
Beyond Graph-Based Modeling for
Hierarchical Neural Architecture Search

Lum Birinxhiku1 Danny Stoll1 Simon Schrodi1 Frank Hutter1

1
University of Freiburg

Abstract Neural Architecture Search (NAS) seeks to automate the discovery of well-performing neural

architectures. Recently, a hierarchical approach to NAS (hNAS) has been shown to allow for

high search space expressiveness and efficient searching. However, BOHNAS, the current

best strategy for hNAS requires the conversion of sampled networks from their native

string representations to graphs, complicating the extension of hierarchical search spaces to

include not only architectures, but also other pipeline components, such as hyperparameters,

learning rate schedules and data augmentation. In this work, we introduce hNASK, a

string kernel that operates on such string representations, is able to take advantage of the

hierarchical structure of the search space and preserves the performance of BOHNAS on the

performed architecture search experiments. As such, this kernel opens the door for future

work in hNAS without being constrained to graph-based modeling of search spaces. Code is

available at https://github.com/automl/hnas_with_string_kernels.

1 Introduction

The field of Neural Architecture Search (NAS) is concerned with the automatic discovery of neural

architectures [1]. The difficulty in solving this problem arises due to the potential size of the search

space and the constraints of time and compute resources. Researchers also try to find ways of

defining search spaces with high expressive power that can be searched efficiently [2].

Considering that traditional search spaces are lacking in expressive power, Schrodi et al. [3] have

proposed a way of constructing hierarchical search spaces where sampled networks are formulated

as strings. For such spaces, they propose a search strategy, BOHNAS, and show promising results.

However, their way of defining the search space only allows architecture search and offers

no way to also specify other pipeline components, such as hyperparameters [4, 5], learning rate

schedules [6, 7], or data augmentation [8, 9]. The main challenge to adding such functionality

is that both kernels currently used, the hWL [3] and the WL kernel [10, 11], require an explicit

conversion of sampled networks into graphs. The need for this conversion increases the modeling

difficulty for researchers, due to the more restricted expressive capabilities of graphs compared to

simple strings.

To facilitate future developments which extend the approach into more of a neural pipeline

search, there is a need for string kernels which would take as input sampled networks in their

native string representation and are then able to perform similar computations to the graph based

kernels, while also allowing for more information to be encoded in the strings, which could then

be used to improve the search performance.

Our contributions. We summarize our key contributions below:

1. We present a string based kernel which can be used with the BOHNAS approach - the Neural

Architecture String Kernel (NASK).

2. We show that hierarchical NASK (hNASK) is able to take advantage of the hierarchical nature of

the search space to improve the search performance.
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3. We show that hNASK achieves similar performance to the hWL kernel across all considered

datasets.

4. We adhere to the NAS best practice checklist [12] and provide code at https://github.com/
automl/hnas_with_string_kernels under an MIT License.

2 Existing kernels

The BOHNAS approach can be modified to use kernels that do not rely on graphs, but instead

are string based and take as input two strings, each containing the algebraic representation of

a network. There already exist string kernels which are used for example in text classification

and in bioinformatics. Gärtner [13] gives examples of such kernels and separates them into two

categories - kernels which operate on a character sequence level and base their work on common

character subsequences and kernels that use a ’bag-of-words’ representation of their inputs for

their computations. Common subsequence character based kernels are inappropriate here due

to us dealing with words/symbols which can be related to each other even when they are not in

proximity in the string. A bag-of-words kernel could work, provided it is able to take into account

any structural information inherent to the problem, present in the given strings. We choose to

construct such a kernel.

3 A string kernel for BOHNAS

To simplify future extensions in search space expressiveness, we seek to avoid needing to convert

sampled networks from their native string representations into graphs. Searching such spaces

using BOHNAS then requires the use of a kernel taking such string representations as input.

In Section 3.1 we describe how the proposed kernel NASK works. Then, in Section 3.2 we

consider how the hierarchical nature of the search space can be used to improve its searching

performance.

3.1 NASK

The proposed string kernel NASK computes its result by first embedding the two input network

strings into two vectors containing non-negative values and then computing their cosine similarity.

To show how the embedding of a network into a vector is done, we use the following example

network:

(Sequential(Residual(conv) (id) (conv)) (Residual(conv) (id) (conv)) (fc))

First the network is decomposed into parts according to three categories: operator (the opera-

tions done), operands (the sub-networks on which the operation is done), and the joined operator

and operands string.

For the example network given above, there are in total 9 parts present:

The operator parts are: "id", "fc", "conv", "Sequential", "Residual"

The operand parts are:

"(conv) (id) (conv)", "(Residual(conv) (id) (conv)) (Residual(conv) (id) (conv)) (fc)"

The joined operator-operand parts are:

"Residual((conv) (id) (conv))",
"Sequential((Residual(conv) (id) (conv)) (Residual(conv) (id) (conv)) (fc))"
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The network is then embedded into three vectors, each in R9
and in which each part is mapped

to the same position based on the part length in characters (increasing) with values referring to the

frequency how many times that part is present in the network in that capacity. In our example:

Operator frequencies: < 2, 1, 4, 1, 2, 0, 0, 0, 0 >

Operand frequencies: < 0, 0, 0, 0, 0, 2, 0, 1, 0 >

Joined operator-operand frequencies: < 0, 0, 0, 0, 0, 0, 2, 0, 1 >

Finally, the vectors are multiplied by their respective non-negative weight and are added

together to give the result vector representing the network.

3.2 Hierarchical NASK (hNASK)

As given, NASK considers the appearances of parts without regard for location. Furthermore, the

operand and joined operator-operand parts can be very specific when the network is deep, causing

less likelihood for matches between the networks given as input. This can lead to results which

provide little information.

Using the same approach as hWL, we try to overcome such limitations by computing the kernel

multiple times, for example over all hierarchy levels of the input networks. Then, we weigh the

individual kernel results by their respective non-negative weight and sum them into a final kernel

result, preserving the properties needed for use in a GP.

For larger and deeper networks, by computing the kernel over multiple hierarchy levels and

combining the results (hNASK) it is expected that the final result will better take into account

location information of the parts and also better take into account structure similarities from the

higher levels of the networks. Indeed, surrogate experiments in Section 4.1 show this to be the case.

4 Experiments

We compare the performance of hNASK as proposed to the WL and hWL graph kernels in multiple

experiments. Matching time and compute resources, we use the same experiment setup, data and

hyperparameter learning process as Schrodi et al. [3].

The datasets used are also kept the same and they are CIFAR-10 [14], CIFAR-100 [14],

ImageNet16-120 [15], CIFARTile [16], and AddNIST [16].

4.1 Surrogate experiments

The purpose of these experiments is to compare the performance of the GP surrogate [10] across

kernels. Initially we compare the proposed string kernel using only one hierarchy level (the full

network description), using four hierarchies (the most-detailed ones) and using all seven available

hierarchy levels of the networks. Then, we compare the best performing version to the hWL and

WL kernels.

The results in Figure 1 show hNASK performs better than the NASK versions with limited or no

hierarchy use, particularly as the number of training samples is smaller. When compared to hWL,

hNASK has a worse performance when the number of training samples is smallest, but quickly

catches up and surpasses it, continuing to improve as more training samples are made available.

4.2 Activation function search experiment

We perform neural architecture search with the goal of finding better performing activation

functions using the same setup as Schrodi et al. [3] and Ramachandran et al. [17]. The results of

the experiment are given in Table 1. They show that hNASK and hWL achieve very similar test

and validation error scores.
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Figure 1: Mean Kendall’s 𝜏 correlation with ±1 standard error achieved by a GP using the kernel.

Table 1: Test and validation errors [%] of the architectures with lowest training validation error for

the activation function search experiment

Dataset Training prot. hNASK (val) hWL (val) hNASK (test) hWL (test)

CIFAR-10 Act 7.05±0.06 7.19±0.02 8.63±0.01 8.61±0.03

4.3 Hierarchical NAS-Bench-201 search experiments

Next, we study hNASK used in Bayesian optimization on multiple datasets using Schrodi et al.’s

modified hierarchical version [3] of the NAS-Bench-201 search space [18]. As Table 2 shows, hNASK

and hWL have similar performance both in the validation and test errors, with hNASK having a

slight edge on most datasets.

Table 2: Test and validation errors [%] of the architectures with lowest training validation error

Dataset CIFAR-10 CIFAR-100 ImageNet16-120 CIFARTile AddNIST

Training protocol NB201
†

NB201
†

NB201
†

NB201
†

NB201
†

hNASK (val) 8.52±0.19 27.29±0.64 52.39±0.17 27.14±0.73 7.11±0.09

hWL (val) 8.55±0.33 27.44±0.37 52.51±0.74 29.48±0.81 6.91±0.18

hNASK (test) 8.92±0.23 28.10±0.54 53.63±0.67 32.27±0.97 6.49±0.11

hWL (test) 8.98±0.37 28.23±0.49 53.59±0.98 34.42±1.47 6.64±0.20

†
includes hierarchical search space variants.

5 Limitations

The proposed kernel is able to take advantage of the information encoded in the string represen-

tations of networks both at a single hierarchy and over multiple ones, performing similarly to

the previously used hWL kernel in the searching experiments. However, looking at the surrogate
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experiments in Figure 1, the kernel seems to have a weaker performance in the initial stages

when a very small number of training samples is available. One aspect that could be changed

to improve this is in how the part strings are compared to each other. Allowing partial matches

which would contribute fractionally to the part frequencies in the embedding vector could allow

for more information to be collected into the embedding vectors. Additionally, while the kernel

is appropriate for the current structure of strings, as this structure is extended to allow for more

kinds of information (e.g. hyperparameters), the kernel might have to be adjusted, for example by

adding new kinds of parts extracted and embedded into the intermediate vectors.

6 Broader impact statement

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment. While neural architecture search has a high carbon footprint

if executed inefficiently, this work aims to make it more efficient, thereby reducing this carbon

footprint.

7 Conclusion

We introduced a new string based kernel hNASK, which is compatible with the BOHNAS approach

for hierarchical NAS and is able to leverage hierarchical information to improve its performance. In

the Bayesian optimization experiments hNASK performed similarly or better than hWL on all the

tested datasets, while in the surrogate experiments it had a relatively weaker performance when

a very small number of training samples was available, but a better performance as their count

increased. Having this kernel simplifies future work in extending the expressiveness of hierarchical

search spaces by removing the need for a conversion of the sampled networks from their native

string representation into graphs, as previously required by the hWL kernel. Furthermore, we

offered suggestions about how adjustments can be done to the kernel to accommodate such possible

future enhancements.
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seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] Yes, in the provided code repository.
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A Dataset licenses

Table 3: Licenses and URLs for the datasets used in the experiments

Dataset License URL

CIFAR-10 [14] MIT https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR-100 [14] MIT https://www.cs.toronto.edu/~kriz/cifar.html
ImageNet-16-120 [15] MIT https://patrykchrabaszcz.github.io/Imagenet32/
CIFARTile [16] GNU https://github.com/RobGeada/cvpr-nas-datasets
AddNIST [16] GNU https://github.com/RobGeada/cvpr-nas-datasets
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