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Abstract

Generalizing deep neural networks to new target domains is critical to their real-
world utility. In practice, it may be feasible to get some target data labeled, but to
be cost-effective it is desirable to select a subset that is maximally-informative via
active learning (AL). In this work, we study the problem of AL under a domain shift.
We empirically demonstrate how existing AL approaches based solely on model
uncertainty or representative sampling are suboptimal for active domain adaptation.
Our algorithm, Active Domain Adaptation via CLustering Uncertainty-weighted
Embeddings (ADA-CLUE), i) identifies diverse datapoints for labeling that are both
uncertain under the model and representative of unlabeled target data, and ii)
leverages the available source and target data for adaptation by optimizing a semi-
supervised adversarial entropy loss that is complimentary to our active sampling
objective. On standard image classification benchmarks for domain adaptation,
ADA-CLUE consistently performs as well or better than competing active adaptation,
active learning, and domain adaptation methods across shift severities, model
initializations, and labeling budgets.

1 Introduction
Deep neural networks learn remarkably well from large amounts of labeled data but struggle to
generalize this knowledge to new domains [1, 2]. This limits their real-world utility, as it is impractical
to exhaustively label a large corpus of data for every problem of interest. Moreover, even labeling
all the available data is not a perfect solution, as a deployed model is still likely to encounter some
degree of covariate shift [3]. Finally, the cost of labeling is not uniform across applications, and
methods that can effectively transfer the knowledge acquired from cheaper sources of labeled data
(e.g., synthetic data) to a real-world target would have tremendous utility.

In practice, one may acquire labels for a subset of the target domain to assist in this transfer, but
all instances are not equal. While Active Learning (AL) has extensively studied the problem of
identifying maximally-informative instances to label [4, 5, 6, 7, 8, 9], it does not address how to
effectively use either the labeled source or unlabeled target data for training. Domain adaptation (DA)
however, has studied how to adapt a model trained on a labeled source domain to an unlabeled [1, 10,
11, 12] or partially-labeled [13, 14, 15] target domain. While DA may be insufficient to completely
bridge challenging domain shifts, it is a natural complement to AL to leverage all the available data.

In this work, we study active domain adaptation (Active DA) [16, 17] – given labeled data in a source
domain, unlabeled data in a target domain and the ability to obtain labels for a fixed budget of target
instances, the task is to select target instances for labeling and update the model’s representations so
as to maximize performance on the target test set. Fig. 1 compares the AL, DA and Active DA tasks.

Active DA presents new challenges that AL or DA do not address. In AL, labels are typically acquired
for instances that are highly uncertain [6, 8, 18, 19] or representative in feature space [7, 20]. However,
AL often assumes learning from scratch, at which point model uncertainty may be unreliable. In
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Figure 1: Active learning (left) aims to identify the most informative target instances for labeling
(deep blue), and using those to train a model. Semi-supervised domain adaptation (SSDA) (middle)
seeks to generalize a model trained on a large labeled source domain (pink) to an unlabeled target
domain (light blue) given a small number of target labels (deep blue). In this work, we address Active
Domain Adaptation (right), where the task is to generalize a source model to an unlabeled target
domain by acquiring labels for selected target instances via an oracle.

Active DA, on the one hand it is possible to learn a strong model initialization on the source domain,
which may lead to a more reliable feature space and uncertainty estimates. On the other hand, the
calibration of these estimates in the target domain depends on the severity of the domain shift [21].
In fact, in our experiments, we find that prior work in Active DA [17] that proposes label acquisition
strategies guided solely by uncertainty, do not generalize to challenging domain shifts. This makes
it challenging to develop a versatile label acquisition strategy for Active DA. Further, while semi-
supervised DA assumes that labeled instances are given, Active DA raises the challenging question
of identifying instances that will, once labeled, efficiently transfer “knowledge” from the source to
the target. An effective solution to Active DA needs to jointly address these questions.

We present a novel algorithm called Active Domain Adaptation via CLustering Uncertainty-weighted
Embeddings (ADA-CLUE) for Active DA, which addresses the above challenges. First, we propose
CLUE, a novel label acquisition strategy for Active DA, which, unlike prior work in active adapta-
tion [17], acquires labels for a diverse set of instances (forming non-redundant training batches) that
are uncertain (informative to the model), and representative of the target data distribution (likely to
generalize better to the target test set). CLUE clusters deep embeddings of target datapoints weighted
by the corresponding uncertainty of the target model, and selects nearest neighbors to the inferred
cluster centroids for labeling. ADA-CLUE then leverages all of the available data to update the model
via optimizing an adversarial entropy loss for semi-supervised DA [15], which we demonstrate to be
complementary to our label acquisition strategy.

We present results on five standard image-classification based domain adaptation shifts: the relatively
simple SVHN [22]→MNIST [23] shift from the DIGITS benchmark, and 4 shifts of increasing diffi-
culty on the large and substantially more challenging DomainNet [24] benchmark. We demonstrate
consistent performance gains over competing active adaptation, active learning, and semi-supervised
domain adaptation methods on 4 out of 5 shifts and perform as well as the best competing method
on the fifth. We analyze the robustness of our method across active sampling strategies, domain
adaptation methods, model initializations, and labeling budgets. In addition, we present ablation
studies of our model and analyze its behavior via visualizations.

2 Related Work

Active Learning. Classically studied under both streaming (picking one instance at a time) and batch-
mode settings (picking a batch of instances), active learning for CNN’s has focused on the latter due
to the computational inefficiency and instability associated with single-instance updates. Within this
setting, the most successful paradigms that have emerged have been uncertainty-based sampling and
representative sampling [9]. Uncertainty-based methods pick datapoints with the highest uncertainty
under the current model [6, 8, 18, 25]. Several uncertainty measures have been proposed, including
maximum entropy [26], minimum classification margins [27], least confidence, etc. On the other
hand, representative sampling-based methods pick a set of points that are representative of the entire
dataset, and optimize for diversity or coverage, via clustering, or core-set selection [7, 20, 28].
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Some approaches combine these two paradigms [9, 29, 30, 31]. Active Learning by Learning [30]
formulates this as a multi-armed bandit problem of selecting between coreset and uncertainty sampling
at each step. Zhdanov et al. [31] propose using K-Means clustering [32] to increase batch diversity
following pre-filtering based on uncertainty. A more recent example is BADGE [9], which first
computes “gradient embeddings” on unlabeled points, and then runs a clustering scheme on these
to construct diverse batches. In this work, we propose a label acquisition algorithm that captures
uncertainty, representativeness, and diversity, for the problem of active learning under a domain shift.

Domain Adaptation. The problem of transferring models trained on a labeled source domain to an
unlabeled [1, 10, 11, 12] or partially-labeled [13, 14, 15] target domain has been studied extensively.
Initial approaches aligned feature spaces via direct optimization of discrepancy statistics between
the source and target [10, 33], while in recent years adversarial learning of a feature space encoder
alongside a domain discriminator has been the dominant alignment paradigm [11, 34, 35]. More
recently, min-max optimization of model entropy has been shown to successfully achieve domain-
alignment in a semi-supervised setting [15]. In this work we apply adversarial entropy optimization
to achieve alignment for Active DA in the context of image classification.

Active Domain Adaptation. Rai et al. [16] initially studied the task of active adaptation applied
to sentiment classification from text data. They propose ALDA, which employs source domain
initialization and a sampling strategy based on a learned domain separator. Chattopadhyay et al. [36]
select target samples and learn importance weights for source points by solving a convex optimization
problem of minimizing maximum mean discrepancy (MMD) between features. More recently, Su
et al. [17] study this task in the context of deep CNN’s and propose AADA, an Active DA method
wherein points are sampled based on their uncertainty (measured by model entropy) and targetness
(measure by a domain discriminator), followed by adversarial domain adaptation [34]. In our work,
we propose an Active DA algorithm that selects batches of points that are uncertain, representative,
and diverse, followed by semi-supervised DA via adversarial entropy minimization, that results in
significantly better performance than prior work across domain shifts of varying difficulty.

3 Approach
We address the problem of active domain adaptation (Active DA), where the goal is to generalize a
model trained on a source domain to an unlabeled target domain, with the option to query an oracle
for labels for a subset of target instances. While individual aspects of this problem – generalization to
a new domain and selective acquisition of labels, have been well studied as the problems of Domain
Adaptation (DA) and Active Learning (AL) respectively, Active DA presents new challenges. First, it
is unclear as to which target instances will, once labeled, result in the most sample-efficient domain
alignment. It is also an open question as to how best to use the labeled data from the source or the
unlabeled data from the target for training. Further, the optimal solutions to these questions may
vary based on the properties of the specific domain shift. In this section, we present an algorithm for
Active DA which performs consistently well across domain shifts of varying difficulty.

3.1 Notation
In Active DA, the learning algorithm has access to labeled instances from the source domain (XS , YS)
(solid pink in Fig. 2), unlabeled instances from the target domain XUT (blue outline in Fig. 2), and
a budget B (= 3 in Fig. 2) which is much smaller than the amount of unlabeled target data. The
learning algorithm may query an oracle to obtain labels for at most B instances from XUT , and add
them to the set of labeled target instances XLT . The entire target domain data is XT = XLT ∪XUT .
The task is to learn a function h : X → Y (a convolutional neural network (CNN) parameterized by
Θ) that achieves good prediction performance on the target. In this work, we consider Active DA in
the context of C-way image classification – the samples xS ∼ XS , xT ∼ XT are images and labels
yS ∼ YS , yT ∼ YT are categorical variables y ∈ {1, 2, .., C}.

3.2 CLUE: CLustering Uncertainty-weighted Embeddings
The goal in active learning (AL) is to identify target instances that, once labeled and used for training
the model, minimize its expected future loss. In practice, prior works in AL identify such informative
instances based on various proxy measures, e.g., sampling instances that are uncertain, representative,
or diverse (see Sec. 2). We propose CLUE, a novel sampling strategy for Active DA that uses a
combination of these proxies.

Uncertain. Identifying instances that provide the model with new information is essential. Prior
work has proposed using several measures of model uncertainty as a proxy for informativeness (see
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Figure 2: Our approach, Active Domain Adaptation via CLustering Uncertainty-weighted Embed-
dings (ADA-CLUE), acquires labels for a diverse set of target instances that are informative and
representative (left). First, uncertainty-weighted embeddings of target instances, are clustered. The
instance closest to each cluster centroid is then acquired for labeling, providing diverse instances
that are representative and informative (Eq. 8). Next, ADA-CLUE leverages the available labeled
and unlabeled source and target data to update the model via a semi-supervised adversarial entropy
objective (Eq. 4) (middle), which results in well-classified target data (right).

Sec. 2). When learning from scratch, model uncertainty may be unreliable and lead to sampling
less informative points. In Active DA, however, models benefit from initialization on a related
source domain, which leads to correspondingly more reliable uncertainty estimates. We employ the
commonly-used entropy measureH(Y |x; Θ) as our uncertainty measure [26],H(Y |x) for brevity.
For C-way classification, entropy is defined as:

H(Y |x) = −
C∑
c=1

p(Y = c|x; Θ) log p(Y = c|x; Θ) (1)

Representative. Acquiring labels solely based on uncertainty may not always be reliable, particularly
under a strong domain shift [21], or in the presence of noisy outliers. Without access to target labels,
it is difficult to self-diagnose this. A parallel line of work in active learning instead sampling proposes
instances that are representative of the unlabeled pool of data. Prior work has framed this as a
computational geometry problem of core-set selection [7] or computing “gradient embeddings” that
capture feature geometry [9], in a learned high-dimensional space. The success of such methods
relies on access to a meaningful embedding space. In the context of Active DA, training on the source
domain leads to meaningful priors that are amenable to such representative sampling.

Let φ(x) denote feature embeddings extracted from model h. One way to identify representative in-
stances is by partitioningXT intoK diverse sets S = {X1, X2, ..., XK}, where each setXk has small
variance σ2(Xk). Expressed in terms of pairs of samples, σ2(Xk) = 1

2|Xk|2
∑

xi,xj∈Xk
||φ(xi) −

φ(xj)||2 [37]. The goal is to group target instances that are similar in the CNN’s feature space, into
a set Xk. However, while σ2(Xk) is a function of the target data distribution and feature space
φ(.), it does not account for the informativeness of an instance. Source training followed by domain
alignment typically results in some classes being better aligned across domains than others. Thus, it
is important to avoid sampling from already well-classified regions of the feature space. We achieve
this by weighting samples based on their informativeness (uncertainty given by Eq. 1), and compute
the weighted population variance [38]. The overall set-partitioning objective is given by:

argmin
S

K∑
k=1

1

Z

∑
x∈Xk

H(Y |x)||φ(x)− µk||2 where µk =
1

Z

∑
x∈Xk

H(Y |x)φ(x) (2)

where the normalization Z =
∑
x∈Xk

H(Y |x). In practice, we implement the Weighted K-Means
algorithm [39] which is an approximation to Eq. 8, set K = B (budget), and use activations from the
penultimate CNN layer as embeddings φ(x).

Diverse. AL for deep CNN’s has primarily focused on the batch active learning setting [40] for
better efficiency and computational stability. In this setting, greedily sampling the K most ‘uncertain’
instances will likely lead to high redundancy within a batch. Since Eq. 8 equivalently maximizes the
sum of squared deviations between instances in different sets [41], we construct a batch of instances

4



Algorithm 1 ADA-CLUE: Our proposed Active DA method, which uses Clustering with
Uncertainty-weighted Embeddings (CLUE) to select points for labeling followed by a model
update via semi-supervised adversarial entropy minimization.

1: Require: Neural network h = f(φ(.)), parameterized by Θ, labeled source instances (XS , YS),
unlabeled target instances XT , Per-round budget B, Total rounds R.

2: Define: Target labeled set XLT = ∅
3: Update model at the first round Θ1 by minimizing Eq. 3. . Train source model
4: Adapt model to unsupervised target data by optimizing Eq. 4. . Unsupervised adaptation
5: for ρ = 1 to R do
6: CLUE: For all instances x ∈ XT \XLT :

1. Compute entropy-weighted embedding H(Y |x)φ(x)

2. Solve Eq. 8 via Weighted K-Means (K = B)
3. Acquire labels for nearest-neighbor to centroids Xρ

LT = {NN(µk); k = 1, 2, ..,K}
4. XLT = XLT ∪Xρ

LT
7: Semi-supervised Domain Adaptation. Update model Θρ+1 by optimizing Eq. 4.
8: Return: Final model parameters ΘR+1.

with minimum overlap by selecting from different sets. In practice, we sample the nearest neighbor
to the weighted-mean of each set µk in Eq. 8, acquiring labels for K instances.

Our full label acquisition approach, Clustering Uncertainty-weighted Embeddings (CLUE), identifies
a set of instances that are together informative, diverse, and representative of the data (Fig. 2, left).
3.3 Semi-supervised Domain Adaptation
Given labeled samples from the source and (a subset of) the target domain, we first compute the total
cross-entropy loss LTCE of model h over the available labeled data.

LTCE = λSE(x,y)∈(XS ,YS)[LCE(h(x), y)] + λT E(x,y)∈(XLT ,YLT )[LCE(h(x), y)] (3)

where λS and λT are scalar weights, and LCE denotes the cross-entropy loss. In addition, the source
and target domains are aligned via an additional objective that uses both labeled and unlabeled
data. We use the minimax entropy (MME) alignment strategy for semi-supervised domain adaptation
proposed in Saito et al. [15]. While conventional domain classifier-based adaptation methods are
effective in unsupervised feature alignment, they tend to generate ambiguous features near class
boundaries in the presence of any target supervision. MME was shown to overcome this challenge and
excel at semi-supervised domain adaptation. We now describe the MME approach.

Consider that model h : X → Y is composed of a feature extractor φα(x) : X → Z;Z ∈ RM and
classifier fW : Z → Y . Overall, the model’s prediction is p(Y |x; Θ) = σ(f(φ(x))) where α and W
are parameters for φ and f respectively, and σ denotes the softmax function. In MME, the classifier
weights W are updated to maximize model entropy (Eq. 1) over target instances, and parameters of
the feature extractor α are updated to minimize it. The full learning objective is given by:

argmin
W

LTCE − λH
∑

x∈XT

H(Y |x) argmin
α
LTCE + λH

∑
x∈XT

H(Y |x) (4)

where λH is a hyperparameter that controls the relative weight of the unsupervised alignment term.
Our label-acquisition (CLUE) and domain alignment strategies (MME) complement one another. MME
explicitly minimizes target entropy, which has the effect of producing a feature space where similar
points are more tightly clustered (see Fig. 2, middle). This makes it easier to sample diverse points
with CLUE. Further, sampling points close to class decision boundaries purely based on uncertainty
followed by adversarial entropy optimization can lead to learning ambiguous decision boundaries
(details in appendix), whereas CLUE captures both uncertain and representative points.

We call our entire active adaptation approach Active Domain Adaptation via Clustering Uncertainty-
weighted Embeddings (ADA-CLUE, see Algorithm 1). Given a model trained on labeled source
instances, we align its representations with unlabeled target instances via unsupervised domain
adaptation. For R rounds with per-round budget B, we then iteratively i) acquire labels for B target
instances that are identified via our proposed sampling approach (CLUE), and ii) Update the model
using the semi-supervised domain alignment strategy described above (Eq. 4).
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Figure 3: Active DA accuracy across 4 shifts of increasing difficulty from DomainNet [24], over
10 rounds with per-round budget B = 500: ADA-CLUE consistently performs as well or better
than a state-of-the-art active learning (BADGE [9]), semi-supervised DA (MME [15]), and active DA
(AADA [17]) method.

4 Experiments
We begin by evaluating the performance of our active domain adaptation method (ADA-CLUE) across 5
domain shifts of varying difficulty (Sec 4.1). To demonstrate the importance of each component of our
method, we next present ablations of our sampling strategy (CLUE) and our choice of semi-supervised
adaptation (Sec 4.2). For all experiments, we follow the standard batch active learning setting [42], in
which we perform multiple rounds of batch active sampling, label acquisition, and model updates.
As our performance metric, we compute model accuracy on the target test split versus the number
of labels used from the target train split at each round. We run each experiment 3 times and report
accuracy mean and 1 standard deviation.

4.1 Performance on the active adaptation task
DomainNet [24] is the largest domain adaptation benchmark for image classification, contain-
ing 0.6 million images belonging to 6 distinct domains spanning 345 categories. For our experi-
ments, we study four shifts of increasing difficulty as measured by source→target transfer accuracy:
Real→Clipart (easy), Clipart→Sketch (moderate), Sketch→Painting (hard), and Clipart→Quickdraw
(very hard). We use a ResNet34 [43] CNN , and perform 10 rounds of Active DA with per-
round budget = 500 instances (total of 5000 labels). In addition, we evaluate performance on
the SVHN [22]→MNIST [23] shift used in Su et al. [17]. We use a modified LeNet architecture [12],
and perform 30 rounds of active adaptation with a per-round budget = 10. See appendix for additional
details regarding datasets and training.

Baselines. We compare our method against four baselines: State-of-the-art methods for active domain
adaptation (AADA [17]), semi-supervised DA (SSDA-MME* [15]), active learning (BADGE [9]), and a
simple baseline of uniform sampling with finetuning (uniform + finetuning (FT)). We briefly
describe the three state-of-the-art methods below.

(i) AADA: Active Adversarial Domain Adaptation [17] performs alternate rounds of active sampling
and adversarial domain adaptation via DANN [34]. This method samples points that are jointly high
entropy and have a high “targetness” score from the domain discriminator.

ii) SSDA-MME*: [15] The model is optimized via the semi-supervised MME loss on randomly sampled
target points. The asterisk denotes that for simplicity and fair comparison against baselines, in our
implementation we do not use a similarity-based classifier or L2-normalize features 2.

iii) BADGE + finetuning (FT): Batch Active Learning by Diverse Gradient Embeddings [9] is a
recently proposed, state-of-the-art active learning strategy that constructs diverse batches by running
KMeans++ [44] on “gradient embeddings” that incorporate model uncertainty and diversity. The
model is then finetuned on acquired labels.

All baseline models are first initialized with pretrained ImageNet weights and then trained to comple-
tion on the labeled source domain. SSDA-MME, AADA, and ADA-CLUE additionally employ unsuper-
vised feature alignment to the target domain, which leads to a higher initial performance.

2We report results on all 345 classes in DomainNet instead of the 126-class subset that Saito et al. [15] use.

6



0 1k 2k 3k 4k 5k
# Labels from Sketch Train

10

20

30

40

50
Sk

et
ch

 T
es

t A
cc

ur
ac

y
FT from ImageNet

0 1k 2k 3k 4k 5k
# Labels from Sketch Train

36
39
42
45
48
51

Sk
et

ch
 T

es
t A

cc
ur

ac
y

FT from source

0 1k 2k 3k 4k 5k
# Labels from Sketch Train

40
42
44
46
48
50
52

Sk
et

ch
 T

es
t A

cc
ur

ac
y

Semi-supervised DA

uniform
entropy [26]

margin [27]
coreset [7]

BADGE [9] Imp. Wt [17] CLUE (Ours)

(a) Active Sampling Ablation

0 1k 2k 3k 4k 5k
# Labels from Sketch Train

32

36

40

44

48

52

Sk
et

ch
 T

es
t A

cc
ur

ac
y

Sampling with CLUE

MME [15]
finetune
DANN [34]
ADDA [35]
VADA [49]

(b) DA Ablation

Figure 4: ADA-CLUE ablation Clipart→Sketch: (a): Comparing CLUE against prior active sampling
strategies across 3 starting points and training strategies: finetuning from pretrained ImageNet
weights, finetuning from a source model, and semi-supervised DA (using MME [15]) from a source
model. (b): Varying semi-supervised DA strategies while sampling via CLUE.
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Results. Fig. 3 and 5 demonstrate our results on DomainNet and
DIGITS. We find that ADA-CLUE consistently outperforms alternative
methods across shifts and rounds, except for the last few rounds on the
very hard C→Q shift where it is on par with the SSDA-MME* baseline.
For instance, on the Clipart→Sketch (Fig. 3, C→S) shift, we improve
upon the state-of-the-art AADA active adaptation method by 2-4% over
rounds. This demonstrates the benefit of jointly capturing model uncer-
tainty, density, and batch diversity for active sampling in combination
with strong semi-supervised feature alignment. We observe similar
improvements on the DIGITS SVHN→MNIST benchmark (Fig. 5).

Importantly, we find that the performance gap between ADA-CLUE and
AADA [17] increases with increasing shift difficulty. As discussed in
Sec. 3, the optimal label acquisition criterion may vary across different
shifts and stages of training as the model’s uncertainty estimates and
feature space evolve, and it is challenging for a single approach to work well across all settings.
However we find that ADA-CLUE is able to effectively trade-off uncertainty and feature-space coverage
and perform well even on difficult shifts, significantly outperforming purely uncertainty-based
methods (eg. AADA).

Across shifts, we find that the SSDA-MME* [15] baseline is closest to ADA-CLUE in terms of perfor-
mance. This is unsurprising since Mittal et al. [45] showed that the benefit of deep active learning
strategies is often greatly reduced when deployed in combination with semi-supervised learning
and data augmentation. Despite using both of these, we observe that ADA-CLUE provides consistent
and significant improvements, on most shifts, over uniform sampling even in the presence of strong
semi-supervised alignment. This offers encouraging evidence that there remains value in intelligently
sampling instances for labeling even with semi-supervised deep learning.

4.2 Ablating ADA-CLUE

Active sampling ablation. To understand the impact of our active sampling method, CLUE, we
consider fixing the semi-supervised domain adaptation method from our full method, ADA-CLUE,
and varying the active sampling method using 4 diverse AL strategies from prior work. Labels are
acquired based on the following selection strategies: 1) entropy [26]: Instances over which the
model has highest predictive entropy. 2) margin [27]: Instances for which the score between the
model’s top-2 predictions is the smallest. 3) Coreset [7]: Core-set formulates active sampling as
a set-cover problem, and solves the K-Center [46] problem. In our experiments, we use the greedy
version proposed in Sener et al. [7]. 4) BADGE [9] (described in Sec. 4.1). Strategies (1) and (2) are
purely uncertainty based, (3) is purely based on representativeness, and (4) is a hybrid approach.

We evaluate all sampling strategies across three different ways of learning with the acquired labeled
data – finetuning a model pretrained on ImageNet [47], finetuning a model trained on the source
domain, and semi-supervised domain alignment via minimax entropy [15] (Eq. 4). In the third
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Figure 6: SVHN→MNIST: We visualize the logits of a subset of incorrect (large, opaque circles)
and correct (partly transparent circles) model predictions on the target domain after round 0, along
with examples sampled by different methods. Entropy (left) acquires redundant samples, whereas
core-set (middle) does not account for areas of the feature space that are already well understood.
CLUE (right) constructs batches of dissimilar samples from dense regions with high uncertainty.

scenario, we also benchmark the performance of the importance weighting strategy used for sample
selection in AADA (see Sec. 4.1). Fig. 4a summarizes results on Clipart→Sketch.

As expected, raw performance is weakest with ImageNet initialization and strongest with semi-
supervised DA. Regardless, sampling using CLUE provides the most informative samples leading to
the best overall performance in each scenario and across most sampling budgets (lower only than
BADGE+MME using the largest budget). In the appendix, we also benchmark the performance of CLUE
as an active learning method on SVHN, and find it to be on-par with state-of-the-art methods.

Finally, we provide an illustrative comparison of sampling strategies using TSNE [48]. Fig. 6 shows
an initial feature landscape together with points selected from entropy, coreset, and CLUE at Round
0 on the SVHN→MNIST shift. We find that entropy (left) samples informative but redundant points,
coreset samples diverse but not necessarily informative points, while our method, CLUE, samples
both diverse and informative points.

Domain adaptation ablation. We next justify our decision to use MME as our semi-supervised
domain adaptation method for active domain adaptation. For this experiment, we fix our sampling
strategy to CLUE and compare against three domain-classifier based adaptation methods: DANN [34],
ADDA [35], and VADA [49], as well as standard finetuning. In Fig. 4b, we observe that domain
alignment with MME significantly outperforms all alternative domain adaptation methods as well as
finetuning. Interestingly, not all domain adaptation methods perform better than simple finetuning.
This finding is consistent with Saito et al. [15], who find that domain-classifier based methods are not
as effective in the semi-supervised setting when additional target labels are available.

For further analysis, see appendix. We include additional experiments such as augmenting DANN [34]
and ADDA [35] with entropy minimization regularization, as commonly used in semi-supervised
learning and in AADA [17] and find that this addition consistently improves performance.

Additional ablations. Due to space limitations, we include our remaining ablations in the appendix.
These include comparisons over uncertainty metrics within CLUE, varying the temperature of the
softmax before computing entropy weighting within CLUE, and analyzing the robustness of our
method when varying the per round budget within a fixed overall budget. With these ablations
we justify our choice of entropy as the uncertainty measure in CLUE and show that using small
temperatures leads to the best results. Finally, we demonstrate that ADA-CLUE has performance robust
against batch sampling budget as long as the budget is greater than the number of dataset categories.

5 Conclusion
We address active domain adaptation, where the task is to generalize a source model to an unlabeled
target domain by acquiring labels for selected target instances via an oracle. We present ADA-CLUE,
an algorithm for active domain adaptation that first identifies diverse instances from the target domain
for labeling that are both uncertain under the model and representative of target data, and then
optimizes a semi-supervised adversarial entropy loss to induce domain alignment. We demonstrate
its effectiveness on the Active DA task against competing active learning, semi-supervised domain
adaptation, and active adaptation methods across domain shifts of varying difficulty.
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Broader Impacts

The widespread successes of deep neural networks in recent years have largely relied on large labeled
datasets. However, labeling costs can be prohibitively expensive for some applications, requiring
specialized expertise (labeling X-rays for medical diagnosis) or significant manual effort (pixel-level
annotations for semantic segmentation). As such, reusing knowledge from cheaper sources of labels
(eg. synthetic data) to generalize to new tasks and datasets is an important but unsolved challenge.

Our work focuses on cost-efficient generalization by identifying a small subset of target data that
will, once labeled, lead to good target performance. We anticipate our line of work to enable new
applications to adapt efficiently. In terms of impact on society, this could mean that computer vision
systems are able to better handle novel deployments and are less susceptible to dataset bias. For
example, our system could adapt a skin-cancer detection system to an image dataset that was taken
under different lighting conditions with less annotation. Although we do not experiment on fairness
applications, domain adaptation has also been shown to improve the fairness of face recognition
systems across race/gender.

On the other hand, identifying informative points with our method does require additional processing
of the available unlabeled data, but we believe this cost is offset by the reduced carbon footprint of
ultimately having to train on a much smaller subset of data. Other negative impacts of our research
on society are harder to predict, but it suffers from the same issues as most deep learning algorithms.
These include adversarial attacks, privacy concerns and lack of interpretability, as well as other
negative effects of increased automation.
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7 Further Ablations for ADA-CLUE

7.1 Varying uncertainty measure in CLUE
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Figure 7: Varying uncer-
tainty measures in CLUE.

In Fig. 7, we consider alternative uncertainty measures used in CLUE,
our proposed label acquisition strategy. We show the Clipart→Sketch
(C→S) shift from DomainNet [24]. As before, we perform 10 rounds
of active domain adaptation with a per-round budget = 500, and report
accuracy on the target test split as a function of the number of labels
from the target train split. We repeat experiments thrice and report
accuracy mean with 1 standard deviation.

We show that our proposed use of sample entropy significantly out-
performs a uniform sample weight and performs comparably to an
alternative uncertainty measure - sample margin score (difference be-
tween scores for top-2 most likely classes). This implies that either
measure which considers the prediction uncertainty may be used to
bias towards informative samples and that simple K-Means without sample specific uncertainty
weighting is inferior.

We also run an additional experiment (not shown in the figure) where we use embeddings from the
last layer CNN instead of the penultimate layer for CLUE. We observe near-identical performance in
both cases across multiple shifts, suggesting that our method is not very sensitive to this choice.

7.2 Softmax temperature to trade-off uncertainty and representativeness in ADA-CLUE.
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Figure 8: Varying softmax
temperature.

CLUE captures an implicit tradeoff between model uncertainty (via
entropy weighting) and feature-space coverage (via clustering). In Sec.
4.1 in the main paper, we have shown this implicit tradeoff leads to
consistent improvements across shifts of varying difficulty and model
initializations. We now study this tradeoff in more detail.

We observe that by modulating the temperature of the softmax tem-
perature, we can control this tradeoff. For example, by increasing
the temperature, we obtain more diffuse distributions for all points
leading to similar uncertainty estimates across points; correspondingly,
we expect density to play a bigger role. Similarly, at lower values of
temperature we expect uncertainty to have greater influence on the
sampling strategy. In Fig. 8 we run a sweep over temperature values
and report performance on the Clipart→Sketch shift. As seen, lower values of temperature appear to
improve performance, particularly at later rounds (when uncertainty estimates are more reliable). In
practice, we do not actually have access to a validation split to tune this hyperparameter and so for
our experiments we simply use the default temperature value of 1. We provide this experiment as
initial evidence that CLUE may be further tuned for different domain shift difficulties.

7.3 How many active adaptation rounds are optimal?

0 1k 2k 3k 4k 5k
Labels from Sketch Train

40

42

44

46

48

50

52

Sk
et

ch
 T

es
t A

cc
ur

ac
y 

(%
)

ADA-CLUE on C S

B=100
B=500
B=1000
B=2500

Figure 9: C→S: Varying
per-round budget.

Given a fixed total budget of 5000 target labels, we now vary the per
round budget (and consequently the total number of active adaptation
rounds) and report performance on the Clipart→Sketch shift. As seen
in Fig. 9, the performance appears fairly robust to the per-round budget
across values of 500, 1000, and 2500 but suffers at very small budgets
(100). We conjecture that this is possibly due to the large number of
classes in DomainNet (345), which cannot be adequately represented
at such small budgets.
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Figure 10: C→S: Additional ADA-CLUE ablations.

7.4 Convergence: When do gains saturate?

Due to the computational expense of running active domain adaptation on multiple shifts with a large
CNN (ResNet34 [43]) on a large dataset (DomainNet [24]), in the main paper we restrict ourselves
to 10 rounds with a per-round budget of 500. As a check of when performance gains saturate, we
benchmark performance on Clipart→Sketch for 40 rounds of with per-round budget of 500 (= 20k
labels in total). Results are presented in Fig. 10a. As seen, performance begins to roughly saturate
around the 15k labels mark, and performance differences across methods narrow.

7.5 Role of Entropy Minimization

We experiment with augmenting two popular domain-classifier based adaptation methods, DANN
and ADDA, with entropy minimization regularization, as commonly used in semi-supervised learning
and in AADA [17]. See Fig. 10b. We find that in both cases, this addition consistently improves
performance – slightly in the case of a DANN and significantly in the case of ADDA.

8 Performance of CLUE on Standard Active Learning

To study the applicability of our proposed active sampling method to traditional active learning,
we benchmark its performance against competing methods on the standard SVHN active learning
benchmark. We match the setting in [9], initializing a ResNet18 [43] CNN with random weights and
perform 100 rounds of active learning with per-round budget of 100. As summarized in Figure 11,
CLUE’s performance is on-par with state of the art AL methods, and statistically significantly better
than uniform sampling over most rounds.
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Figure 11: Active Learning performance on SVHN over 100 rounds with per-round budget = 100. CLUE
performs on -par with state-of-the art active learning methods.
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Figure 12: DomainNet [24] qualitative examples

Real Clipart Painting Sketch Quickdraw

Train 120906 33525 48212 50416 120750
Test 52041 14604 20916 21850 51750

Table 1: DomainNet [24] train/test statistics

9 Dataset details

DomainNet. For our primary experiments, we use the DomainNet [24] dataset that consists of 0.6
million images spanning 6 domains, available at http://ai.bu.edu/M3SDA/. For our experiments, we
use 4 shifts from 5 domains: Real, Clipart, Sketch, Painting, and Quickdraw. Table 1 summarizes the
train/test statistics of each of these domains, while Fig. 12 provides representative examples from
each. As models use ImageNet initialization, we avoid using Real as a target domain.

DIGITS. We present results on the SVHN [22]→MNIST [23] domain shift. Both datasets consist
images of the digits 0-9. SVHN consists of 99289 (73257 train, 26032 test) RGB images whereas
MNIST contains 70k (60k train, 10k test) grayscale images. Fig. 13 shows representative examples.

10 Code and Implementation Details

We use PyTorch [50] for all our experiments. Most experiments were run on an NVIDIA TitanX
GPU. All code will be publicly released. We provide code for our DIGITS experiments with this
submission as well as an exported notebook for visualization of code/results: Results Notebook

CLUE. We use the weighted K-Means implementation in scikit-learn [51] to implement CLUE.
Cluster centers are initialized via K-means++ [52]. The implementation uses the Elkan algorithm [53]
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Figure 13: DIGITS qualitative examples

to solve K-Means. For n objects, k clusters, and e iterations (= 300 in our experiments), the time
complexity of the Elkan algorithm is roughly O(nke) [54], while its space complexity is O(nk).

DomainNet experiments. We utilize a ResNet34 [43] CNN architecture. For active adaptation
(round 1 and onwards), we use the Adam [55] optimizer with a learning rate of 1e-5, weight decay of
1e-5 and train for 20 epochs per round (with an epoch defined as a complete pass over labeled target
data) with a batch size of 64. For unsupervised adaptation (round 0), we use Adam with a learning
rate of 3e-7, weight decay of 1e-5, and train for 50 epochs. Across all adaptation methods, we tune
loss weights to ensure that the average labeled loss is approximately 10 times as large as the average
unsupervised loss. We use random cropping and random horizontal flips for data augmentation. We
set loss weights λS = 0.1, λT = 1 and λH = 0.1 (Section 3).

DIGITS experiments. We use the modified LeNet architecture proposed in Hoffman et al. [12] and
exactly match the experimental setup in AADA [17]. We use the Adam [55] optimizer with a learning
rate of 2e-4, weight decay of 1e-5, batch size of 128, and perform 60 epochs of training per-round.
We halve the learning rate every 20 epochs. We set loss weights λS = 0.1, λT = 1 and λH = 1
(Section 3). For AADA, consistent with the paper we add an entropy minimization objective with a
loss weight of 0.1. Images are converted from RGB to grayscale.

10.1 Baseline Implementations

We elaborate on our implementation of the BADGE [9] and AADA [17] baselines.

BADGE. BADGE “gradient embeddings” are computed by taking the gradient of model loss with
respect to classifier weights, where the loss is computed as cross-entropy between the model’s
predictive distribution and its most confidently predicted class. Next, K-Means++ [52] is run on these
embeddings to yield a batch of samples.

AADA. In AADA, a domain discriminator Gd is learned to distinguish between source and target
features obtained from an extractor Gf , in addition to a task classifier Gy. For active sampling,
points are scored via the following importance weighting-based acquisition function (H denotes
model entropy): s(x) =

1−Gd(Gf (x))
G∗d(Gf (x))

H (Gy (Gf (x))), and top B instances are selected for labeling.
In practice, to generate less redundant batches we randomly sample B instances from the top-2%
scores, as recommended by the authors. Consistent with the original work, we also add an entropy
minimization objective with a loss weight of 0.01.

11 Understanding ADA-CLUE with Qualitative Examples

In this section, we attempt to get a sense of the behavior of ADA-CLUE versus other methods via
visualizations and qualitative examples on the SVHN→MNIST shift. Fig. 14 shows confusion
matrices of model predictions before (left) and after (right) performing unsupervised adaptation (via

16



0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

498 1 283 15 51 9 112 5 2 4

1 757 19 2 307 0 2 42 5 0

11 1 621 202 33 21 2 52 53 36

0 0 11 885 0 82 1 4 15 12

1 15 66 5 816 2 2 15 6 54

0 1 0 35 19 807 20 0 9 1

23 0 28 1 471 49 365 1 6 14

1 38 68 22 17 24 0 846 2 10

1 5 14 218 13 55 58 21 560 29

3 30 70 14 298 42 2 273 7 270

Before MME (Test acc: 64.25)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

444 0 490 0 5 0 38 0 0 3

0 1054 3 1 74 0 0 2 1 0

0 0 981 31 8 1 0 9 2 0

0 0 16 956 0 18 0 3 1 16

1 10 22 0 555 0 1 1 1 391

0 3 2 18 5 837 18 0 4 5

22 1 6 0 580 3 343 0 1 2

0 20 88 5 2 4 0 873 2 34

0 6 19 25 3 9 27 8 816 61

3 12 19 2 21 9 0 13 1 929

After MME (Test acc: 77.88)

0

150

300

450

600

750

0

200

400

600

800

1000

SVHN MNIST Confusion Matrix

Figure 14: SVHN→MNIST: Confusion matrix of model predictions before and after MME at round 0.
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Figure 15: SVHN→MNIST: Label histograms and examples of instances selected by entropy, coreset,
and CLUE at Round 1 with B = 30.

(a) Round 1 (b) Round 10

(c) Round 20 (d) Round 30

Figure 16: SVHN→MNIST: TSNE visualization of feature space and instances picked by CLUE at
rounds 1, 10, 20, and 30. Circles denote target points and crosses denote source points.
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Figure 17: Coupling between MME and uncertainty sampling versus CLUE.

MME) at round 0. As seen, MME aligns some classes (eg. 1’s and 9’s) remarkably well even without
access to target labels. However, large misalignments remain for some other classes (0, 4, and 6).

Visualizing selected points. In Fig. 15, we visualize instances selected by three strategies at Round
0 – entropy, coreset, and CLUE, with B = 30. We visualize the ground truth label distribution of the
selected instances, as well as qualitative examples. As seen, strategies vary across methods. Entropy
tends to pick a large number of 8’s, and selects high-entropy examples that (on average) appear
challenging even to humans. Coreset tends to have a wider spread over classes. CLUE appears to
interpolate between the behavior of these two methods, selecting a large number of 8’s (like entropy)
but also managing to sample atleast a few instances from every class (like coreset).

TSNE viz over rounds. In Fig. 16, we illustrate the sampling behavior of CLUE over rounds via
TSNE [48] visualizations. We follow the same conventions as Fig.6 of the main paper, and visualize
the logits of a subset of incorrect (large, opaque circles) and correct (partly transparent circles)
model predictions on the target domain, along with instances sampled via CLUE. We oversample
incorrect target predictions to emphasize regions of the feature space on which the model currently
underperforms. Across all four stages, we find that ADA-CLUE samples instances that are uncertain
(often present in a cluster of incorrectly classified instances), representative (spanning the entire
feature space), and diverse (dissimilar from one another). This behavior is seen even at later rounds
when classes appear better separated.

CLUE and MME. While our results demonstrate CLUE and MME to work very well in conjunction with
one another, we seek to explain why. One reason already we note is MME’s target entropy minimization
objective, which has the effect of producing a feature space where similar points are more tightly
clustered and makes it conductive to sample diverse instances via CLUE.

In Fig. 17, we provide an additional hypothesis. As described previously, MME incorporates a labeled
ground truth cross-entropy loss, and an unlabeled minimax entropy loss. Consistent with [15], we
can consider each column of the classifier matrix to be a “class prototype” (denoted as a black circle).
We conjecture that finetuning on instances on the decision boundary that acquired purely based on
uncertainty (top panel), followed by adversarial entropy minimization, can lead to learning ambiguous
decision boundaries. On the other hand, CLUE incorporates both uncertain and representative points
to select instances, which is more conducive to adversarial entropy optimization and leads to better
separated classes (bottom panel).

12 Extended Description of the CLUE Objective

We describe in more detail, the CLUE objective presented (Eq. 2) in the main paper. Recall that we
identify instances that are representative of the unlabeled target data distribution based on similarity
of instances. Considering the L2 distance in the CNN representation space φ(·) as a dissimilarity
measure, we quantify the dissimilarity between instances in a set Xk in terms of its variance σ2(Xk)
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given by [37]:

σ2(Xk) =
1

2|Xk|2
∑

xi,xj∈Xk

||φ(xi)− φ(xj)||2

=
1

|Xk|
∑
x∈Xk

||φ(x)− µk||2

where µk =
1

|Xk|
∑
x∈Xk

φ(x)

(5)

A small σ2(Xk) indicates that a set Xk contains instances that are similar to one other. Our goal
is to identify sets of instances that are representative of the unlabeled target set, by partitioning the
unlabeled target data into K sets, each with small σ2(Xk). Formulating this as a set-partitioning
problem, where S = {X1, X2, ..., XK}, we minimize the sum of variance over all sets:

argmin
S

N∑
k=1

σ2(Xk) (6)

where σ2(Xk) is defined in Eq. 5.

To ensure that the more informative/uncertain instances play a larger role in identifying representative
instances, we employ weighted-variance, where an instance is weighted by its informativeness. The
weighted variance σ2

H(Xk) of a set of instances is given by [38]:

σ2
H(Xk) =

1∑
xi∈Xk

hi

∑
xi∈Xk

hi||φ(xi)− µk||2 where µk =
1∑
hi

∑
xi∈Xk

hiφ(xi) (7)

where hi is the scalar weight corresponding to the instance xi.

Considering the informativeness (weight) of an instance to be its uncertainty under the model, given
by H(Y |x) (defined in Eq. 1 in main paper), we rewrite the set-partitioning objective in Eq. 6 to
minimize sum of weighted variance of a set (from Eq. 7):

argmin
S

N∑
k=1

σ2
H(Xk) = argmin

S

N∑
k=1

1∑
x∈Xk

H(Y |x)

∑
x∈Xk

H(Y |x)||φ(x)− µk||2

where µk =
1∑

x∈Xk
H(Y |x)

∑
x∈Xk

H(Y |x)φ(x)

(8)

This, gives us the overall set-partitioning objective for CLUE (Eq. 2 in main paper).

13 Future Work

Our work suggests a few promising directions of future work. First, one could experiment with
alternative uncertainty measures in ADA-CLUE instead of model entropy, including those (such as
uncertainty from deep ensembles) that have been shown to be more reliable under a dataset shift [21].
Further, one could incorporate specialized model architectures from few-shot learning [56, 15] to deal
with the label sparsity in the target domain. Finally, while we restrict our task to image classification
in this paper, it is important to also study active domain adaptation in the context of tasks like object
detection and semantic segmentation.
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