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Abstract
Policy-gradient reinforcement learning (PGRL)
is widely used to improve language model rea-
soning. However these methods do not work well
with diffusion based language models (dLLMs).
Most attempts to apply PGRL to dLLMs, ei-
ther are extremely unscalable or use unprin-
cipled approximations. Our proposed frame-
work (PADRE) uses a novel objective pseudo-
likelihood based objective for alignment of
dLLMs. Our objective has the same optima as
PGRL based optimization, but does not need
to evaluate likelihood from dLLMs. Experi-
ments on mathematical reasoning benchmarks
show that PADRE matches or surpasses the per-
formance of GRPO and related baselines. Our
approach provides a stable and practical alter-
native for RL-based fine-tuning of reasoning-
focused dLLMs.

1. Introduction
Large Language Models (LLMs) have become the back-
bone of modern natural language processing (NLP), power-
ing applications including code generation (Gehring et al.,
2024), robotic control (Wang et al., 2024b), and au-
tonomous agents (Deng et al., 2023). Much of their success
stems from extensive pretraining on massive text corpora,
which equips them with broad linguistic knowledge and
fluency (Ouyang et al., 2022). Yet, while this pretraining
enables impressive surface-level capabilities, many high-
value downstream tasks such as mathematical problem-
solving require more xomplex reasoning (Webb et al.,
2023; Wei et al., 2022). Reasoning demands the ability to
perform structured, multi-step thinking and to generalize
beyond the patterns seen in training data (Xu et al., 2025).
Reinforcement learning (RL), particularly when driven by
outcome-based rewards, has shown promise in enhancing
LLMs’ reasoning abilities (Luong et al., 2024). This is es-
pecially evident in domains like mathematics, where prob-
lems have objective, verifiable solutions. The ability to
automatically assess correctness in such tasks provides a
powerful training signal, enabling RL methods to fine-tune
LLMs in a targeted, scalable manner (de Winter et al.,

2024).

To date, policy-gradient (Williams and Peng, 1990) (PG)
based RL methods ( specifically Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017b) and Generalized Re-
turn Policy Optimization (GRPO) (Guo et al., 2025)) have
been the dominant approaches for post-training LLMs on
reasoning-heavy tasks like mathematical problem solving
(Xu et al., 2025). These methods focus on optimizing a
policy (the LLM’s output distribution) to maximize task-
specific rewards, such as correctly solving a given problem.
The domain of mathematical reasoning is particularly well-
suited to this framework: reward attribution is straightfor-
ward because each solution attempt can be automatically
judged as correct or incorrect. Consequently, PGRL has
emerged as the method of choice for enhancing LLM rea-
soning in many domains (Shao et al., 2024).

While most LLMS, use an autoregressive model, diffusion
based models have recently emerged as an equally power-
ful way to train language models (Nie et al., 2025; Shi et al.,
2024). Due to their ability to parallelly sample multiple to-
kens, these diffusion LLMs (dLLMs) can significantly out-
perform autoregressive (AR) models, especially when gen-
erating long sequences. Unfortunately, the policy-gradient
methods which underpin the success of standard LLMs,
cannot directly be applied to dLLMs. This is because these
PGRL methods rely on the ability to compute likelihood of
generations; something which is difficult for dLLMs.

Interestingly, the standard KL-regularized RL perspective
of LLMs training naturally connects to probabilistic in-
ference (Jaynes, 1979; Khalifa et al., 2020; Ziebart et al.,
2008)). Building on this insight, we propose a novel
objective for alignment of dLLMs that does not rely on
monte-carlo estimation of probabilities. Our approach
dubbed PADRE , is inspired by pseudo-likelihood (Be-
sag, 1975; 2001) and achieves the same optimality condi-
tions as RLHF and KL-regularized RL; but crucially avoids
the inefficiencies of PGRL with dLLMs. This enables
scalable, stable, and practical alignment for reasoning-
intensive tasks in dLLMs.
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2. Preliminaries
Proximal Policy Optimization (PPO) PPO (Schulman
et al., 2017b) is a classic on-policy algorithm for policy
gradient based optimization. While the vanilla Reinforce
(Williams, 1992) and other similar gradient methods yield
an unbiased gradient, taking large steps often leads to in-
stability in training. Improving upon the TRPO (Schulman
et al., 2017a) method, PPO uses a clipped surrogate objec-
tive to prevent large charge updates. Each iteration of PPO
can be written as optimizing:

J(π) = EDk

[
min

(
π(ah | sh)
πθk(ah | sh)

·Ah(sh, ah),

clip
(

π(ah | sh)
πθk(ah | sh)

, ε

)
·Ah(sh, ah)

)]

Âh is an advantage function, ε is a hyperparameter, πθk is
the previous policy (parameterized via θ), clip is a function
which clamps its input in the range [1−ε, 1+ε], and Dk is
a set of trajectories obtained by executing πθk on the MDP.

KL Regularization Commonly in RL the objective is
to find a policy π that maximizes the expected cumula-
tive reward J(π) = Eτ∼π[r(τ)], where r(τ). However
direct maximization is often undesired (especially in the
context of LLMs), as the resulting models converge to
narrow, high-reward outputs with low diversity (Choshen
et al., 2019; Paulus et al., 2017). To alleviate this mod-
els are often trained with a regularization term (given by
the KL divergence to a reference model). This approach
inherently prevents distribution collapse. By maintaining
diversity through KL regularization, the model retains its
generative capabilities while learning to favor high-reward
behaviors (Ziebart et al., 2008; Ziebart, 2010; Neu et al.,
2017; Ouyang et al., 2022). The standard KL regularized
return is defined as

Jβ(π) = J(π)− β · Eτ∼π

[
log

π(τ)

πref (τ)

]
where β > 0 is a regularization parameter that
controls the strength of the penalty DKL(π∥πref ) =

Eτ∼π

[
log π(τ)

πref (τ)

]
which is the Kullback-Leibler diver-

gence from π to πref . This is effectively equivalent to
adding the log propensity term to the rewards r.

Generalized Reward-Penalized Optimization (GRPO)
GRPO (Shao et al., 2024) is a PPO based method for fine-
tuning LLMs. GRPO usually samples multiple responses
yi for each prompt x, uses a verifier (for math-like prob-
lems) or other reward functions to rate these samples, and
computes advantages by normalizing rewards within each

prompt group. The advantage for the i-th response yi is
computed as:

Âi =
r(x, oi)−mean(r(x, o1), . . . , r(x, oG))

stdev(r(x, o1), . . . , r(x, oG)),
(1)

where r(x, oi) is the outcome for response oi to prompt x
as we defined above.

This response-level advantage Âi is in the PPO objective
LPPO, along with KL-regularization to compute the update

JGRPO(π) =

G∑
i=1

1

|yi|

|yi|∑
t=1

min

[
π(ait | sit)
πθk(a

i
t | sit)

Âi, clip

(
π(ait | sit)

πθθk
(ait | sit)

, ϵ

)
Âi

]
− βDKL(π∥πref ),

where ait is the tth token in the sequence yi, and sit =
(yi<t, x) is the concatenation of all processed tokens. Ef-
fectively instead of a per step/action reward as in PPO; by
using the entire trajectory reward in the objective as given,
GRPO implicitly assigns each token in the response the
corresponding reward. The standardization of the reward
replaces the value function estimate in standard PPO. How-
ever its overall effect is similar, to stabilize training by re-
ducing variance. Thus GRPO is often simpler to implement
than PPO for post-training LLMs (Wang et al., 2024a).

2.1. Masked Diffusion

Masked Diffusion Language Models (MDLMs) are a class
of discrete diffusion models that generate text by grad-
ually denoising a sequence of tokens, starting from a
fully masked state. Unlike autoregressive (AR) models
that generate tokens sequentially, or standard BERT-style
masked language models that perform single-step infilling,
MDLMs iteratively refine predictions over multiple steps,
allowing for more flexible and globally coherent genera-
tion.

Forward and Reverse Process The forward process in
MDLMs is a discrete noising process that gradually cor-
rupts an input sequence x0 (where x0 is a sequence of
one-hot token vectors) by replacing tokens with a special
[MASK] token. Let xt denote the sequence at timestep
t ∈ [0, 1], where t = 0 corresponds to the clean input and
t = 1 corresponds to the fully masked state. The corrup-
tion is governed by a noise schedule αt, which is strictly
decreasing in t.

For each token x
(i)
t in the sequence at time t, the forward

process is defined as:

q(x
(i)
t |x(i)

0 ) =

{
αt, if x(i)

t = x
(i)
0 (token remains unchanged),

1− αt, if x(i)
t = [MASK] (token is masked).

This can also be written as a categorical distribution:

q(xt|x0) = Cat (xt;αtx0 + (1− αt)[MASK]) .
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Here, αt controls the probability of a token being preserved
. Common schedule choices include: linear: αt = 1−t and
cosine: αt = cos(π2 t)schedules. LLada (Nie et al., 2025)
propose using the linear schedule.

The reverse process learns to denoise xt back to x0. Un-
like the forward process, which is fixed, the reverse process
is parameterized by a neural network fθ that predicts the
original tokens given a masked sequence. The reverse tran-
sition q(xs|xt) for s < t is derived from Bayes’ rule and
has three cases:

(1) If x(i)
t ̸= [MASK]: The token is already unmasked

and remains unchanged:

q(x(i)
s |x(i)

t ) = δ(x(i)
s = x

(i)
t ).

(2) If x(i)
t = [MASK] and x

(i)
s = [MASK]: The token

stays masked:

q(x(i)
s |x(i)

t ) =
1− αs

1− αt
.

(3) If x(i)
t = [MASK] and x

(i)
s ̸= [MASK]: The token is

unmasked, and the model predicts the original token:

q(x(i)
s |x(i)

t ) =
αs − αt

1− αt
· fθ(x(i)

0 |xt).

The model fθ is trained to predict x0 given xt, similar to
BERT but conditioned on the masking level t.

Training Objective The model is trained to minimize the
Negative Evidence Lower Bound (NELBO), which sim-
plifies to a weighted negative log-likelihood (NLL) over
masked tokens. The loss is:

Et,x0,xt

[
α′
t

1− αt

L∑
i=1

1[x
(i)
t = [MASK]] · log fθ(x(i)

0 |xt)

]
,

where: α′
t = dαt

dt is the derivative of the noise schedule)
and The indicator function 1[x(i)

t = [MASK]] ensures only
masked tokens contribute to the loss.

For a linear schedule αt = 1 − t, such as that used in Nie
et al. (2025) this reduces to:

L(θ) = Et,x0,xt

[
1

t

L∑
i=1

1[x
(i)
t = [MASK]] · log fθ(x(i)

0 |xt)

]
.

3. Related Work
Reinforcement learning (RL) with Kullback-Leibler
(KL) regularization KL regularized learning has its
roots in maximum-entropy RL Ziebart et al. (2008); Neu

et al. (2017), where a KL penalty ensures that learned poli-
cies remain close to a reference distribution. This frame-
work has led to several influential algorithms, including
Soft Q-Learning (SQL) (Haarnoja et al., 2017) and Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), as well as more
recent approaches such as those of Ji et al. (2024) and Wang
et al. (2024a). Additionally, direct alignment algorithms
like DPO (Rafailov et al., 2023), IPO (Azar et al., 2024),
KTO (Ethayarajh et al., 2024) have gained prominence for
their simplicity and effectiveness.

The relation between entropy-regularized control and
divergence-minimisation is known since the seminal work
of Jaynes (1979). Rafailov et al. (2023) used the form of
the optimal policy of such a procedure (Ziebart et al., 2008)
to propose DPO. Other work in RL have noted the relation
between bayesian inference and optimal control (Levine,
2018). Building on the same,Khalifa et al. (2020); Ko-
rbak et al. (2022) proposed an alternative for fine-tuning
language models, achieving results comparable to KL-
regularized RL. Their GDC method minimizes KL(q||p)
rather than KL(p||q), making it theoretically distinct from
standard RL objectives (Korbak et al., 2022).

Policy Gradient Methods Policy gradient methods
(Williams and Peng, 1990) have been foundational in mod-
ern RL. Recent advancements for language model train-
ing (Ouyang et al., 2022; Shao et al., 2024) have been
based on PPO (Schulman et al., 2017b) and its variants (Wu
et al., 2023). However these methods rely on being able
to compute the log-probabilities of the generated samples.
Furthermore, when used in off-policy manner one further
needs techniques like importance sampling to ensure stable
training (Wu et al., 2023). However, in the context of align-
ment of fine-tuning diffusion language models, the den-
sities required for computing these are not available effi-
ciently. Furthermore methods which use approximations of
the density (Zhao et al., 2025) , are using biased gradients
and hence not optimizing the expected reward. PADRE on
the other hand uses on-policy data to compute unbiased es-
timates of a principled objective.

Reinforcement Learning for LLM Reasoning Since
the work of Ouyang et al. (2022), application of RL to large
language models (LLMs) has seen significant progress, es-
pecially in MDP-based formulations of reasoning, as seen
in OpenAI’s O1 and DeepSeek’s R1. While policy-based
methods such as GRPO (Guo et al., 2025), and their vari-
ants (e.g., DAPO (Yu et al., 2025), Dr. GRPO (Liu et al.,
2025)) dominate this space, other approaches like ReMax
(Li et al., 2023) and RAFT (Dong et al., 2023) have also
been explored. Building on the idea of Bellman Residu-
als (Schweitzer and Seidmann, 1985; Baird, 1995), recently
value based methods (Jia et al., 2025) have also been pro-
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posed for reasoning.

Language Diffusion Models While diffusion models have
revolutionized continuous data generation in the visual do-
main (Song et al., 2020; Ho et al., 2020), their adaptation to
discrete textual data presents unique challenges. The fun-
damental tension arises from the categorical nature of lan-
guage tokens, which necessitates specialized approaches
beyond the standard diffusion framework. The masked
diffusion paradigm has emerged as a particularly success-
ful instantiation of discrete diffusion for language (Sahoo
et al., 2024; Shi et al., 2024). This approach, a special
case of discrete diffusion (Austin et al., 2021), has recently
achieved significant scaling milestones. Recently, LLaDA-
8B (Nie et al., 2025), has been shown to match or surpasses
LLaMA-3 8B on MMLU, ARC-C and few-shot reasoning.

There have been a few methods proposed for alignment of
dLLMs. The naive method to adopt PGRL does not work
well due to intractable log-likelihoods. Nie et al. (2025) es-
timate the log-likelihood log pθ(y|x), by randomly mask-
ing different portions of the output and then performs a
single denoising step to approximate likelihood for each to-
ken position t. Instead of MC estimates, Zhao et al. (2025)
propose a mean-field approximation for the likelihood of
an output. However both these methods, effectively end
up using biased gradients, and hence even under idealized
conditions are not guaranteed to optimize the reward.

4. Method
Modern diffusion-based language models, such as
LLaDA (Nie et al., 2025), generate sequences by it-
eratively denoising masked tokens toward complete
text. Let x denote the prompt and y = (y1, . . . , yT )
the completed generation. Unlike autoregressive
(AR) models, which decompose log-likelihoods as
log pθ(y|x) =

∑T
t=1 log pθ(y

t|y<t, x), diffusion models
produce outputs in a non-sequential and non-factorized
manner. As such the straightforward method of using
PGRL for dLLMs, does not scale. Additionally, the
estimation procedure used for computing the probability
can be biased, which then leads to unstable behavior. To
alleviate this we propose a new probabilistic objective for
alignment of dLLMs.

4.1. RL alignment as Probabilistic Inference

We begin with a key result regarding the KL-constrained
RL methods, which will then motivate a different proba-
bilistic objective that can be used with dLLMs.

Consider the unnormalized target distribution q̃(τ) given
as:

q̃(τ) = pref(τ) exp(r(τ)/β), (2)

which leads to the Boltzmann distribution (Jaynes, 1979):

q(τ) =
1

Z
πref(τ) exp(r(τ)/β), where Z =

∑
τ

pref(τ) exp(
r(τ)

β
).

(3)

Expanding the KL term in Jβ , we can rewrite the standard
policy gradient obective J as:

J(θ) = Eτ∼pθ
[r(τ)]− βEτ∼pθ

[log pθ(τ)− log pref(τ)]
(4)

= −βEτ∼pθ
[log pθ(τ)− log pref(τ)− r(τ)/β] (5)

= −β(DKL(pθ∥q) + logZ). (6)

Hence, maximizing J is equivalent to minimizing
DKL(pθ∥q).

This interpretation while known from earlier ideas in
inference and entropy-regularized reinforcement learning
(Ziebart et al., 2008; Jaynes, 1979), provides new path-
ways for fine-tuning LLMs. Specifically, instead of com-
mitting exclusively to optimizing Kullback-Leibler (KL)
divergence (which is implicitly what these methods are do-
ing), one may adopt the broader perspective from prob-
abilistic inference on distribution matching. Specifically,
the goal is to align a learned policy distribution pθ) with
an unnormalized target q ∝ pref(τ)e

r(τ)/β , where pref is
reference policy and r the reward function.

More generally, however one can consider optimizing other
divergences D(pθ||q), not necessarily KL. Under ideal con-
ditions (e.g., unlimited model expressivity and global opti-
mization), the final learned policy is invariant to the choice
of divergence. However, in practice, different objectives
exhibit varying empirical behaviors. A natural alternative
is the reverse KL, DKL(q||p), however this is difficult as it
requires sampling from the EBM q. Additionally, when the
divergence does not go down to 0, rKL can lead to mode
covering models that can frequently generate incorrect tra-
jectories.

For our applications, an ideal objective should satisfy three
key criteria: a) avoid requiring the partition function Z of q
(efficiency) and b) can be computed without access to full
densities from pθ (dLLM) and c) theoretical guarantees of
convergence to the target distribution q̃. In the next section,
we discuss an objective baed on pseudo-likelihood match-
ing, a candidate objective with such properties. We call
our proposed method PADRE , short for Pseudo-likelihood
Alignment Diffusion-based REasoning

4.2. Pseudo-likelihood Alignment

The pseudo-likelihood objective (Besag, 1975) provides a
statistically consistent approach to learning joint distribu-
tions through their local behaviour. The key idea is to ap-
proximate the joint distribution over sequences using their

4
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conditional marginals. For a sequence y = (y1, . . . , yT ),
define the pseudo-likelihood of pθ as the product of its con-
ditional marginals:

PL(y) =

|y|∏
i=1

pθ(y
(i)|y−i), (7)

where y−i denotes the sequence with the i-th token re-
moved. Besag (1975) established that this product forms
a proper statistical score function when the joint distribu-
tion of y is positive everywhere. Building on this insight,
rather than minimizing the KL divergence between the full
distributions pθ(y|x) and q̃(y|x), we propose minimizing
the sum of KL divergences over conditional marginals:∑

y

∑
i=1

KL(pθ(y
t|y−i)∥q̃(yt|y−t)). (8)

where we have supressed the dependence on the prompt x
for notational convenience It is easy to see that the above
objective is 0, iff all the conditional distributions match;
which by the pseudo-likelihood argument implies that pθ
and q̃ match. However, directly evaluating this loss is in-
tractable due to the combinatorial size of the space of all
sequences y.

To address this computational bottleneck, we introduce a
weighted variant of the pseudo-likelihood objective. Rather
than treating all trajectories equally, we weight them ac-
cording to their probability under the model distribution
pθ(y

−i).

J =
∑
y

∑
i

pθ(y
−t)KL(pθ(y

i|y−i)∥q̃(yt|y−i)) (9)

=
∑
y

∑
i

pθ(y−t)Eyi ∼ pθ(·|y−i)

[
log

pθ(y
i|y−i)

q̃(yi|y−i)

]
(10)

=
∑
y

∑
i

pθ(y)

[
log

pθ(y
i|y−i)

q̃(yi|y−i)

]
(11)

By multiplying each term by pθ(y−i) and applying the law
of total expectation, the weighted KL objective turns into
our final tractable objective:

L(θ) = Ey ∼ pθ

N∑
i=1

[
log pθ(y

i|y−i)− log q̃(yi|y−i)
]

(12)

This formulation offers two key advantages. First, it elim-
inates the need for explicit sampling from the conditional
distributions pθ(·|y−i). Second, it maintains the theoreti-
cal property that the global optimum is achieved precisely

when all conditional distributions match their target coun-
terparts, provided pθ has full support.

We further note that the conditional marginal distribution
of q inherits structure from the reference model:

q̃(yi|y−i) ∝ pref(y
i|y−i) exp(r(yi, y−i)) (13)

This enables efficient computation when pref’s conditionals
are tractable. The log-conditional of q̃ simply becomes:

log q̃(yi|y−i) = log pref(y
i|y−i)+ r(yi, y−i)− logZ(y−i)

(14)

where Z(y−i) is the conditional partition function. Impor-
tantly, the Z(y−i) term can be dropped from the KL diver-
gence objective, as it contributes an additive constant that
does not affect the optimization landscape.

4.2.1. EVALUATING CONDITIONAL LIKELIHOOD

To evaluate the aforementioned objective efficiently we still
need to be able to compute the conditional densities. For
LLaDA like approaches, which learn the masked diffusion
model, one can efficiently compute conditional token prob-
abilities for any word pθ(w|y0,−i) in a single forward pass.
This result stems from the unique factorization properties
of the reverse diffusion kernel in these models.

Consider a clean sequence y0 = [y1, . . . , yL] and its cor-
rupted version yt at timestep t, where [MASK] denotes the
mask token. The key insight lies in the structure of the re-
verse process kernel pθ(yt−1 | xt), which factorizes over
masked positions Mt:

pθ(yt−1 | yt) =
∏

k∈Mt

fθ(yk | yt)
∏

k/∈Mt

δ(ykt ) (15)

where fθ is the denoising network and δ maintains un-
masked tokens. This factorization emerges from the inde-
pendent token corruption in the forward process.

To compute pθ(y
i | y−i

0 ), we construct a partially masked
sequence y1 = y−i

0 ∪ {[MASK]i} where only position i is
masked. This represents a valid sample from the forward
process with M = {i}.

Through marginalization over latent variables y1:T , we
have:

pθ(wi | y0,−i) =
∑
y1:T

pθ(wi | y1)pθ(y1:T | y−i
0 ) (16)

The Markov property of the diffusion process ensures w
depends only on y1. Crucially, y1 is deterministic given
y−i
0 , causing the summation to collapse to:

5
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pθ(wi | y−i
0 ) = pθ(wi | y1) (17)

Examining the reverse kernel reveals:

pθ(y0 | y1) = fθ(w
i | y1)

∏
j ̸=i

δ(yj1) (18)

Thus, the conditional probability equals the denoiser’s out-
put:

pθ(wi | y−i
0 ) = fθ(wi | y1) (19)

Thus masked diffusion LMs can compute exact token-level
conditionals through a single denoiser evaluation. Since
the reference model as well as the model being learnt are
masked diffusion LMs, we can use this trick to compute
the probabilities needed for our objective. This efficient
computation cannot be done on autoregressive models, and
is unique to the masked diffusion LMs.

5. Experiments
We use the recent SoTA dLLM LLaDA-8B-Instruct (Nie
et al., 2025) as the baseline model. Following Zhao et al.
(2025) we compare results using supervised fine-tuning
(SFT), the dffu-grpo version of GRPO proposed by Zhao
et al. (2025), and the combination of the two ( a method re-
ferred to as d1). Experiments are conducted on three math
reasoning benchmarks: a) GSM8K (Cobbe et al., 2021),
a dataset of multi-step grade school math problems, b)
MATH (Hendrycks et al., 2021) a set of high-level math
problems and c) MATH500(Lightman et al., 2023), a cu-
rated subset of MATH. We also report results from the
dream model of Ye et al. (2025) for another baseline com-
parison.

Methodology For fair comparison, we follow the experi-
mental procedure of Zhao et al. (2025). We first do SFT
training of the model on the s1k dataset for 20 epochs with
a sequence length of 4096 tokens. For rewards, we use the
composite reward function combining formatting and cor-
rectness rewards as recommended by Zhao et al. (2025).

We test our model under 0-shot prompting with the prompts
as reported in Zhao et al. (2025). The results (reported
in Table 1demonstrate that PADRE outperforms all base-
lines across benchmarks. On GSM8K, it achieves 85.6%
accuracy, significantly surpassing competing methods. On
the MATH500, PADRE reaches 40.9%, outperforming d1
by +0.7% . Additionally we see that PADRE matches
DREAM (Ye et al., 2025) on MATH.

Table 1. Performance of Diffusion Language Models on Math
Benchmarks. We can see that PADRE matches our outperforms
other methods. The results denoted by - are due to the correspond-
ing paper not having reported the results.

Method GSM8K MATH500 MATH

Dream 7B 81.1 - 42.9
LLaDA 8B 78.3 36.2 38.9
+ SFT* 81.1 34.8 -
+ diffu-GRPO* 81.9 39.2 -
+ d1-LLaDA 82.1 40.2 -
PADRE 85.6 40.9 43.0

6. Conclusion
We have introduced PADRE , a novel approach to tune
dLLMs for reasoning . Our method is a version of the
pseudo-likelihood training (Besag, 1975). The probabilis-
tic objective only relies on sampling and estimating con-
ditional distributions, both of which are efficient with
dLLMs. Additionally, unlike other methods, our approach
learns the same optima as standard PGRL methods. Ex-
periments show that PADRE matches or outperforms other
methods for finetuning dLLMs on challenging math based
reasoning tasks.
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fied view of entropy-regularized markov decision pro-
cesses. arXiv preprint arXiv:1705.07798, 2017.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang
Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and
Chongxuan Li. Large language diffusion models, 2025.
URL https://arxiv.org/abs/2502.09992.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human
feedback. Advances in Neural Information Processing
Systems, 35:27730–27744, 2022.

Romain Paulus, Caiming Xiong, and Richard Socher. A
deep reinforced model for abstractive summarization.
arXiv preprint arXiv:1705.04304, 2017.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn. Di-
rect preference optimization: Your language model is se-
cretly a reward model. Advances in Neural Information
Processing Systems, 36:53728–53741, 2023.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan,
Edgar Mariano Marroquin, Alexander M Rush, Yair
Schiff, Justin T Chiu, and Volodymyr Kuleshov. Sim-
ple and effective masked diffusion language models.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https:
//openreview.net/forum?id=L4uaAR4ArM.

John Schulman, Sergey Levine, Philipp Moritz, Michael I.
Jordan, and Pieter Abbeel. Trust region policy opti-
mization, 2017a. URL https://arxiv.org/abs/
1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Paul J. Schweitzer and Abraham Seidmann. Generalized
polynomial approximations in markovian decision pro-
cesses. Journal of Mathematical Analysis and Applica-
tions, 110(2):568–582, 1985.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junx-
iao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
Y. K. Li, Y. Wu, et al. Deepseekmath: Pushing the lim-
its of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and
Michalis Titsias. Simplified and generalized masked dif-
fusion for discrete data. Advances in neural information
processing systems, 37:103131–103167, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differen-
tial equations. In International Conference on Learning
Representations, 2020.

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe
Diao, Shuang Qiu, Han Zhao, and Tong Zhang. Arith-
metic control of llms for diverse user preferences: Di-
rectional preference alignment with multi-objective re-
wards, 2024a. URL https://arxiv.org/abs/
2402.18571.

Zihan Wang, Brian Liang, Varad Dhat, Zander Brumbaugh,
Nick Walker, Ranjay Krishna, and Maya Cakmak. I can
tell what i am doing: Toward real-world natural lan-
guage grounding of robot experiences. arXiv preprint
arXiv:2411.12960, 2024b.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent
analogical reasoning in large language models. Nature
Human Behaviour, 7(9):1526–1541, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in
large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Ma-
chine learning, 8:229–256, 1992.

Ronald J Williams and Jing Peng. An efficient gradient-
based algorithm for on-line training of recurrent network
trajectories. Neural computation, 2(4):490–501, 1990.

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen,
Kannan Ramchandran, and Jiantao Jiao. Pairwise prox-
imal policy optimization: Harnessing relative feedback
for llm alignment. arXiv preprint arXiv:2310.00212,
2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao,
Yuwei Yan, Qinglong Yang, Yiwen Song, Sijian Ren,
Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li.
Towards large reasoning models: A survey of reinforced
reasoning with large language models, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu,
Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream
7b, 2025. URL https://hkunlp.github.io/
blog/2025/dream.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm
reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya
Grover. d1: Scaling reasoning in diffusion large lan-
guage models via reinforcement learning. arXiv preprint
arXiv:2504.12216, 2025.

Brian D. Ziebart. Modeling Purposeful Adaptive Behavior
with the Principle of Maximum Causal Entropy. PhD
thesis, Carnegie Mellon University, 2010.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI Conference on Artificial Intelligence,
2008.

9


