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Abstract

Although Neural Differential Equations have shown
promise on toy problems such as MNIST, they have yet to be
successfully applied to more challenging tasks. Inspired by
variational methods for image restoration relying on par-
tial differential equations, we choose to benchmark several
forms of Neural DEs and backpropagation methods on sin-
gle image super-resolution. The adjoint method previously
proposed for gradient estimation has no theoretical stability
guarantees; we find a practical case where this makes it un-
usable, and show that discrete sensitivity analysis has better
stability. In our experiments1, differential models match the
performance of a state-of-the art super-resolution model.

1. Introduction
A growing body of work is exploring the connection be-

tween deep learning and dynamical systems. Historically,
the objective has been to help solve differential equations
with deep learning [10]. Inversely, recent work has bor-
rowed from dynamical systems literature to train neural net-
works [16]. Neural Ordinary Differential Equations [4] are
such an approach that approximates functions with a differ-
ential equation parameterized by a neural network. They
take the input as the boundary condition of an initial value
problem and integrate the equation to produce the output.

This paper attempts to benchmark different forms of
Neural ODEs, which have mostly been tested on early im-
age classification datasets such as MNIST or CIFAR for
now. Since good performance there does not necessarily
transfer to harder problems, we use supervised single im-
age super-resolution (SR). We choose SR as partial differ-
ential equations (PDEs) have been used on that task [5][6].
We can then train a Neural ODE parameterized by a con-
volutional neural network to learn the discretized form of
an adequate PDE, considering the action of the CNN like a
finite difference approximation of the equation.

Our contributions are threefold. First, we test Neural
ODEs variants and corresponding optimization techniques

∗Work performed while at the Czech Technical University in Prague
1Code available at github.com/TevenLeScao/BasicSR

Figure 1. Our model learns a partial differential equation param-
eterized by a neural network that smoothly transforms the low-
resolution input (left) into a high-resolution reconstruction (right).

[8][9]. We find that dimension augmentation and time-
dependence have positive impacts, and that discrete reverse
sensitivity analysis is significantly more stable than the ad-
joint method advocated in [4]. Then, we compare Neu-
ral ODEs with the residual networks usually employed for
super-resolution. We find they’re competitive with state-of-
the art systems while using a fraction of the parameter size,
although this does not translate to a speed increase. Finally,
we investigate the benefits of their computational adaptiv-
ity, and observe a correlation between the amount of com-
putation they use on an image and the performance gain of
residual networks on that image as they grow deeper.

2. Related work
Supervised single-image super-resolution is a task

where low- and high-resolution image pairs are provided
as training data to learn a mapping from the low-resolution
space to the high-resolution space. Residual networks [12]
are typically used. Those are trained with a combination of
pixel-wise loss, image classifier features [7] (those should
be the same for the generated image and the original) and
adversarial networks [13]. We replace residual generators
with Neural ODEs, and stay in the non-adversarial case.

There has been extensive work on the relationship be-
tween residual networks and dynamical systems. Most
of it leverages the connection to build principled residual
architectures [14][3][20][25]. In contrast, Neural ODEs [4]
introduce a concurrent architecture that continuously de-
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forms inputs according to a differential equation for a fixed
amount of integration time to produce the output. We study
its behaviour and performance on a real-world task.

Image restoration tasks, such as denoising [22], deblur-
ring [18], inpainting [21] have historically been solvable
with total variation methods [19] which naturally lead to
PDEs. Super-resolution has also used differential methods
[6][5], so Neural ODEs, which learn differential equations
to fit the data in a supervised way, are a promising class
of models for the task. Previous work that learns equation
parameters [6] typically uses constraints on the filters in or-
der to leverage the exact equivalence between convolution
filters and spatial differentiation [2]. In contrast, we use a
neural network approach where we overspecify the model
and use larger datasets and limited a priori knowledge.

3. Approach
3.1. Architecture

We use as reference the residual-in-residual-dense-
blocks (RRDB) network [23], a state-of-the art architec-
ture that has proved effective for both adversarial and non-
adversarial training. We replace the main residual module
with a differential module as shown in fig. 2. Inputs go
through a first convolution to expand the RGB channels to
F filters. Then, a residual network or Neural ODE iterates
over the image in filter space to perform feature extraction.
Finally, after upsampling to the final resolution and apply-
ing a convolution in filter space, the output convolution re-
turns to RGB channel space to yield the image. We use
LeakyRELU activations and no batch normalization.

In conventional models, the model core consists of hun-
dreds of convolution layers arranged in an intricate archi-
tecture. In RRDB networks, the basic unit is a dense block
of five convolutions with a residual connection bypassing
it. Those are then arranged into groups of three units with
residuals. The final model contains a pre-specified num-
ber of those groups: 5 in our low-data experiment, 20 in
the high-data one, for a total of 75 to 300 layers of vary-

ing sizes. In contrast, the Neural ODE uses only one set
of stacked convolutions, which we call the ODE function:
2 in the low-data regime and 7 in the high-data one. We
initialize a time variable t at t0 = 0 and an ODE state u0
at the input value. At every step k, the ODE solver takes
in the current state uk ≈ u(tk) and computes the time in-
crement ∆t and state increment ∆u according to the ODE
function. The exact calculation depends on the solver; here,
the Dormand-Prince method makes several function calls
between t and +∆t. The integration then proceeds forward
with tk+1 = t + ∆t and uk+1 = uk + ∆u, until we reach
a pre-specified t = Tfinal, at which point the ODE block
outputs the final value u(T ) for the rest of the network. We
concatenate a time channel that contains the current integra-
tion time t to the filter channels to model time dependence
[4]. The differential system uses considerably less param-
eters: our high-data differential image generator, for exam-
ple, is 25 times lighter than its conventional equivalent.

Finally, we also experiment with dimension augmenta-
tion [8], where extra dimensions are concatenated to the la-
tent space in order to allow possible trajectories that would
have to cross in the lower-dimensional space and ANODEs
[9], which implement a checkpointing scheme to ensure the
stability of the gradient signal.

3.2. Backpropagation methods

A Neural ODE attempts to map inputs x(0) to outputs
x(T ) that approximate target y by the continuous action of
dynamical system ẋ = f(x, t, θ), with f a neural network
of parameters θ. Training it is finding the minimum of

loss(θ) = d(y,x(0) +

∫ T

0

f(x(t), t, θ)dt) (1)

with regard to θ, where d is the distance function we’re us-
ing for training and T is an arbitrary integration time. In
order to use gradient descent, we must derive through the
integral. Fortunately, if we consider this as an optimal con-
trol problem, we can use use sensitivity analysis to compute
the derivative of the integral term in (1) with regard to θ.

Figure 2. The super-resolution network. A first convolution extends the number of channels to F filters. Then, a model core performs
feature extraction in filter space. This feature map is upsampled to the desired scale, then a set of convolutions produces the final.



When the number of parameters of the model is large
compared to the dimension of the space of the differential
equation, as here, adjoint sensitivity is the most efficient
technique [24]. It first computes the trajectory of the system
normally, then solves another differential equation system,
the adjoint, that computes the derivatives backwards in time
along that trajectory. It is the method used in [4] which al-
lows for constant memory cost as a function of depth when
used without checkpointing, ie saving intermediary values
of the forward pass. However, in this case, due to error ac-
cumulation, the trajectory of the adjoint equation may com-
pletely diverge from the trajectory of the forward pass if
there’s no additional stability guarantees (for example, a re-
versible integrator, which may have worse accuracy).

Another possibility is discrete reverse sensitivity: sim-
ply propagating the gradients through the internal opera-
tions of the solver using the chain rule. This is equivalent
to backpropagation, or, in automatic differentiation terms,
reverse accumulation. It requires access to the solver opera-
tions, rather than treating it like a black box like the adjoint
method does, and does not seem to scale as well on per-
formance benchmarks [17]. However, it does not have the
instability risk of the adjoint method. As most of the work
comparing those methods has been performed on problems
stemming from physical systems, which might not be rep-
resentative of the equations that appear in machine learning
applications, we will test and compare both methods.

4. Experiments
We conducted experiments using five usual super-

resolution datasets: BSD [15] and DIV2K [1] for training,
and Urban 100, General 100 and Set 14 for testing. Pre-
processing measures and hyperparameters are presented in
appendix A, and visual results in appendix C.

4.1. Architecture search on the BSD dataset

As this smaller dataset allows an extensive grid archi-
tecture search, we identify the best-performing differential
system on the BSD dataset before moving on to DIV2K.
We train baseline neural ODEs (NODEs), augmented ODEs
and ANODEs, all with an ODE function of two convolu-
tion layers. Wherever possible, we test time-dependent (e.g.
concatenating a channel with the current integration time
to the image tensor to model a time-dependent PDE) and
autonomous (e.g. no time dependence) ODE blocks. Fi-
nally, both discrete and adjoint training are presented. We
compare with the state-of-the-art RRDBNet generator from
[23]. Table 4 presents test PSNRs for each system.

In this low-data regime, differential systems are compet-
itive against RRDBNet, with Augmented time-dependent
ODEs beating it by an encouraging 0.10 PSNR, although
the visual quality difference is minimal. We attribute the
slightly lower PSNR of the conventional model mostly to

Table 1. PSNR results training on BSD and testing on the con-
catenation of all datasets. Time-dependency, adjoint optimiza-
tion, and dimension augmentation have a generally positive effect.
Augmented time-dependent ODE are the best-performing models,
with the adjoint-optimized version beating RRDB by 0.43 PSNR.
Results are presented split by dataset in appendix B.

Architecture Discrete Adjoint
RRDBNet [23] 25.33 -
ANODE [9] 24.40 -

NODE
Autonomous

Time-dependent
24.15
25.67

25.57
25.61

Augmented [8]
Aut.

Time-dep.
25.24
25.19

25.67
25.76

overfitting, as higher validation scores for the state-of-the-
art CNN do not translate to better PSNR on the testing
dataset, Urban 100. In contrast, those are consistent for
the augmented time-dependent ODE. Finally, adjoint opti-
mization does not seem to have a consistent effect. Baseline
NODEs may lead to less stable adjoint gradients than Aug-
mented ODEs, explaining the difference in performance.

4.2. Full training on the DIV2K dataset

We keep using the augmented time-dependent architec-
ture. As in the low-data regime, the difference in PSNR
is not noticeable without zooming in. Images with a sig-
nificant difference in score one way or another tend to be
hard images with black-and-white striped patterns, where
the worse-performing model generates stripes of the wrong
color or not aligned, which causes a heavy PSNR penalty
without influencing perceived image quality noticeably.

Notably, no adjoint-optimized model trained success-
fully. As mentioned in section 3.2, for an arbitrary solving
method and differential equation, there is no guarantee that
the adjoint problem we need to solve in the backward pass
is tractable. Previous work has trained image classifiers on
MNIST or CIFAR without stability issues. However, in our
experiments on this task with larger models, there is invari-
ably a training batch for which it becomes intractable. Sta-
bility guarantees seem necessary to impose bounds on the
number of steps the adjoint pass requires: we’ve observed
the backward pass require up to 105 function evaluations
(i.e. model calls) before stopping for lack of time as this
had made it around 2000 times longer than usual.

Table 2. PSNR results training on the DIV2K dataset. Training
with the adjoint method is intractable.

Architecture Discrete Adjoint
RRDBNet 26.88 -
Augmented time-dependent ODE 26.69 divergent



Figure 3. Evolution of the mean number of function evaluations
per validation pass, with a band of a standard deviation.

4.3. Adaptive computation

One of the strategies of differential equation solvers that
Neural ODEs aim to benefit from is adaptive computation.
Indeed, modern solvers are able to vary the number of func-
tion evaluations (NFE) depending on the difficulty of the
problem and the desired error tolerance. Previous work has
found that NFE increases consistently as the model is train-
ing [4] and interpreted it as proof that the modeled ODE gets
harder as it learns to fit the data, although dimension aug-
mentation reduces that effect [8]. Fig. 3 plots this increase
over the training of our DIV2K differential model. At the
end of training, NFE is up to between 50 and 80 evaluations
(corresponding to 8 to 13 steps). The variance is especially
interesting as we’re using batches of 16 random patches,
which we expected to have a homogeneizing effect.

In order to investigate whether the difficulty of the ODE
correlates with the difficulty of the task, we look at the NFE
for each model call rather than over whole epochs. In or-
der to measure the difficulty of an image, we train four tra-
ditional residual models of varying (1, 2, 5, 10) depths in
addition to our best performing 20-blocks RRDB network.
One of the main premises of Neural ODEs is that additional
solver method calls are equivalent to the model emulating a
deeper conventional network. If that adaptive computation
plays a role in ODE performance, there should be a link
between which images prompt the solver to require more
function evaluations and which images see the biggest per-
formance increase with more CNN layers.

At test time, since a single image corresponds to around
40 patches of heterogeneous difficulty (as foreground tends
to be easy and background to be hard), function evaluations
are more clustered. We find that most (75 out of 100) im-
ages demand 8 solver steps, whereas 12 images require 7
steps and 13 images require 9. We dub those the medium,
low and high NFE groups respectively and plot for each the
increase in performance for RRDB as CNN depth increases
in fig. 4. As PSNR does not always increase with depth for
the low NFE images while the high NFE pictures see it con-
sistently increase, the differential equation solver does seem
to require more calls in cases where it helps performance,

Figure 4. Performance increase with more blocks for the RRDB
architecture on testing images that required low, medium, and high
numbers of function evaluations. The increase in performance is
higher on the pictures that required more function evaluations.

Table 3. Test PSNR performance, model size, and epoch time for
various conventional networks and the ODE model.

Model Parameters Epoch time PSNR
1 RRDB blocks 0.87 ∗ 106 2mn 46s 23.80
2 RRDB blocks 1.6 ∗ 106 3mn 20s 24.02
5 RRDB blocks 3.7 ∗ 106 5mn 2s 24.03
10 RRDB blocks 7.3 ∗ 106 8mn 4s 24.09
20 RRDB blocks 15 ∗ 106 13mn 57s 24.27
7-layer ODE 0.57 ∗ 106 10-17mn 24.10

although the spread is smaller than at training time.
As shown in table 3, the differential model achieves sim-

ilar performance to traditional residual networks with only
a fraction of the parameters; however, its speed is compara-
ble, especially at the end of training when it requires more
function evaluations. In a sense, Neural ODEs can be seen
as a hypernetwork [11], with a limited set of parameters
defining an extensive set of computations.

5. Conclusion

We have presented a novel model for single image super-
resolution that applies a neural differential equation instead
of discrete pre-defined residual convolutional layers. We
have also shown that the lack of stability guarantees of the
continuous adjoint method materializes into practical in-
tractability, and found that differential models use adaptive
computation, allocating more function evaluations to prob-
lems that can benefit. This allowed us to match the perfor-
mance a state-of-the art super-resolution with only a frac-
tion of the parameters, although with similar time cost.

The author would like to thank Tomáš Mikolov, Josef
Šivic, and Germán Kruszewski for their guidance and ad-
vice. This work was supported by the European Re-
gional Development Fund under the project IMPACT no.
CZ.02.1.01/0.0/0.0/15 003/0000468.
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A. Datasets, evaluation and training proce-
dures

The BSD dataset was originally gathered for image seg-
mentation tasks and contains 300 photos of variable, small
size, around 400x400 pixels large. Those are separated into
200 training images and 100 testing ones. After using bicu-
bic downsampling to generate factor 4x low-resolution im-
ages and dividing the images into smaller patches for train-
ing following the pre-processing pipeline in [23], we ob-
tain a training set of 1200 patches. By contrast, the DIV2K
dataset is much richer; it contains 900 images of higher
starting resolution, separated in 800 training and 100 val-
idation images. We apply the same process as previously
and obtain a training set of 33152 patches, 28 times bigger.
The testing datasets are not pre-processed.

In order to present fair comparisons with the state of the
art, we re-use many of the hyperparameters of [23] for train-
ing, such as learning rates (2.10−4), number of filters (64),
weight decay (none), and the image pre-processing proce-
dure parameters. We differ by implementing validation-
based learning rate decay: if a number (3 in our case) of
validation results do not improve over the previous best re-
sult, we reduce the learning rate, and stop training when it
reaches a minimum value. We use the default torchdiffeq
solving parameters.

B. Low-data results split by dataset

C. Image results and comparisons

Table 4. PSNR results training on BSD split by dataset. Performance is consistent across datasets.

Architecture Set 14 General 100 Urban 100 Concatenation
RRDBNet [23] 25.62 27.84 22.79 25.33
ANODE [9] 24.77 26.78 21.97 24.40

NODE
Autonomous

Discrete
Adjoint

Time-dependent
Discrete
Adjoint

24.55
25.82
25.89
25.85

26.45
28.11
28.21
28.15

21.79
23.00
23.10
23.03

24.15
25.57
25.67
25.61

Augmented
Autonomous

Discrete
Adjoint

Time-dependent
Discrete
Adjoint

25.47
25.88
25.47
25.96

27.76
28.20
27.60
28.30

22.69
23.11
22.75
23.20

25.24
25.67
25.19
25.76



Figure 5. A comparison between images produced by the best-performing differential (center) and state-of-the-art (right) models and
their high-resolution target (left). The first row shows an image where both models have typical PSNRs (24.28 for the ODE, 24.47 for the
state-of-the-art). The second row shows the image where the ODE outperforms the state-of-the-art the most (1.47 PSNR difference). The
third row shows the image where the state-of-the-art outperforms the ODE the most (1.08 difference) High score discrepancy images on
both sides are hard black-and-white striped images where minute anti-aliasing or alignment differences are heavily penalized; this high
variation in PSNR does not correlate well with human perception.


