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ABSTRACT

Information retention and transmission are fundamental to both artificial and bio-
logical neural networks. We present a general theoretical framework showing how
information can be maintained on dynamically stable manifolds that evolve over
time while preserving the geometry of inputs. In contrast to classical memory
models such as Hopfield networks, which rely on static attractors, our approach
highlights evolving stable subspaces as the substrate of memory. A central con-
tribution of our work is the use of dynamic mean-field theory to uncover a new
principle: operating at criticality (spectral radius ~ 1) is necessary but not suffi-
cient for reliable information retention. Equally crucial—yet overlooked in prior
studies—is the alignment between the input structure and the stable subspace.
The theory leads to simple initialization rules that guarantee stable dynamics at
the edge of chaos. We validate these rules in basic recurrent networks, showing
that Fisher information—optimized initialization accelerates convergence and im-
proves accuracy in sequential memory tasks, including the copy task and sequen-
tial MNIST compared to standard random initialization. Together, these results
provide both principled design guidelines for recurrent networks and new theoret-
ical insight into how information can be preserved over time.

1 INTRODUCTION

Recurrent neural networks (RNNs) are fundamental models for processing sequential data, and their
dynamics have been a longstanding focus in both neuroscience and machine learning. Early work
on random networks established that criticality and chaos play central roles in determining memory
lifetime and information retention (Sompolinsky et al., 1988} |Ganguli et al.,[2008). Building on this
foundation, subsequent approaches have sought to stabilize recurrent dynamics through architectural
constraints, such as unitary and orthogonal parameterizations (Arjovsky et al., |2016; Jing et al.,
2017), or through adaptive state-space models with learnable dynamics (Gu et al.). Other theoretical
directions have explored modular assemblies of RNNs (Kozachkov et al.), traveling-wave dynamics
as carriers of short-term memory (Ermentrout et al.), and input-driven circuit reconfiguration near
criticality (Mastrogiuseppe et al.). Together, these works underscore that memory and stability
emerge not from isolated units, but from the interplay between structured connectivity, dynamical
regimes, and input geometry.

Traditional analyses of information capacity, such as Hopfield networks, assume that information is
stored in stationary fixed points of the network dynamics. While these models have been influential,
they are insufficient for modeling working memory in recurrent architectures more broadly. Un-
like long-term memory, which can tolerate compression or abstraction, working memory requires
preserving the fine-grained distinctions and relational geometry of inputs—maintaining not only
class-level information but also the detailed differences between stimuli over short timescales. A
static attractor framework would imply that memory corresponds to retrieval from a finite set of
stored states, invariant across trials, which fails to capture this geometry-preserving requirement.
Notably, recent neurophysiological evidence shows that working memory in the primate cortex is
supported by stable dynamic manifolds with rotational dynamics (Ritter & Chadwickl 2025b)).

Despite these advances, the theoretical understanding of information dynamics in recurrent networks
remains limited. Most analyses assume either fully dense i.i.d. connectivity or a single structured
population, oversimplifying both modern architectures and biological circuits. What is missing
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Figure 1: Illustration of Fisher information diffusion and experimental setup. (a) Unlike tra-
ditional graph diffusion models, which track the spread of neural activities, we study the diffusion
of Fisher information, quantifying how well each subpopulation retains the geometry of the data
(i-e., pairwise sample distances (d(z;, x;)) where z;, =; are input samples) over time in a recurrent
multi-subpopulation network. (b) Schematic of the network architecture and its time evolution. The
network consists of multiple subpopulations with recurrent connections drawn from a zero-mean
Gaussian distribution with specified variance, representing connection strength. Inputs can be flex-
ibly configured; for clarity, we show the case where either an impulse (for analytic derivation) or
natural images (for testing) are provided to the first subpopulation.

is a general framework for describing how information propagates and is preserved in networks
composed of multiple interacting subpopulations with distinct connectivity statistics. Filling this
gap is essential for understanding the mechanisms of working memory and for deriving principled
design rules that optimize information retention in recurrent architectures.

A Framework for Information Dynamics To this end, we introduce a framework that models
general networks as block-structured systems of interacting subpopulations. Layers or modules are
concatenated into a one-dimensional vector, and their interactions appear as blocks in the over-
all connectivity matrix (Fig. [Ip). Feedforward architectures emerge as a special case with only
adjacent connections, while more general configurations—including feedback loops and skip con-
nections—are naturally encoded through the recurrent interactions among subpopulations. Within
this unified representation, we analyze Fisher information dynamics directly in the space of block-
structured connectivity. Drawing an analogy to thermal physics, we treat the propagation of Fisher
information as a diffusion process across subpopulations (Fig.[Th). The resulting Fisher diffusion op-
erator provides an analytic, Markovian characterization of how information about inputs is retained
and transmitted.

In this dynamic view of the information in terms of diffusion, the theory shows that stimulus rep-
resentations in recurrent networks are not fixed but evolve continuously on low-dimensional stable
manifolds. While these representations change as the network unfolds in time, the geometry of the
input space—defined as pairwise distinctions between stimuli—remains preserved. This dynamic
perspective provides a more flexible notion of memory, where information is retained not as static
states but as evolving trajectories that maintain the relational structure of inputs.

We validate the theoretical predictions in networks with block-structured connectivity matrices,
where the variance of Gaussian weights in each block is controlled. We show that the Fisher diffu-
sion operator accurately captures both the magnitude and temporal dynamics of Fisher information
across subpopulations. Extending to natural image inputs, the theory also predicts how information
about input geometry—pairwise distances between images—is preserved.
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Finally, because representations in our framework are not fixed-point attractors, we ask whether such
networks can support memory for sequences of stimuli. From our theory, we derive simple initializa-
tion rules that place the network at the edge of chaos while maximizing Fisher information retention.
When tested on simple recurrent architectures, these Fisher information—optimized initializations
consistently yield faster convergence and higher accuracy on sequential memory tasks—including
the copy problem and sequential MNIST—compared to standard random initialization.

In summary, our framework generalizes beyond i.i.d. or single-population analyses, provides an
analytic tool for studying information dynamics in recurrent networks, and offers principled initial-
ization rules that directly connect network connectivity, criticality, and Fisher information flow.

2 RECURRENT NETWORKS WITH BLOCK-STRUCTURED CONNECTIVITY

We begin with the general dynamics of recurrent networks, then introduce a block-structured gener-
alization that enables analysis at the subpopulation level.

Recurrent dynamics. We consider a recurrent network of N neurons with discrete-time dynamics
ZJMS JEmilt), Sj(t) = dlws(t) + hy(t - 1)), (1)

where h;(t) is the 1nternal state of neuron 4, S;(t) its output, and J;; is the connectivity matrix
connecting the neuron j to neuron 7. The activation function is ¢(x) = tanh(x) with ¢’(0) = 1.
The network receives an external input x(t) through weights w;, and each neuron is driven by
independent Gaussian noise 7;(¢) with zero mean and covariance (1; (t)n; (s)) = 028;;0;s.

Subpopulation structure. Classical analyses typically assume that the connectivity matrix .J is
i.i.d. Gaussian (Toyoizumi & Abbott, 201 1)), corresponding to a single homogeneous population. To
capture more general network structures, we partition the network state h(¢) € R" into M subpop-
ulations (Fig. [Ip). Each neuron i is assigned a label m(i) € {1,..., M}, with subpopulation m

containing a fraction f,,, of the neurons such that Z%Zl fm = 1. The resulting connectivity matrix
J acquires a block structure, where each block encodes connections between two subpopulations.
This formulation generalizes standard feedforward or layered networks: purely feedforward con-
nectivity appears as a special case, while feedback and skip connections are naturally represented
by off-diagonal blocks.

Block-structured connectivity. Within the mean-field approximation, weights are modeled as
independent Gaussians with zero mean and block-dependent variances: (Ji;); = 0,(J7%); =

+ gfn(i)n(j). Here m(i) and n(j) denote the subpopulations of neurons ¢ and j. Each block en-

codes connections from subpopulation n to m, with variance parameter g2,,, controlling its strength.
We will refer to the block-gain matrix G with entries Gy, = g2, fn-

Fisher information. We probe memory with an impulse input z(¢) = 6 6, o and study how well
its amplitude 6 is preserved across time and populations. The Fisher information (FI) about 6 is

82
Z(0,t) = Epme)lo) {862 log p(h(t) | 9)} ; ()
which defines the Fisher memory curve (Ganguli et al., 2008).
For a fixed J, p(h|#) is Gaussian, the FI simplifies to (see Appendix [A.I):

0 0
7(0.1) = {55 5g ler(®l) ©)

Mean-field theory yields a block-diagonal covariance <Eij(t)>J = 0i;(qm(;)) with population-
specific variances ¢,,,(;), giving (Appendix @

7(0.1) szm«a“m )Y =0+ G (S )
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where i, (t) = (hm(t) | J). Although p,,, () = 0 on average, FI remains nonzero since it depends
on the variance of the sensitivity O, (t)/06, which is shaped by both the nonlinearity ¢ and the
inter-population connectivity. Importantly, this sensitivity is not constant over time and differs across
populations.

Fisher information diffusion. We now summarize the key result (derivation in Appendix .
We have derived the Fisher diffusion operator A that propagates sensitivities ((9pun, (t)/00) J
across subpopulations from one time step to the next. For two subpopulations, it factorizes into a
connectivity and a sensitivity term:

a= (G G) (0 (o) ®

Connectivity Sensitivity

where ((S7)?),, denotes the mean squared derivative of the activation function in subpopulation 7.
The connectivity block captures how information is routed between groups, while the sensitivity
block captures how nonlinear responses modulate this transfer. In Appendix we provide an
analytic expression for {(S’)?),, that depends solely on the block-gain matrix G, making the operator
fully determined by network structure. In the linear limit—when the activation function is purely
linear—one has ((S”)?),, = 1 for all subpopulations. In this case the sensitivity block reduces to
the identity, and the Fisher information diffusion operator A coincides with the block-gain matrix G
itself. Repeated application of A describes how information flows across populations. The total FI

at time ¢ is then 22 = S Jm (A%) w2 and Z(0) = 0.

mn qm

Crucially, although individual neural activities evolve nonlinearly, the collective statistics of sub-
populations can be expressed as evolving linearly under the diffusion operator. The nonlinearity
is absorbed into the term ((S’)?),,, which itself is a nonlinear function of the block gains G. In
this way, the operator acts analogously to a transfer matrix in graph diffusion, providing a linear
structure that enables a tractable analytic description of how connectivity shapes the encoding and
preservation of information over time. We present two tests to evaluate our analytic characterization
of Fisher information.

Direct Fisher quantification. First, we directly estimate Fisher information from network simu-
lations. We simulate a network with N = 10,000 neurons, f; = fo = 0.5, 0 = 0.1, and input
weights w; = 1, we = 0, so that the impulse is applied only to the first subpopulation. For input
amplitudes 6 € {0, —0.1,0.1}, we compute the sensitivity term ((Opn, (t)/96)?) ;inEq. equationEI
(see Appendix [A3). To test how connectivity motifs affect information dynamics, we consider
three configurations: (i) self-recurrence only, (ii) feedforward coupling, and (iii) feedback coupling
(Fig.[2Zh—c). Across all cases, the analytic solution based on the diffusion operator accurately matches
simulations—capturing not only the magnitude of Fisher information in each population, but also the
temporal dynamics, including oscillatory flow between subpopulations. Finally, we examine how
the agreement scales with network size IV: the mean-squared error between simulated and analytic
trajectories decreases rapidly and becomes negligible for N > 1000 (Fig.[S3).

Preservation of input geometry. Second, we tested whether Fisher information predicts how well
the network preserves the geometry of natural inputs. Appendix [A.5] provides an intuitive proof
linking Fisher optimization to isometry preservation. Concretely, we presented 15,619 CIFAR-
10 images (flattened to dimension 7500) as inputs to the first subpopulation of a network with
N = 15,000, f; = fo = 0.5, and o = 0.1. Each image was processed individually, and at time ¢
we recorded the activity vectors of both subpopulations as the network’s internal representations. To
quantify geometry preservation, we computed all pairwise Euclidean distances between the original
images, and likewise all pairwise distances between their corresponding neural representations (see
Appendix[A.4). We then measured the correlation between these two distance matrices: a correlation
of 1 would indicate perfect isometry (geometry preserved exactly), while lower correlations reflect
increasing distortion. This correlation therefore serves as a direct measure of how faithfully the
network preserves the relational structure of its inputs (Fig. 2Jd—f). Although this metric is distinct
from Fisher information, it produces the same qualitative conclusions: the analytic framework accu-
rately predicts both the oscillatory dynamics of information flow and the relative ability of different
network motifs to preserve input geometry.
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This empirical test highlights a key difference from Hopfield networks. In Hopfield models, memory
is implemented by fixed-point attractors, and capacity is limited by the number of such stable states
that can be stored. In our framework, by contrast, memory is defined by how well the differences
between stimuli are preserved as activity evolves. This capacity does not depend on the number
of stimuli presented, but instead on whether the network size NV is sufficiently large relative to the
sparsity of the input space—a condition closely analogous to the Restricted Isometry Property (RIP)
for Gaussian matrices, which links the number of measurements to input sparsity (Foucart & Rauhut,
2013).
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Figure 2: Empirical validation of the Fisher diffusion framework. (a—c) Time evolution of Fisher
information in two subpopulations after an input pulse to Population 1 at £ = 0, under three motifs:
(a) self-recurrence only, (b) feedforward only, and (c) a recurrent architecture close to the analytic
optimum. Solid lines show simulation results; dashed lines show analytic predictions from the FI
diffusion operator. The analytic framework accurately captures both the magnitude and temporal dy-
namics, including oscillatory information flow. (d—f) Geometry preservation for the same networks
for CIFAR-10 images. Pairwise correlations between input distances and network representations
quantify how well each architecture maintains input geometry. The results confirm that architectures
predicted to optimize Fisher retention also preserve stimulus geometry more effectively.

3 CONDITIONS FOR OPTIMAL FISHER INFORMATION

In the context of information diffusion, achieving maximal long-term retention of an input requires
two conditions on the diffusion operator A:

1. Criticality. The spectral radius of A must satisfy p(A) = max; |A\;| = 1. If p(4) < 1, Fisher
information decays exponentially; if p(A) > 1, it diverges uncontrollably. Criticality therefore
guarantees the dynamic stability Kadmon & Sompolinsky| (2015) such that information does not
vanish at long times, but on its own it is not sufficient for optimal retention.

2. Eigenvector alignment and transient information. Let v denote the normalized right eigen-
vector associated with the leading eigenvalue An.x = 1. Asymptotically, lim; oo Z(f) o
[|(w Tv)v||1, where w is the input configuration. Thus, only the input component aligned with v
is retained indefinitely. From the perspective of network design, however, transient information
carried by other modes should not decay too quickly. A complication is that A is generally non-
normal (not symmetric), so its eigenvalues and eigenvectors may be complex. Since the input
configuration w is real, the effective alignment with complex eigenvectors can be small, limiting
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long-term retention. In practice, explicitly computing eigenvalues and eigenvectors is costly for
networks with many subpopulations. By contrast, computing Fisher information over time only
requires iterated multiplication by A, which is more scalable. Moreover, by choosing the inte-
gration horizon 7, one can tune the emphasis between transient retention and long-term stability.
A practical design objective is therefore to maximize the average Fisher information over a finite
horizon: 7 = % ZtT:1 Z(t). This metric balances stability at criticality with the preservation of
transient information.

To illustrate these conditions, we analyze a simple two-population recurrent network. The block gain
G
G2
G n- Because A can be summarized in terms of its trace and determinant, the parameter space can
be reduced from four to two dimensions, enabling a clear visualization. We perform a dense grid
search over all G,,,, € [0, 3]. For each parameter setting, we compute: The spectral radius p(A),
used to identify the critical boundary p(A) = 1 (Fig. ), and the average Fisher information Z
across 100 timesteps, aggregated over both populations (Fig. 3b). We observe that:

. G . e
matrix is G = G12) , so that the Fisher diffusion operator A depends on the four parameters
22

1. The critical boundary (grey dashed line) extends across the full range of Tr(G), confirming that
criticality is a necessary condition for sustained information flow.

2. Optimal information retention occurs only along the critical boundary but is restricted to a nar-
rower band of Tr(G), showing that criticality alone is not sufficient.

This demonstrates that while criticality is required for sustained information flow, alignment of
the stable diffusion direction v with the input configuration w is additionally necessary to achieve
optimal Fisher information retention.
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Figure 3: Edge of chaos: necessary but not sufficient for optimal Fisher information. (a) Phase
diagram of the spectral radius p(A) across network parameters Tr(G) and det(G). The grey dashed
line marks the critical boundary p(A) = 1. (b) Average Fisher information per timestep over 100
steps, showing that optimal retention occurs only within a restricted band of Tr(G) values.

4 OPTIMAL STRUCTURE FOR LONGER CHAINS

Our analytical framework extends naturally to networks of many subpopulations or deeper recur-
rent structures. For clarity and tractability, we focus on sequential chains in which only adjacent
subpopulations are connected on through adjustable self-recurrent, feedforward, and feedback links
(Fig. ). The connectivity is captured by a generalized Toeplitz-like gain matrix G where only
Grmms> Gm,m+1, and Gy, 41, are nonzero, preserving the chain structure while allowing parameter
flexibility. All subpopulations are equal in size (f,,, = 1/M), and input is applied only to the first
subpopulation (w; = §;,1).

Within this architecture we build the Fisher information functional in terms of the allowed block
gains G, and maximize the time- and population-averaged Fisher information Z over 7' = 100
using differential evolution. The optimization reveals clear design principles: strong feedforward
connections propagate signals efficiently, while carefully placed feedback stabilizes and modulates
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this flow. Indiscriminate feedback is detrimental; instead, optimal networks exhibit sparse, strate-
gically positioned feedback links that break the chain into nested loops for robust information re-
tention. The characteristic broken-feedback pattern can be intuitively justified in the linear limit

(Appendix [A-6).

Finally, we find a striking scaling law (Fig.[d): keeping the total number of neurons fixed—yet large
enough for mean-field theory—the network’s total Fisher information grows approximately linearly
with the number of subpopulations. Thus, deeper or more finely partitioned chains intrinsically
possess greater information capacity when their connectivity is properly optimized.

0o 900 66 -
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Figure 4: Connectivity structures and information retention across subpopulations. Inset
diagrams show optimized connectivity patterns for networks with 2—-8 subpopulations, revealing
strong feedforward pathways, moderate self-recurrence, and sparse feedback loops. The main panel
demonstrates that total Fisher information retention scales linearly with the number of subpopula-
tions, indicating that greater modular depth enhances memory capacity.

5 SEQUENTIAL STIMULUS

For an optimal network that satisfies the necessary condition of dynamic stability, the neural ac-
tivity evolves on a stable manifold rather than settling into a fixed-point attractor. When an input
is projected into the network, the internal representation changes continuously over time instead
of remaining static. As a result, identical stimuli injected at different times can lead to distinct
downstream representations at later time. This continual drift of stimulus representations provides
a natural mechanism for encoding the order of sequential inputs, akin to the function of working
memory.

Once a block-gain matrix G optimal for Fisher information is found for a given input configuration,
a corresponding block-structured connectivity matrix .JJ can be readily constructed. Specifically, we
sample the elements of J from zero-mean Gaussians with variances derived from the corresponding
entries of G. This simple procedure initializes a recurrent network to operate near the edge of chaos,
providing a principled starting point for training.

To test the principles of our initialization and its relevance for sequential stimulus processing, we
tested the method on two benchmarks on simple RNNs: the copy task and sequential MNIST. Our
hypothesis is that initializing a network to operate near the edge of chaos facilitates more efficient
training.

Copy task The copy task follows the standard setup of|Graves et al.|(2014), |Arjovsky et al.|(2016),
and|Gu et al [(2021). Each input sequence has length Tye1ay +20. The first 10 tokens are random one-
hot vectors in categories {1, ..., 8}, followed by Tyelay zeros, a single delimiter token (category 9),
and finally 9 more zeros. The target output has the same length but remains zero until the final 10
steps, where it reproduces the initial random sequence (Fig.[5). This task probes a network’s ability
to encode categorical information and maintain it in memory for Tyl time steps before recall.
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Figure 5: Sequential memory test on the copy task. (a) Illustration of the copy task with Ty, =
10. (b) Networks initialized with Fisher information—optimized weights converge significantly faster
and achieve higher accuracy than those with standard random initialization.

We trained a simple RNN of 100 neurons with a tanh nonlinearity and Tyc1oy = 50. For Fisher-
information-optimized initialization, the network is partitioned into 10 equal subpopulations (match-
ing the input dimension), with purely feedforward connections Gy q1,, = 1 (m = 1,...,9) and
a single feedback link G119 = 1. The corresponding Fisher diffusion matrix A thus has spec-
tral radius one. Weights from input to RNN are sent such that input stimulus are passed to the
first subpopulation. Compared to standard random initialization, the Fisher-optimized initialization
yields substantially faster convergence and higher final accuracy under otherwise identical training
conditions (learning rate = 10~3; Fig. .
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Figure 6: Sequential memory on Sequential MNIST. (a) Pixel values of each MNIST image are
presented as a 784-step input sequence. (b) Networks initialized with Fisher information—optimized
weights converge substantially faster, and (c) achieve higher final accuracy compared to networks
with standard random initialization.

Sequential MNIST In the sequential MNIST task, the 784 pixels of each image are fed one by
one into the RNN, and the network must classify the digit using only the final hidden state (Fig. [6).
To emphasize the advantage of operating at the edge of chaos, we fixed the recurrent weights to
the same circular subpopulation structure used in the copy task and trained only the readout layer.
In practice, using a one-layer MLP with tanh nonlinearity as the readout significantly improved
performance. As with the copy task, Fisher-information-optimized initialization led to both faster
convergence and higher final accuracy than random initialization (Fig.[6).

Together, these findings show that initializing the network with Fisher-information—optimized
weights—i.e., operating at the edge of chaos—naturally creates a stable manifold along which in-
put representations can evolve. This initialization effectively equips the recurrent network with an
intrinsic encoder that both preserves the geometry of the input stimulus and supports flexible move-
ment of representations. As a result, training can focus on learning an appropriate decoder, leading
to faster convergence and higher final accuracy (Figs. [} [6).
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6 DISCUSSION

Our contributions are threefold: (i) We introduced a block-structured, mean-field framework in
which the Fisher diffusion operator analytically tracks how information flows across interacting
subpopulations in recurrent networks. (ii) Criticality (spectral radius ~ 1) is necessary but not
sufficient for long-term retention, and alignment between input structure and the stable subspace
is equally essential. (iii) From these principles we derived simple, Fisher-information—optimized
initializations that (empirically) accelerate training and improve accuracy on sequential memory
tasks.

We bridge multiple perspectives—Fisher information, geometry preservation, and dynamical stabil-
ity—under a single operator formulation. This connection explains why preserving local geometry,
maintaining stability at criticality, and ensuring Fisher information flow are mathematically equiv-
alent conditions. Importantly, the block-structured formulation extends classical one-population
mean-field theory to arbitrary modular architectures, making it possible to study realistic networks
with feedback, skip connections, and heterogeneous subpopulations.

Fisher information optimized initialization offers theory driven design rules for recurrent networks:
initialize near criticality, align inputs with stable diffusion modes, and regulate feedback to balance
flux. These rules are architecture-agnostic, compatible with modern RNNs and state-space models,
and can be incorporated as regularizer that explicitly encourage balanced Fisher flow. Notably,
initialization schemes in RNN and SSMs have been shown to critically influence performance (e.g.
Gu et al.|(2022) |[Keller et al.|(2024)), analogous in spirit to our approach.

The dynamic, geometry-preserving memory described by our framework provides a principled al-
ternative to classical attractor models. Instead of storing fixed points, recurrent networks maintain
evolving trajectories that conserve the relative geometry of inputs—consistent with recent neuro-
physiological observations of stable manifolds and rotational dynamics in cortex (Ritter & Chad-
wick, [2025a). Operating at the subpopulation level makes it naturally suited to multi-area circuits,
offering predictions for how inter-areal connectivity supports information retention and traveling-
wave-like activity patterns. Relatedly, recent theoretical work shows that hidden traveling waves
in trained RNNs can bind working memory variables to wave-like representations (Karuvally et al.,
2024), suggesting that our framework for information dynamics can also provide a foundation for
understanding wave-based mechanisms of memory.

Limitations While our framework provides a principled and interpretable theory of information
dynamics in recurrent networks, several limitations remain. Most importantly, our analysis is fo-
cused on the encoding of information: how network connectivity structures shape the retention
and propagation of Fisher information across subpopulations. We do not address the decoding
stage, where task-specific outputs are read out from the evolving internal representations. Thus,
our framework should not be viewed as a method for directly discovering architectures that maxi-
mize task performance, but rather as a way to endow a given architecture with theoretically grounded
initializations that improve training efficiency and stability. In this sense, our work is complemen-
tary to performance-oriented models such as unitary RNNs, orthogonal networks, and structured
state-space models, which achieve superior accuracy on demanding sequence benchmarks. Our
goal has not been to compete with such models, but to provide a general theoretical foundation that
explains how information is preserved, and to derive simple initialization rules that translate this the-
ory into practice. By doing so, we highlight principles—criticality, alignment, and balanced Fisher
flow—that may also inform the design of future high-performance architectures.
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A APPENDIX

A.1 MEMORY CAPACITY VIA FISHER INFORMATION

In this Appendix, we quantify a recurrent network’s ability to retain past inputs by computing the
Fisher information of its activity with respect to an input parameter. Intuitively, Fisher information
measures how small changes in the input 6 affect the distribution of network states; larger Fisher
information indicates higher sensitivity and thus greater memory capacity.

A.l.1

Fisher Information and KL Divergence Let h(¢) € R™ denote the network’s vector of neural activi-
ties at time ¢, driven by an input scalar §. We compare the distributions

p(h|6) and p(h|6@+50) (6)
using the Kullback-Leibler (KL) divergence:

Dmmmh|mpm|e+am):/¢u”9)bgppm|m

A second-order Taylor expansion of logp(h | § + 66) shows that the leading term in the KL diver-
gence is

1 2
Diw 506 [ p(h|6) [ logplta | 6)] b, ®)

7(,1)

where the first-order term vanishes because

/paelogp:ae/pzo. ©)

We therefore identify the Fisher information at time ¢ as
T(0.1) = By 0F logp(h | 0)] . (10)

Larger Z implies that small input perturbations produce more distinguishable changes in the network
state.

A.1.2 GAUSSIAN APPROXIMATION

To obtain a closed-form expression, we invoke the Maximum Entropy (?) principle and assume that,
at each t, the network’s activity conditional on 6 is Gaussian:

1
(2m)"/2 \/det 2(t)

p(h|0) = exp[fé (h— p(0,1)) " S() " (b — p(o, t))} .

Here:
* p(6,t) is the mean activity, which we assume depends smoothly (approximately linearly)
on 6.
* () is the covariance matrix, which we treat as input-independent and determined by the

network’s intrinsic dynamics.

Under these assumptions, one finds the Fisher Memory Curve Ganguli et al.| (2008):

9 0 Op(t) \ 71, O(t)
Ie,t:<——l ht9> :<7T§]1t7>
(6,%) a0 06 og p(h(1)]0) p(h(t)]6) ( a0 ) ®) a0/ pm)e) .
so that memory capacity is governed by how sensitive of the the mean activity shifts with input (the
“signal”) weighted by the inverse noise covariance.

12)
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A.2 ANALYTIC FISHER INFORMATION FOR MULTIPLE SUB-POPULATIONS

We consider a recurrent network divided into multiple subpopulations. For each sub-population m,

let

() = (hm(t)|J) . (13)
denote the mean activity at time ¢, averaged over dynamic noise but at fixed synaptic matrix JJ. Our
goal is to compute the Fisher information Z,,, (¢) of u.,(t) with respect to an input parameter 6:

7(0,1) Kzfm<<6“m ))2>J. (14)

2
The key is to derive the analytic formula for < (%@m) > .
J

A.2.1 REPLICA TRICK FOR THE DERIVATIVE OF THE MEAN

Introducing replicas a, b, we have

O\ _ ﬁ<hm(t)|J>2 = aa<h%(t)lJ>ib<hzw(t)|J
o0 ) /.= \|a0 7N 9 !

82 " b 32
agaaab <h ( )hm(t)> 800'8017 qm (t) ’

where ¢i2(t) = (hg, () hb, (t))m

5)

A.2.2 MEAN-FIELD EXPRESSION FOR THE CORRELATION

In mean-field, the correlation splits into an i.i.d. noise term and a term generated by recurrent inputs:

U (t §) = 028ap01s + ngnfn Su(t )Sb( n=0"+ Z Gmnczb(ta s), (16)
with Gy = g2, fn and C20(t, s) = (S2(t)S8(s)), the firing rate correlation in sub-population 7.
A.2.3 DIFFERENTIATING C2°

Applying 9405 to C2%(t, s) and using the chain rule for the nonlinearity ¢( - ) (with ¢’ = %) yields
dC(t) = 0" ()¢ (t))n
= 0"(P(w, O (t — 1) + 2(t — 1))p(w, O°(t — 1) +2"(t — 1)),
= (@' - (wn + Doz (t = 1)) ¢ - (wp + pa”(t — 1))
= (") (W2 4 (D (t — 1) + Dpa®(t — 1))wy, + Dpz®(t — 1)Dpa®(t — 1))
= (0" ) (w}, + 0aOy(a®(t = 1)2"(t —1))n
= (o

) (W] + 0aBb g (t— 1)) .
(17
The first order in line 4 with terms (9, 2%),, = 0g(x%),, = 9,0 = 0.

A.2.4 RECURRENCE FOR THE SECOND DERIVATIVE OF ¢
Combining equation[T6and equation [I7] produces a linear recurrence:
9°0°qb(t + 1) Z Grun (@) (0% 20 (1) + w2010),  Amn = Gn (¢"%0")
(18)

Because ¢*° depends only on earlier inputs, the initial condition is 9395¢2°(t) = 0 for t < 0.
Iterating equation[T8|once at ¢t = 0 gives

g Opap (1) Z A w2 (19)
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Since the network only receive the input at £ = 0, each successive iteration amounts to matrix
multiplication by A, = Ginp (#'#'°),,. Repeating the recurrence ¢ times results:

0"y pir = Y (AT 20)

n

A.2.5 CLOSED-FORM FISHER INFORMATION

Finally, substituting Eq. (20) into equation[T5]gives

<<8M519(t))2>fz(“)mnwi» Amn = Gmn ((6)°),, 1)

Eq. equation [21] shows that the propagation of the Fisher information through the network can be
effectively captured by the Fisher information diffusion operator A.

A.2.6 ANALYTIC DERIVATION OF THE FISHER INFORMATION DIFFUSION OPERATOR

To obtain an analytical expression for the Fisher information in relation to the optimal connectiv-
ity parameters G,,, and to gain an intuitive understanding of Fisher information from a network
perspective, two key tasks are essential:

1. Analytically resolve the self-consistent equations for ¢; and g5 to understand the dynamics in the
system. These solutions also allow us to construct Gaussian probability distributions with variances
q1 and gq, respectively. From these distributions, we compute the second-order moments (S?) and
((S8")2), which are essential for determining the Fisher information diffusion operator.

2. Derive an analytical formula for Fisher information that elucidates the relationship between
network characteristics, the connection between populations of neurons, and optimal information
capacity.

A.2.7 ANALYTIC CALCULATION OF THE ((tanh(z))?)

Since both the self consistent equations
q1 =01 = 0%+ G11(S*)1 + G12(5%)2 , 22)
g2 = O'% = ¢g? + G22<SQ>2 + G21<52>1 .

and the Fisher information diffusion operator A,,;, = Gn{(S')?)),. With S = tanh(z), S?
and S’ are highly nonlinear and non local, the values are not close to O or 1. As a result, using
Taylor expansion of the tanh(z) produces both poor approximation and analytic challenge when
calculating the Gaussian average (S2) and ((S”)?). We notice that both expressions S? and S’ only
relate to the some form of Gaussian average (tanh?(x)), and we can approximate the tanh?(x)
with 1 — exp % (See Fig. ). Note that this expression insures (1 — exp %)\x:O = 0.The
optimal parameter ¢ = 0.7784 can be derived from the minimizing the integral difference | fooo |1 —

exp % — tanh?(x)|. The Gaussian average (f(z)), = S5 f(x)N(0,0%)can be calculated ecasily
with a simple form:

1 1 i
(tanh(z)); =1 - ———— =1 7i

o) 77/’Li:77
V@R e -

(tanh'(z)?); = (1 — tanh*(x))?); = .

V1+2u2.

For numeric solutions, Eq. (equation 22) (equation extends naturally to an arbitrary number of
sub-populations, yield a closed system of nonlinear equations for the variance g;. This system can
be efficiently solved using the ‘fsolve‘ function from the ‘scipy.optimize‘ package. Once the g; are
obtained, they are substituted into Eq. (equation to evaluate the Fisher-information diffusion
operator.
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Figure S1: (a) Approximation of the nonlinear function tanh? (z) using the surrogate form f(x,€) =

1 —exp(—x2/2€?), with the optimal parameter € = 0.7784. (b) Linear approximation of the expres-

sion 1 — \/1172 using c- p17, where the optimal slope ¢ = 0.2948 is determined via least-squares fit-
K3

ting. Each point p; is obtained from a grid search over network configurations in the two-population
case, constrained to operate near the edge of chaos (|p(A4) — 1| < 0.1), where p(A) denotes the
spectral radius of the effective connectivity matrix.

A.2.8 ANALYTIC CALCULATION OF THE ORDER PARAMETERS ¢; AND @2

With Eq. (equation[23)), we can rewrite the self consistent equations:

1 1
2 2
py = p” + M (1 - )+ Mio(1 - )
' V1t V1+us
! 1 (24)

pa = p? + My (1 — )+ Moo(1 —

Vit \/1+u§)’

Myn = Gn /€%, 12 = 02/e?, u?> = 02/ .

Solving the Eq. (equation [24) directly is difficult and will lead to unintuitive expression since this is
a system of cubic equations with non uniform power in each term. For systems operating near the
edge of chaos—characterized by a spectral radius close to one (|p(A4) — 1| < 0.1)—the variable p;
remains small (Fig|S1|). In this regime, we can approximate the nonlinear expression 1 — \/117

using a linearized form. Specifically, we use a least-squares fit to determine the optimal slope c¢ in
the following approximation:

1- 1€{1,2}, ¢=0.2948. (25)

1 ~ o2
\/Tiufwcui’

This approximation simplifies further analysis while preserving accuracy in the small-y; limit.

With the linear approximation Eq. (equation [23)), the solutions to the self consistent equations are:

o 2+ cp? (Mg — M)
K1 1—cTr(M) + c2det(M)’

/1,2 + C/L2(M21 — Mll) (26)
1—cTr(M)+ c2det(M)’
det(M) = M11M22 — M12M21, TI'(M) = M11 + MQQ .

2 o
Ho =
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Figure S2: A illustration of the determinant of the weight matrix for 2 populations(a) and 3 popula-
tions (b).

Under the meanfield, subpopulation 1 and subpopulation 2 are considered as nodes with weight ma-
trix as My, = G /€2. This mapping makes every term in the analytic expression of Eq. (equa-
tion a familiar graph invariant. The trace,Tr(M) = > M., equals the total weight of all
self-loops in the network ??. Meanwhile, the determinant, det(M ), via the Leibniz expansion, be-
comes a signed sum over all cycle covers (loop configurations), each monomial corresponding to
a distinct set of loops weighted by the product of edge weights ??. These loop configurations are
illustrated in Fig.

A.2.9 ANALYTIC EXPRESSION OF THE FISHER INFORMATION DIFFUSION OPERATOR A

The Fisher information diffusion operator A, = G ((S")?)n, = €M, ((S")?) . In Eq. (equa-
tion i , we have derived analytic expression in terms of the scaled conductivities M,,,, = Gnr /€
and plugging in Eq. (equation 23)). Directly substitute the Eq. (equation [26)) into Eq. (equation 23)),
we get:

()21 = ﬁ ~ F(M)((1+ e(Mas — Mas)
(8')2)2 = ﬂi_w ~ FM)((1+ e(Ma1 — My))
JM) = 1= cTr(Mﬁi 2 det(M)’ 7
JM) =1~ 2e5— cTr(MﬁLj— ey A
c=0.2948 .

_ o (M {(S)*)r Mi((S)*)2) _ o (M Mg\ (((S")*h 0
a=e (yimtorn amterr) =2 (Gn i) (0" (i) s

€=0.7784.

At criticality—i.e. on the “edge of chaos”—the Fisher-information diffusion operator A acquires an
eigenvalue exactly equal to unity. Equivalently:
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det(I — Aopt) = 0. (29)

By expanding det(I — A) for our two-population system and grouping terms, we obtain the expres-
sion for the condition for the edge of chaos in a fully symmetric form with respect to subpopulations:

0 = det(] — Auy)
=1—€({(8)?)1 M1+ ((5')?)2Maz) + €((5")*)1((5")?)2 det(M)
=1—e Li(M)+€* det(M) Lo(M),
Ly(M) = [f(M) = 2¢* (M) Tro(M)] Te(M) +2¢> f(M)[Miydy + Masds]
Ly(M) = f2(M) + 2¢ f (M)[Te(M) — Troge(M)]

4 (M) (dyds — Tr(M) Trog(M)) 30)
2

M ~
FM) = 1—cTr(M) + c2det(M)’ f(M) =1 —=2¢ f(M),

di =Y M, = My + My, Trog(M) = Myy + My,
k
c=0.2948, € = 0.7784 .

where we recognize:

1. Trace, TI'(M) = M11 + MQQ.
The fotal self-loop weight (sum of length-1 cycles), which sets first-order feedback gain.

2. Off-diagonal trace, Trog(M) = Mo + Mo;.
The total cross-population coupling, measuring the strength of two-node interactions 2.

3. Determinant, det(M) = M11M22 — MlgMgl.
A signed sum over all 2-cycle covers:
* M1 Mss counts two independent self-loops,
* M5 M>; counts the reciprocal 2-node cycle.

The determinant provides insights into the connectivity and spanning trees of a graph, as
detailed in the Matrix-Tree Theorem ?.

4. Weighted in-degrees.
d; = ZMik = M1 + M;a,
k

the total incoming weight to subpopulation <. The concept of in-degree is a basic measure
in graph theory, indicating the number of edges arriving at a node ?.

Here, through algebraic manipulation and careful rearrangement, we derive a form of the edge-of-
chaos condition that is symmetric across subpopulations and expressed entirely in terms of familiar
graph-theoretic quantities—such as trace, off-diagonal trace, determinant, and in-degree of the con-
nectivity matrix. This reformulation reveals how the topology of structured neural networks directly
shapes the onset of criticality.

A.3 NUMERIC CALCULATION OF FISHER INFORMATION FROM MONTE-CARLO

In the main text, we benchmark the analytic expression of the Fisher information against a direct
Monte-Carlo estimate obtained from explicit simulations of the recurrent neural network (RNN).
The numerical procedure consists of three main stages: (i) initialization of the random block-
structured connectivity, (ii) simulation of neural trajectories under baseline and perturbed inputs,
and (iii) estimation of derivatives via symmetric finite differences.
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A.3.1 NETWORK INITIALIZATION

The network consists of N neurons partitioned into M subpopulations with sizes n,, = f,IV.
Synaptic connectivity is represented by a block-structured random matrix J € RV*¥_ Each block
Jmn 18 sampled i.i.d. from a Gaussian distribution

2
T ~ ,/\/(O7 g]"(',") ) k € pop,,, | € pop,,,

where g,,,,, denotes the population-dependent gain parameter. This choice controls the effective re-
current gain while ensuring that connectivity statistics remain stable as N increases. Here k indexes
a postsynaptic neuron in population m and ! indexes a presynaptic neuron in population n. This
blockwise construction ensures that the recurrent connectivity statistics are determined by the gain
matrix g while preserving the correct population sizes.

Dynamical simulation. Neural activity is described by pre-activations z; € RV and firing rates
Sy = tanh(z,). The recurrent dynamics evolve according to

Ti41 = JSt+0§t7 gtNN(O7I)7

with additive Gaussian noise of variance o2. At initialization, an external input € is injected into the
first population, implemented by setting z;.,, < 6. Multiple trajectories are simulated in parallel
to estimate ensemble averages.

A.3.2 PERTURBATION PROTOCOL

To estimate the Fisher information with respect to the input parameter 6, we simulate network dy-
namics under three input conditions: baseline 6, positively perturbed 6 + A#f, and negatively per-
turbed § — Af. For each condition, we record the full trajectory of neural activities {h(¢)}L,.
Throughout the simulations, we set the baseline input to 6 = 0.

A.3.3 FISHER INFORMATION ESTIMATION

The sensitivity of mean activity to 6 is approximated via symmetric finite differences:
Ope (0 + AG) — pa (6 — AD)
00 2A0 ’
where 1;(0) is the average firing rate at time ¢ across trajectories. Squaring and averaging these

derivatives over neurons within population m yields a time-resolved Fisher information stored in
each subpopulation about the input stimulus over time as in Eq equation 4]

Here, we also show the MSE between the simulated fisher information and the analytic prediction
of the fisher information in Fig.

A.4 TEST OF FISHER INFORMATION WITH NATURAL IMAGES AS INPUT

Experimental setup. To evaluate whether Fisher information predicts geometry preservation, we
tested the framework using natural inputs. We used 15,619 CIFAR-10 images, each flattened to a
7,500-dimensional vector, and presented them to the first subpopulation of a two-population recur-
rent network with NV = 15,000 neurons, f; = fo = 0.5, and noise variance o = 0.1. Each image
was processed independently, and at each time step ¢ we recorded the activities of both subpopula-
tions.

Measuring geometry preservation. Geometry preservation was quantified by comparing pair-
wise distances between images in the input space to pairwise distances between their corresponding
neural representations. Specifically: 1. For the input set, we computed all pairwise Euclidean
distances Dinput(2, j) = ||z — x||2 between the flattened image vectors. 2. For the network repre-
sentations at time ¢, we computed analogous pairwise distances Drep(2,7) = ||hi(t) — h;(t)]|2 for
each subpopulation. 3. To assess how faithfully the network preserved geometry, we calculated the
Pearson correlation coefficient between the upper triangular entries of the two distance matrices,

p(t) = COH(VGC(Dinput)a Vec(Drep(t))) )
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Figure S3: Convergence of simulated Fisher information to analytic predictions. Mean-squared
error (MSE) between Fisher information trajectories obtained from simulations and from the analytic
diffusion operator, across the three connectivity configurations in Fig. Za—. The MSE decreases
rapidly with network size and becomes negligible for N' > 1000. An exponential fit (dashed line) is
shown to highlight the convergence trend.

where p = 1 indicates perfect isometry (exact geometry preservation) and lower values indicate
increasing distortion.

This procedure yields a time series p,,, () for each subpopulation m, quantifying how input geometry
is preserved over time as information diffuses through the network.

Interpretation. Although this metric differs from Fisher information, it recovers the same quali-
tative behavior. In particular, the analytic framework predicts both (i) the oscillatory dynamics of
information flow across subpopulations and (ii) the relative ability of different connectivity motifs
to preserve the geometry of natural images.

A.5 CONNECTING FISHER INFORMATION WITH RESTRICTED ISOMETRY PROPERTY

Theorem 1 (Optimal network structure and information retention). Consider a recurrent network
with block gain matrix G and nonlinear activation ¢. Under the mean-field approximation, opti-
mal information retention—defined as preservation of local geometry between stimulus representa-
tions—is achieved when G (¢'?) = 1.

This condition coincides with the Fisher information criterion for non-vanishing memory.

Sketch proof. The result connects two perspectives:

(1) Compressed sensing. For linear systems f(x) = Jx, the Restricted Isometry Property (RIP)
ensures approximate distance preservation between sparse vectors: ||f(u) — f(v)[|? ~ [Ju — v||2.

For Gaussian J ~ A (0, g/v/N), RIP holds when J " J ~ I, requiring average squared gain g> = 1.

(2) Nonlinear extension. With nonlinearity ¢, distances transform as
1f(x) = f@)? = [|¢(x) J(z — )|

Mean-field theory replaces ¢'(x)? by its population average (¢'?), yielding an effective gain condi-
tion

G(¢?) ~ 1.

(3) Fisher information connection. From the Fisher diffusion framework, long-term non-vanishing
memory requires exactly the same balance: largest eigenvalue of G'(¢'?) equals 1. Thus, preserving
local geometry (via RIP/Johnson—-Lindenstrauss arguments) and preserving Fisher information lead
to the same criterion. O
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Figure S4: Optimized connectivity matrices G for networks composed of 2 to 8 neuronal subpopula-
tions (insets). Each tick color corresponds to a different number of subpopulations. Matrix element
G represents the strength of the connection from subpopulation 7 to subpopulation m. The final
panel illustrates that the total Fisher information Z scales approximately linearly with the number of
subpopulations in the optimally connected network.

A.6 PROOF OF OPTIMAL STRUCTURE FOR FISHER INFORMATION IN A CHAINED LINEAR
NETWORK

In the linear limit—when the activation function is purely linear—one has ((S")2),, = 1 for all sub-
populations. The sensitivity block in the Fisher diffusion operator therefore reduces to the identity,
so that

Alincar =G.

Without loss of generality, consider a chain of four subpopulations with unit self-recurrence:

1 G1o 0 0
G 1 G O

0 Gs2 1 G

0 0 Gus 1

Alinear =G = (31)

Optimal Fisher information requires that the spectral radius of A equals one, i.e. the largest eigen-
value satisfies \,.x = 1. Equivalently,

0 Gio 0 0
Goa1 0 G O

0 Gs2 0 G

0 0 Gys 0

0 =det(A— 1) = det = G12G21G34Ga3.

For efficient information transmission, the input must enter the first subpopulation and propagate
forward through the chain. Hence the forward gains G2; and G43 cannot vanish. To satisfy det(A —
I) = 0, we therefore require

G12 =0 or G34 =0.

This condition eliminates the global feedback loops that would otherwise close the chain, giving rise
to the broken-loop optimal structure illustrated in Fig. ] The exact values for the block gain matrix
G for each optimized network is shown in Fig. [S4]
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