma (HNSCC), a cancer
with increased incidence [12] and changing demographics due to HPV. HPV-related tumors, more
common in younger patients, differ in radiosensitivity and prognosis [[13} 14, [15]], highlighting the
need for individualized treatment. Treatment typically combines chemotherapy and radiation, with
responses that vary between patients and manifest gradually [[16} 17,18, |19} 20].
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Figure 1: Overview of the CAST framework

Modeling philosophy: Our approach leverages causal survival forests to analyze high-dimensional
data and identify heterogeneous treatment effects. Unlike standard survival methods, we explicitly
estimate causal effects while controlling for confounders through propensity score modeling.

We used multiple validation methods, including overlap assessment and unmeasured confounding
checks. We estimated propensity scores using elastic net logistic regression with cross-validation,
trimming patients outside the range [0.1, 0.9] to ensure treatment group overlap. Refutation tests
with dummy outcomes and negative controls verified robustness. SHAP values provided interpretable
insights into how patient characteristics influence treatment outcomes for clinical application.

Significance: This study uses CSF and CAST temporal modeling to reveal how patient and disease
factors shape the magnitude and timing of chemotherapy benefits in HNSCC. These insights highlight
the potential in machine learning for personalized care.

Our contributions are as follows:

* CAST is, to our knowledge, the first framework to unify causal survival forests with
parametric and non-parametric models for estimating continuous-time treatment effects,
offering a new paradigm for temporal causal inference in survival analysis.

» CAST produces clinically interpretable metrics such as peak effect time, maximum benefit,
and effect half-life, enabling richer understanding of treatment response dynamics.

* We introduce a rigorous validation framework incorporating propensity score modeling,
dummy outcome tests, synthetic tests, and SHAP-based heterogeneity analysis.

* We apply CAST to a large real-world chemotherapy and radiotherapy dataset (RADCURE),
uncovering actionable insights into when and for whom treatment benefits peak and decline.



2 Related Work

Clinical predictors of treatment response: Numerous studies have shown that treatment response
in HNSCC patients is highly heterogeneous, influenced by clinical and demographic factors such as
HPYV status, gender, and disease stage. HPV-positive disease, more common in younger patients, is
typically more treatment-sensitive with better survival [21]. This motivates methods, like CAST, that
model heterogeneity beyond average effects.

Predictive survival models: Traditional models like the Cox proportional hazards model assume
constant effects over time, limiting flexibility [22 [23]]. More flexible models—including random
survival forests (RSF), deep survival models (e.g., DeepSurv), and Bayesian additive regression trees
(BART)—have improved prediction [24]], notably in applications such as cervical cancer survival
[25} 26], but remain predictive—not causal—unless adapted to address confounding.

Causal inference for survival analysis: New causal ML methods—including meta-learners (e.g.,
T-learner, S-learner) [27], G-formula-based two-learners [28]], double robust estimators (e.g., AIPCW,
AIPTW) [29], and causal survival forests [30]—estimate individualized effects from observational
survival data [31, 32], but typically only at discrete time points, missing continuous treatment
dynamics [33] [34].

Modeling time-varying treatment effects: Oncology treatments often show the early benefits,
plateau and decline phases [35,[36]]. Covariate effects also shift over time [37}38], but most methods
assume constant effects or treat follow-up intervals independently. CAST models effects continuously,
blending parametric (e.g., quadratic fits) and non-parametric (e.g., smoothing splines) components to
reveal the full temporal trajectory in treatment response.

3 Methodology

Problem Formulation: We address the challenge of estimating time-varying treatment effects in
survival analysis, specifically focusing on how the impact of medical interventions evolves over time.
Let D = {(X;, W;,T;, ;) }I, represent our dataset where:

* X, € R? is a vector of covariates for subject ¢
o W; € {0, 1} is the treatment indicator

e T; is the observed survival time (either event time or censored time)

* §; is the event indicator (1 if event observed, 0 if censored)

The causal survival forest method is a powerful tool for estimating average and subgroup-specific
treatment effects for survival outcomes, but it estimates the effects only at specific discrete times after
treatment. This fails to capture the continuous temporal evolution of treatment responses, particularly
in contexts like radiation therapy and chemotherapy where biological effects can substantially rise
and fall over time.

3.1 Causal Machine Learning Framework

Our approach uses a CML framework to isolate treatment effects beyond traditional correlational
methods. While conventional machine learning identifies correlations between variables, CML allows
us to understand the causal impact of interventions [39]]. This distinction is fundamental to our study:
our goal is not just to predict outcomes but to dissect how treatments shape survival outcomes across
patient subgroups.

Given the observational non-randomized nature of our clinical data, we rely on the following
assumptions:

* Unconfoundedness: Treatment assignment is independent of potential outcomes conditional
on observed covariates (also called ignorability or no unmeasured confounding)
* Positivity (Overlap): Every subject has a non-zero probability of receiving each treatment

* Consistency: A subject’s observed outcome under their received treatment equals their
potential outcome for that treatment



* Non-interference: One subject’s treatment does not affect another subject’s outcome

To address selection bias in observational data, we performed propensity score modeling using elastic
net logistic regression: é¢(X) = P(W = 1]|X) with hyperparameters optimized through 10-fold
cross-validation. Patients with extreme propensity scores (outside [0.10, 0.90]) are trimmed to ensure
overlap between treatment groups. See Appendix C.1 for balance diagnostics.

3.2 CAST: Causal Analysis for Survival Trajectories

The theoretical foundation of CAST rests on modeling the effect trajectory as a function of time. Our
target estimand is the conditional average treatment effect (CATE) at time ¢, given covariates X :

7(z,t) = E[Y(1,t) = Y(0,t) | X = 2] e))

where Y (w, t) represents the potential outcome at time ¢ under treatment w, and x denotes an
individual’s covariates. We consider two types of time-varying estimands: the difference in restricted
mean survival time (RMST) and the difference in survival probability (SP) between treatment groups.
RMST reflects the average time an individual is expected to survive up to a specified time horizon,
calculated by integrating the survival probability from time O to that horizon.

Unlike prior methods that estimate effects at fixed time points, CAST models treatment effects as
smooth functions of time. We use a smoothing spline to estimate the continuous effect trajectory and
a quadratic fit to derive interpretable metrics.

3.2.1 Parametric Modeling Component

Our parametric modeling component employs a quadratic function: 7(t) = By + Bit + [at? to
capture the rise and fall of treatment effects. The parameters are estimated using weighted least
squares:

an, 2w O = (6 + But + Bot?))? @

where w(t) = 1/0?(t) are weights based on the variance of the effect estimates at each timepoint.
This approach yields clinically interpretable parameters, including the peak effect time (fpcax =
—B1/2052), the maximum effect magnitude (T(tpeak)), and the treatment effect half-life, defined as
the time it takes for the effect to diminish by 50% from its peak.

These parameters directly quantify key clinical aspects of the treatment response: when the maximum
benefit occurs, how large that benefit is, and how quickly it diminishes—information critical for
clinical decision-making that traditional methods cannot provide. See Appendix C.3 for fitted
coefficients and summary statistics from the parametric model.

Algorithm 1 CAST-PARAMETRIC CAST-Parametric: This algorithm

B R N models treatment effects over time
1: Input: Horizons H, ATEs {75, }, SEs {61}

>Uh . using a weighted quadratic fit to
2: Output: Temporal function 7(t), peak time t*, half- the estimated ATEs across discrete

life A\ 5 ) ) horizons. Inverse-variance weighting
3 W {w, = 1/63} > Inverse-variance weights  emphasizes more confident estimates.
4: 7(t) <= FITQUADRATICMODEL(H, 7, W) The peak effect time is derived
5 f1, B2 « coefficients from fit analytically, while the half-life is
6: if 52*7& 0 then i computed by numerically solving for
Tt =P/ (2?2)* > ;ﬁme of peak effect  he point where the curve falls to half
8: A = SOLVE(7(t* 4+ A) = 7(t")/2) its maximum. This approach yields
9: else . interpretable summaries of treatment
i(l): endtif’ A< NA > Degenerate case  qynamics, aligning with radiobiologi-

cal phenomena such as delayed benefit

12: return 7(1), ", A and diminishing returns.




3.2.2 Non-parametric Modeling Component

Our non-parametric component employs cross-validated smoothing splines:

7(t) = g(t), where ¢ = arg m}n {Z w(t) (7(t) — f(£) + )\/f”(t)2 dt} 3)

t

where ) is selected via cross-validation. This approach adapts to the data without imposing a prede-
termined functional form, revealing subtle inflection points in the effect trajectory that correspond to
biological phase transitions in the treatment response.

We calculate the first and second derivatives of the fitted spline to identify key features of the treatment
effect trajectory: local maxima and minima where ¢'(t) = 0, acceleration and deceleration phases
based on sign changes in g”(t), and inflection points where ¢” (t) = 0.

The non-parametric model complements the parametric fit by capturing complex, less predictable
patterns—especially during later follow-up periods, when biological processes like accelerated
repopulation and late toxicities may cause deviations from the smooth quadratic trend.

CAST-Nonparametric: This algorithm
fits a smoothing spline to the estimated
treatment effects across time using

Algorithm 2 CAST-NONPARAMETRIC
1: Input: Horizons H, ATEs {7}, SEs {54}

A

Output: Spline 7(¢), peak t*, inflections {¢; }

W {wh = 1/5’%}

7(t) < FITSPLINE(H, 7, W)

Dq(t), D2(t) « first and second derivatives of
7(t)

t* < ARGMAX(7 (1))

{t;} +~ ZEROCROSSINGS(Dx(t))

> Peak effect
> Inflection

inverse-variance weights. It computes
the first and second derivatives of
the spline to identify key dynamics:
the peak effect time via the curve’s
global maximum and biological
phase transitions via inflection points.
This method captures delayed and

poi*nts . . non-monotonic  effect trajectories
8: if EOt in [min(?4), max(#)] then often missed by parametric models,
% t. «NA reflecting immune response, tissue
10: end if

11:

return 7(t), t*, {t;}

adaptation, or timing heterogene-
ity.

CAST-Parametric and CAST-Nonparametric offer complementary modeling capabilities. The para-
metric method provides interpretable summary statistics such as peak effect timing and half-life,
which are clinically intuitive and useful for hypothesis testing under smooth treatment dynamics. In
contrast, the spline-based approach relaxes these assumptions and flexibly captures nonlinear, delayed,
or multi-phase effects. Together, these models allow us to evaluate the robustness of temporal patterns
and support a wide range of clinical interpretations.

Theoretical Guarantees: See Appendix A for theorem statements establishing consistency of CAST
estimators and identifiability of time-varying treatment effects under standard causal assumptions.

4 Experiments

Dataset: We use the RADCURE observational dataset from The Cancer Imaging Archive (TCIA), a
publicly accessible resource on multiple types of cancer. The dataset spans from 2005 to 2017 and
contains clinical, demographic, and treatment metadata for 3,346 patients. We select 2,651 patients
with pathologically confirmed HNSCC and a defined tumor site. While the dataset primarily focuses
on oropharyngeal cancer, it also includes laryngeal, nasopharyngeal, and hypopharyngeal cases. The
binary treatment variable used in CAST is chemotherapy (yes/no) with radiotherapy covariates.

Preprocessing: We filtered incomplete profiles and standardized continuous variables for compara-
bility. We used radiotherapy data—dose/fraction, number of fractions, and total radiation treatment
time duration in days—to calculate Biologically Effective Dose (BED) values, applying both dose-
independent (DI) and dose-dependent (DD) models with established radiobiological parameters [8].
We then partitioned the dataset into training (75%) and testing (25%) sets, maintaining consistent



event rates across both subsets for unbiased evaluation of treatment effects. See Appendix B for more
on data preprocessing and computing resources.

Propensity Score Modeling: To address selection bias, we used elastic net logistic regression to
estimate the likelihood of a person receiving treatment, based on their characteristics. Hyperparame-
ters were optimized through 10-fold cross-validation: elastic net mixing parameter . € [0.01, 0.99]
and regularization parameter A chosen from a grid of 100 values. Propensity score distributions were
assessed through both Pearson and Spearman correlation matrices (o« = 0.05, Bonferroni-corrected)
and visualized using kernel density estimation. Patients with scores outside [0.10,0.90] were trimmed
to ensure overlap, with sensitivity analyses conducted at thresholds {0.01,0.03,0.05,0.07,0.10}.

Implementation & Heterogeneity Analysis: We used causal survival forests with Nelson-Aalen
estimation to handle right-censoring, estimating treatment effects over 12,24, ..., 120 months post-
treatment. Our forest was constructed with 5,000 trees to ensure robust estimation of heterogeneous
effects across the patient population. Sensitivity analyses using different numbers of trees showed
similar results. For each time horizon, we independently trained a causal forest model using the
training dataset, with covariates properly standardized and propensity scores incorporated through
doubly-robust estimation. The forests were configured with tuning parameters selected through
cross-validation, including minimum node size, split regularization, and sampling fraction. Prediction
uncertainty was quantified through the infinitesimal jackknife method, providing variance estimates
for each individual treatment effect. This approach allowed us to capture both average treatment
effects and their heterogeneity across different patient subgroups at each follow-up time point, while
properly accounting for the right-censoring inherent in survival data [40, 41].

Treatment effect heterogeneity was analyzed using approximate SHAP values calculated via Monte
Carlo sampling with 1,000 iterations and a convergence threshold of € = 0.01. The SHAP values were
normalized such that ), SHAP; corresponds to the difference between the individual and mean model
predictions. This approach revealed which patient characteristics most strongly influenced treatment
response, with HPV status and smoking history emerging as particularly important predictors. We
visualized the relationship between feature values and their SHAP contributions to identify subgroups
with differential treatment benefits.

Validation Methods

We implemented several validation strategies as refutation tests for the causal effect estimates in
our experiments. For each test, we computed summary statistics (mean, standard deviation, max
deviation) to assess model robustness, using a consistent 5,000-tree specification and random seeds
for reproducibility.

Dummy Outcome Tests: We shuffled treatment assignments and outcome times across 20 repetitions
for each time horizon (12-120 months), generating a null distribution to assess false positive rates.
Boxplots confirmed the null hypothesis centered around zero, showing that the causal effect estimates
for each horizon were centered around zero as expected. The variance of these estimates increased
with increasing horizon time due to the decreasing number of patients remaining at risk at longer
times. The results suggested good reliability of the estimates for times < 60 months.

Sensitivity to Additional Covariates: We introduced synthetic covariates with varying signal
strengths of correlation with treatment assignment (0.1, 0.3, 0.5) that were unrelated to both treat-
ment assignment and outcome, in order to assess the sensitivity of treatment effect estimates to
irrelevant/spurious variables.

Negative Control Tests: Irrelevant binary treatments were randomly assigned to ensure the model
did not detect spurious effects. Treatment effects for these were zero across all time horizons.

Robustness to Irrelevant Features: Five random noise variables were added, and changes in
treatment effect estimates and feature importance were monitored to ensure no significant impact.

5 Results

We evaluate CAST on the RADCURE dataset, focusing on time-varying treatment effects, hetero-
geneity, and robustness.



As shown in Figure 2, chemotherapy benefit rises early, plateaus around 50-65 months, then de-
clines—Ilikely due to recurrence, toxicity, or competing risks. This indicates that chemotherapy is
most impactful in the first few years post-treatment, with gradual tapering over time. On the test set,
chemotherapy increased survival probability by 15.2 + 6.0% at 36 months and 15.0 + 6.7% at 60
months, with RMST gains of 3.6 + 1.4 and 7.1 4 2.6 months, respectively.
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Figure 2: Comparison of time-varying treatment effect models using CAST. The red curve shows
the parametric estimate with 95% ClIs; the blue curve shows the non-parametric spline. Black dots
denote average treatment effects £ standard errors on the survival probability scale.

Individualized effect distributions: Individual treatment effects varied across patients. While most

experienced moderate benefit, CAST identified a long right tail of high responders and a subset with
near-zero or negative effects.

Subgroup variation: Correlation matrices and SHAP analyses identified smoking pack-years as the

strongest negative predictor of chemotherapy benefit, with HPV-negative patients showing greater
benefit. Additional SHAP discussions are provided in Appendix C.2.
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Figure 3: Correlation matrices between covariates, SHAP values, and treatment effects

Robustness & Effect Heterogeneity: CAST passed validation checks, including dummy outcome
tests, synthetic confounders, and trimming sensitivity. Only strong confounder—treatment correlations



distorted estimates while weaker ones had little effect. The CSF largely ignored the noise variables.
Individualized effects showed a long right tail of high responders and a subset with near-zero or
negative benefit, showing potential for personalized treatment modeling. Additional visualizations
are provided in Appendix C.4.

6 Discussion

The patterns uncovered by CAST have important clinical implications. The observed peak in survival
benefit around 48 to 60 months post-treatment suggests that chemotherapy is most effective for short
to mid-term local control but may not sustain long-term survival. This decline could reflect tumor
repopulation, distant progression, or delayed toxicity [42]. However, since fewer patients remained at
risk (did not experience a death or censoring event) at longer follow-up times, reliability of the causal
effect estimates at long times is reduced compared with shorter times, as shown by our dummy tests.

These findings support the value of adaptive monitoring and adjunct strategies to extend therapeutic
benefit. The heterogeneity revealed by CAST emphasizes the need for treatment personalization.
Correlation and SHAP-based analysis together identified HPV positivity and smoking as the most
influential factors. Favorable outcomes in HPV-positive patients align with known radiosensitivity
and impaired DNA repair, while smoking was linked to reduced benefit—consistent with mechanisms
like tumor hypoxia and immunosuppression. Age also showed a modest effect, with older patients
generally benefiting more; an inflection point around 50-60 years may be clinically meaningful
(Figure 3 and Figure 4 in Appendix C.2). In contrast, tumor site and TNM stage had limited influence
on treatment effect heterogeneity, despite their prognostic relevance.

These findings align with efforts to tailor treatment by biologic subgroup. CAST offers a data-
driven framework to support such stratifications and generate hypotheses for future trials. Rather
than replacing existing tools, it complements them by modeling continuous-time dynamics and
revealing patient-level variation. More broadly, this study shows how combining mechanistic
modeling with causal machine learning can enhance the analysis of observational data. By embedding
radiobiological insight into CAST using BED variants from different tumor repopulation models, we
uncover treatment effects that align with known biology while also revealing discrepancies, such as
stronger chemotherapy benefits than reported in prior meta-analyses. This offers a powerful way to
complement clinical trials and generate new hypotheses.

Limitations and Broader Impacts

* Data limitations: The dataset exhibits substantial right-censoring: while 88.9% of patients
remain in follow-up at one year, only 22.2% do so by year six. This may bias long-term
survival estimates and obscure treatment effects that manifest later in time.

» External validity: The data come from a single institution (University Health Network,
Toronto) and are predominantly male (80%), limiting generalizability to broader populations,
especially women.

* Causal assumptions: Like all causal inference methods, CAST relies on the assump-
tion of no unmeasured confounding. Important factors such as diet, lifestyle, or genetic
risk—potentially related to both treatment and outcome—are not included.

* Methodological scope: From a machine learning perspective, CAST supports only binary
treatment variables. Extending it to model continuous dosing, multi-arm comparisons, or
longitudinal interventions remains an important direction for future work.

7 Conclusion

In this paper, we present CAST, a framework for modeling time-varying treatment effects in causal
survival analysis using parametric and non-parametric methods. CAST extends causal survival forests
to continuous-time modeling, estimating individualized treatment paths and highlighting effect peaks
and declines. Applied to chemotherapy for HNSCC, CAST produces robust and interpretable insights,
supporting personalized and adaptive care. Beyond cancer, CAST applies to settings with evolving
treatment effects—such as infectious disease interventions—to pinpoint critical windows, tailor care,
and adapt strategies as evidence grows.
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A Theoretical Justification of CAST

We provide formal justification for the consistency and identifiability of the time-varying treatment
effect estimator 7(¢) used in the CAST framework.

A.1 Problem Setting

Let D = {(X;,W;,T;, ;) }_, be a dataset of n i.i.d. samples where: - X; € RP is a vector of
observed covariates, - W; € {0,1} is a binary treatment indicator, - T; is the observed event or
censoring time, - §; € {0, 1} is the event indicator (1 if the event occurred, 0 if censored).

Let Y (w, t) denote the potential outcome (e.g., survival status at time ¢) under treatment w € {0, 1}.
We define the time-varying Conditional Average Treatment Effect (CATE) as:
T(z,t) :=E[Y(1,¢t) = Y(0,%) | X = z].

CAST estimates 7(x, t) using a doubly-robust causal survival forest followed by a spline or quadratic
fit across time.

A.2 Assumptions
We adopt standard causal inference and survival analysis assumptions:

(A1) Unconfoundedness: (Y (0,t),Y(1,t)) L W | X forall ¢.

(A2) Positivity: 0 < P(W =1 | X) < 1 almost surely.

(A3) Consistency: Y = Y (W, ¢) if W is received.

(A4) Non-informative Censoring: C' 1 (Y (0,¢),Y(1,t)) | X, W for censoring time C.

(AS) Consistency of Forest Estimators: The causal survival forests used yield consistent
estimates of conditional survival functions S,, (¢ | X).

A.3 Theorem: Pointwise Consistency of 7(t)

[Pointwise Consistency] Under assumptions (A1)—(AS), for each fixed ¢:
#(t) == Ex[S1(t | X) = So(t | X)] 2 7(t) := Ex[Si(t | X) = So(t | X)]

as n — oo, where S, (¢ | X) is the estimated conditional survival function under treatment w from
causal survival forests.

This follows from: 1. Consistency of S (t | X) (AS5), 2. The continuous mapping theorem, since
subtraction and expectation are continuous, 3. Trimming enforces overlap (A2), ensuring bounded
inverse propensity weights.

A .4 Identifiability of 7(¢) from Observational Data

[Identifiability] Under assumptions (A1)-(A4), the marginal time-varying treatment effect
7(t) =Ex[E[Y | W=1,XT>¢t-E[Y |W=0,X,T >t
is identified from observational data using inverse probability weighting or doubly-robust estimation.

Under unconfoundedness and non-informative censoring, we can consistently estimate the conditional
means E[Y (w,t) | X] from observed data. The difference in conditional expectations across
treatment groups yields an identifiable estimator of 7(t).
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A.5 Estimability of Peak Effect Time in CAST-Parametric
Let the parametric effect trajectory be:
7(t) = Bo + But + fat?,
and suppose /3’17 /35 are estimated using weighted least squares.
[Consistency of Estimated Peak Time] If Bl LN 51, Bg LN B2 with B2 < 0, then the estimated peak
time
_B
262
_ B
2B2°

t* =
is a consistent estimator of the true peak t* =

This follows from Slutsky’s theorem. Since both /3’1 and Bg converge in probability to non-zero limits,
and the mapping f(a,b) = —a/(2b) is continuous for b # 0, it follows that:

b B B

= — =t".
252 252
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B Expanded Dataset Subsection

Overview

Our analysis uses the RADCURE dataset from The Cancer Imaging Archive (TCIA), the largest to
our knowledge publicly accessible head and neck cancer imaging dataset. The data spans from 2005
to 2017 and includes computed tomography (CT) images for 3,346 patients, from which we selected
a subset of 2,651 patients after filtering for only HNSCC cases. These images are linked to clinical,
demographic, and treatment metadata. Following standardized clinical imaging protocols, the RAD-
CURE project includes CT images, pictured alongside manually-reviewed contours differentiating
between the planning tumor volume (PTV) and the organs at risk (OARs). All patients in this dataset
received radiotherapy, and some received chemotherapy.

The clinical data accounts for patient demographics, including age, gender, and HPV status. It
also details tumor staging using the 7th edition TNM system to describe the cancer, in addition to
treatment information. While the dataset primarily focuses on oropharyngeal cancer, it also covers
laryngeal, nasopharyngeal, and hypopharyngeal cancers.

Data Preprocessing

In the preprocessing stage, we filtered out incomplete patient profiles to ensure the dataset included
relevant variables and appropriately represented potential confounders. We standardized all con-
tinuous variables to have zero mean and unit variance to ensure comparability and optimize model
performance. The dataset comprehensively describes treatment details—dose/fraction, number of
fractions, and total days of radiotherapy—which we used to calculate Biologically Effective Dose
(BED) values. We implemented both dose-independent (DI) and dose-dependent (DD) BED models
to capture the biological effects of radiation therapy, using established radiobiological parameters
(a = 0.2 Gy~ !, a/B = 10 Gy, accelerated repopulation rates and onset times). This allowed us to
quantify the effective radiation dose accounting for different fractionation schedules. We employed a
stratified data partitioning strategy, creating training (75%) and testing (25%) sets while maintaining
consistent event rates across partitions. Both subsets contained similar proportions of survival events,
allowing for unbiased evaluation of treatment effects.

Table 1 summarizes the estimated average treatment effects across time for both restricted mean
survival time (RMST) and survival probability (SP) metrics. These values were computed using
causal survival forests on held-out test data. We observe that the estimated effects generally increase
with longer follow-up, particularly under the RMST metric, reflecting the accumulating benefit of
treatment over time. Standard errors are included to reflect model uncertainty at each horizon.

Table 1: Summary statistics of the real dataset

Statistic Control Group Treated Group
Event Rate (%) 79.8
Treatment Rate (%) 44.9

Median Survival (months) 17.0 24.0
12-month Survival (%) 70.3 90.1
24-month Survival (%) 20.2 45.5
36-month Survival (%) 1.9 7.3
48-month Survival (%) 0.0 0.1
Age (mean) 60.42 59.23
TNM Stage (mean) 1.73 3.46
HPV Positivity Rate 0.68 0.51
Sex (Male = 1) 0.48 0.49

Computing Resources: All experiments were conducted with a 13th Gen Intel Core i7-1355U CPU,
16GB RAM, and integrated Intel Iris Xe Graphics. No discrete GPU or cloud resources were used,
though such resources would significantly reduce runtime for large-scale extensions of this work.
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C Additional Results

In this section, we present additional results that extend and validate the findings reported in the
main paper. These include visualizations of treatment effect heterogeneity across time, a summary of
average treatment effects, and robustness checks to support the reliability of our causal estimates.

C.1 Summary Table of Average Treatment Effects

Table 2 summarizes the estimated average treatment effects across time horizons using both RMST
and survival probability metrics. These values were computed using causal survival forests on the
held-out test set. The treatment effects tend to increase over time under both metrics, with RMST
showing a steeper upward trend reflecting cumulative benefit. Standard errors are included for each
estimate. The early rise in both SP and RMST suggests initial treatment efficacy, while the plateauing
in later months reflects diminishing returns, possibly due to recurrence or late toxicity. The RMST
gains—peaking at over 16 months—highlight how cumulative survival benefit continues to accrue
even as survival probability differences taper off. These patterns support the biological intuition that
treatment effects rise quickly post-intervention and then gradually attenuate.

Table 2: Estimated average treatment effects (ATE) across time using RMST and survival probability
(SP). SE represent standard errors

Months | ATE (SP) SE (SP) | ATE (RMST) SE (RMST)

12 0.099 0.049 0.44 0.26
24 0.141 0.053 1.88 0.80
36 0.152 0.058 3.58 1.46
48 0.178 0.072 5.80 2.31
60 0.168 0.071 7.39 2.73
72 0.148 0.075 8.38 3.52
84 0.156 0.077 11.08 4.76
96 0.143 0.071 13.89 5.90
108 0.129 0.068 14.76 6.16
120 0.100 0.063 16.11 6.92

These summary statistics also inform the CAST modeling strategies described in Section 3.3. The
steady increase followed by tapering motivates the use of both quadratic and spline-based approaches
to flexibly capture the full temporal arc of treatment efficacy.
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C.2 SHAP-Based Interpretability Analysis

While SHAP provides valuable insights into feature influence, the estimates generated here using
the fastshap R package are approximate and may be noisy, particularly in the context of survival
analysis. We calculated approximate SHAP values because an exact SHAP explainer does not
yet exist for the causal survival forest model. Figures 4(a—c) show SHAP plots for the three most
influential variables—age, HPV status, and smoking pack-years—highlighting clear heterogeneity
in treatment benefit across subgroups. Additional SHAP plots for other covariates—such as tumor
site, treatment timing, dose metrics, and TNM stage—are also provided below. These variables had
smaller contributions to the model, but are shown for completeness and transparency.

SHAP values for Age SHAP values for HPV_Positive

Causal Effects
C:nal Effects. s
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Figure 4: SHAP analysis of covariates driving treatment effect heterogeneity. (a) Older age is linked
to greater chemotherapy benefit. (b) HPV-negative patients consistently show higher contributions.
(c) Smoking history is positively associated with the chemotherapy benefit treatment.
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Figure 5: SHAP values for primary tumor site. These anatomical subgroups exhibited low or diffuse
contributions to treatment effect heterogeneity, though subtle site-specific trends may still hold
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17



SHAP values for Stage_numeric

0,001

SHAP values for BED_DD

|
.
2005
0.000
. Causal Effects
H m
% 2
- o
%I 3
‘§ 01 g' 1e-05
-0.001
: v : [ 8
| w
% ! sex @
a o0
LB
0.002 0e+00
] -
H
B
0003
~ 2 N . & & & &®
Stage_numeric BED_DD
(a) TNM Stage (b) BED (Dose-Dependent)
SHAP values for BED_DI SHAP values for RT_year
0050
]
002
0025
Causal Effects I
A" =
02
% 4 e s s £
T 5 | L]
% 01 ® 000 " 2 ] -
oo m - . . H ] LA I
a ) 4
w = ]
o Sex 4 -
® 0
-
0025 o0 ]
B e
"
I
[
" L]
T
oo & ® & @ N e s o
BED_DI RT_year
(c) BED (Dose-Independent) (d) Year of RT
SHAP values for HPV_Unknown
0004
i
1] Causal Effects
] | ]
& | |
= 02
%I 0.002
€
H 01
H [ |
£
=]
>I Sex
o
I 0000 ® 0
. LB
o |
.
& & & <& &
HPV_Unknown
(e) HPV Unknown

Causal Effects

Causal Effects
-
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C.3 Distributions of Individualized Treatment Effects

We visualize the estimated treatment effect distributions for both RMST and survival probability (SP)
at intervals ranging from 12 to 120 months. Figures 4 and 5 show individual-level causal effects
derived from the causal survival forest at each time horizon.
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Figure 7: Distributions of estimated RMST-based treatment effects over time. Each panel shows the
individual-level causal effect at a specific horizon as learned by the causal survival forest.



Distribution of Treatment Effects at 12 month Horizon (SP)
60

Survival Probability Treatment Effect Distributions

Distribution of Treatment Effects at 24 month Horizon (SP)

Distribution of Treatment Effects at 36 month Horizon (SP)

Count
Count

5 0.10 015 020 0.05 0.10 015 020
Individual Treatment Effect Individual Treatment Effect

(b) 24 months

[X) 02
Individual Treatment Effect

(a) 12 months (c) 36 months

Distribution of Treatment Effects at 48 month Horizon (SP) Distribution of Treatment Effects at 60 month Horizon (SP)

Distribution of Treatment Effects at 72 month Horizon (SP)
601 — — —
80 807
601 607
40
€ € €
3 30 340
o o o
20
20 201
3 o1 o1
o 02 03 1 02 03 0o
Individual Treatment Effect Individual Treatment Effect

01 02 03
Individual Treatment Effect

(d) 48 months (e) 60 months (f) 72 months

Distribution of Treatment Effects at 84 month Horizon (SP) Distribution of Treatment Effects at 96 month Horizon (SP) Distribution of Treatment Effects at 108 month Horizon (SP)

80-
60+ ]

Count
° 8 &
Count
Count

01 02 03
Individual Treatment Effect

(g) 84 months

[X] 02
Individual Treatment Effect

(h) 96 months

01 02
Individual Treatment Effect

(i) 108 months

Distribution of Treatment Effects at 120 month Horizon (SP)

Count
° 8 &

0.05 010 015 020
Individual Treatment Effect

(j) 120 months

Figure 8: Distributions of estimated survival-probability-based treatment effects over time. Each

panel shows the individual-level causal effect at a specific horizon as estimated by the causal survival
forest.
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C.4 Dummy Outcome Refutation Tests

To assess whether CAST detects spurious treatment effects in the absence of a true signal, we
performed dummy outcome tests. For each time horizon, we randomly shuffled treatment assignments
and outcome times across 20 repetitions to simulate a null setting. If the model was overfitting or
improperly attributing causal structure, it would produce non-zero treatment effect estimates even
under randomization. As shown in the boxplots below, the estimated treatment effects for both RMST
and survival probability are centered around zero, especially at relatively short times (< 60 months),
when the number of patients still at risk was large. This confirms that CAST does not learn artifacts
from the data and is robust to randomization of causal structure.
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Figure 9: Dummy outcome test for RMST-based ATE estimates. Across 20 shuffles per horizon,
treatment effects are centered near zero, consistent with the null.
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Figure 10: Dummy outcome test for survival probability-based ATE estimates. The model correctly
reports no significant treatment effects under randomized labels.
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To assess the robustness of CAST estimates to unobserved confounding, we performed a sensitivity
analysis by injecting synthetic covariates with varying correlation to treatment assignment (r = 0.1,
0.3, 0.5). We then measured the resulting shifts in ATE estimates across time horizons for both
RMST and survival probability outcomes.
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Figure 11: Absolute ATE differences in RMST under varying confounder strengths (» = 0.1, 0.3,
0.5). Estimates are stable under weak strengths but diverge at longer horizons and higher strengths.
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Figure 12: Absolute ATE differences in SP under varying confounder strengths (r = 0.1, 0.3, 0.5).
CAST estimates remain stable under weak strengths, with modest shifts at stronger levels and longer
horizons.
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