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Abstract

In recent years, diffusion models trained on equilibrium molecular distributions
have proven effective for sampling biomolecules. Beyond direct sampling, the
score of such a model can also be used to derive the forces that act on molecular
systems. However, while classical diffusion sampling usually recovers the training
distribution, the corresponding energy-based interpretation of the learned score is
often inconsistent with this distribution, even for low-dimensional toy systems. We
trace this inconsistency to inaccuracies of the learned score at very small diffusion
timesteps, where the model must capture the correct evolution of the data distribu-
tion. In this regime, diffusion models fail to satisfy the Fokker–Planck equation,
which governs the evolution of the score. We interpret this deviation as the source
of the observed inconsistencies and propose an energy-based diffusion model with
a Fokker–Planck-derived regularization term to enforce consistency. We demon-
strate our approach by sampling and simulating multiple biomolecular systems,
including fast-folding proteins, and by introducing a state-of-the-art transferable
Boltzmann emulator for dipeptides that supports simulation and achieves improved
consistency and efficient sampling. Our code and self-contained JAX and PyTorch
notebooks are available at https://github.com/noegroup/ScoreMD.

1 Introduction

Understanding biochemical systems requires modeling not only static molecular structures but also
their temporal evolution and interactions. Molecular dynamics (MD) simulations offer a principled
framework to obtain such information from atomistic force fields and, with recent methodological
and computational advances, can reach biologically relevant timescales (Lindorff-Larsen et al., 2011;
Wolf et al., 2020). Nonetheless, fully atomistic simulations of large systems or slow conformational
transitions remain computationally challenging (Kmiecik et al., 2016; Plattner et al., 2017). Coarse-
graining (CG) methods address this limitation by grouping atoms into beads to accelerate simulations
at the cost of physical resolution. In this reduced space, interactions and forces cannot be described
accurately with traditional MD methods, requiring learning-based approaches to approximate forces
and recover correct dynamics (Clementi, 2008; Noid, 2013; Husic et al., 2020; Charron et al., 2025).

Diffusion models (Ho et al., 2020; Song et al., 2021) have emerged as powerful generative tools
capable of learning high-dimensional molecular distributions (Abramson et al., 2024; Watson et al.,
2023; Corso et al., 2023; Plainer et al., 2023b; Lewis et al., 2025). They are trained to reverse
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Figure 1: Training diffusion models on a 2D toy example reveals inconsistencies. While classical iid diffusion
sampling (i.e., denoising) correctly reproduces both modes, evaluating the score at t = 0 to estimate the
unnormalized density yields a third mode and an incorrect mass distribution. Such a diffusion model would
produce incorrect dynamics while producing correct samples. A model trained with Fokker–Planck regularization
is self-consistent, and aligns the learned score at t = 0 with the distribution recovered by diffusion sampling.

a stochastic diffusion process in which data is progressively perturbed with Gaussian noise over
diffusion time t, starting from clean samples at t = 0 and approaching pure noise at t = 1. Generation
then proceeds in reverse: random noise is iteratively denoised using the learned time-dependent
score function ∇x log p(x, t), producing molecular configurations that approximate the equilibrium
training distribution. While such models can efficiently generate independent equilibrium structures
(Lewis et al., 2025), they lack temporal structure and cannot capture kinetic properties (Wang and
Hou, 2011a,b) or transition mechanisms (Henkelman et al., 2000; Bolhuis et al., 2002). In contrast,
MD yields both, thermodynamic and kinetic properties but has a high computational cost.

In principle, the score function at t = 0 of a diffusion model trained on Boltzmann-distributed
molecular samples can serve as a surrogate for the physical forces. In an ideal energy-based diffusion
model, this correspondence would ensure thermodynamic consistency between the learned energy
landscape and the equilibrium distribution. In practice, however, diffusion models rarely behave as
proper energy-based models, especially as system complexity increases (Arts et al., 2023). In this
work, we address these limitations and propose a consistent energy-based diffusion model that can
generate realistic equilibrium samples while providing physically consistent forces for simulation.

To address this, we leverage the Fokker–Planck equation, which governs the evolution of probability
densities under diffusion processes (Särkkä and Solin, 2019), but is generally violated by existing
diffusion models (Lai et al., 2023). By introducing a loss term during training that penalizes deviations
from this equation, we improve model alignment and empirically enhance consistency between
generated samples and simulated dynamics, as shown in Figure 1. In practice, we parameterize the
score as the gradient of an energy function, providing access to a potential energy and conservative
forces, which is the prerequisite to enable the use of established physical sampling methods (Torrie
and Valleau, 1977; Laio and Parrinello, 2002) with coarse-grained diffusion models. Furthermore, by
decomposing the diffusion timeline into smaller intervals and assigning a separate model to each, this
regularization can be selectively applied to small diffusion timesteps.

Our main contributions in this work are as follows:

1. We include a Fokker–Planck-based regularization when training energy-based diffusion models,
which substantially improves simulation stability and enforces consistency between diffusion
sampling and molecular dynamics simulations recovered from the learned forces. This enables
accurate sampling and simulation of fast-folding proteins such as Chignolin and BBA.

2. We show that training on a small sub-interval of the diffusion time suffices for stable simulation.
Combining this with smaller models trained on complementary intervals can yield more
efficient training and inference while preserving high sampling quality.

3. We develop a state-of-the-art transferable Boltzmann emulator for dipeptides capable of high-
quality independent sampling and consistent long-time simulation.

2 Background

2.1 Generative Score-based Modeling

Diffusion models (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021) are self-supervised
generative models that gradually corrupt the training data with noise and learn to reverse this stochastic
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process. The forward process is defined by a stochastic differential equation (SDE)

dx = f(x, t) dt+ g(t) dw, (1)

where w denotes the standard Wiener process, and f and g define the drift and diffusion coefficient
respectively. To generate samples, diffusion models simulate the corresponding reverse-time SDE

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t) dw̄. (2)

Starting from Gaussian noise at time t = 1, they iteratively denoise until a sample is produced
at t = 0. Here, pt(x) denotes the density of the sample x at time t, which the model aims to
approximate by learning the score ∇x log pt(x, t). w̄ denotes the time-reversed Wiener process.

As for f and g, the choice depends on the specific diffusion formulation. In this work, we adopt the
variance preserving (VP) SDE formulation introduced by Song et al. (2021) (compare Appendix A.1).

Denoising score matching (Vincent, 2011; Song et al., 2021) is a common way to train diffusion
models by minimizing the squared error between a time-dependent learned score function sθ(x(t), t)
and the true score of the transition kernel p0t(x(t) |x(0)) conditioned on the training data x(0):

θ∗ = argmin
θ

Et∼U(0,1) Ex(0) Ex(t) |x(0)

[
λ(t)

∥∥sθ(x(t), t)−∇x(t) log p0t(x(t) |x(0))
∥∥2
2

]
, (3)

where λ(t) is a time-dependent weighting function. For brevity, we will denote the denoising diffusion
loss as LDSM[sθ](x, t) = λ(t)

∥∥sθ(x(t), t)−∇x(t) log p0t(x(t) |x(0))
∥∥2
2
.

Parameterization and instabilities. With an affine drift f , we can write the closed-form solution of
p0t as a Gaussian (Särkkä and Solin, 2019), and can efficiently train diffusion models such that

θ∗ = argmin
θ

Et∼U(0,1) Ex(0) Eϵ∼N (0,I)

[
λ(t)

∥∥∥∥sθ(µ(x(0), t) + σ(t)ϵ, t) +
ϵ

σ(t)

∥∥∥∥2
2

]
, (4)

where µ(x(0), t), σ(t) depend on the concrete choices for f and g. By construction, σ(0) = 0, which
ensures correct interpolation between data and noise. Minimizing the denoising loss yields a neural
network with parameters θ that can approximate the unconditional score sθ(x, t) ≈ ∇x log pt(x).

As t→ 0, this parameterization introduces numerical instability, where σ(t) vanishes and the loss
explodes. This instability makes training difficult at small timescales (Kim et al., 2022) and is
typically mitigated by truncating the training interval to (ε, 1) for some ε > 0. While effective for
training stability, this inherent instability in training limits the model’s accuracy at small t, which is
critical for applications requiring reliable scores close to the data manifold, as targeted in this work.

2.2 Boltzmann Distribution

Molecular dynamics simulations numerically integrate Newton’s equations of motion to describe the
time evolution of a molecular system. A widely used formulation is Langevin dynamics (Leimkuhler
and Matthews, 2015), which corresponds to integrating the following set of SDEs

dx = v dt , M dv = −∇xU(x) dt− γMv dt+
√
2γkBT dwt. (5)

M denotes the particle masses, v the velocities, γ is a friction constant, kBT a constant, and wt is
the standard Brownian motion. Note that t here refers to the physical time instead of the diffusion
time used earlier. Integration of this system requires access to the forces −∇xU . However, in settings
where direct force evaluation is not feasible, such as in CG models, a surrogate force function is
required. In this work, we propose using the score sθ(x, t = 0) for this purpose, as we describe next.

Extracting forces. After a long, equilibrated MD simulation, samples follow the Boltzmann distribu-
tion (Boltzmann, 1868) such that p(x) = exp(−U(x)

kBT )/Z, where U is the potential energy and Z the
normalization constant. Training a diffusion model on data from such a distribution yields at t = 0

sθ(x, t = 0) ≈ ∇x log pt=0(x) (6)

= ∇x log exp

(
−U(x)

kBT

)
−∇x logZ

= −∇x
U(x)

kBT
− 0.
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Hence, the score at diffusion time t = 0 is proportional to −∇xU(x), the forces acting on the system.
This equivalence implies that any diffusion model trained on Boltzmann-distributed data can not only
be used for independent sampling but also for molecular simulation by using the learned score as a
force estimator with the SDEs of Equation (5). Unlike previous methods that rely on explicit force
labels for training (Husic et al., 2020; Durumeric et al., 2023; Charron et al., 2025; Krämer et al.,
2023), this relation allows us to learn a model directly from equilibrium samples. This is particularly
useful for systems where potential energy and force labels are unavailable, as in CG modeling, which
is the setting we consider. The central question we will answer next is whether and how this identity
can be realized in practice and if the resulting model is sufficiently accurate.

3 Method

Diffusion models trained on Boltzmann-distributed molecular data provide a bridge between genera-
tive sampling and physical energy landscapes. At the diffusion endpoint t = 0, the score represents
the forces acting on the system (Equation (6)), suggesting that a single model can capture the sampling
process and the underlying potential energy. These two perspectives correspond to reconstructing the
data distribution through denoising, p(x), or evaluating the energy-based form at t = 0, p0(x):

p(x) ∼ Denoising[sθ](x, t)

p0(x) ∼ exp

(
−U(x)

kBT

) with sθ(x, 0) = −∇x
U(x)

kBT
. (7)

Ideally, these two formulations should agree such that p(x) = p0(x). In practice, however, diffusion
models often display inconsistencies (Koehler et al., 2023; Li et al., 2023; Bortoli et al., 2024). Prior
attempts to use the score–force relation beyond static sampling can reproduce realistic ensembles
under classical diffusion sampling p(x) but fail to recover these distributions in simulation p0(x)
(Arts et al., 2023), indicating that the learned model does not behave as a proper energy-based model.

We show that consistency can be recovered directly from unlabeled equilibrium data by enforcing
the Fokker–Planck equation. This equation links energy functions across different diffusion times,
effectively transferring accuracy from stable, large-t regions to the small-t regime. The result is a
self-consistent diffusion model that learns physically meaningful forces without ever observing them.

3.1 Improving Consistency with the Fokker–Planck Equation

The Fokker–Planck equation (Øksendal, 2003; Särkkä and Solin, 2019) is a partial differential
equation that describes how probability densities evolve in stochastic processes, including diffusion
models. For the diffusion SDE introduced in Equation (1), the log-density formulation of the
Fokker–Planck equation (Lai et al., 2023; Hu et al., 2024) can be written as

∂t log pt(x) = Fp(x, t) ≜
1

2
g2(t)

[
divx(∇x log pt) + ∥∇x log pt∥22

]
− ⟨f ,∇x log pt⟩ − divx(f),

(8)
where divx denotes the divergence operator divx F = tr (∂xF ). This equation is a fundamental
property of the diffusion process, and any well-trained model should satisfy Equation (8). However,
as shown in Section 5, we observe that diffusion models violate this equation, particularly at small t,
which is consistent with findings in prior work (Lai et al., 2023). Since the Fokker–Planck equation
links the evolution of the score to that of the underlying density, such violations imply that the
learned score does not evolve consistently with the density over diffusion time. Consequently,
small deviations can accumulate, possibly leading to inconsistencies between the distribution p(x)
recovered through denoising and the instantaneous density p0(x) we want to recover.

Fokker–Planck regularization. To correct this, we introduce a regularization term that enforces
compliance with Equation (8) during training, similar to Lai et al. (2023). Alongside the standard
diffusion objective, we minimize the residual error

∥R(x, t)∥22 =
∥∥Fpθ (x, t)− ∂t log p

θ
t (x)

∥∥2
2
, (9)

and define the corresponding loss as LFP[log p
θ](x, t) = λFP (t)D

−2 ∥R(x, t)∥22 , where x ∈ RD

and λFP is a time-dependent weighting function, which we set to be the same as λ. As the regular-
ization can be evaluated for all x, t, we combine it with the score-matching objective

argmin
θ

Et∼U(0,1) Ex(0) Ex(t) |x(0)
[
LDSM[∇x log pθ](x(t), t) + α · LFP[log p

θ](x(t), t)
]
, (10)
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where α is a hyperparameter that determines the regularization strength. The regularization LFP term
provides an additional training signal that stabilizes learning in the small-time regime, where the
denoising loss becomes ill-conditioned and gradients are dominated by noise. By explicitly linking
the temporal evolution of densities, the regularization encourages the model to remain consistent with
the Fokker–Planck dynamics throughout diffusion time.

Weak residual formulation. The exact computation of the residualR (and thus the loss LFP) involves
costly higher-order derivatives, especially the divergence term divx(∇x log pθ) can be challenging to
compute for high-dimensional data. To reduce this overhead, we introduce a series of approximations
and begin by using a residual in the weak formulation similar to the one used by Guo et al. (2022)

R̃(x, t) = Ev [R(x+ v, t)] (11)

with v ∼ N (0, σ2I) and a small σ > 0. As σ approaches 0, R̃(x, t) will be equal to R(x, t). Using
the weak residual formulation, R̃(x, t) can be estimated by the following unbiased estimator, which
only requires the computation of first-order derivatives (see Appendix A.2 for derivation)

R̃(x, t;v) =
1

2
g2(t)

[(v
σ

)⊤ sθ(x+ v, t)− sθ(x− v, t)

2σ
+
∥∥sθ(x+ v, t)

∥∥2
2

]
(12)

− ⟨f(x+ v, t), sθ(x+ v, t)⟩ − divx(f(x+ v, t))− ∂t log p
θ
t (x+ v),

where sθ = ∇x log pθ. This yields an unbiased estimator of the squared residual

LFP(x, t) ≈
∥∥∥R̃(x, t)∥∥∥2

2
≈ R̃(x, t;v) · R̃(x, t;v′), (13)

with v,v′ ∼ N (0, σ2I), yielding a computationally manageable estimate of LFP.

We further reduce computational cost by estimating ∂t log pθt using finite differences (Fornberg, 1988)

∂t log p
θ
t ≈ h2s log p

θ
t (x, t+ hd) + (h2d − h2s) log p

θ
t (x, t)− h2d log p

θ
t (x, t− hs)

hshd(hs + hd)
. (14)

Since both t and log pθt are one-dimensional, finite differences serve as a robust estimate. This allows
for computationally feasible approximation of the loss LFP, using multiple forward passes.

3.2 Physically Consistent Model Design

To model biochemical systems accurately and support Fokker–Planck regularization, we must enforce
known physical constraints through an appropriate parameterization and choice of architecture.

Conservative model parameterization. In diffusion models, it is common to parameterize the score
directly as sθ = ∇x log pθt = NNET (x, t) rather than defining an explicit energy function and
taking its gradient, sθ = ∇xNNET

′(x, t). While energy-based formulations have been explored
previously for diffusion models (Song and Ermon, 2019), they are less common in practice (Du et al.,
2023), since most applications require only the score and report no difference in sampling quality
(Salimans and Ho, 2021). In our setting, however, we explicitly aim to construct a consistent energy-
based diffusion model, ensuring the correspondence between the learned score and the underlying
energy landscape as formalized in Equation (7). This gradient-based formulation provides access to
the energy log pt, which is essential for enforcing physical consistency through the Fokker–Planck
equation. Moreover, for molecular simulations, a conservative formulation, where the forces are
derived from a well-defined energy, is critical for numerical stability and accurate force estimation
(Schütt et al., 2017; Batzner et al., 2022; Arts et al., 2023), as further demonstrated in Appendix C.1.

Architecture. Our choice for the score is conservative, translation invariant, and learns SO(3)
equivariance. Similarly to Arts et al. (2023), we use a graph transformer (Shi et al., 2021), making
the score permutation equivariant and achieving translation invariance by using pairwise distances
instead of absolute coordinates. For the rotation equivariance, recent work (Abramson et al., 2024)
has shown that the architecture itself does not need to enforce this property. Hence, we apply random
rotations during training so that the network learns rotational equivariance via data augmentation.

The main part of the architecture can be summarized by describing the nodes n and edges e such that

eij = xi − xj , n
(0)
i = [ai, t] , n(l+1) = ϕ(l)(n(l), e), (15)
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where x are the coarse-grained positions, e are the edge features, a are atom features, t is the
diffusion time, n(l) are the node embeddings of layer l, and ϕ is one layer of the graph transformer.
When training on a single molecule, we use one-hot atom types; for the transferable model, we use
the atom identity, atom number, residue index, and amino acid type, following Klein and Noé (2024).

Finally, to achieve conservativeness, we map the last node embeddings n(L)
i ∈ RK to scalar energies

via ψ : RK → R, and compute the score as ∇x

∑
i ψ(n

(L)
i ). Overall, this yields a translation-

invariant, approximately rotation-equivariant, conservative architecture that also avoids issues caused
by mirror symmetries (Trippe et al., 2023; Klein and Noé, 2024).

3.3 Mixture of Experts

Classical diffusion models are trained across the full diffusion timeline to enable generative sampling.
In contrast, for certain applications, learning the score only at t = 0 can be sufficient, as it provides
access to the potential and forces. To support this, we introduce a time-based mixture of experts
(MoE) approach, inspired by ideas from the image domain to improve efficiency and performance
(Balaji et al., 2023; Ganjdanesh et al., 2025).

Rather than training a single model across the entire range t ∈ (0, 1), we partition the interval into
disjoint subintervals I0, I1, . . . with

⋃
i Ii = (0, 1), and assign a separate expert sθi to each interval.

The overall score can then be written by evaluating the correct model

sθ(x, t) = sθi (x, t) , for t ∈ Ii. (16)

Thus, only one expert is active at any given t, which simplifies memory management and allows
independent and parallel training of all experts. For simulation, only the expert corresponding to
t = 0 ∈ Ii is needed, while iterative diffusion sampling sequentially loads every expert as t decreases.

This design provides several advantages. For simulation, training only on the relevant small-t range
(e.g., (0, 0.1)) avoids wasting resources on unnecessary diffusion times that are never used. For
generative sampling, dividing the timeline still offers clear benefits. Applying the Fokker–Planck
loss from Equation (10) across all diffusion times can lead to overregularization at large t, degrading
iid sampling performance. Since large-t models do not require Fokker–Planck regularization or
a conservative parameterization, using simpler unconstrained models improves generative quality
and prevents unnecessary constraints. Moreover, the experts specialize in distinct temporal regions:
small-t experts capture fine structural details, while large-t experts focus on coarse features (Ganj-
danesh et al., 2025). This specialization stabilizes training and enhances the consistency between
sampling and simulation beyond what could be achieved by simply increasing model capacity (see
Appendix C.2). Finally, because only one expert is loaded into memory at a time, we can overall train
more parameters without exceeding GPU limits. We will explore these benefits in Section 5.

4 Related Work

In recent years, a variety of deep learning methods have been proposed to enhance or replace
molecular simulation. The work most closely related to ours is that of Arts et al. (2023), who
employ an energy-based diffusion model for coarse-grained systems. However, their approach
fails to maintain consistency between sampling and the learned score. They mitigate some of
the inconsistencies we describe by evaluating the diffusion model at larger timesteps t > 0, which
introduces additional noise and reduces structural fidelity. We compare against this model in Section 5
and show that evaluating at a t > 0 is not a suitable way to prevent this mismatch. Daigavane et al.
(2025) use the inherent noise to converge to an equilibrium distribution faster, but they do not learn
accurate scores either. Several works instead learn coarse-grained force fields via a force-matching
objective (Husic et al., 2020; Köhler et al., 2023; Charron et al., 2025; Durumeric et al., 2024). Rather
than training a model to represent the data distribution, these methods approximate the target forces.
However, they typically need system-specific energy priors, relying heavily on domain knowledge.

Other approaches bypass MD sampling entirely, generating Boltzmann-distributed configurations
either sequentially, by conditioning each sample on its predecessor (Dibak et al., 2022; Plainer et al.,
2023a; Schreiner et al., 2023; Tamagnone et al., 2024), or completely independently (Noé et al.,
2019; Wirnsberger et al., 2020; Köhler et al., 2020; Midgley et al., 2023; Klein et al., 2023b; Abdin
and Kim, 2024; Kim et al., 2024; Wu and Noé, 2024; Schebek et al., 2024; Diez et al., 2024; Tan
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et al., 2025). These methods frequently leverage diffusion- or flow-based architectures. In the latter
case, for all-atom systems with known energy functions, they can guarantee asymptotically unbiased
sampling via reweighting or integration into an MCMC scheme. Although this is often a desirable
property, extending it to larger systems remains challenging, as CG is not possible.

The inaccurate behavior of the score function has also been studied in low-dimensional settings by
Koehler et al. (2023); Li et al. (2023), who demonstrated inconsistencies and derived error bounds.
Bortoli et al. (2024) propose to improve the score at small diffusion timesteps, when the probability
distribution of the samples is known. However, this is not directly compatible with coarse-graining,
as the potential and the derived forces are not known. Similarly to us, Lai et al. (2023) also proposed
a Fokker–Planck-inspired regularization; however, unlike our approach, their method applies a
higher-order regularization to the score itself to improve iid sample quality, rather than enforcing
consistency through the potential to improve the learned score. Relatedly, Hu et al. (2024) propose a
score-based solver for high-dimensional Fokker–Planck equations, focusing on solving general SDE
forward problems, and Du et al. (2024) use the Fokker–Planck equation to describe MD as a series of
Gaussians that can be integrated but do not recover the full unconditional Boltzmann distribution.

5 Experiments

In this section, we evaluate the consistency of diffusion models by comparing samples obtained
through classical denoising (iid) with those generated by sequential Langevin simulations (sim)
using forces derived with the score–force relation from Equation (6). In other words, we verify the
alignment of Equation (7) for energy-based models and show superior performance. We demonstrate
our approach on three biomolecular systems—alanine dipeptide, Chignolin, and BBA—and introduce
a transferable model that generalizes across dipeptides, improving over existing state-of-the-art Boltz-
mann generators (Klein and Noé, 2024). The code, generated samples, and self-contained notebooks
in JAX and PyTorch are publicly available at https://github.com/noegroup/ScoreMD.

Metrics. As the main metric of interest, we compare the 2D free energy surfaces of the equilibrium
distributions obtained by different methods. For dipeptides, we project the data onto the dihedral
angles φ and ψ, while for proteins we perform time-lagged independent component analysis (TICA)
(Pérez-Hernández et al., 2013) on bond distances and dihedral angles to recover two representative
coordinates. To quantify differences between free energy surfaces, we report the potential of mean
force (PMF) error (Durumeric et al., 2024), which measures the squared distance between the negative
logarithms of the sampled and reference densities in the projected space. This metric places higher
weight on low-density regions compared to alternatives such as the Jensen-Shannon (JS) divergence.
Additional details are provided in Appendix B.2.

Baselines. We train a conservative Diffusion model and re-implement the Two For One method (Arts
et al., 2023) within the same continuous-time diffusion framework to ensure a fair comparison. Both
models use identical architectures and training procedures and therefore produce the same iid samples
(up to negligibly small numerical differences caused by different hardware etc.); their only difference
lies in the diffusion time used during evaluation. Specifically, Two For One performs simulation at
a finite diffusion time t ≫ 0 to enhance stability, whereas Diffusion is evaluated at t = 10−5. For
transferability, we re-train the Transferable Boltzmann generator (BG) model (Klein and Noé, 2024)
with coarse-graining and use it without reweighting.

5.1 Alanine Dipeptide and Fast-Folding Proteins

Dataset. For alanine dipeptide, we use 50k samples from an MD simulation in implicit solvent
(Köhler et al., 2021), coarse-grained to five atoms: [C, N, CA, C, N]. For Chignolin and BBA, we use
the dataset from Lindorff-Larsen et al. (2011), coarse-grained to one bead per amino acid (10 and 28
residues, respectively), and use 80% of the samples for training. For the iid setting, we generate the
same number of samples as in the training set. For sim, we initialize 100 parallel simulations from
random training conformations, and simulate with a timestep of 2 fs for a total length of 1.2µs for
alanine dipeptide, 855.6 ns for Chignolin, and 200 ns for BBA. All trajectories are downsampled to
match the number of training samples for consistency with the iid setting.

(In-)consistent sampling. Figure 2 compares the free energy landscapes in the projected space for iid
sampling and Langevin simulation (sim). While all methods reproduce the training distribution under
iid sampling, simulation quality varies and reveals inconsistencies. For the small system alanine
dipeptide, the equilibrium distributions appear similar across methods. However, as system size
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Figure 2: Comparison of equilibrium distributions obtained by iid sampling and Langevin simulation (sim) across
different systems and methods. While classical iid sampling recovers the reference equilibrium distribution,
performing simulation with the learned score reveals inconsistencies when models are not trained with Fokker–
Planck regularization, i.e., p(x) ̸= p0(x). Regularized models achieve consistent behavior across systems.

Method ALDP Chignolin BBA
PMF (↓) PMF (↓) PMF (↓)

Diffusion iid 0.098 ± 0.006 0.027 ± 0.000 0.034 ± 0.000
Ours iid 0.097 ± 0.008 0.035 ± 0.001 0.234 ± 0.001

Two For One sim 0.206 ± 0.004 1.438 ± 0.019 1.624 ± 0.107
Ours sim 0.091 ± 0.004 0.038 ± 0.006 0.254 ± 0.005

Table 1: Quantitative comparison of sampling and simulation across
different methods for alanine dipeptide (ALDP), Chignolin, and BBA.
Ours yields significantly more consistent results between iid and sim.

1.0 1.2 1.4 1.6

0

2

4

6

8

10

12

14

16 Reference
Two For One
Ours

Figure 3: Density of C–N bond
length in Å for simulation of alanine
dipeptide using different models.

increases, artifacts become more pronounced: for Chignolin, the Two For One simulation exhibits
strong noise, and for BBA, the system separates into unphysical modes, yielding an incorrect equi-
librium distribution. In contrast, our Fokker–Planck regularization enforces consistency, producing
matching ensembles for iid sampling and Langevin simulation (sim), i.e., p(x) ≈ p0(x).

These trends can be seen in Table 1, which shows that Ours substantially improves simulation quality.
We also observe a modest reduction in iid sampling performance, reflecting a tradeoff between
generative fidelity and consistency, goverened by the regularization strength α. Larger values promote
stronger alignment between sampling and simulation but may slightly degrade iid sampling accuracy.

Noisy simulation. Two For One improves consistency by evaluating the model at a larger diffusion
time t ≫ 0 during simulation, which introduces substantial noise that degrades structural fidelity.
While iid sampling remains unaffected, simulations exhibit pronounced deviations, as seen for
Chignolin in Figure 2. For alanine dipeptide, the free energy surface obtained with Two For One
appears reasonable, but because the method relies on “noisy” forces, the observables are also affected
by this noise. For instance, bond-length distributions will be incorrect, as depicted in Figure 3.

Dynamics. A key advantage of sim is its ability to recover kinetic information and temporal behavior,
which is not accessible with classical diffusion sampling. This allows us to not only generate
individual configurations but also analyze their time evolution, as shown in Figure 4. We observe how
the protein BBA repeatedly folds and unfolds and identify the conformations visited during these
transitions. Additional analysis of the dynamics, such as transition probabilities between states and
the corresponding results for Chignolin, is provided in Appendix C.6.

Force Matching. CG models are typically trained using force matching rather than diffusion-based
objectives. In Appendix C.5.4, we benchmark our method against recent force-matching approaches
for alanine dipeptide. Although these baselines often rely on explicit physical priors and force labels,
our diffusion-based model achieves ensembles that more closely match the reference distribution.
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Figure 4: Recovering and analyzing the dynamic behavior of BBA. (a) 3D molecular structures from a single MD
trajectory generated by our model. (b) Trajectory projected onto the first two TIC coordinates. (c) Illustrating
the TIC coordinates over the coarse-grained (and subsampled) timesteps.

5.2 Transferability Across Dipeptides (Two Amino Acids)

Dataset. We use the dataset introduced by Klein et al. (2023a), which contains 49k samples from
implicit-solvent simulations of 1µs covering all possible combinations of the 20 standard amino
acids. From these, we use 175 dipeptides for training. Each dipeptide is coarse-grained by retaining
the atoms [N, CA, CB, C, O] for each amino acid, a common CG resolution (Charron et al., 2025).
With this, up to 10 atoms are retained per molecule, as seen in Figure 5 (a). For iid sampling, we
draw 49k independent samples, while for sim we perform 30 ns of Langevin simulation per dipeptide,
initialized from 10 random conformations with a timestep of 0.5 fs downsampled to 49k frames.

Models. We ablate the individual contributions of the Fokker–Planck regularization, the impact of
MoE, and the effect of evaluating models at larger diffusion timesteps t≫ 0. Similar ablation studies
for previous results are provided in Appendices C.5 and C.6. Specifically, we compare the Diffusion
and Two For One baselines with three variants: Mixture denotes the MoE scheme, consisting of
three experts trained on the intervals (0, 0.1), [0.1, 0.6), and [0.6, 1.0). The models were robust to
moderate changes in these ranges, provided the smallest-time expert was trained on a sufficiently
large subinterval. All three experts are combined for iid sampling, while only the smallest-timescale
model is used for simulation. The experts corresponding to larger timescales are reduced in size and
complexity. Fokker–Planck refers to a single model trained with the loss from Equation (10). Both
combines these two approaches, where the regularization is applied only to the smallest-timescale
expert within the MoE setup. This corresponds to the model referred to previously as Ours.

Overdispersion. As shown in Figure 5 (b), all models can generate independent samples that closely
match the reference distribution. However, samples from the Transferable BG model exhibit increased
noise and over-explore low-probability states. In the original work, this behavior is corrected through
sample reweighting, which we omit here and instead treat the model simply as a Boltzmann emulator.
While the resulting differences are within standard deviations, the model yields a higher mean with
comparable variance (see Table 2). Moreover, note that this model does not support simulation.
When using the score for simulation, Two For One produces broader, overdispersed distributions, as
shown in Figure 5 (b). This overdispersion also propagates to structural features such as inter-atomic
distances, consistent with the behavior observed in previous systems (see Appendix C.8.2). More
metrics and evaluation for more dipeptides can be found in Appendix C.8.

Advantages of mixture. The MoE architecture can significantly improve simulation quality compared
to Diffusion. For the specific dipeptide shown in Figure 5 (c), Both further enhances performance over
Fokker–Planck, improving both iid and simulated distributions. While the degree of improvement
varies across dipeptides—with some cases showing comparable results (see Appendix C.8.3)—MoE
generally increases simulation stability, as reflected in the lower PMF errors reported in Table 2.

Since Mixture and Both contain more parameters (see Appendix B.5), part of the improvement can
be attributed to increased capacity. However, MoE also offers clear computational advantages: by
applying regularization only at small diffusion times and using smaller, unconstrained models for
larger timescales, it reduces training and inference cost, cutting sampling time by more than 50% in
this case (see Appendix C.3) and prevents overregularization at large diffusion timesteps. Moreover,
additional ablation studies in Appendix C.2 show that the benefits of MoE extend beyond parameter
scaling, demonstrating that training on smaller temporal subranges improves robustness and that
independently trained experts can be seamlessly combined into a coherent model.
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Figure 5: Comparison of methods on testset dipeptide KS. (a) The coarse-graining scheme. (b) Comparison of
the Ramachandran plots of different methods for iid sampling and Langevin simulation. (c) The projection of
the free energy surface and differences along the dihedral angle φ for samples generated with simulation.

Method iid PMF (↓) sim. PMF (↓)
Transferable BG 0.230 ± 0.119 -
Diffusion 0.206 ± 0.159 6.515 ± 3.175
Two For One 0.203 ± 0.149 0.741 ± 0.319

Mixture 0.200 ± 0.127 0.658 ± 0.407
Fokker–Planck 0.241 ± 0.105 0.368 ± 0.267
Both 0.199 ± 0.127 0.203 ± 0.104

Table 2: Comparison of metrics across all testset dipeptides with PMF
error. To compute the mean and standard deviation, we have averaged the
metrics across the dipeptides from the test set. Lower values are better.
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Figure 6: Comparing the Fokker–
Planck error for log pθ of multiple
models.

Fokker–Planck error. Figure 6 shows the deviation from the Fokker–Planck equation, quantified as∥∥Fpθ (x, t)− ∂t log p
θ
t (x)

∥∥
2
, plotted on a log scale. For models using MoE, this error is evaluated

only up to t = 0.1, since only the small-timescale model is energy-based. Across all methods, the
error is highest near t = 0. Applying the Fokker–Planck regularization significantly reduces this
error, correlating with the improved sampling-simulation consistency observed earlier.

Interestingly, while Mixture improves consistency, its Fokker–Planck error remains comparable to
that of unregularized models. This suggests that Fokker–Planck regularization and MoE improve
consistency through different mechanisms, which explains why combining them outperforms either
approach on its own, making Both again clearly the best model (compare Table 2).

6 Conclusion, Limitations and Future Work

In this work, we investigated energy-based diffusion models and analyzed the discrepancy between
the density recovered through denoising and the learned energy at diffusion time t = 0. We showed
that diffusion models are generally inconsistent, and these two densities do not coincide. To address
this, we introduced a Fokker–Planck-based regularization on the model’s energy, demonstrating that
reducing deviations from the Fokker–Planck equation substantially improves model consistency.
Furthermore, we found that focusing training on smaller diffusion times further enhances simulation
quality. With these improvements, we obtain a physically consistent energy-based model that can
generate independent equilibrium samples and recover realistic molecular dynamics from the same
learned potential, providing access to both static and kinetic properties. This is particularly useful in
coarse-grained settings where direct force information is not available. We validated these findings
across multiple systems, training on fast-folding proteins and generalizing across dipeptides.

Despite the theoretical motivation behind our approach, the results presented are primarily empirical.
While our findings indicate that reducing the Fokker–Planck deviation improves consistency, this
is unlikely to be the only source of simulation error. In fact, due to the fundamental differences
between diffusion sampling and Langevin simulation, perfect alignment may not be achievable
without limiting model expressivity. Moreover, evaluating the Fokker–Planck residual introduces
computational overhead, which we mitigate through a weak residual formulation, though it still
requires multiple forward passes during training and thus remains computationally demanding. Future
work could extend this framework to larger molecular systems and explore transfer learning across
biomolecular families. Another promising direction is to fine-tune pre-trained diffusion models with
the proposed regularization to explicitly correct Fokker–Planck deviations.
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A Proofs, Derivations, and Formalisms

A.1 Diffusion

We have opted to use VP diffusion (Song et al., 2021) throughout the paper, and thus, the drift and
diffusion coefficient can be written as

f(x, t) = −1

2
β(t)x, g(t) =

√
β(t), (17)

where
β(t) = βmin + t · (βmax − βmin), (18)

with the hyperparameters from Song et al. (2021) such that (βmin, βmax) = (0.1, 20). For this noise
schedule to be suitable for molecules, it is important that we normalize the data to have unit variance.

With this specific choice for f and g, we can write the transition kernel as a Gaussian (Särkkä and
Solin, 2019) with a moving mean and standard deviation such that

pt(x(t) |x(0)) = N (x(t);µ(x(0), t), σ(t)I) (19)

= N (x(t); e−
1
2

∫ t
0
β(s)dsx(0), (1− e−

∫ t
0
β(s)ds)I). (20)

A.2 Residual Loss

In this section, we prove Equation (12) and show that R̃(x, t;v) can be used to get an unbiased
estimation of R̃(x, t). For simplicity of notation, let us express the log Fokker–Planck equations
from Equation (8) as

1

2
g2(t) divx sθ(x, t) + γθ(x, t) = 0, (21)

where sθ(x, t) = ∇x log pθt (x), and γθ involves only the first-order gradient of log pθt . Here we
define the “weak” residual (Guo et al., 2022) of the above equations for each (x, t)

R̃(x, t) = Ev∼N (0,σ2I)

[
1

2
g2(t) divx sθ(x+ v, t) + γθ(x+ v, t)

]
, (22)

where σ > 0 is a small number. It can be seen that residuals are zero if the two parts of the
equations are exactly equal. We now aim to get the unbiased estimation of the above residual, without
calculating high-order derivatives.

As such, we can show that for an arbitrary t,

Ev

[
divx sθ(x+ v, t)

]
=

∫ exp
(
−v⊤v

2σ2

)
(2πσ2)

D
2

· divx sθ(x+ v, t)dv (23)

= − 1

(2πσ2)
D
2

∫ 〈
∇v exp

(
−v⊤v

2σ2

)
, sθ(x+ v, t)

〉
dv (24)

=
1

(2πσ2)
D
2

∫
exp

(
−v⊤v

2σ2

)
v⊤

σ2
sθ(x+ v, t)dv (25)

= Ev

[
v⊤sθ(x+ v, t)

σ2

]
(26)

=
1

2
Ev

[
v⊤sθ(x+ v, t)

σ2
− v⊤sθ(x− v, t)

σ2

]
(27)

= Ev

[(v
σ

)⊤ sθ(x+ v, t)− sθ(x− v, t)

2σ

]
, (28)

where x ∈ RD,v ∈ RD and t ∈ R.
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Based on this, we can obtain

R̃(x, t) = Ev

[
R̃(x, t;v)

]
(29)

= Ev

[
1

2
g2(t)

(v
σ

)⊤ sθ(x+ v, t)− sθ(x− v, t)

2σ
+
γθ(x+ v, t) + γθ(x− v, t)

2

]
.

Hence, R̃(x, t;v) is an unbiased estimation of R̃(x, t) by drawing a single sample v ∼ N (0, σ2I).

In practice, we can further reduce the computational overhead by only using a single approximation
for γθ, and defining

R̃(x, t;v) =
1

2
g2(t)

(v
σ

)⊤ sθ(x+ v, t)− sθ(x− v, t)

2σ
+ γθ(x+ v, t). (30)

We found σ = 10−4 to be an effective choice throughout our experiments.

A.2.1 Relation with Hutchinson Trace Estimation

In fact, our treatment of the divergence term in the weak residual formulation is closely related to
the Hutchinson’s trace estimator used by Albergo and Vanden-Eijnden (2025) for computing the
PINN objective. Both approaches utilize Gaussian perturbations of x to obtain unbiased estimates of
the divergence. However, it is important to note a key difference in how the residual is defined. As
described in Equation (29), in our weak residual R̃(x, t), we apply the same Gaussian perturbation
not only to the divergence term but also to other terms in the residual. This means that when the
strong residual R(x, t) is exactly zero, the weak residual R̃(x, t) = E[R(x + v, t)] also remains
exactly zero, regardless of the perturbation variance σ2, avoiding truncation errors. This distinction
allows our weak residual formulation to maintain consistency even under large perturbations.

A.3 Finite Difference Approximation

To approximate ∂t log pθ, we relied on a finite difference approximation Fornberg (1988), as stated
in Equation (14). For this estimation, we have followed the work of Lai et al. (2023), and used the
hyperparameters that they suggested (hs, hd) = (0.001, 0.0005).

A.4 Connection with Flow Matching

The score–force relation introduced in Equation (6) is not specific to diffusion models. It also applies
to other generative models, such as flow matching (Lipman et al., 2023), and in general to any model
that can estimate ∇x log pt=0(x). In standard Gaussian flow matching, the learned vector field vθ
relates to the score through

∇x log pt(x) =
1

1− t

(
t, vθ(x, t)− x

)
, (31)

as discussed by Lipman et al. (2024). Thus, forces can also be obtained from flow-matching models
via reparameterization. However, in our experiments, we found that flow-based models perform worse
near t ≈ 0, likely because the stochasticity inherent to diffusion models improves generalization in
this regime.

A.5 Formalization Coarse-Craining

In coarse-graining, we aim to reduce the number of dimensions of our system by combining multiple
atoms into individual beads. Given non-CG samples x, the Boltzmann distribution of CG samples z
can be recovered by

p(z) ∝
∫

exp

(
−U(x)

kBT

)
δ(Ξ(x)− z) dx, (32)

which defines the CG potential up to a constant. δ is the Dirac delta function.

B Implementation Details and Experimental Setup

In this section, we will discuss additional details for the main experiments presented in the paper.
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B.1 Langevin Integrator

We perform NVT dynamics with the Langevin integrator as implemented in the openMM (Eastman
et al., 2017). The update reads

vt+∆t = αvt +
1− α

γ2
∇xU(x)M−1 +

√
kBT (1− α)2M−1R, (33)

xt+∆t = xt +∆t · vt+∆t,

with α = exp(−γ∆t). Here, t and ∆t index the simulation timesteps (not the diffusion time), γ is
the friction coefficient, M the mass matrix, R ∼ N (0,1) a standard normal random vector, kB the
Boltzmann constant, and T the temperature.

B.2 Metrics

To compute the JS divergence and the PMF error, we first project our data onto either the dihedral
angles or the first two TIC coordinates (Pérez-Hernández et al., 2013) and then discretize the observed
free energy into binned histograms. For the JS divergence, we then compute the JS distance between
the two probability vectors (we flatten the 2D histograms). To prevent discontinuities, we assume
that in each bin there is at least one observation by adding 1.

As for the PMF error, we discretize into 64 bins and compute the proportion of samples in each
window. These are then transformed by taking the log in each bin and then computing the square
loss, which is averaged over all bins. Similarly, we have ensured that each bin contains some data
and have added 10−6 as a baseline proportion. The approach and implementation are analogous to
Durumeric et al. (2024).

B.3 Alanine Dipeptide

Dataset. The alanine dipeptide datasets is available as part of the public bgmol (MIT licence)
repository here: https://github.com/noegroup/bgmol. The dataset was generated with an MD
simulation, using the classical Amber ff99SBildn force-field at 300K for implicit solvent for a duration
of 1ms Köhler et al. (2021) with the openMM library (Eastman et al., 2017). For training, we have
selected 50k random samples from this simulation.

Architecture. For alanine dipeptide we have used quite a small architecture, where the hyperparame-
ters are listed in Table 3. When multiple parameters are listed for the same model, this means that
they are used for the corresponding MoE model. Note that when using MoE, we have mostly used
the same model architecture, except that only the Fokker–Planck regularized model is conservative.
As for the optimizer, we have used AdamW (Loshchilov and Hutter, 2019).

Parameter Diffusion Mixture Fokker–Planck Both
Epochs 10000 7000, 2000, 1000 10000 7000, 2000, 1000
Max Learning Rate 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

Min Learning Rate 10−5 10−5 10−5 10−5

BS 1024 1024 1024 1024
Attention Heads 8 8 8 8
Feature Dim 16 16 16 16
Model-Ranges (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Conservative Yes Yes, No, No Yes Yes, No, No
α 0 0, 0, 0 5 · 10−4 10−3, 0, 0
Hidden Dimension 96 96, 96, 96 96 96, 96, 96
Layers 2 2, 2, 2 2 2, 2, 2

Table 3: Alanine dipeptide. This table contains the hyperparameters for the different models shown.

Simulation. To perform Langevin simulation, we have extracted the forces from the model via
Equation (6) at t = 10−5 for all models except for Two For One, where we chose t = 0.02, which is
the same value as presented in Arts et al. (2023) for the same number of training samples.

Evaluation. To compute the standard deviation in the experiments, we have trained the same model
with three different seeds.
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B.4 Fast-Folding Proteins

Dataset. We evaluate our model on the proteins Chignolin (10 amino acids) and BBA (28 amino
acids) using the data from Lindorff-Larsen et al. (2011). The reference data was simulated in explicit
solvent with a step size of 2 fs at 340K for Chignolin and 325K for BBA. In total 106µs and 223µs
were simulated for Chignolin and BBA. For training, we have randomly selected 80% of the samples
which accounts to 427, 794 and 1, 300, 156 samples for Chignolin and BBA respectively.

Architecture. We have used the same architecture as for alanine dipeptide, with the only difference
being that we use larger networks. Compare the hyperparameters in Table 4 for Chignolin and Table 5
for BBA. Note that for Two For One we trained the same model as Diffusion but just evaluated it at
a different t for simulation. The hyperparameters slightly deviate from the choices in (Arts et al.,
2023) to produce consistent results with our method. As optimizer, we used AdamW (Loshchilov
and Hutter, 2019).

Parameter Diffusion Mixture Fokker–Planck Both
Epochs 2000 1700, 200, 100 2000 1700, 200, 100
Max Learning Rate 3 · 10−4 3 · 10−4 10−4 3 · 10−4

Min Learning Rate 10−5 10−5 10−5 10−5

BS 1024 1024 1024 1024
Attention Heads 8 8 8 8
Feature Dim 16 16 16 16
Model-Ranges (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Conservative Yes Yes, No, No Yes Yes, No, No
α 0 0, 0, 0 2 · 10−3 2 · 10−3, 0, 0
Hidden Dimension 128 128, 96, 96 128 128, 96, 96
Layers 3 3, 2, 2 2 3, 2, 2

Table 4: Chignolin. This table contains the hyperparameters for the different models shown.

Parameter Diffusion Mixture Fokker–Planck Both
Epochs 1500 1200, 400, 200 1500 1200, 400, 200
Max Learning Rate 3 · 10−4 3 · 10−4 10−4 10−4

Min Learning Rate 10−5 10−5 10−5 10−5

BS 1024 1024 1024 1024
Attention Heads 8 8 8 8
Feature Dim 16 16 16 16
Model-Ranges (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Conservative Yes Yes, No, No Yes Yes, No, No
α 0 0, 0, 0 10−2 2 · 10−2, 0, 0
Hidden Dimension 128 128, 128, 128 128 128, 128, 128
Layers 3 3, 3, 3 3 3, 3, 3

Table 5: BBA. This table contains the hyperparameters for the different models shown.

Simulation. To perform Langevin simulation, we have extracted the forces from the model via
Equation (6) at t = 10−5 for all models except for Two For One, where we chose t = 0.02 and
t = 0.005 for Chignolin and BBA respectively, which is the same value as presented in Arts et al.
(2023) for the same number of training samples.

Evaluation. To compute the standard deviation in the experiments, we have used the same models
but three different seeds for inference.

B.5 Dipeptides (2AA)

Dataset. The original dipeptide dataset (2AA) was introduced in Klein et al. (2023a) (MIT License)
and is available here: https://huggingface.co/datasets/microsoft/timewarp. As this
includes a lot of intermediate saved states and quantities, like energies, there is a smaller version
made available by Klein and Noé (2024) (CC BY 4.0): https://osf.io/n8vz3/?view_only=
1052300a21bd43c08f700016728aa96e. For a comprehensive overview of the simulation details,
refer to Klein et al. (2023a). All dipeptides were simulated in implicit solvent with a classical
amber-14 force-field at T = 310K. The simulation of the training and validation peptides were run
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for 50ns, while the test peptides were simulated for 1µs. All simulation were performed with the
openMM library (Eastman et al., 2017).

Note that we have removed dipeptides containing Glycine from our dataset to ensure that all dipeptides
have the same number of (coarse-grained) atoms. This made it easier to handle it in the code, but it
is not a technical limitation of our architecture. It is split into 175 train, 75 validation, and 92 test
dipeptides, out of which we have used 15 for the results presented in the paper (also the metrics) to
reduce inference time. The fifteen test dipeptides are: AC, AP, AT, ET, HP, HT, IM, KQ, KS, LW, NF,
NY, RL, RV, TD.

Architecture. The hyperparameters are listed in Table 6. When multiple parameters are listed for
the same model, this means that they are used for the corresponding MoE model. Note that when
using MoE, we have used smaller networks for larger diffusion times, and only the Fokker–Planck
regularized model is conservative. As optimizer, we used AdamW (Loshchilov and Hutter, 2019).

Parameter Diffusion Mixture Fokker–Planck Both
Epochs 120 100, 20, 10 120 100, 20, 10
Max Learning Rate 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

Min Learning Rate 10−5 10−5 10−5 10−5

BS 1024 1024 1024 1024
Attention Heads 8 8 8 8
Feature Dim 16 16 16 16
Model-Ranges (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Conservative Yes Yes, No, No Yes Yes, No, No
α 0 0, 0, 0 5 · 10−4 10−4, 0, 0
Hidden Dimension 128 128, 96, 96 128 128, 96, 96
Layers 3 3, 2, 2 3 3, 2, 2

Table 6: Dipeptides. This table contains the hyperparameters for the different models shown.

Simulation. To perform Langevin simulation, we have extracted the forces from the model via
Equation (6) at t = 10−5 for all models except for Two For One. As this system has not been tested
by Arts et al. (2023), we opted to use the same t as for Alanine dipeptide, namely t = 0.02.

Evaluation. To compute the standard deviation in the experiments, we compute the values across all
testset dipeptides.

B.6 Compute Infrastructure

We have used a single RTX 3090 GPU for the toy systems, and A100 with 80GB memory for
alanine dipeptide, two A100 80GB GPUs for the dipeptide dataset and Chignolin, and four for BBA.
Depending on availability, we have also used H100 for some experiments. For inference we use a
single GPU.

B.7 Software Licences

In our code, we have used jax (Bradbury et al., 2018) (Apache-2.0) and the accompanying machine
learning library flax (Heek et al., 2024) (Apache-2.0). For the graph transformer architecture,
we have extended code from Arts et al. (2023) (MIT) and have re-implemented the code from
https://github.com/lucidrains/graph-transformer-pytorch (MIT) in jax.

For the free-energy plots of the Müller-Brown potential, we used Hoffmann et al. (2021) (LGPL-3.0).
For trajectories and simulations, we have used openMM (Eastman et al., 2017) (MIT) and mdtraj
(McGibbon et al., 2015) (LGPL-2.1).

C Further Studies and More Experiments

C.1 Comparing Conservative and Score-based Models

Previous work (Arts et al., 2023) suggested that conservative models improve the quality of the
diffusion process. However, this effect was not observed for image data (Salimans and Ho, 2021). In
Figure 7, we compare these approaches in practice. For iid sampling, conservative models provide a
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slight improvement. In contrast, for simulation, we were unable to train stable score-based models
without a conservative parameterization, aligning with knowledge from the force-field literature
(Schütt et al., 2017; Batzner et al., 2022). Using a conservative model yields much more stable
forces, making simulation feasible. We attribute this to the smoother behavior of the conservative
parameterization, which prevents sudden changes in the score. Since the impact on iid sampling is
negligible, we consider the conservative parameterization most relevant for small timescales, where
model training is more sensitive. Consequently, in our MoE architecture, we apply the conservative
parameterization only to the small-time diffusion model, achieving comparable or even superior iid
sampling performance.

iid

2 0 2

2

0

2

Score-based Diffusion Model (iid)

2 0 2

2

0

2

Conservative Diffusion Model (iid)

sim

2 0 2

2

0

2

Score-based Diffusion Model (sim)

2 0 2

2

0

2

Conservative Diffusion Model (sim)

Figure 7: Alanine dipeptide. We compare a conservative diffusion model with a score-based model. We can
see that around the low-density regions, the conservative parameterization generates better iid samples. As
for simulation, a score-based model exhibits stability issues, and the simulation becomes unstable after a few
thousand steps.

C.2 Mixture vs. More Parameters

In our experiments, using the MoE scheme naturally increases the total number of parameters. To
assess whether the observed improvements stem from this additional capacity or from the mixture
design itself, we perform ablation studies on alanine dipeptide. Specifically, we compare the original
results from the paper against three variants: one with wider layers (Wide), one with more layers
(Deep), and one using three instances of the conservative diffusion model combined into a Mixture of
experts. The results in Table 7 show that Mixture outperforms both larger single models and achieves
more stable simulation behavior, and requires the smallest training and inference times (see also
Appendix C.3). This demonstrates that the advantages of the MoE design extend beyond simple
parameter scaling.

Method Parameters Training (↓) iid JS (↓) sim. JS (↓) iid PMF (↓) sim. PMF (↓)
Diffusion 647585 50min 0.0081 ± 0.0003 0.0695 ± 0.0517 0.095 ± 0.003 1.047 ± 0.924

Wide 1964321 67min 0.0082 ± 0.0003 0.0406 ± 0.0236 0.096 ± 0.003 0.467 ± 0.245
Deep 1968562 111min 0.0078 ± 0.0003 0.0376 ± 0.0087 0.091 ± 0.002 0.478 ± 0.038

Mixture 1957567 50min 0.0079 ± 0.0003 0.0264 ± 0.0085 0.093 ± 0.007 0.325 ± 0.113

Table 7: Alanine dipeptide. Ablation study comparing the MoE scheme with parameter scaling. Reported are
the JS divergence and PMF error for iid sampling and simulation (sim). Lower values indicate better performance.
The MoE achieves the most stable and accurate simulations while maintaining the same training cost as the
baseline.

C.3 Runtime Comparison

We compare the training and inference runtimes of different approaches in Table 8. While the MoE
setup could, in principle, be trained in parallel, our current implementation does not distribute the
experts across devices and is therefore not fully optimized. In some cases, this even introduces
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additional overhead. As a result, runtime improvements are only visible for larger systems. In
contrast, models trained with Fokker–Planck regularization show a clear computational overhead due
to the additional residual evaluation, which requires multiple forward passes per training step. During
inference, however, they perform the same as their counterparts.

Dataset Task Diffusion Mixture Fokker–Planck Both

Alanine Dipeptide Training 50min 50min 4h 39min 3h 59min
iid Sampling 3min 4min 3min 4min

Chignolin Training 4h 58min* 3h 0min 22h 36min 21h 33min
iid Sampling 43min 14min 43min 14min

BBA Training 1d 20h* 1d 19h* 7d 2h 6d 15h
iid Sampling 12h 57min 5h 56min 12h 57min 5h 56min

Dipeptides Training 4h 5min 3h 50min 28h 39min 27h 5min
iid Sampling 8min 4min 8min 4min

Table 8: Training and inference runtimes for all models. Methods marked with * were trained using half the
number of GPUs (one for Chignolin and two for BBA). The MoE model reduces inference time substantially
due to its modular design, while the Fokker–Planck regularization introduces additional computational overhead
from multiple forward evaluations during training.

In terms of simulation, the main computational advantage of our approach arises from its ability to
perform simulations in parallel and to leverage coarse-graining. In classical molecular dynamics,
simulating a protein typically requires modeling the solvent explicitly, which adds thousands of water
molecules and substantially increases computational cost. Coarse-graining eliminates these degrees
of freedom, thereby accelerating computation and improving parallel scalability.

For instance, in the dipeptide dataset, where each molecule contains only a few atoms and no solvent
to coarse-grain, our model achieves 150 parallel simulations at 830 steps/s each, corresponding to
roughly 125k steps/s on a single NVIDIA A100. In comparison, a conventional force-field simulation
on an NVIDIA V40 reaches around 10k steps/s. Even larger gains can be expected for systems with
explicit solvent, where coarse-graining removes many more particles. As an example, our BBA
protein simulation (100 parallel runs of 1M steps each) completes in approximately one hour.

C.4 Toy System

Dataset. We have used the Müller-Brown potential (Müller and Brown, 1979) to demonstrate the
capabilities of our approach in two dimensions. For this, we have used the following potential

U(x, y) =− 200 · exp
(
−(x− 1)2 − 10y2

)
− 100 · exp

(
−x2 − 10 · (y − 0.5)2

)
− 170 · exp

(
−6.5 · (0.5 + x)2 + 11 · (x+ 0.5) · (y − 1.5)− 6.5 · (y − 1.5)2

)
+ 15 · exp

(
0.7 · (1 + x)2 + 0.6 · (x+ 1) · (y − 1) + 0.7 · (y − 1)2

)
.

(34)

To generate training samples from this potential, we have performed a Langevin simulation (compare
Equation (5)). For this, we have performed 5M steps with kBT = 23, dt = 0.005,M = 0.5 · I ,
where we only store every 50th sample to generate 100k training samples.

Architecture and training. For the toy systems, we have used a simple multi-layer perception with
the hyperparameters presented in Table 9.

Parameter Diffusion Mixture Fokker–Planck Both
# Parameters 17849 17263 17849 17263
BS 128 128 128 128
Model-Ranges (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) (0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Epochs 180 120, 30, 30 180 120, 30, 30
Hidden Dimension 92 64, 64, 54 92 64, 64, 54
Layers 3 3, 2, 2 3 3, 2, 2
α 0 0 5 · 10−4 5 · 10−4, 0, 0

Table 9: Müller-Brown. This table contains the hyperparameters for the different models shown.
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Figure 9: Alanine dipeptide. (a) The coarse-graining scheme. (b) Comparison of the Ramachandran plots of
different methods for iid sampling and Langevin simulation. (c) The projection of the free energy surface and
differences along the dihedral angle φ for samples generated with simulation.

Evaluation. In Figure 8, we can see the free energy plots of the different methods. All methods
produce iid samples that match the Reference. However, when using the learned score for Langevin
simulation, the standard Diffusion model fails to reproduce the correct distribution and undersamples
the low-probability state, highlighting the inconsistency between sampling and simulation. Although
having roughly the same number of parameters, the Mixture model partially improves this, but
consistency is only achieved with Fokker–Planck regularization. Combining Both approaches further
improves performance. Numerical results can be seen in Table 10.

Method iid JS (↓) sim JS (↓) iid PMF (↓) sim PMF (↓)
Reference 0.0119 ± 0.0004 0.087 ± 0.002

Diffusion 0.0122 ± 0.0013 0.0448 ± 0.0125 0.111 ± 0.006 0.504 ± 0.150

Mixture 0.0109 ± 0.0007 0.0254 ± 0.0109 0.097 ± 0.004 0.247 ± 0.113
Fokker–Planck 0.0130 ± 0.0010 0.0166 ± 0.0009 0.122 ± 0.006 0.163 ± 0.008
Both 0.0110 ± 0.0007 0.0108 ± 0.0008 0.098 ± 0.003 0.099 ± 0.004

Table 10: Müller-Brown. Comparison of methods based on JS Divergence and the PMF error. Lower
values are better. To compute the standard deviation, we have trained ten different models and performed
sampling/simulation with them. As for the reference, we have started multiple simulations with a different seed
on the same ground-truth potential. This serves as a reference of what could optimally be achieved.

iid

sim

Reference Diffusion Mixture Fokker–Planck Both

Figure 8: Müller-Brown. Comparing free energy plots of different models for classical diffusion sampling (iid)
and Langevin simulation (sim). The energies should align with the training data (Reference).

C.5 Alanine Dipeptide

In this section, we report some further results and plots on alanine dipeptide.

C.5.1 Free Energies

Inconsistent sampling. Figure 9 (b) compares the free energies of the sampled dihedral angles for
iid sampling and Langevin simulation (sim). While all methods can match the training distribution
under iid sampling, simulation quality varies, and existing models show inconsistencies. Standard
Diffusion fails to recover the low-probability mode (i.e., φ > 0) completely, even when starting a
simulation from these regions. Mixture generally improves the results, but still does not find the other
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Method iid JS (↓) sim. JS (↓) iid PMF (↓) sim. PMF (↓)
Diffusion 0.0081 ± 0.0003 0.0695 ± 0.0517 0.095 ± 0.003 1.047 ± 0.924
Two For One 0.0081 ± 0.0003 0.0158 ± 0.0002 0.098 ± 0.006 0.206 ± 0.004

Mixture 0.0080 ± 0.0004 0.0353 ± 0.0117 0.092 ± 0.007 0.388 ± 0.109
Fokker–Planck 0.0082 ± 0.0002 0.0090 ± 0.0006 0.098 ± 0.003 0.104 ± 0.004
Both 0.0082 ± 0.0004 0.0080 ± 0.0002 0.097 ± 0.008 0.091 ± 0.004

Table 11: Alanine dipeptide. Comparison of JS divergence and PMF error. To compute the mean and the
standard deviation, we have trained and evaluated three models with three different seeds.
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Figure 10: Alanine dipeptide. Comparing the free energy of along the dihedral angles φ,ψ for iid sampling and
simulation across different models.

mode. This is reflected in the numerical results in Table 11, where Mixture achieves lower means and
smaller variance, but simulation errors remain noticeable. We attribute this behavior to the smaller
time range, which focuses the model’s attention, allowing it to learn a better, more stable optimum.

Consistent models. Fokker–Planck regularization enables the model to recover the missing states
without modifying the diffusion time, and thus preserving structural accuracy. Table 11 shows
that the regularization substantially improves consistency between iid and simulation, although iid
performance slightly declines in favor of improved simulation performance. Combining MoE with
Fokker–Planck regularization for Both, enhances simulation quality further while barely mitigating
the drop in iid performance. The resulting model achieves close alignment between iid and simulation,
and captures the free energy landscape in simulations accurately (see Figure 9 (c)). The similar iid
performance of Both and Fokker–Planck suggests that applying regularization introduces additional
constraints and restrictions on the model and hence can degrade generative quality.

Detailed free energy. In Figure 10 we compare the free energies along the dihedral angles φ,ψ for
iid sampling and simulation. We can see that the results from the main paper persist.

C.5.2 Fokker–Planck Residual

In Figure 11 the Fokker–Planck residual error
∥∥Fpθ (x, t)− ∂t log p

θ
t (x)

∥∥
2

is reported. Overall, the
results are similar to what was reported in Figure 6. However, we can note that the Fokker–Planck
error of Mixture is lower than Diffusion, indicating that MoE can improve the model’s consistency.

C.5.3 Bonds

Figure 12 shows the immediate bond lengths of the coarse-grained molecule for iid sampling and
Langevin simulation. Since Two For One does not evaluate the model at t = 0, it introduces
noise across all bonds. We can also see this behavior by looking at the Wasserstein distance of the
bond-lengths to the reference data as seen in Table 12.
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Figure 11: Alanine dipeptide. Comparing the Fokker–Planck error for log pθ of multiple models.
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Figure 12: Alanine dipeptide. This illustration shows all direct bond lengths sampled by the different methods.

Method iid relative W1 (↓) sim relative W1 (↓)
Diffusion 0.88 ± 0.70 0.83 ± 0.15
Two For One 0.88 ± 0.58 23.51 ± 1.91

Mixture 1.13 ± 0.46 0.47 ± 0.12
Fokker–Planck 1.65 ± 0.37 1.23 ± 0.16
Both 1.00 ± 0.00 1.00 ± 0.00

Table 12: Comparison of methods on alanine dipeptide based on the Wasserstein 1 distance of the C-N bond
lengths to the reference data. We have divided all entries by the Wasserstein 1 distance of Both so that the
numbers are easier to compare. In other words, numbers larger than 1 mean that the bonds are worse than Both.

C.5.4 Force Matching

We further compare our model against prior work on force matching, which either employs explicit
forces from the training set (Husic et al., 2020) or infers forces implicitly from noise in the data
(Durumeric et al., 2024; Klein et al., 2025). All these approaches share the same underlying
architecture, the CGSchNet model (Husic et al., 2020), which combines a trainable SchNet component
(Schütt et al., 2017) with fixed energy terms accounting for bonded interactions such as bonds, angles,
and dihedrals. In contrast, our models operate without any such energy priors, and thus require
significantly less prior knowledge about the investigated systems. As these previous studies commonly
evaluated their models on a six-bead representation of alanine dipeptide (Wang et al., 2019; Husic
et al., 2020; Klein et al., 2025), we retrain our models as well as the Two for One model on the
same coarse-grained system. The corresponding training and evaluation trajectory was generated via
MD for 1µs in explicit solvent (Wang et al., 2019), and the training set for all methods consists of
100k samples. For the force-matching baselines, we report the results from Klein et al. (2025). The
comparison, shown in Table 13, evaluates again the PMF between the simulated and target trajectories.
We only evaluate the simulations, as the force-matching methods do not permit independent sampling.
Overall, our models achieve superior performance compared to all force matching baselines on this
dataset, despite not using any force information, unlike Husic et al. (2020).
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Method sim. JS (↓) sim PMF (↓)
Force Matching 0.0243 ± 0.0015 0.322 ± 0.005
Noise and Force Matching 0.0402 ± 0.0066 0.864 ± 0.146
Operator Forces 0.0214 ± 0.0041 0.301 ± 0.043
Operator Forces 0.0166 ± 0.0009 0.282 ± 0.031

Diffusion 0.0928 ± 0.0165 1.135 ± 0.205
Two for One 0.0151 ± 0.0006 0.168 ± 0.009

Mixture 0.0506 ± 0.0370 0.545 ± 0.429
Fokker–Planck 0.0092 ± 0.0017 0.107 ± 0.028
Both 0.0075 ± 0.0024 0.090 ± 0.049

Table 13: Six-bead alanine dipeptide. Comparison of different models for learning forces. The table reports the
JS divergence and the PMF error between simulated and target distributions (lower is better). Our Fokker–Planck-
regularized models outperform all force-matching methods despite being trained without any force labels.

C.6 Proteins

We now provide additional comparisons and ablation studies for the independent contributions of
MoE and Fokker-Planck regularization for Chignolin and BBA as well as analysis of dynamics.

C.6.1 Free Energy Surfaces

We present the same free energy surfaces as in the main text, but now distinguish between Mixture,
Fokker–Planck, and Both (referred to as Ours in the main text). In Figure 13, we show the free energy
along the first two TIC coordinates by projecting the data into 60 bins, and in Figure 14, we show the
corresponding kernel density estimates along each axis. Beyond the results discussed in the main
text, we observe that simulations using Diffusion (i.e., evaluating the model at t = 0) are unstable.
The MoE variant in Mixture improves stability but does not fully resolve these issues. In contrast,
introducing the Fokker–Planck regularization (with or without mixture) yields stable simulations,
and the resulting free energy surfaces from diffusion sampling and simulation become consistent.
In Figure 14, the models appear nearly identical for iid sampling but differ for sim. The qualitative
metrics are similar between Fokker–Planck with and without MoE, showing only minor differences.

The same trends are observed for BBA in Figures 15 and 16. The Diffusion model fails to recover
a meaningful free energy landscape, while Mixture using MoE substantially improves the results
but remains insufficient. Once the Fokker–Planck regularization is applied, the simulations become
consistent with diffusion sampling. As shown in Figure 16, the iid results of several models are
nearly indistinguishable in the one-dimensional projections, making it difficult to determine which
performs best. For sim, it is also unclear whether Fokker–Planck or Both yields better performance.
A quantitative comparison is provided in Appendix C.6.3.
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Figure 13: Chignolin. We compare the free energy projected onto the first two TIC axes for all presented
methods for iid sampling and Langevin simulation (sim). The aim is to match the Reference (left) and have a
self-consistent model where iid and sim closely aligns.

27



iid

0.5 0.0 0.5 1.0 1.5 2.0 2.5
TIC 0

0

10

20

30

40

50

60

En
er

gy
 / 

k B
T

Free energy projection of TIC 0
Reference
Diffusion
Two For One
Mixture
Fokker-Planck
Both

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
TIC 1

0

10

20

30

40

50

En
er

gy
 / 

k B
T

Free energy projection of TIC 1

sim

0.5 0.0 0.5 1.0 1.5 2.0 2.5
TIC 0

0

10

20

30

40

50

60

En
er

gy
 / 

k B
T

Free energy projection of TIC 0
Reference
Diffusion
Two For One
Mixture
Fokker-Planck
Both

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
TIC 1

0

10

20

30

40

50

En
er

gy
 / 

k B
T

Free energy projection of TIC 1

Figure 14: Chignolin. Comparing the free energy along the first two TIC axes for iid sampling and simulation
across different models with the reference in black.
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Figure 15: BBA. We compare the free energy projected onto the first two TIC axes for all presented methods for
iid sampling and Langevin simulation (sim). The aim is to match the Reference (left) and have a self-consistent
model where iid and sim closely aligns.
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Figure 16: BBA. Comparing the free energy along the first two TIC axes for iid sampling and simulation across
different models with the reference in black.
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C.6.2 Contact Maps

To analyze structural consistency beyond local distances, we compute pairwise contact maps between
all atoms. As such, they provide a compact way of representing molecular structure and indicate
which atom pairs are in spatial proximity. Specifically, for each generated ensemble, we compute the
distances between all atom pairs and record whether they fall below a threshold of 10Å. Averaging
these contacts over all generated samples yields a probability map indicating how frequently each
atom pair interacts. We then take the log of these to smooth out the range and improve visualization.

This is visualized for Chignolin and BBA in Figures 17 and 18. This representation captures the
overall spatial organization of a molecule, such as which regions are folded together or form stable
secondary structures. Comparing contact maps from different models provides an intuitive way to
assess whether the generated ensembles reproduce realistic atomic arrangements.

These figures align with the overall trends in the paper showing that: iid works well across all models,
Diffusion and Mixture is unstable for simulation, and Fokker–Planck/Both match the reference and
the sampling methods are consistent. However, when examining these specific metrics, the additional
noise introduced by Two For One is less apparent. We attribute this to the binary cutoff used to
determine whether two atoms are in contact, which reduces sensitivity to small structural perturbations.
This effect is not present in the pairwise distance matrix analysis in Tables 14 and 15.
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Figure 17: Chignolin. Pairwise contact maps comparing different models and the two sampling methods. Two
atoms are considered in contact if their distance is below 10 Å. Bright colors (corresponding to small values)
indicate a low probability of close proximity. The maps are symmetric by construction.
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Figure 18: BBA. Pairwise contact maps comparing different models and the two sampling methods. Two atoms
are considered in contact if their distance is below 10 Å. Bright colors (corresponding to small values) indicate a
low probability of close proximity. The maps are symmetric by construction.

C.6.3 Quantiative Results
In addition to the results presented in the main paper, we provide further quantitative analyses in
this section. Alongside the PMF error, we also report the JS divergence. While the PMF error
evaluates energy differences, the JS divergence compares probability densities, which can make
model differences less pronounced. Both metrics are computed in 2D TICA space.

We additionally report the JS divergence computed on the pairwise distance (PWD) matrix. For
this, we first calculate all interatomic distances and extract the upper triangular part of the full PWD
matrix to avoid redundancy. We then remove the diagonal elements and exclude pairs separated by
fewer than three bonds to focus on nonlocal structural correlations. In other words, we compare
distances between atoms that are not immediate neighbors along the chain. For each atom pair,
we then construct normalized histograms of their distance distributions for both the generated and
reference ensembles and compute the JS divergence between them. Averaging these divergences
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across all pairs yields a single scalar value that quantifies how well the generated ensemble reproduces
the overall spatial organization of the molecule. Lower values correspond to higher structural fidelity.

The resulting metrics are summarized in Tables 14 and 15 for Chignolin and BBA, respectively.
The trends are consistent with those discussed in the main text: for Chignolin, we observe only a
slight decrease in iid sampling quality when introducing Fokker–Planck regularization or the MoE
model. However, for the larger and more complex BBA system, it becomes evident that achieving a
consistent energy-based model requires trade-offs in iid sampling quality. In contrast, our models
excel in the sim setting, achieving the best results in both energetic and structural metrics, particularly
for the PWD-based measure of structural fidelity.

Method iid JS (↓) sim. JS (↓) iid PMF (↓) sim. PMF (↓) iid PWD JS (↓) sim. PWD JS (↓)
Diffusion 0.0036 ± 0.0001 0.4351 ± 0.0141 0.027 ± 0.000 63.804 ± 0.372 0.0001 ± 0.0000 0.3817 ± 0.0009
Two For One 0.0036 ± 0.0001 0.1023 ± 0.0008 0.027 ± 0.000 1.438 ± 0.019 0.0001 ± 0.0000 0.0082 ± 0.0000

Mixture 0.0042 ± 0.0001 0.4336 ± 0.0075 0.033 ± 0.000 11.185 ± 0.430 0.0003 ± 0.0000 0.2045 ± 0.0004
Fokker–Planck 0.0048 ± 0.0001 0.0050 ± 0.0001 0.037 ± 0.000 0.039 ± 0.001 0.0004 ± 0.0000 0.0008 ± 0.0000
Both 0.0045 ± 0.0001 0.0050 ± 0.0008 0.035 ± 0.001 0.038 ± 0.006 0.0003 ± 0.0000 0.0012 ± 0.0005

Table 14: Chignolin. Quantitative comparison of all methods based on JS divergence, PMF error (both computed
in TICA space), and the mean JS divergence of the pairwise distance (PWD) distributions of atoms. Lower
values indicate better agreement with the reference data. The iid metrics assess equilibrium sampling quality,
while the sim metrics evaluate the consistency of the simulated dynamics.

Method iid JS (↓) sim. JS (↓) iid PMF (↓) sim. PMF (↓) iid PWD JS (↓) sim. PWD JS (↓)
Diffusion 0.0043 ± 0.0000 0.2014 ± 0.0043 0.034 ± 0.000 5.387 ± 0.144 0.0006 ± 0.0000 0.1003 ± 0.0050
Two For One 0.0043 ± 0.0000 0.1162 ± 0.0021 0.034 ± 0.000 1.624 ± 0.107 0.0006 ± 0.0000 0.0240 ± 0.0008

Mixture 0.0091 ± 0.0000 0.1964 ± 0.0113 0.081 ± 0.000 5.970 ± 0.278 0.0012 ± 0.0000 0.1016 ± 0.0020
Fokker–Planck 0.0130 ± 0.0000 0.0292 ± 0.0035 0.117 ± 0.001 0.275 ± 0.033 0.0018 ± 0.0000 0.0078 ± 0.0014
Both 0.0238 ± 0.0001 0.0238 ± 0.0001 0.234 ± 0.001 0.254 ± 0.005 0.0023 ± 0.0000 0.0042 ± 0.0001

Table 15: BBA. Quantitative comparison of all methods based on JS divergence, PMF error (both computed in
TICA space), and the mean JS divergence of the pairwise distance (PWD) distributions of atoms. Lower values
indicate better agreement with the reference data. The iid metrics assess equilibrium sampling quality, while the
sim metrics evaluate the consistency of the simulated dynamics.

C.6.4 Dynamics

The main advantage of a consistent energy-based diffusion model is that it provides access not
only to generative diffusion sampling but also to a physically meaningful energy function usable
for downstream tasks such as MD simulation. To illustrate this benefit, we analyze the recovered
dynamics and provide further evaluations.

As in the main text for BBA, we visualize in Figure 19 a single simulated trajectory for Chignolin.
The system exhibits folding and unfolding transitions between metastable states, showing realistic
conformational changes over time. For this, we employ the Both model, which combines Fokker–
Planck regularization with the MoE scheme.
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Figure 19: Chignolin. Recovering and analyzing the dynamic behavior. (a) 3D molecular structures from a
single MD trajectory generated by our model. (b) Trajectory projected onto the first two TIC coordinates. (c)
Illustrating the TIC coordinates over the coarse-grained (and subsampled) timesteps.
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To further assess the long-time MD simulations, we follow the work of Arts et al. (2023) and cluster
the conformations into three metastable states for Chignolin and four for BBA. State assignments are
obtained via k-means clustering on the TIC coordinates, from which we estimate a Markov model
and compute the transition probabilities between states. The state definitions and transition matrices
are visualized in Figures 20 and 21. Again, this analysis is only applicable to models that recover
continuous dynamics rather than independent samples.

Although the visual differences between transition matrices are subtle, the Fokker–Planck–regularized
models clearly provide the most accurate estimates of transition probabilities when compared to the
reference simulation. To quantify this, we compute the mean JS divergence between the transition
probabilities of each model and the reference, reported in Table 16. These results confirm that
Fokker–Planck regularization improves kinetic consistency, while the MoE scheme leads to slightly
less accurate transitions; both when used independently and in combination with Fokker–Planck.
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Figure 20: Chignolin Each conformation is assigned to one of three states based on the TIC coordinates (top
row), shown as State 1 (purple), State 2 (green), and State 3 (yellow). Using these assignments, we estimate the
corresponding transition probabilities between states.
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Figure 21: BBA. Each conformation is assigned to one of four states based on the TIC coordinates (top row),
shown as State 1 (purple), State 2 (blue), State 3 (green), State 4 (yellow). Using these assignments, we estimate
the corresponding transition probabilities between states.

Method Chignolin JS (↓) BBA JS (↓)

Diffusion 3.4 · 10−2 6.8 · 10−3

Two for One 2.3 · 10−3 7.1 · 10−3

Mixture 3.0 · 10−2 4.0 · 10−2

Fokker–Planck 4.6 · 10−4 2.5 · 10−3

Both 2.1 · 10−4 4.2 · 10−3

Table 16: Mean JS divergence between the transition probabilities estimated from simulation and those of the
reference trajectories (compare Figures 20 and 21). Lower values indicate better agreement.

C.7 Umbrella Sampling

Similarly to Appendix C.6.4, access to an energy-based diffusion model enables further applications
such as molecular simulation and umbrella sampling (Torrie and Valleau, 1977). In umbrella sampling,
several simulations are carried out with restraints applied to specific regions of configuration space
(e.g., along selected dihedral angles), and the resulting biased ensembles are reweighted by the bias
potential to recover unbiased free energy estimates.
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While such enhanced sampling techniques lie beyond the main scope of this work, we conducted
preliminary experiments with our model. We found that, in its current form, umbrella sampling
remains challenging. The model tends to perform poorly when forced into high-energy or previously
unseen regions of configuration space. For example, in Chignolin, umbrella sampling along the first
TIC coordinate failed to adequately explore the extremes of the coordinate, leading to unreliable
free-energy estimates in those regions. Nonetheless, the overall shape of the free energy profile
could still be recovered with significantly fewer simulation steps. We believe that the proposed
Fokker–Planck regularization could help address this limitation. Since the loss can be evaluated for
arbitrary configurations x, it may encourage the model to generalize better to out-of-distribution or
noisier samples, thereby improving its robustness in biased or enhanced sampling settings.

C.8 Transferability Across Dipeptides (two amino acids)

C.8.1 Complete Metrics

In the main text, we reported the PMF error across the test set. In Table 17, we additionally include
the JS divergence for the same experiments. Both metrics show consistent trends, although JS
divergence is less sensitive to small differences, as it measures discrepancies between densities rather
than energies.

Method iid JS (↓) sim. JS (↓) iid PMF (↓) sim. PMF (↓)
Transferable BG 0.0183 ± 0.0070 - 0.230 ± 0.119 -
Diffusion 0.0155 ± 0.0083 0.2256 ± 0.1304 0.206 ± 0.159 6.515 ± 3.175
Two For One 0.0153 ± 0.0080 0.0466 ± 0.0114 0.203 ± 0.149 0.741 ± 0.319

Mixture 0.0155 ± 0.0078 0.0444 ± 0.0237 0.200 ± 0.127 0.658 ± 0.407
Fokker–Planck 0.0200 ± 0.0071 0.0254 ± 0.0119 0.241 ± 0.105 0.368 ± 0.267
Both 0.0157 ± 0.0078 0.0177 ± 0.0084 0.199 ± 0.127 0.203 ± 0.104

Table 17: Dipeptides. Comparison of metrics across all testset dipeptides with JS divergence and PMF error. To
compute the mean and standard deviation, we have averaged the metrics across the dipeptides from the test set.

C.8.2 Lysine-Serine (KS)

In Figure 22, we present extended results for the dipeptide analyzed in the main text (KS). The
trends remain consistent with previous findings: using Two For One for simulation leads to incorrect
observables and distorted equilibrium distributions. In addition, we show the free energy surfaces
along the dihedral angles φ and ψ separately. The Fokker–Planck regularization improves these free
energy profiles, and the Both model produces particularly accurate and well-aligned surfaces.
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Figure 22: KS: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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C.8.3 Transferability: Results on More Dipeptides

In this section, we show additional dipeptides from the test set to evaluate the performance of all
models and their combinations. While individual systems exhibit minor variations, the overall trends
remain consistent. We present the following dipeptides: AC Figures 23 and 24, AP Figures 25 and 26,
ET Figures 27 and 28, HP Figures 29 and 30, NY Figures 31 and 32, RV Figures 33 and 34, and TD
Figures 35 and 36.

Notably, in Figures 25, 29 and 35, the Diffusion model fails to produce stable simulations, resulting
in divergence and visible artifacts. This instability appears across several systems, not only those
containing proline. While we found in our experiments that introducing dropout can help to stabilize
the simulation, we chose not to include it since all other methods remain stable without it. In
particular, these cases highlight that restricting training to a smaller diffusion-time subrange, as is
done with Mixture, improves simulation stability.
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Figure 23: AC: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 24: AC: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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Figure 25: AP: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 26: AP: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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Figure 27: ET: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 28: ET: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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Figure 29: HP: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 30: HP: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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Figure 31: NY: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 32: NY: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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Figure 33: RV: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 34: RV: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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Figure 35: TD: We compare the free energy plot on the dihedral angles φ,ψ for all presented methods for iid
sampling and Langevin simulation.
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Figure 36: TD: We compare further metrics between iid sampling and Langevin simulation. We compare the
Cα–Cα distance for the dipeptides and also the free energy projections along the dihedral angles φ,ψ.
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D Societal Impact

Our work focuses on improving the efficiency of molecular sampling and simulation. We consider
this research foundational, with the potential to accelerate applications such as drug and material
discovery. While we do not identify any immediate risks, the technology could be misused, for
example, in the development of biological weapons. Furthermore, our method currently does not
provide formal guarantees, which poses a risk of misleading downstream research if the method
produces incorrect or biased results.
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Justification: The major claims made in the abstract and introduction are backed up by the
theoretical and empirical results in the paper. Refer to Section 3 and Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed potential limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have discussed all assumptions of our method in Section 3 and have added
proofs and mathematical details in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To the best of our knowledge, we have disclosed all information necessary
to reproduce the results in the main paper. Additionally, we make our code available at
https://github.com/noegroup/ScoreMD, which can be used to infer more details and
reproduce results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have used synthetically generated data that we explain in detail how to
produce (compare Appendix C.4), publicly available datasets (compare Appendices B.3
and B.5), publicly available libraries (compare Appendix B.7) and make our code available
at https://github.com/noegroup/ScoreMD.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all technical details for the experiments either in the
main text in Section 5 or in Appendix B. Further, we make our code available at
https://github.com/noegroup/ScoreMD which contains all settings and hyperparame-
ters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation in the experiments where suitable
(in the main text compare Table 1 and Table 2).
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the computational resources we used for the experiments in Ap-
pendix B.6 and the runtime in Appendix C.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe that our research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed societal impacts in Appendix D.

42

https://neurips.cc/public/EthicsGuidelines


Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe that any safe guards needs to be in place, as our approach
does not pose any direct risks. As for the data, only widely used data and commonly used
resources have been used and, hence, does not pose a risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited all works, for the datasets compare Appendices B.3
and B.5 and software licenses are listed in Appendix B.7.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We make it clear in Section 5 that our code is publicly available at
https://github.com/noegroup/ScoreMD and provide information in the README
on how to use the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved in this research.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs have been used to implement standard methods, and for writing, editing,
and formatting purposes of this document and hence no further declaration is required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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