

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING MEMORY IN NEURAL NETWORKS THROUGH FISHER INFORMATION DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Information retention and transmission are fundamental to both artificial and biological neural networks. We present a general theoretical framework showing how information can be maintained on dynamically stable manifolds that evolve over time while preserving the geometry of inputs. In contrast to classical memory models such as Hopfield networks, which rely on static attractors, our approach highlights evolving stable subspaces as the substrate of memory. A central contribution of our work is the use of dynamic mean-field theory to uncover a new principle: operating at criticality (spectral radius ≈ 1) is necessary but not sufficient for reliable information retention. Equally crucial—yet overlooked in prior studies—is the alignment between the input structure and the stable subspace. The theory leads to simple initialization rules that guarantee stable dynamics at the edge of chaos. We validate these rules in basic recurrent networks, showing that Fisher information–optimized initialization accelerates convergence and improves accuracy in sequential memory tasks, including the copy task and sequential MNIST compared to standard random initialization. Together, these results provide both principled design guidelines for recurrent networks and new theoretical insight into how information can be preserved over time.

1 INTRODUCTION

Recurrent neural networks (RNNs) are fundamental models for processing sequential data, and their dynamics have been a longstanding focus in both neuroscience and machine learning. Early work on random networks established that criticality and chaos play central roles in determining memory lifetime and information retention (Sompolinsky et al., 1988; White et al., 2004; Ganguli et al., 2008). Building on this foundation, subsequent approaches have sought to stabilize recurrent dynamics through architectural constraints, such as unitary and orthogonal parameterizations (Arjovsky et al., 2016; Jing et al., 2017), or through adaptive state-space models with learnable dynamics (Karuvally et al., 2025). Other theoretical directions have explored modular assemblies of RNNs (Kozachkov et al., 2023), traveling-wave dynamics as carriers of short-term memory (Keller et al., 2024), and input-driven circuit reconfiguration near criticality (Magnasco, 2025). Together, these works underscore that memory and stability emerge not from isolated units, but from the interplay between structured connectivity, dynamical regimes, and input geometry.

Traditional analyses of information capacity, such as Hopfield networks, assume that information is stored in stationary fixed points of the network dynamics. While these models have been influential, they are insufficient for modeling working memory in recurrent architectures more broadly. Unlike long-term memory, which can tolerate compression or abstraction, working memory requires preserving the fine-grained distinctions and relational geometry of inputs—maintaining not only class-level information but also the detailed differences between stimuli over short timescales. A static attractor framework would imply that memory corresponds to retrieval from a finite set of stored states, invariant across trials, which fails to capture this geometry-preserving requirement. Notably, recent neurophysiological evidence shows that working memory in the primate cortex is supported by stable dynamic manifolds with rotational dynamics (Ritter & Chadwick, 2025).

Despite these advances, the theoretical understanding of information dynamics in recurrent networks remains limited. Most analyses assume either fully dense i.i.d. connectivity or a single structured population, oversimplifying both modern architectures and biological circuits. What is missing

Figure 1: **Illustration of Fisher information diffusion and experimental setup.** (a) Unlike traditional graph diffusion models, which track the spread of neural activities, we study the diffusion of Fisher information, quantifying how well each subpopulation retains the geometry of the data (i.e., pairwise sample distances ($d(x_i, x_j)$) where x_i, x_j are input samples) over time in a recurrent multi-subpopulation network. (b) Schematic of the network architecture and its time evolution. The network consists of multiple subpopulations with recurrent connections drawn from a zero-mean Gaussian distribution with specified variance, representing connection strength. Inputs can be flexibly configured; for clarity, we show the case where either an impulse (for analytic derivation) or natural images (for testing) are provided to the first subpopulation.

is a general framework for describing how information propagates and is preserved in networks composed of multiple interacting subpopulations with distinct connectivity statistics. Filling this gap is essential for understanding the mechanisms of working memory and for deriving principled design rules that optimize information retention in recurrent architectures.

A Framework for Information Dynamics To this end, we introduce a framework that models general networks as block-structured systems of interacting subpopulations. Layers or modules are concatenated into a one-dimensional vector, and their interactions appear as blocks in the overall connectivity matrix (Fig. 1b). Feedforward architectures emerge as a special case with only adjacent connections, while more general configurations—including feedback loops and skip connections—are naturally encoded through the recurrent interactions among subpopulations. Within this unified representation, we analyze Fisher information dynamics directly in the space of block-structured connectivity. Drawing an analogy to thermal physics, we treat the propagation of Fisher information as a diffusion process across subpopulations (Fig. 1a). The resulting *Fisher diffusion operator* provides an analytic, Markovian characterization of how information about inputs is retained and transmitted.

In this dynamic view of the information in terms of diffusion, the theory shows that stimulus representations in recurrent networks are not fixed but evolve continuously on low-dimensional stable manifolds. While these representations change as the network unfolds in time, the geometry of the input space—defined as pairwise distinctions between stimuli—remains preserved. This dynamic perspective provides a more flexible notion of memory, where information is retained not as static states but as evolving trajectories that maintain the relational structure of inputs.

We validate the theoretical predictions in networks with block-structured connectivity matrices, where the variance of Gaussian weights in each block is controlled. We show that the Fisher diffusion operator accurately captures both the magnitude and temporal dynamics of Fisher information across subpopulations. Extending to natural image inputs, the theory also predicts how information about input geometry—pairwise distances between images—is preserved.

108 Finally, because representations in our framework are not fixed-point attractors, we ask whether such
 109 networks can support memory for sequences of stimuli. From our theory, we derive simple initialization
 110 rules that place the network at the edge of chaos while maximizing Fisher information retention.
 111 When tested on simple recurrent architectures, these Fisher information-optimized initializations
 112 consistently yield faster convergence and higher accuracy on sequential memory tasks—including
 113 the copy problem and sequential MNIST—compared to standard random initialization.

114 In summary, our framework generalizes beyond i.i.d. or single-population analyses, provides an
 115 analytic tool for studying information dynamics in recurrent networks, and offers principled initial-
 116 ization rules that directly connect network connectivity, criticality, and Fisher information flow.
 117

118 2 RECURRENT NETWORKS WITH BLOCK-STRUCTURED CONNECTIVITY

120 We begin with the general dynamics of recurrent networks, then introduce a block-structured gener-
 121 alization that enables analysis at the subpopulation level.
 122

123 **Recurrent dynamics.** We consider a recurrent network of N neurons with discrete-time dynamics
 124

$$125 \quad h_i(t) = \sum_{j=1}^N J_{ij} S_j(t) + \eta_i(t), \quad S_j(t) = \phi[w_j x(t) + h_j(t-1)], \quad (1)$$

126 where $h_i(t)$ is the internal state of neuron i , $S_i(t)$ its output, and J_{ij} is the connectivity matrix
 127 connecting the neuron j to neuron i . The activation function is $\phi(x) = \tanh(x)$ with $\phi'(0) = 1$.
 128 The network receives an external input $x(t)$ through weights w_i , and each neuron is driven by
 129 independent Gaussian noise $\eta_i(t)$ with zero mean and covariance $\langle \eta_i(t) \eta_j(s) \rangle = \sigma^2 \delta_{ij} \delta_{ts}$.
 130

132 **Subpopulation structure.** Classical analyses typically assume that the connectivity matrix J is
 133 i.i.d. Gaussian (Toyoizumi & Abbott, 2011), corresponding to a single homogeneous population. To
 134 capture more general network structures, we partition the network state $\mathbf{h}(t) \in \mathbb{R}^N$ into M subpop-
 135 ulations (Fig. 1b). Each neuron i is assigned a label $m(i) \in \{1, \dots, M\}$, with subpopulation m
 136 containing a fraction f_m of the neurons such that $\sum_{m=1}^M f_m = 1$. The resulting connectivity matrix
 137 J acquires a block structure, where each block encodes connections between two subpopulations.
 138 This formulation generalizes standard feedforward or layered networks: purely feedforward con-
 139 nectivity appears as a special case, while feedback and skip connections are naturally represented
 140 by off-diagonal blocks.

141 **Block-structured connectivity.** Within the mean-field approximation, weights are modeled as
 142 independent Gaussians with zero mean and block-dependent variances: $\langle J_{ij} \rangle_J = 0$, $\langle J_{ij}^2 \rangle_J =$
 143 $\frac{1}{N} g_{m(i)n(j)}^2$. Here $m(i)$ and $n(j)$ denote the subpopulations of neurons i and j . Each block en-
 144 codes connections from subpopulation n to m , with variance parameter g_{mn}^2 controlling its strength.
 145 We will refer to the block-gain matrix G with entries $G_{mn} \equiv g_{mn}^2 f_n$.
 146

147 **Fisher information.** We probe memory with an impulse input $x(t) = \theta \delta_{t,0}$ and study how well
 148 its amplitude θ is preserved across time and populations. The Fisher information (FI) about θ is
 149

$$150 \quad \mathcal{I}(\theta, t) = \mathbb{E}_{p(\mathbf{h}(t)|\theta)} \left[\frac{\partial^2}{\partial \theta^2} \log p(\mathbf{h}(t) | \theta) \right], \quad (2)$$

152 which defines the Fisher memory curve (Ganguli et al., 2008).

153 For a fixed J , $p(\mathbf{h}|\theta)$ is Gaussian, the FI simplifies to (see Appendix A.2.6):

$$155 \quad \mathcal{I}(\theta, t) = \left\langle \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} \log p(\mathbf{h}(t) | \theta) \right\rangle_{p(\mathbf{h}(t)|\theta)}, \quad (3)$$

158 Mean-field theory yields a block-diagonal covariance $\langle \Sigma_{ij}(t) \rangle_J = \delta_{ij} (q_{m(j)})$ with population-
 159 specific variances $q_{m(j)}$, giving (Appendix A.2.6)

$$161 \quad \mathcal{I}(\theta, t) = N \sum_m \frac{f_m}{q_m} \left\langle \left(\frac{\partial \mu_m(t)}{\partial \theta} \right)^2 \right\rangle_J, \quad q_m = \sigma^2 + \sum_n G_{mn} \langle S_n^2 \rangle_n, \quad (4)$$

162 where $\mu_m(t) \equiv \langle h_m(t) \mid J \rangle$. Although $\mu_m(t) = 0$ on average, FI remains nonzero since it depends
 163 on the variance of the sensitivity $\partial\mu_m(t)/\partial\theta$, which is shaped by both the nonlinearity ϕ and the
 164 inter-population connectivity. Importantly, this sensitivity is not constant over time and differs across
 165 populations.
 166

167 **Fisher information diffusion.** We now summarize the key result (derivation in Appendix A.2).
 168 We have derived the Fisher diffusion operator A that propagates sensitivities $\langle (\partial\mu_m(t)/\partial\theta)^2 \rangle_J$
 169 across subpopulations from one time step to the next. For two subpopulations, it factorizes into a
 170 connectivity and a sensitivity term:
 171

$$A = \underbrace{\begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}}_{\text{Connectivity}} \cdot \underbrace{\begin{pmatrix} \langle (S')^2 \rangle_1 & 0 \\ 0 & \langle (S')^2 \rangle_2 \end{pmatrix}}_{\text{Sensitivity}}, \quad (5)$$

172 where $\langle (S')^2 \rangle_n$ denotes the mean squared derivative of the activation function in subpopulation n .
 173 The connectivity block captures how information is routed between groups, while the sensitivity
 174 block captures how nonlinear responses modulate this transfer. In Appendix A.2 we provide an
 175 analytic expression for $\langle (S')^2 \rangle_n$ that depends solely on the block-gain matrix G , making the operator
 176 fully determined by network structure. In the linear limit—when the activation function is purely
 177 linear—one has $\langle (S')^2 \rangle_n = 1$ for all subpopulations. In this case the sensitivity block reduces to
 178 the identity, and the Fisher information diffusion operator A coincides with the block-gain matrix G
 179 itself. Repeated application of A describes how information flows across populations. The total FI
 180 at time t is then $\frac{\mathcal{I}(t)}{N} = \sum_{mn} \frac{f_m}{q_m} (A^t)_{mn} w_n^2$, and $\mathcal{I}(0) = 0$.
 181

182 Crucially, although individual neural activities evolve nonlinearly, the collective statistics of sub-
 183 populations can be expressed as evolving linearly under the diffusion operator. The nonlinearity
 184 is absorbed into the term $\langle (S')^2 \rangle_n$, which itself is a nonlinear function of the block gains G . In
 185 this way, the operator acts analogously to a transfer matrix in graph diffusion, providing a linear
 186 structure that enables a tractable analytic description of how connectivity shapes the encoding and
 187 preservation of information over time. We present two tests to evaluate our analytic characterization
 188 of Fisher information.
 189

190 **Direct Fisher quantification.** First, we directly estimate Fisher information from network sim-
 191 ulations. We simulate a network with $N = 10,000$ neurons, $f_1 = f_2 = 0.5$, $\sigma = 0.1$, and input
 192 weights $w_1 = 1, w_2 = 0$, so that the impulse is applied only to the first subpopulation. For input
 193 amplitudes $\theta \in \{0, -0.1, 0.1\}$, we compute the sensitivity term $\langle (\partial\mu_m(t)/\partial\theta)^2 \rangle_J$ in Eq. equation 4
 194 (see Appendix A.3). To test how connectivity motifs affect information dynamics, we consider
 195 three configurations: (i) self-recurrence only, (ii) feedforward coupling, and (iii) feedback coupling
 196 (Fig. 2a–c). Across all cases, the analytic solution based on the diffusion operator accurately matches
 197 simulations—capturing not only the magnitude of Fisher information in each population, but also the
 198 temporal dynamics, including oscillatory flow between subpopulations. Finally, we examine how
 199 the agreement scales with network size N : the mean-squared error between simulated and analytic
 200 trajectories decreases rapidly and becomes negligible for $N \geq 1000$ (Fig. S3).
 201

202 **Preservation of input geometry.** We next tested whether Fisher information predicts how well
 203 a network preserves the geometry of natural inputs—equivalently, the pairwise distances between
 204 input stimuli. Below, we provide an intuitive argument showing that Fisher-optimal connectivity
 205 conditions coincide with those required for local isometry preservation.
 206

207 **Theorem 1** (Connecting Fisher information with preservation of geometry). *Consider a recurrent
 208 network with block-gain matrix G and activation function ϕ . Under the mean-field approximation,
 209 optimal information retention—defined as preservation of local geometry between stimulus repre-
 210 sentations—is achieved when $G \langle \phi'^2 \rangle = 1$. This is precisely the Fisher-information criterion for
 211 non-vanishing memory.*

212 *Sketch proof.* The result follows by connecting ideas from compressed sensing and nonlinear mean-
 213 field theory.

214 (1) *Linear case and RIP.* For a linear map $f(x) = Jx$, the Restricted Isometry Property (RIP)
 215 ensures approximate distance preservation: $\|f(u) - f(v)\|^2 \approx \|u - v\|^2$. For Gaussian weights
 $J_{ij} \sim \mathcal{N}(0, g^2/N)$, RIP holds when $J^\top J \approx I$, which requires $g^2 = 1$.

216 (2) *Nonlinear extension.* With nonlinearity ϕ , local distances transform as $\|f(x) - f(x')\|^2 \approx$
 217 $\|\phi'(x) J(x - x')\|^2$. Replacing $\phi'(x)^2$ by its population average under mean-field theory gives the
 218 effective gain condition $G \langle \phi'^2 \rangle \approx 1$.

219 (3) *Fisher information connection.* From the Fisher diffusion framework, sustained (non-decaying)
 220 memory requires that the leading eigenvalue of $G \langle \phi'^2 \rangle$ equals 1. Thus, the conditions for (i) preserving
 221 local geometry (via RIP/Johnson–Lindenstrauss (Foucart & Rauhut, 2013)) and (ii) sustaining
 222 Fisher information are identical. \square

224 **Empirical validation on real images.** We presented 15,619 IndoorCVPR_09 images (flattened to
 225 dimension 7500) as inputs to the first subpopulation of a network with $N = 15,000$, $f_1 = f_2 = 0.5$,
 226 and $\sigma = 0.1$. Each image was processed individually, and at time t we recorded the activity vectors
 227 of both subpopulations as the network’s internal representations. To quantify geometry preserva-
 228 tion, we computed all pairwise Euclidean distances between the original images, and likewise all
 229 pairwise distances between their corresponding neural representations (see Appendix A.4). We then
 230 measured the correlation between these two distance matrices: a correlation of 1 would indicate per-
 231 fect isometry (geometry preserved exactly), while lower correlations reflect increasing distortion.
 232 This correlation therefore serves as a direct measure of how faithfully the network preserves the
 233 relational structure of its inputs (Fig. 2d–f). Although this metric is distinct from Fisher information,
 234 it produces the same qualitative conclusions: the analytic framework accurately predicts both
 235 the oscillatory dynamics of information flow and the relative ability of different network motifs to
 236 preserve input geometry.

237 This empirical test highlights a key difference from Hopfield networks. In Hopfield models, memory
 238 is implemented by fixed-point attractors, and capacity is limited by the number of such stable states
 239 that can be stored. In our framework, by contrast, memory is defined by how well the differences
 240 between stimuli are preserved as activity evolves. This capacity does not depend on the number
 241 of stimuli presented, but instead on whether the network size N is sufficiently large relative to the
 242 sparsity of the input space—a condition closely analogous to the Restricted Isometry Property (RIP)
 243 for Gaussian matrices, which links the number of measurements to input sparsity (Foucart & Rauhut,
 244 2013).

245 **Dataset-independent encoding dynamics.** A central theoretical prediction is that Fisher-optimal
 246 initialization preserves pairwise distances independently of the specific input ensemble, provided
 247 the input sparsity is below the network’s effective dimensionality. To test this, we repeated the
 248 analysis using CIFAR-10 images (flattened to 7500 dimensions) (Fig. S4). The resulting dynamics
 249 closely match those from IndoorCVPR_09. The Pearson correlations between the two datasets’
 250 information-flow trajectories are extremely high: 0.993, 0.992, 0.980 (all $p \ll 10^{-60}$), confirming
 251 that Fisher-optimal initialization yields dataset-independent encoding behavior.

253 3 CONDITIONS FOR OPTIMAL FISHER INFORMATION

255 In the context of information diffusion, achieving maximal long-term retention of an input requires
 256 two conditions on the diffusion operator A :

- 258 1. **Criticality.** The spectral radius of A must satisfy $\rho(A) = \max_i |\lambda_i| = 1$. If $\rho(A) < 1$, Fisher
 259 information decays exponentially; if $\rho(A) > 1$, it diverges uncontrollably. Criticality therefore
 260 guarantees the dynamic stability Kadmon & Sompolsky (2015) such that information does not
 261 vanish at long times, but on its own it is not sufficient for optimal retention.
- 262 2. **Eigenvector alignment and transient information.** Let v denote the normalized right eigen-
 263 vector associated with the leading eigenvalue $\lambda_{\max} = 1$. Asymptotically, $\lim_{t \rightarrow \infty} \mathcal{I}(t) \propto$
 264 $\|(\mathbf{w}^\top v)v\|_1$, where \mathbf{w} is the input configuration. Thus, only the input component aligned with v
 265 is retained indefinitely. From the perspective of network design, however, transient information
 266 carried by other modes should not decay too quickly. A complication is that A is generally non-
 267 normal (not symmetric), so its eigenvalues and eigenvectors may be complex. Since the input
 268 configuration \mathbf{w} is real, the effective alignment with complex eigenvectors can be small, limiting
 269 long-term retention. In practice, explicitly computing eigenvalues and eigenvectors is costly for
 networks with many subpopulations. By contrast, computing Fisher information over time only

Figure 2: **Empirical validation of the Fisher diffusion framework.** (a–c) Time evolution of Fisher information in two subpopulations after an input pulse to Population 1 at $t = 0$, under three motifs: (a) self-recurrence only, (b) feedforward only, and (c) a recurrent architecture close to the analytic optimum. Solid lines show simulation results; dashed lines show analytic predictions from the FI diffusion operator. The analytic framework accurately captures both the magnitude and temporal dynamics, including oscillatory information flow. (d–f) Geometry preservation for the same networks for IndoorCVPR_09 images. Pairwise correlations quantify how well each architecture maintains input geometry. The results confirm that architectures predicted to optimize Fisher retention also preserve stimulus geometry more effectively.

requires iterated multiplication by A , which is more scalable. Moreover, by choosing the integration horizon T , one can tune the emphasis between transient retention and long-term stability. A practical design objective is therefore to maximize the average Fisher information over a finite horizon: $\bar{\mathcal{I}} = \frac{1}{T} \sum_{t=1}^T \mathcal{I}(t)$. This metric balances stability at criticality with the preservation of transient information.

To illustrate these conditions, we analyze a simple two-population recurrent network. The block gain matrix is $G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$, so that the Fisher diffusion operator A depends on the four parameters G_{mn} . Because A can be summarized in terms of its trace and determinant, the parameter space can be reduced from four to two dimensions, enabling a clear visualization. We perform a dense grid search over all $G_{mn} \in [0, 3]$. For each parameter setting, we compute: The spectral radius $\rho(A)$, used to identify the critical boundary $\rho(A) = 1$ (Fig. 3a), and the average Fisher information $\bar{\mathcal{I}}$ across 100 timesteps, aggregated over both populations (Fig. 3b). We observe that:

1. The critical boundary (grey dashed line) extends across the full range of $\text{Tr}(G)$, confirming that criticality is a necessary condition for sustained information flow.
2. Optimal information retention occurs only along the critical boundary but is restricted to a narrower band of $\text{Tr}(G)$, showing that criticality alone is not sufficient.

This demonstrates that while criticality is required for sustained information flow, alignment of the stable diffusion direction v with the input configuration w is additionally necessary to achieve optimal Fisher information retention.

Figure 3: **Edge of chaos: necessary but not sufficient for optimal Fisher information.** (a) Phase diagram of the spectral radius $\rho(A)$ across network parameters $\text{Tr}(G)$ and $\det(G)$. The grey dashed line marks the critical boundary $\rho(A) = 1$. (b) Average Fisher information per timestep over 100 steps, showing that optimal retention occurs only within a restricted band of $\text{Tr}(G)$ values.

4 OPTIMAL STRUCTURE FOR LONGER CHAINS

Our analytical framework extends naturally to networks of many subpopulations or deeper recurrent structures. For clarity and tractability, we focus on sequential chains in which only adjacent subpopulations are connected on through adjustable self-recurrent, feedforward, and feedback links (Fig. 4). The connectivity is captured by a generalized Toeplitz-like gain matrix G where only G_{mm} , $G_{m,m+1}$, and $G_{m+1,m}$ are nonzero, preserving the chain structure while allowing parameter flexibility. All subpopulations are equal in size ($f_m = 1/M$), and input is applied only to the first subpopulation ($w_i = \delta_{i,1}$).

Within this architecture we build the Fisher information functional in terms of the allowed block gains G_{mn} and maximize the time- and population-averaged Fisher information \bar{I} over $T = 100$ using differential evolution. The optimization reveals clear design principles: strong feedforward connections propagate signals efficiently, while carefully placed feedback stabilizes and modulates this flow. Indiscriminate feedback is detrimental; instead, optimal networks exhibit sparse, strategically positioned feedback links that break the chain into nested loops for robust information retention. The characteristic broken-feedback pattern can be intuitively justified in the linear limit (Appendix A.5).

Finally, we find a striking scaling law (Fig. 4): keeping the total number of neurons fixed—yet large enough for mean-field theory—the network’s total Fisher information grows approximately linearly with the number of subpopulations. Thus, deeper or more finely partitioned chains intrinsically possess greater information capacity when their connectivity is properly optimized.

5 SEQUENTIAL STIMULUS

For an optimal network that satisfies the necessary condition of dynamic stability, the neural activity evolves on a stable manifold rather than settling into a fixed-point attractor. When an input is projected into the network, the internal representation changes continuously over time instead of remaining static. As a result, identical stimuli injected at different times can lead to distinct downstream representations at later time. This continual drift of stimulus representations provides a natural mechanism for encoding the order of sequential inputs, akin to the function of working memory.

Once a block-gain matrix G optimal for Fisher information is found for a given input configuration, a corresponding block-structured connectivity matrix J can be readily constructed. Specifically, we sample the elements of J from zero-mean Gaussians with variances derived from the corresponding entries of G . This simple procedure initializes a recurrent network to operate near the edge of chaos, providing a principled starting point for training.

To test the principles of our initialization and its relevance for sequential stimulus processing, we tested the method on two benchmarks on simple RNNs: the copy task and sequential MNIST. Our

Figure 4: **Connectivity structures and information retention across subpopulations.** Inset diagrams show optimized connectivity patterns for networks with 2–8 subpopulations, revealing strong feedforward pathways, moderate self-recurrence, and sparse feedback loops. The main panel demonstrates that total Fisher information retention scales linearly with the number of subpopulations, indicating that greater modular depth enhances memory capacity.

hypothesis is that initializing a network to operate near the edge of chaos facilitates more efficient training.

Figure 5: **Sequential memory test on the copy task.** (a) Illustration of the copy task with $T_{\text{delay}} = 10$. (b) Networks initialized with Fisher information–optimized weights converge significantly faster and achieve higher accuracy than those with standard random initialization.

Copy task The copy task follows the standard setup of Graves et al. (2014), Arjovsky et al. (2016), and Gu et al. (2021). Each input sequence has length $T_{\text{delay}} + 20$. The first 10 tokens are random one-hot vectors in categories $\{1, \dots, 8\}$, followed by T_{delay} zeros, a single delimiter token (category 9), and finally 9 more zeros. The target output has the same length but remains zero until the final 10 steps, where it reproduces the initial random sequence (Fig. 5). This task probes a network’s ability to encode categorical information and maintain it in memory for T_{delay} time steps before recall.

We trained a simple RNN of 100 neurons with a tanh nonlinearity and $T_{\text{delay}} = 50$. For Fisher-information-optimized initialization, the network is partitioned into 10 equal subpopulations (matching the input dimension), with purely feedforward connections $G_{m+1,m} = 1$ ($m = 1, \dots, 9$) and a single feedback link $G_{1,10} = 1$. The corresponding Fisher diffusion matrix A thus has spectral radius one. Weights from input to RNN are sent such that input stimulus are passed to the first subpopulation. Compared to standard random initialization, the Fisher-optimized initialization yields substantially faster convergence and higher final accuracy under otherwise identical training conditions (learning rate = 10^{-3} ; Fig. 5).

We additionally evaluate Fisher-information-optimal initialization against widely used schemes—including Xavier, Kaiming, orthogonal, and unitary initialization—on the copy task across multiple random seeds and various delay lengths (Figs. S6, S7, S8). Across all condi-

432
 433
 434
 435
 436
 437
 438
 439
 440 Original MNIST digit (label=6)
 441
 442
 443
 444 Sequential MNIST representation
 445
 446 Pixel value
 447 1
 448 0
 449 Time step
 450
 451
 452
 453
 454

450
 451
 452
 453
 454
 455 **Sequential memory on Sequential MNIST.** (a) Pixel values of each MNIST image are
 456 presented as a 784-step input sequence. (b) Networks initialized with Fisher information–optimized
 457 weights converge substantially faster, and (c) achieve higher final accuracy compared to networks
 458 with standard random initialization.
 459
 460
 461

462 **Sequential MNIST** In the sequential MNIST task, the 784 pixels of each image are fed one by
 463 one into the RNN, and the network must classify the digit using only the final hidden state (Fig. 6).
 464 To emphasize the advantage of operating at the edge of chaos, we fixed the recurrent weights to
 465 the same circular subpopulation structure used in the copy task and trained only the readout layer.
 466 In practice, using a one-layer MLP with tanh nonlinearity as the readout significantly improved
 467 performance. As with the copy task, Fisher-information-optimized initialization led to both faster
 468 convergence and higher final accuracy than random initialization (Fig. 6).
 469
 470

471 Because our initialization is fully analytic and depends only on connectivity parameters—rather
 472 than being learned from data—the theory predicts that Fisher-optimal initialization should preserve
 473 input perturbations for general sparse input stimuli. We test this by extending the sequential-
 474 classification experiments to CIFAR-10 and IndoorCVPR_09 (Figs. S11, S12; details in Ap-
 475 pendix A.6.3). Across both datasets, and relative to Xavier, Kaiming, orthogonal, and unitary
 476 initializations, Fisher-optimal networks consistently train faster and reach higher accuracy—even
 477 with the recurrent weights fixed. This demonstrates that information preservation is governed by the
 478 connectivity structure rather than dataset-specific features, and further supports the prediction that
 479 Fisher-optimal initialization maintains sensitivity to past inputs.
 480
 481

482 Together, these findings show that initializing the network with Fisher-information-optimized
 483 weights—i.e., operating at the edge of chaos—naturally creates a stable manifold along which in-
 484 put representations can evolve. This initialization effectively equips the recurrent network with an
 485 intrinsic encoder that both preserves the geometry of the input stimulus and supports flexible move-
 486 ment of representations. As a result, training can focus on learning an appropriate decoder, leading
 487 to faster convergence and higher final accuracy.
 488
 489

490 6 DISCUSSION

491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

486 We bridge multiple perspectives—Fisher information, geometry preservation, and dynamical stability—under a single operator formulation. This connection explains why preserving local geometry, 487 maintaining stability at criticality, and ensuring Fisher information flow are mathematically equivalent 488 conditions. Importantly, the block-structured formulation extends classical one-population 489 mean-field theory to arbitrary modular architectures, making it possible to study realistic networks 490 with feedback, skip connections, and heterogeneous subpopulations.

492 The analytic expression linking connectivity structure to Fisher-information optimality yields a principled, 493 theory-driven initialization rule for recurrent networks. A key advantage of this framework 494 is that a large recurrent weight matrix can be configured correctly by adjusting only a small set of 495 population-level block gains g_{ij} , each determining the variance of the Gaussian weights within a 496 connectivity block. This mapping from a few block-level parameters to the full recurrent matrix 497 places the network directly in the Fisher information optimal regime, where sensitivity to perturba- 498 tions of past inputs is preserved over long timescales. Such initialization is particularly beneficial 499 for working-memory and other short-term sequential tasks, in which late-time activity must remain 500 sensitive to inputs presented many steps earlier. Fisher information quantifies exactly this notion 501 of sensitivity: classical fixed-point models such as Hopfield networks intentionally collapse small 502 perturbations to enforce convergence and therefore cannot maintain the fine-grained distinctions 503 required for dynamic memory. In contrast, standard initialization schemes are not memory-aware 504 and place the network in a generic region of the high-dimensional parameter space, forcing optimi- 505 zation to discover configurations that preserve long-range sensitivity—a process that is unstable 506 and prone to regions where gradients vanish or explode. By initializing connectivity directly in the 507 Fisher-optimal regime, our framework avoids these difficulties and provides a theoretically grounded 508 method for stabilizing information flow in recurrent architectures from the outset.

509 Our analysis focuses on single-state recurrent networks, where the Fisher-information dynamics can 510 be characterized analytically. LSTMs and GRUs include coupled hidden states and multiplicative 511 gates, placing them outside the theoretical regime considered here. Nevertheless, because each gate 512 contains a recurrent transformation structurally similar to the dynamics we analyze, we evaluated 513 whether Fisher-optimal initialization might still offer practical benefits at the gate level. As dis- 514 cussed in Appendix A.6.2, we found that applying Fisher-optimal initialization to these recurrent 515 components can improve training performance on long-range sequential memory tasks.

516 The dynamic, geometry-preserving memory described by our framework provides a principled alter- 517 native to classical attractor models. Instead of storing fixed points, recurrent networks maintain 518 evolving trajectories that conserve the relative geometry of inputs—consistent with recent neuro- 519 physiological observations of stable manifolds and rotational dynamics in cortex (Ritter & Chad- 520 wick, 2025). Operating at the subpopulation level makes it naturally suited to multi-area circuits, 521 offering predictions for how inter-areal connectivity supports information retention and traveling- 522 wave-like activity patterns. Relatedly, recent theoretical work shows that hidden traveling waves 523 in trained RNNs can bind working memory variables to wave-like representations (Karuvally et al., 524 2024), suggesting that our framework for information dynamics can also provide a foundation for 525 understanding wave-based mechanisms of memory.

526 **Limitations** While our framework provides a principled and interpretable theory of information 527 dynamics in recurrent networks, several limitations remain. Most importantly, our analysis is fo- 528 cused on the encoding of information: how network connectivity structures shape the retention 529 and propagation of Fisher information across subpopulations. We do not address the decoding 530 stage, where task-specific outputs are read out from the evolving internal representations. Thus, 531 our framework should not be viewed as a method for directly discovering architectures that maxi- 532 mize task performance, but rather as a way to endow a given architecture with theoretically grounded 533 initializations that improve training efficiency and stability. In this sense, our work is complemen- 534 tary to performance-oriented models such as unitary RNNs, orthogonal networks, and structured 535 state-space models, which achieve superior accuracy on demanding sequence benchmarks. Our 536 goal has not been to compete with such models, but to provide a general theoretical foundation that 537 explains how information is preserved, and to derive simple initialization rules that translate this the- 538 ory into practice. By doing so, we highlight principles—criticality, alignment, and balanced Fisher 539 flow—that may also inform the design of future high-performance architectures.

540 REFERENCES
541

542 Shun-ichi Amari, Ryo Karakida, and Masafumi Oizumi. Fisher information and natural gradient
543 learning in random deep networks. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), *Pro-
544 ceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*,
545 volume 89 of *Proceedings of Machine Learning Research*, pp. 694–702. PMLR, 16–18 Apr 2019.
546 URL <https://proceedings.mlr.press/v89/amari19a.html>.

547 Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
548 In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of The 33rd Interna-
549 tional Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Re-
550 search*, pp. 1120–1128, New York, New York, USA, 20–22 Jun 2016. PMLR. URL <https://proceedings.mlr.press/v48/arjovsky16.html>.

552 Jeffrey Beck, Vikranth R. Bejjanki, and Alexandre Pouget. Insights from a simple expression for
553 linear fisher information in a recurrently connected population of spiking neurons. *Neural Com-
554 putation*, 23(6):1484–1502, 06 2011. ISSN 0899-7667. doi: 10.1162/NECO_a_00125. URL
555 https://doi.org/10.1162/NECO_a_00125.

556 Sean E. Cavanagh, John P. Towers, Joni D. Wallis, Laurence T. Hunt, and Steven W. Kenner-
557 ley. Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal
558 cortex. *Nature Communications*, 9(1):3498, Aug 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-05873-3.
559 URL <https://doi.org/10.1038/s41467-018-05873-3>.

560 Reinhard Diestel. *Graph Theory (Graduate Texts in Mathematics)*. Springer, August 2005.
561 ISBN 3540261826. URL <http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/3540261826>.

564 Simon Foucart and Holger Rauhut. *A Mathematical Introduction to Compressive Sensing*.
565 Birkhäuser Basel, 2013. ISBN 0817649476.

566 Surya Ganguli and Haim Sompolinsky. Short-term memory in neuronal networks through dy-
567 namical compressed sensing. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
568 A. Culotta (eds.), *Advances in Neural Information Processing Systems*, volume 23. Curran
569 Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/0f2c9a93eea6f38fabb3acb1c31488c6-Paper.pdf.

571 Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory traces in dynamical sys-
572 tems. *Proceedings of the National Academy of Sciences*, 105(48):18970–18975, 2008. doi:
573 10.1073/pnas.0804451105. URL <https://www.pnas.org/doi/abs/10.1073/pnas.0804451105>.

576 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014. URL <https://arxiv.org/abs/1410.5401>.

578 Yameng Gu, Lucas E Sainburg, Sizhe Kuang, Feng Han, Jack W Williams, Yikang Liu, Nanyin
579 Zhang, Xiang Zhang, David A Leopold, and Xiao Liu. Brain activity fluctuations propagate
580 as waves traversing the cortical hierarchy. *Cerebral Cortex*, 31(9):3986–4005, 04 2021. ISSN
581 1047-3211. doi: 10.1093/cercor/bhab064. URL <https://doi.org/10.1093/cercor/bhab064>.

584 Frank Harary. The determinant of the adjacency matrix of a graph. *SIAM Review*, 4(3):202–210,
585 1962. doi: 10.1137/1004057. URL <https://doi.org/10.1137/1004057>.

586 Tomohiro Hayase and Ryo Karakida. The spectrum of fisher information of deep networks
587 achieving dynamical isometry. In Arindam Banerjee and Kenji Fukumizu (eds.), *Pro-
588 ceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130
589 of *Proceedings of Machine Learning Research*, pp. 334–342. PMLR, 13–15 Apr 2021. URL
590 <https://proceedings.mlr.press/v130/hayase21a.html>.

592 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
593 1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL <https://doi.org/10.1162/neco.1997.9.8.1735>.

594 Li Jing, Yichen Shen, Tena Dubček, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
 595 Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to rnns,
 596 2017. URL <https://arxiv.org/abs/1612.05231>.

597

598 Jonathan Kadmon and Haim Sompolinsky. Transition to chaos in random neuronal networks. *Phys.*
 599 *Rev. X*, 5:041030, Nov 2015. doi: 10.1103/PhysRevX.5.041030. URL <https://link.aps.org/doi/10.1103/PhysRevX.5.041030>.

600

601 Ingmar Kanitscheider, Ruben Coen-Cagli, Adam Kohn, and Alexandre Pouget. Measuring fisher
 602 information accurately in correlated neural populations. *PLoS computational biology*, 11(6):
 603 e1004218, 2015.

604

605 Ryo Karakida and Kazuki Osawa. Understanding approximate fisher information for fast
 606 convergence of natural gradient descent in wide neural networks. In H. Larochelle,
 607 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-*
 608 *formation Processing Systems*, volume 33, pp. 10891–10901. Curran Associates, Inc.,
 609 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/7b41bfa5085806dfa24b8c9de0ce567f-Paper.pdf.

610

611 Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
 612 deep neural networks: Mean field approach. In Kamalika Chaudhuri and Masashi Sugiyama
 613 (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and*
 614 *Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 1032–1041. PMLR, 16–
 615 18 Apr 2019. URL <https://proceedings.mlr.press/v89/karakida19a.html>.

616

617 Ryo Karakida, Shotaro Akaho, and Shun ichi Amari. Pathological spectra of the fisher information
 618 metric and its variants in deep neural networks, 2020. URL <https://arxiv.org/abs/1910.05992>.

619

620 Arjun Karuvally, Terrence Sejnowski, and Hava T Siegelmann. Hidden traveling waves bind
 621 working memory variables in recurrent neural networks. In Ruslan Salakhutdinov, Zico Kolter,
 622 Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
 623 *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-*
 624 *ceedings of Machine Learning Research*, pp. 23266–23290. PMLR, 21–27 Jul 2024. URL
 625 <https://proceedings.mlr.press/v235/karuvally24a.html>.

626

627 Arjun Karuvally, Franz Nowak, Anderson T. Keller, Carmen Amo Alonso, Terrence J. Sejnowski,
 628 and Hava T. Siegelmann. Bridging expressivity and scalability with adaptive unitary ssms, 2025.
 629 URL <https://arxiv.org/abs/2507.05238>.

630

631 T. Anderson Keller, Lyle Muller, Terrence Sejnowski, and Max Welling. Traveling waves encode the
 632 recent past and enhance sequence learning, 2024. URL <https://arxiv.org/abs/2309.08045>.

633

634 Leo Kozachkov, Michaela Ennis, and Jean-Jacques Slotine. Rnns of rnns: Recursive construction
 635 of stable assemblies of recurrent neural networks, 2023. URL <https://arxiv.org/abs/2106.08928>.

636

637 Bariscan Kurtkaya, Fatih Dinc, Mert Yuksekgonul, Marta Blanco-Pozo, Ege Cirakman, Mark
 638 Schnitzer, Yucel Yemez, Hidenori Tanaka, Peng Yuan, and Nina Miolane. Dynamical phases
 639 of short-term memory mechanisms in rnns, 2025. URL <https://arxiv.org/abs/2502.17433>.

640

641 Marcelo O. Magnasco. Input-driven circuit reconfiguration in critical recurrent neural net-
 642 works. *Proceedings of the National Academy of Sciences*, 122(10):e2418818122, 2025. doi:
 643 10.1073/pnas.2418818122. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2418818122>.

644

645 Ethan M. Meyers, David J. Freedman, Gabriel Kreiman, Earl K. Miller, and Tomaso Poggio.
 646 Dynamic population coding of category information in inferior temporal and prefrontal cor-
 647 tex. *Journal of Neurophysiology*, 100(3):1407–1419, 2008. doi: 10.1152/jn.90248.2008. URL
 648 <https://doi.org/10.1152/jn.90248.2008>. PMID: 18562555.

648 Jeffrey Pennington and Pratik Worah. The spectrum of the fisher information matrix of a single-
 649 hidden-layer neural network. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
 650 Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31.
 651 Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/18bb68e2b38e4a8ce7cf4f6b2625768c-Paper.pdf.

652

653 Laura Ritter and Angus Chadwick. Efficient working memory maintenance via high-dimensional
 654 rotational dynamics. *bioRxiv*, 2025. doi: 10.1101/2025.09.08.674838. URL <https://www.biorxiv.org/content/early/2025/09/12/2025.09.08.674838>.

655

656

657 H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural networks. *Phys. Rev. Lett.*, 61:259–262, Jul 1988. doi: 10.1103/PhysRevLett.61.259. URL <https://link.aps.org/doi/10.1103/PhysRevLett.61.259>.

658

659

660 Eelke Spaak, Kei Watanabe, Shintaro Funahashi, and Mark G. Stokes. Stable and dynamic cod-
 661 ing for working memory in primate prefrontal cortex. *Journal of Neuroscience*, 37(27):6503–
 662 6516, 2017. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.3364-16.2017. URL <https://www.jneurosci.org/content/37/27/6503>.

663

664

665 T. Toyoizumi and L. F. Abbott. Beyond the edge of chaos: Amplification and temporal integration
 666 by recurrent networks in the chaotic regime. *Phys. Rev. E*, 84:051908, Nov 2011. doi: 10.1103/
 667 PhysRevE.84.051908. URL <https://link.aps.org/doi/10.1103/PhysRevE.84.051908>.

668

669 Olivia L. White, Daniel D. Lee, and Haim Sompolinsky. Short-term memory in orthogonal neural
 670 networks. *Phys. Rev. Lett.*, 92:148102, Apr 2004. doi: 10.1103/PhysRevLett.92.148102. URL
 671 <https://link.aps.org/doi/10.1103/PhysRevLett.92.148102>.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 RELATED WORK**
705706 **DISTRIBUTED POPULATION DYNAMICS AND WORKING-MEMORY CODES**
707

708 There is now a rich literature showing that memory is implemented by distributed, population-level
709 dynamics rather than single “memory cells.” For example, Cavanagh et al. (2018); Spaak et al.
710 (2017) analyze how working-memory representations in primate prefrontal cortex can be supported
711 by combinations of persistent and dynamic population codes. More precisely, Spaak et al. (2017)
712 show that during a memory-guided saccade task, despite dynamic population coding, the represen-
713 tational geometry of working memory remains stable. Meyers et al. (2008) demonstrate dynamic
714 population coding of category information in ITC and PFC during delay tasks, emphasizing time-
715 varying trajectories rather than static tuning. Finally, Kurtkaya et al. (2025) and other recent RNN
716 studies characterize dynamical “phases” (such as limit cycles, slow manifolds, sequential activity)
717 that support short-term memory in trained recurrent networks.

718 Our contribution is complementary to this line of work. The biological studies above collectively
719 demonstrate that neural populations encode task-relevant information in the geometry of their ac-
720 tivity trajectories, and that this information can persist even when individual neurons exhibit only
721 transient or heterogeneous responses. Building on this assumption, we develop a closed-form the-
722 oretical framework that *quantifies* how much information about input differences can be preserved
723 by such population dynamics. Rather than analyzing decoding accuracy from recorded neural ac-
724 tivity, we derive Fisher-information-based expressions that make explicit how information retention
725 depends on population-level connectivity motifs—including the trace and determinant of the con-
726 nnectivity matrix. In other words, whereas prior biological and computational work establishes *that*
727 distributed neural trajectories carry short-term and working-memory information, our framework
728 provides an analytic characterization of *how much* of the input geometry can be preserved, and *under which dynamical regimes*, directly from the parameters governing the network’s connectivity
729 structure.

730 **FISHER INFORMATION IN MACHINE LEARNING AND DYNAMICAL NETWORKS**
731

732 Prior work has used Fisher information (FI) to analyze memory and information retention in re-
733 current neural dynamics, though almost entirely in homogeneous or unstructured settings. Ganguli
734 et al. (2008) and later Ganguli & Sompolinsky (2010) applied FI to characterize how recurrent
735 linear systems maintain short-term memory of past inputs and established fundamental limits on
736 memory capacity. A parallel body of work in computational neuroscience has focused on linear
737 Fisher information, which provides a closed-form expression for stimulus discriminability in re-
738 currently connected populations (Beck et al., 2011) and has been widely used experimentally to
739 estimate information from correlated population activity (Kanitscheider et al., 2015).

740 Beyond recurrent dynamics, Fisher information has a long history in machine learning as a metric
741 that shapes optimization, curvature, and gradient propagation. Amari et al. (2019) analyses natural-
742 gradient learning in random deep networks; Pennington & Worah (2018) characterize the eigenvalue
743 spectrum of the Fisher Information Matrix (FIM) in wide networks; Karakida et al. (2019; 2020)
744 study universal statistics and pathological curvature regimes induced by extreme FIM anisotropy;
745 and Karakida & Osawa (2020) show that approximate natural-gradient methods still inherit fast-
746 convergence guarantees in wide limits. Hayase & Karakida (2021) further demonstrate that networks
747 satisfying dynamical isometry nevertheless develop concentrated FIM spectra that require depth-
748 dependent learning-rate scaling, directly linking FI to vanishing and exploding gradients.

749 Relative to these lines of work, our contribution is different in scope and objective. Prior studies
750 either focused on homogeneous single-population RNNs, linearized dynamics, or the role of Fisher
751 information in optimization geometry. By contrast, our framework derives explicit, analytic con-
752 ditions under which *multi-population* recurrent networks preserve Fisher information about early
753 inputs over time, thereby maintaining the geometry of input differences along dynamically evolving
754 trajectories.

755 Crucially, these conditions provide a direct link between the *connectivity structure* of the network—
specifically, population-level parameters such as the trace and determinant of the G matrix—and the

amount of Fisher information that can persist along recurrent dynamics. This connection has practical consequences for sequential-memory learning. Instead of relying on gradient descent to discover a narrow region of parameter space that supports long-range sensitivity to inputs, our Fisher-optimal initialization places the network in a regime that already retains information about distant past stimuli. Because large RNNs have high-dimensional, non-convex loss landscapes, standard initializations that are not memory-optimized often struggle to reach these regions and can become trapped in poor local minima where gradients vanish. In contrast, Fisher-optimal initialization tunes the block-structured gains so that a large number of individual recurrent weights are automatically set to a configuration that preserves input geometry from the outset, thereby accelerating training and improving final performance.

A.2 ANALYTIC FISHER INFORMATION FOR MULTIPLE SUB-POPULATIONS

We consider a recurrent network divided into multiple subpopulations. For each sub-population m , let

$$\mu_m(t) = \langle h_m(t) | J \rangle. \quad (6)$$

denote the mean activity at time t , averaged over dynamic noise but at fixed synaptic matrix J . Our goal is to compute the Fisher information $\mathcal{I}_m(t)$ of $\mu_m(t)$ with respect to an input parameter θ :

$$\mathcal{I}(\theta, t) = K \sum_m \frac{f_m}{q_m} \left\langle \left(\frac{\partial \mu_m(t)}{\partial \theta} \right)^2 \right\rangle_J. \quad (7)$$

The key is to derive the analytic formula for $\left\langle \left(\frac{\partial \mu_m(t)}{\partial \theta} \right)^2 \right\rangle_J$.

A.2.1 REPLICA TRICK FOR THE DERIVATIVE OF THE MEAN

Introducing replicas a, b , we have

$$\begin{aligned} \left\langle \left(\frac{\partial \mu_m(t)}{\partial \theta} \right)^2 \right\rangle_J &= \left\langle \left[\frac{\partial}{\partial \theta} \langle h_m(t) | J \rangle \right]^2 \right\rangle_J = \left\langle \frac{\partial}{\partial \theta^a} \langle h_m^a(t) | J \rangle \frac{\partial}{\partial \theta^b} \langle h_m^b(t) | J \rangle \right\rangle_J \\ &= \frac{\partial^2}{\partial \theta^a \partial \theta^b} \langle h_m^a(t) h_m^b(t) \rangle = \frac{\partial^2}{\partial \theta^a \partial \theta^b} q_m^{ab}(t), \end{aligned} \quad (8)$$

where $q_m^{ab}(t) \equiv \langle h_m^a(t) h_m^b(t) \rangle_m$.

A.2.2 MEAN-FIELD EXPRESSION FOR THE CORRELATION

In mean-field, the correlation splits into an i.i.d. noise term and a term generated by recurrent inputs:

$$q_m^{ab}(t, s) = \sigma^2 \delta_{ab} \delta_{ts} + \sum_n g_{mn}^2 f_n \langle S_n^a(t) S_n^b(s) \rangle_n = \sigma^2 + \sum_n G_{mn} C_n^{ab}(t, s), \quad (9)$$

with $G_{mn} \equiv g_{mn}^2 f_n$ and $C_n^{ab}(t, s) = \langle S_n^a(t) S_n^b(s) \rangle$, the firing rate correlation in sub-population n .

A.2.3 DIFFERENTIATING FIRING RATE CORRELATION FUNCTION

Applying $\partial_\theta^a \partial_\theta^b$ to $C_n^{ab}(t, s)$ and using the chain rule for the nonlinearity $\phi(\cdot)$ (with $\phi' = \frac{d\phi}{dz}$) yields

$$\begin{aligned} \partial^{ab} C_n^{ab}(t) &= \partial^{ab} \langle \phi^a(t) \phi^b(t) \rangle_n \\ &= \partial^{ab} \langle \phi(w_n \Theta^a(t-1) + x^a(t-1)) \phi(w_n \Theta^b(t-1) + x^b(t-1)) \rangle_n \\ &= \langle \phi'^a \cdot (w_n + \partial_a x^a(t-1)) \phi'^b \cdot (w_n + \partial_b x^b(t-1)) \rangle_n \\ &= \langle \phi'^a \phi'^b \rangle_n \langle (w_n^2 + (\partial_a x^a(t-1) + \partial_b x^b(t-1)) w_n + \partial_a x^a(t-1) \partial_b x^b(t-1)) \rangle_n \\ &= \langle \phi'^a \phi'^b \rangle_n (w_n^2 + \partial_a \partial_b \langle x^a(t-1) x^b(t-1) \rangle_n) \\ &= \langle \phi'^a \phi'^b \rangle_n (w_n^2 + \partial_a \partial_b q_n^{ab}(t-1)). \end{aligned} \quad (10)$$

The first order in line 4 with terms $\langle \partial_a x^a \rangle_n = \partial_a \langle x^a \rangle_n = \partial_a 0 = 0$.

810 A.2.4 RECURRENCE FOR THE SECOND DERIVATIVE OF POPULATION SPECIFIC VARIANCE
811

812 Combining equation 9 and equation 10 produces a linear recurrence:

813
814
$$\partial^a \partial^b q_m^{ab}(t+1) = \sum_n G_{mn} \langle \phi'^a \phi'^b \rangle_n (\partial^a \partial^b q_n^{ab}(t) + w_n^2 \delta_{t,0}), \quad A_{mn} \equiv G_{mn} \langle \phi'^a \phi'^b \rangle_n. \quad (11)$$

815
816

817 Because q^{ab} depends only on earlier inputs, the initial condition is $\partial^a \partial^b q_n^{ab}(t) = 0$ for $t \leq 0$.
818 Iterating equation 11 once at $t = 0$ gives

819
820
$$\partial^a \partial^b q_m^{ab}(1) = \sum_{n=1}^M A_{mn} w_n^2, \quad (12)$$

821
822

823 Since the network only receives the input at $t = 0$, each successive iteration amounts to matrix
824 multiplication by $A_{mn} \equiv G_{mn} \langle \phi'^a \phi'^b \rangle_n$. Repeating the recurrence t times results:

825
826
$$\partial^a \partial^b q_{m,t+1}^{ab} = \sum_n (\mathbf{A}^{t+1})_{mn} w_n^2. \quad (13)$$

827

828 A.2.5 CLOSED-FORM FISHER INFORMATION
829

830 Finally, substituting Eq. (13) into equation 8 gives

831
832
$$\left\langle \left(\frac{\partial \mu_m(t)}{\partial \theta} \right)^2 \right\rangle_J = \sum_n (\mathbf{A}^t)_{mn} w_n^2, \quad A_{mn} \equiv G_{mn} \langle (\phi')^2 \rangle_n. \quad (14)$$

833
834

835 Eq. equation 14 shows that the propagation of the Fisher information through the network can be
836 effectively captured by the Fisher information diffusion operator A .
837838 A.2.6 ANALYTIC DERIVATION OF THE FISHER INFORMATION DIFFUSION OPERATOR
839840 To obtain an analytical expression for the Fisher information in relation to the optimal connectiv-
841 ity parameters G_{mn} and to gain an intuitive understanding of Fisher information from a network
842 perspective, two key tasks are essential:843 1. Analytically resolve the self-consistent equations for q_1 and q_2 to understand the dynamics in the
844 system. These solutions also allow us to construct Gaussian probability distributions with variances
845 q_1 and q_2 , respectively. From these distributions, we compute the second-order moments $\langle S^2 \rangle$ and
846 $\langle (S')^2 \rangle$, which are essential for determining the Fisher information diffusion operator.847 2. Derive an analytical formula for Fisher information that elucidates the relationship between
848 network characteristics, the connection between populations of neurons, and optimal information
849 capacity.850 A.2.7 ANALYTIC CALCULATION OF THE MEAN SQUARED HYPERBOLIC TANGENT
851

852 Since both the self consistent equations

853
854
$$q_1 = \sigma_1^2 = \sigma^2 + G_{11} \langle S^2 \rangle_1 + G_{12} \langle S^2 \rangle_2, \quad (15)$$

855
856
$$q_2 = \sigma_2^2 = \sigma^2 + G_{22} \langle S^2 \rangle_2 + G_{21} \langle S^2 \rangle_1.$$

857 and the Fisher information diffusion operator $A_{mn} = G_{mn} \langle (S')^2 \rangle_n$. With $S = \tanh(x)$, S^2
858 and S' are highly nonlinear and non local, the values are not close to 0 or 1. As a result, using
859 Taylor expansion of the $\tanh(x)$ produces both poor approximation and analytic challenge when
860 calculating the Gaussian average $\langle S^2 \rangle$ and $\langle (S')^2 \rangle$. We notice that both expressions S^2 and S' only
861 relate to the some form of Gaussian average $\langle \tanh^2(x) \rangle$, and we can approximate the $\tanh^2(x)$
862 with $1 - \exp \frac{x^2}{2\epsilon^2}$ (See Fig. S1). Note that this expression insures $(1 - \exp \frac{x^2}{2\epsilon^2})|_{x=0} = 0$. The
863 optimal parameter $\epsilon = 0.7784$ can be derived from the minimizing the integral difference $\int_{-\infty}^{\infty} |1 -$

Figure S1: (a) Approximation of the nonlinear function $\tanh^2(x)$ using the surrogate form $f(x, \epsilon) = 1 - \exp(-x^2/2\epsilon^2)$, with the optimal parameter $\epsilon = 0.7784$. (b) Linear approximation of the expression $1 - \frac{1}{\sqrt{1 + \mu_i^2}}$ using $c \cdot \mu_i^2$, where the optimal slope $c = 0.2948$ is determined via least-squares fitting. Each point μ_i is obtained from a grid search over network configurations in the two-population case, constrained to operate near the edge of chaos ($|\rho(A) - 1| < 0.1$), where $\rho(A)$ denotes the spectral radius of the effective connectivity matrix.

$\exp \frac{x^2}{2\epsilon^2} - \tanh^2(x)$. The Gaussian average $\langle f(x) \rangle_\sigma = \int_{-\infty}^{\infty} f(x) N(0, \sigma^2) dx$ can be calculated easily with a simple form:

$$\begin{aligned} \langle \tanh^2(x) \rangle_i &= 1 - \frac{1}{\sqrt{1 + (\frac{\sigma_i}{\epsilon})^2}} = 1 - \frac{1}{\sqrt{1 + \mu_i^2}}, \mu_i = \frac{\sigma_i}{\epsilon}, \\ \langle \tanh'(x)^2 \rangle_i &= \langle (1 - \tanh^2(x))^2 \rangle_i = \frac{1}{\sqrt{1 + 2\mu_i^2}}. \end{aligned} \quad (16)$$

For numeric solutions, Eq. (equation 15) (equation 20) extends naturally to an arbitrary number of sub-populations, yield a closed system of nonlinear equations for the variance q_i . This system can be efficiently solved using the ‘fsolve’ function from the ‘scipy.optimize’ package. Once the q_i are obtained, they are substituted into Eq. (equation 20) to evaluate the Fisher-information diffusion operator.

A.2.8 ANALYTIC CALCULATION OF THE POPULATION SPECIFIC ORDER PARAMETERS

With Eq. (equation 16), we can rewrite the self consistent equations:

$$\begin{aligned} \mu_1^2 &= \mu^2 + M_{11} \left(1 - \frac{1}{\sqrt{1 + \mu_1^2}} \right) + M_{12} \left(1 - \frac{1}{\sqrt{1 + \mu_2^2}} \right), \\ \mu_2^2 &= \mu^2 + M_{21} \left(1 - \frac{1}{\sqrt{1 + \mu_1^2}} \right) + M_{22} \left(1 - \frac{1}{\sqrt{1 + \mu_2^2}} \right), \\ M_{mn} &= G_{mn}/\epsilon^2, \mu_i^2 = \sigma_i^2/\epsilon^2, \mu^2 = \sigma^2/\epsilon^2. \end{aligned} \quad (17)$$

Solving the Eq. (equation 17) directly is difficult and will lead to unintuitive expression since this is a system of cubic equations with non uniform power in each term. For systems operating near the edge of chaos—characterized by a spectral radius close to one ($|\rho(A) - 1| < 0.1$)—the variable μ_i remains small (Fig S1). In this regime, we can approximate the nonlinear expression $1 - \frac{1}{\sqrt{1 + \mu_i^2}}$ using a linearized form. Specifically, we use a least-squares fit to determine the optimal slope c in the following approximation:

Figure S2: A illustration of the determinant of the weight matrix for 2 populations(a) and 3 populations (b).

$$1 - \frac{1}{\sqrt{1 + \mu_i^2}} \approx c\mu_i^2, \quad i \in \{1, 2\}, \quad c = 0.2948. \quad (18)$$

This approximation simplifies further analysis while preserving accuracy in the small- μ_i limit.

With the linear approximation Eq. (equation 18), the solutions to the self consistent equations are:

$$\begin{aligned} \mu_1^2 &\approx \frac{\mu^2 + c\mu^2(M_{12} - M_{22})}{1 - c \text{Tr}(M) + c^2 \det(M)}, \\ \mu_2^2 &\approx \frac{\mu^2 + c\mu^2(M_{21} - M_{11})}{1 - c \text{Tr}(M) + c^2 \det(M)}, \end{aligned} \quad (19)$$

$$\det(M) = M_{11}M_{22} - M_{12}M_{21}, \quad \text{Tr}(M) = M_{11} + M_{22}.$$

Under the meanfield, subpopulation 1 and subpopulation 2 are considered as nodes with weight matrix as $M_{mn} = G_{mn}/\epsilon^2$. This mapping makes every term in the analytic expression of Eq. (equation 19) a familiar graph invariant. The trace, $\text{Tr}(M) = \sum_m M_{mm}$, equals the total weight of all self-loops in the network. Meanwhile, the determinant, $\det(M)$, via the Leibniz expansion, becomes a signed sum over all cycle covers (loop configurations), each monomial corresponding to a distinct set of loops weighted by the product of edge weights Harary (1962). These loop configurations are illustrated in Fig. S2.

A.2.9 ANALYTIC EXPRESSION OF THE FISHER INFORMATION DIFFUSION OPERATOR

The Fisher information diffusion operator $A_{mn} = G_{mn}\langle(S')^2\rangle_n = \epsilon^2 M_{mn}\langle(S')^2\rangle_n$. In Eq. (equation 19), we have derived analytic expression in terms of the scaled conductivities $M_{mn} = G_{mn}/\epsilon^2$ and plugging in Eq. (equation 16). Directly substitute the Eq. (equation 19) into Eq. (equation 16), we get:

972
 973 $\langle (S')^2 \rangle_1 = \frac{1}{\sqrt{1+2\mu_1^2}} \approx f(M)((1+c(M_{12}-M_{22}))$,
 974
 975 $\langle (S')^2 \rangle_2 = \frac{1}{\sqrt{1+2\mu_2^2}} \approx f(M)((1+c(M_{21}-M_{11}))$,
 976
 977 $f(M) = \frac{\mu^2}{1-c\text{Tr}(M)+c^2\det(M)}$,
 978 $\tilde{f}(M) = 1-2c\frac{\mu^2}{1-c\text{Tr}(M)+c^2\det(M)} = 1-2c f(M)$,
 980
 981 $c = 0.2948$.
 982
 983
 984

$$\tilde{f}(M) = 1 - 2c \frac{\mu^2}{1 - c \text{Tr}(M) + c^2 \det(M)} = 1 - 2c f(M),$$

$$c = 0.2948.$$

985 $A = \epsilon^2 \begin{pmatrix} M_{11} \langle (S')^2 \rangle_1 & M_{12} \langle (S')^2 \rangle_2 \\ M_{21} \langle (S')^2 \rangle_1 & M_{22} \langle (S')^2 \rangle_2 \end{pmatrix} = \epsilon^2 \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} \langle (S')^2 \rangle_1 & 0 \\ 0 & \langle (S')^2 \rangle_2 \end{pmatrix},$
 986
 987 $\epsilon = 0.7784.$
 988

989 At criticality—i.e. on the “edge of chaos”—the Fisher-information diffusion operator A acquires an
 990 eigenvalue exactly equal to unity. Equivalently:

991
 992 $\det(I - A_{\text{opt}}) = 0.$
 993

994 By expanding $\det(I - A)$ for our two-population system and grouping terms, we obtain the expres-
 995 sion for the condition for the edge of chaos in a fully symmetric form with respect to subpopulations:
 996

997 $0 = \det(I - A_{\text{opt}})$
 998 $= 1 - \epsilon^2 (\langle (S')^2 \rangle_1 M_{11} + \langle (S')^2 \rangle_2 M_{22}) + \epsilon^4 \langle (S')^2 \rangle_1 \langle (S')^2 \rangle_2 \det(M)$
 999 $= 1 - \epsilon^2 L_1(M) + \epsilon^4 \det(M) L_2(M),$
 1000 $L_1(M) = [\tilde{f}(M) - 2c^2 f(M) \text{Tr}_{\text{off}}(M)] \text{Tr}(M) + 2c^2 f(M) [M_{11}d_2 + M_{22}d_1],$
 1001 $L_2(M) = \tilde{f}^2(M) + 2c^2 f(M) [\text{Tr}(M) - \text{Tr}_{\text{off}}(M)]$
 1002 $+ 4c^4 f^2(M) (d_1 d_2 - \text{Tr}(M) \text{Tr}_{\text{off}}(M)),$
 1003
 1004 $f(M) = \frac{\mu^2}{1 - c \text{Tr}(M) + c^2 \det(M)}, \quad \tilde{f}(M) = 1 - 2c f(M),$
 1005
 1006 $d_i = \sum_k M_{ik} = M_{i1} + M_{i2}, \quad \text{Tr}_{\text{off}}(M) = M_{12} + M_{21},$,
 1007
 1008 $c = 0.2948, \quad \epsilon = 0.7784.$
 1009
 1010

1011 where we recognize:
 1012

1. **Trace**, $\text{Tr}(M) = M_{11} + M_{22}$.
 The *total self-loop weight* (sum of length-1 cycles), which sets first-order feedback gain.
2. **Off-diagonal trace**, $\text{Tr}_{\text{off}}(M) = M_{12} + M_{21}$.
 The total cross-population coupling, measuring the strength of two-node interactions.
3. **Determinant**, $\det(M) = M_{11}M_{22} - M_{12}M_{21}$.
 A signed sum over all 2-cycle covers:
 - $M_{11}M_{22}$ counts two independent self-loops,
 - $M_{12}M_{21}$ counts the reciprocal 2-node cycle.

1022 The determinant provides insights into the connectivity and spanning trees of a graph, as
 1023 detailed in the Matrix-Tree Theorem Harary (1962).

4. **Weighted in-degrees**.

1024
 1025 $d_i = \sum_k M_{ik} = M_{i1} + M_{i2},$

1026 the total incoming weight to subpopulation i . The concept of in-degree is a basic measure
 1027 in graph theory, indicating the number of edges arriving at a node Diestel (2005).
 1028

1029 Here, through algebraic manipulation and careful rearrangement, we derive a form of the edge-of-
 1030 chaos condition that is symmetric across subpopulations and expressed entirely in terms of familiar
 1031 graph-theoretic quantities—such as trace, off-diagonal trace, determinant, and in-degree of the con-
 1032 nectivity matrix. This reformulation reveals how the topology of structured neural networks directly
 1033 shapes the onset of criticality.

1034 **A.3 NUMERIC CALCULATION OF FISHER INFORMATION FROM MONTE-CARLO**

1035 In the main text, we benchmark the analytic expression of the Fisher information against a direct
 1036 Monte-Carlo estimate obtained from explicit simulations of the recurrent neural network (RNN).
 1037 The numerical procedure consists of three main stages: (i) initialization of the random block-
 1038 structured connectivity, (ii) simulation of neural trajectories under baseline and perturbed inputs,
 1039 and (iii) estimation of derivatives via symmetric finite differences.
 1040

1041 **A.3.1 NETWORK INITIALIZATION**

1042 The network consists of N neurons partitioned into M subpopulations with sizes $n_m = f_m N$.
 1043 Synaptic connectivity is represented by a block-structured random matrix $J \in \mathbb{R}^{N \times N}$. Each block
 1044 J_{mn} is sampled i.i.d. from a Gaussian distribution

$$1045 \quad J_{kl} \sim \mathcal{N}\left(0, \frac{g_{mn}^2}{N}\right), \quad k \in \text{pop}_m, \quad l \in \text{pop}_n,$$

1046 where g_{mn} denotes the population-dependent gain parameter. This choice controls the effective re-
 1047 current gain while ensuring that connectivity statistics remain stable as N increases. Here k indexes
 1048 a postsynaptic neuron in population m and l indexes a presynaptic neuron in population n . This
 1049 blockwise construction ensures that the recurrent connectivity statistics are determined by the gain
 1050 matrix g while preserving the correct population sizes.
 1051

1052 **Dynamical simulation.** Neural activity is described by pre-activations $x_t \in \mathbb{R}^N$ and firing rates
 1053 $S_t = \tanh(x_t)$. The recurrent dynamics evolve according to

$$1054 \quad x_{t+1} = JS_t + \sigma \xi_t, \quad \xi_t \sim \mathcal{N}(0, I),$$

1055 with additive Gaussian noise of variance σ^2 . At initialization, an external input θ is injected into the
 1056 first population, implemented by setting $x_{1:n_1} \leftarrow \theta$. Multiple trajectories are simulated in parallel
 1057 to estimate ensemble averages.
 1058

1059 **A.3.2 PERTURBATION PROTOCOL**

1060 To estimate the Fisher information with respect to the input parameter θ , we simulate network dy-
 1061 namics under three input conditions: baseline θ , positively perturbed $\theta + \Delta\theta$, and negatively per-
 1062 turbed $\theta - \Delta\theta$. For each condition, we record the full trajectory of neural activities $\{\mathbf{h}(t)\}_{t=1}^T$.
 1063 Throughout the simulations, we set the baseline input to $\theta = 0$.
 1064

1065 **A.3.3 FISHER INFORMATION ESTIMATION**

1066 The sensitivity of mean activity to θ is approximated via symmetric finite differences:

$$1067 \quad \frac{\partial \mu_t}{\partial \theta} \approx \frac{\mu_t(\theta + \Delta\theta) - \mu_t(\theta - \Delta\theta)}{2\Delta\theta},$$

1068 where $\mu_t(\theta)$ is the average firing rate at time t across trajectories. Squaring and averaging these
 1069 derivatives over neurons within population m yields a time-resolved Fisher information stored in
 1070 each subpopulation about the input stimulus over time as in Eq equation 4
 1071

1072 Here, we also show the MSE between the simulated fisher information and the analytic prediction
 1073 of the fisher information in Fig. S3

Figure S3: **Convergence of simulated Fisher information to analytic predictions.** Mean-squared error (MSE) between Fisher information trajectories obtained from simulations and from the analytic diffusion operator, across the three connectivity configurations in Fig. 2a–c. The MSE decreases rapidly with network size and becomes negligible for $N \geq 1000$. An exponential fit (dashed line) is shown to highlight the convergence trend.

A.4 TEST OF FISHER INFORMATION WITH NATURAL IMAGES AS INPUT

Experimental setup. To evaluate whether Fisher information predicts geometry preservation, we tested the framework using natural inputs. We used 15,619 IndoorCVPR_09 images, each flattened to a 7,500-dimensional vector, and presented them to the first subpopulation of a two-population recurrent network with $N = 15,000$ neurons, $f_1 = f_2 = 0.5$, and noise variance $\sigma = 0.1$. Each image was processed independently, and at each time step t we recorded the activities of both subpopulations.

Measuring geometry preservation. Geometry preservation was quantified by comparing pairwise distances between images in the input space to pairwise distances between their corresponding neural representations. Specifically: 1. For the input set, we computed all pairwise Euclidean distances $D_{\text{input}}(i, j) = \|x_i - x_j\|_2$ between the flattened image vectors. 2. For the network representations at time t , we computed analogous pairwise distances $D_{\text{rep}}(i, j) = \|h_i(t) - h_j(t)\|_2$ for each subpopulation. 3. To assess how faithfully the network preserved geometry, we calculated the Pearson correlation coefficient between the upper triangular entries of the two distance matrices,

$$\rho(t) = \text{corr}(\text{vec}(D_{\text{input}}), \text{vec}(D_{\text{rep}}(t))),$$

where $\rho = 1$ indicates perfect isometry (exact geometry preservation) and lower values indicate increasing distortion.

This procedure yields a time series $\rho_m(t)$ for each subpopulation m , quantifying how input geometry is preserved over time as information diffuses through the network.

Interpretation. Although this metric differs from Fisher information, it recovers the same qualitative behavior. In particular, the analytic framework predicts both (i) the oscillatory dynamics of information flow across subpopulations and (ii) the relative ability of different connectivity motifs to preserve the geometry of natural images.

In the main text Theorem 1, we provided an intuitive argument—rooted in compressed sensing and the Restricted Isometry Property (RIP)—that a Fisher-optimal (geometrically neutral) initialization approximately preserves pairwise distances for any sufficiently high-dimensional input ensemble, provided the input sparsity remains below the effective dimensionality of the network (Foucart & Rauhut, 2013). In this regime, the encoding dynamics are expected to generalize across datasets and input statistics.

To test this prediction, we repeated the full geometry-preservation analysis using the CIFAR-10 dataset (32×32 RGB images across 10 classes), scaled to the same dimensionality as the IndoorCVPR_09 images (flattened to dimension 7500). The resulting information-preservation dynamics are nearly identical to those shown in Fig. 2d–f. Quantitatively, the Pearson correlations between the

1134 IndoorCVPR and CIFAR-10 information-flow trajectories are exceptionally high (0.993, 0.992, and
 1135 0.980; all $p \ll 10^{-60}$), confirming that the Fisher-optimal initialization induces dataset-independent
 1136 encoding dynamics.

1137 Our framework views memory as dynamic geometry preservation rather than static attractor storage.
 1138 This perspective naturally supports generalization at the encoding stage: once initialized at the
 1139 Fisher-optimal point, the network preserves the relational geometry of novel, unseen inputs with-
 1140 out additional training. The consistency of results across IndoorCVPR and CIFAR-10 demonstrates
 1141 this theoretical prediction—geometry-preserving dynamics arise from the structure of the Fisher-
 1142 optimized initialization itself, not from dataset-specific learning.

1144
 1145 Figure S4: **Geometry preservation for CIFAR-10 inputs.** Analysis analogous to Fig. 2, showing
 1146 pairwise correlations between input distances and network representations. Architectures predicted
 1147 to optimize Fisher retention also best preserve input geometry. The Pearson correlations between the
 1148 IndoorCVPR and CIFAR-10 information-flow trajectories (0.993, 0.992, and 0.980; all $p \ll 10^{-60}$)
 1149 confirm that Fisher-information-optimized initialization preserves pairwise distances independently
 1150 of the specific input ensemble, provided the input sparsity is below the effective dimensionality of
 1151 the network.

1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163

A.5 PROOF OF OPTIMAL STRUCTURE FOR FISHER INFORMATION IN A CHAINED LINEAR NETWORK

1164 In the linear limit—when the activation function is purely linear—one has $\langle (S')^2 \rangle_n = 1$ for all sub-
 1165 populations. The sensitivity block in the Fisher diffusion operator therefore reduces to the identity,
 1166 so that

$$A_{\text{linear}} = G.$$

1167 Without loss of generality, consider a chain of four subpopulations with unit self-recurrence:

$$A_{\text{linear}} = G = \begin{pmatrix} 1 & G_{12} & 0 & 0 \\ G_{21} & 1 & G_{23} & 0 \\ 0 & G_{32} & 1 & G_{34} \\ 0 & 0 & G_{43} & 1 \end{pmatrix}. \quad (24)$$

1174 Optimal Fisher information requires that the spectral radius of A equals one, i.e. the largest eigen-
 1175 value satisfies $\lambda_{\max} = 1$. Equivalently,

$$0 = \det(A - I) = \det \begin{pmatrix} 0 & G_{12} & 0 & 0 \\ G_{21} & 0 & G_{23} & 0 \\ 0 & G_{32} & 0 & G_{34} \\ 0 & 0 & G_{43} & 0 \end{pmatrix} = G_{12}G_{21}G_{34}G_{43}.$$

1177 For efficient information transmission, the input must enter the first subpopulation and propagate
 1178 forward through the chain. Hence the forward gains G_{21} and G_{43} cannot vanish. To satisfy $\det(A -$
 1179 $I) = 0$, we therefore require

$$G_{12} = 0 \quad \text{or} \quad G_{34} = 0.$$

1180 This condition eliminates the global feedback loops that would otherwise close the chain, giving rise
 1181 to the broken-loop optimal structure illustrated in Fig. 4. The exact values for the block gain matrix
 1182 G for each optimized network is shown in Fig. S5

Figure S5: Optimized connectivity matrices G for networks composed of 2 to 8 neuronal subpopulations (insets). Each tick color corresponds to a different number of subpopulations. Matrix element G_{mn} represents the strength of the connection from subpopulation n to subpopulation m . The final panel illustrates that the total Fisher information \bar{I} scales approximately linearly with the number of subpopulations in the optimally connected network.

A.6 ADDITIONAL EXPERIMENTAL TEST ON SEQUENTIAL MEMORY TASK

A.6.1 COPY TASK

Test on multiple delays. To further validate our theoretical predictions, we conducted additional sequential-memory experiments across multiple delay lengths ($T_{\text{delay}} = 40, 50, 60$) and multiple random seeds (see Figs. S6, S7, and S8). Networks initialized with Fisher-information-optimized weights retain sensitivity to input perturbations occurring far in the past, thereby preserving stimulus information over long times while preventing vanishing or exploding gradients. This leads to more stable dynamics and more efficient training of the decoder.

Comparison with the common initialization schemes. We further compared Fisher-optimized initialization with standard schemes, including Xavier, Kaiming, orthogonal, and unitary initialization. Across all delay lengths and seeds, Fisher-information-optimized initialization consistently achieved lower loss, higher accuracy, and faster convergence. These results support the theoretical prediction that operating near the Fisher-optimal regime preserves temporal sensitivity and stabilizes gradient flow, enabling more reliable and efficient learning in sequential-memory tasks.

A.6.2 APPLYING FISHER-OPTIMAL INITIALIZATION TO LSTM GATES.

We further evaluated whether Fisher-information-optimized initialization can provide benefits in more complex recurrent architectures such as LSTMs and GRUs. For clarity, we recall the standard forward pass of an LSTM with forget gate (Hochreiter & Schmidhuber, 1997):

$$\begin{aligned}
 f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f), \\
 i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i), \\
 o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o), \\
 \tilde{c}_t &= \sigma_c(W_c x_t + U_c h_{t-1} + b_c), \\
 c_t &= f_t \odot c_{t-1} + i_t \odot \tilde{c}_t, \\
 h_t &= o_t \odot \sigma_h(c_t).
 \end{aligned} \tag{25}$$

Figure S6: **Copy Task with RNN.** Comparison of Fisher-information-optimized initialization with standard initialization schemes (Xavier, Kaiming, orthogonal, and unitary). Shown are the cross-entropy loss and accuracy during training on a copy task with delay length $T_{\text{delay}} = 40$, evaluated across four independent random seeds.

Unlike the simple RNN model studied in our theory, LSTMs maintain *two* hidden states (c_t and h_t), and the dynamics cannot be written as a single recurrent update of the form

$$h_t = \phi(W_{ih}x_t + W_{hh}h_{t-1} + b), \quad (26)$$

which is the setting under which our Fisher-information analysis is derived. Consequently, our theory does *not* describe the full Fisher-information flow of an LSTM or GRU, and we do not claim any architectural advantages or theoretical optimality for these models.

However, an important observation is that *each gate* in an LSTM computes a recurrent transformation of the form

$$\text{gate}_t = \sigma(Wx_t + Uh_{t-1} + b), \quad (27)$$

which is structurally identical to the RNN update analyzed in our framework. Thus, while the theory does not extend to the entire LSTM architecture, it is still meaningful to ask whether initializing these gate-level recurrent components using Fisher-optimal weights improves training performance on tasks requiring long-range memory.

To test this, we replaced the RNN in the copy task with an LSTM and initialized the recurrent matrices of each gate using our Fisher-optimal rule, comparing against standard schemes (Xavier, Kaiming, orthogonal, and unitary). As shown in Fig. S9, Fisher-optimal initialization consistently ranks among the top-performing schemes across training runs.

These results provide empirical evidence that—even though our theory is developed strictly for RNNs—the Fisher-optimal initialization of the *RNN-like components* inside an LSTM can still enhance temporal sensitivity, reduce gradient degradation, and improve learning efficiency on long-distance sequential-memory tasks. Importantly, this observation supports the generality of the information-flow perspective, while remaining consistent with the limitations of our theoretical framework.

A.6.3 SEQUENTIAL MNIST

Following the main text, we include additional experiments testing the training performance of networks initialized with Fisher-information-optimized weights versus standard schemes (Xavier, Kaiming, orthogonal, and unitary). Because the recurrent weights are fixed in this setup, the task

Figure S7: Copy Task with RNN. Comparison of Fisher-information-optimized initialization with standard initialization schemes (Xavier, Kaiming, orthogonal, and unitary). Shown are the cross-entropy loss and accuracy during training on a copy task with delay length $T_{\text{delay}} = 50$, evaluated across four independent random seeds.

Figure S8: Copy Task with RNN. Comparison of Fisher-information-optimized initialization with standard initialization schemes (Xavier, Kaiming, orthogonal, and unitary). Shown are the cross-entropy loss and accuracy during training on a copy task with delay length $T_{\text{delay}} = 60$, evaluated across four independent random seeds.

Figure S9: Copy task with application of Fisher–optimized initialization to LSTM gates. Each gate of the LSTM is initialized using the Fisher–information–optimized weights derived for recurrent networks. Although our theoretical framework formally applies to single–state RNNs, and thus does not fully capture the dual–state dynamics of LSTMs, the Fisher–based initialization still provides stable gradient propagation in practice. Shown are the cross-entropy loss and accuracy on the copy task with delay length $T_{\text{delay}} = 50$, compared with standard initialization schemes (Xavier, Kaiming, orthogonal, and unitary) across four independent random seeds.

provides a direct assessment of how different initializations affect the network’s ability to preserve information from inputs far in the past. In turn, this tests how well the preserved memory supports the effective training of the decoder (Fig. S10).

Across four random seeds, Fisher–information–optimized initialization yields consistently lower loss, higher accuracy, and faster convergence than all baseline initializations. These results confirm that Fisher-derived initializations improve long–range memory by keeping the neural activity at later time steps sensitive to perturbations in early inputs, thereby stabilizing gradient flow and facilitating more effective decoder training.

The theory is general across input distributions. Our theoretical results show that Fisher–information–optimal initialization preserves pairwise distances between inputs under the mean-field limit. Because these initialization rules are derived analytically—rather than learned from any specific dataset—the theory predicts that they will preserve input perturbations for *any* stimulus distribution, provided the network is sufficiently large relative to the sparsity of the inputs. This requirement directly parallels the conditions for approximate isometry in compressed-sensing theory and the Johnson–Lindenstrauss lemma (Foucart & Rauhut, 2013), where high-dimensional random projections preserve pairwise distances with high probability.

In Fig. S4, we show that the Fisher-information dynamics across subnetworks remain consistent across two qualitatively different datasets (CIFAR-10 and IndoorCVPR), regardless of whether the network is exactly at the Fisher-optimal point. This demonstrates that the structure of the initialization—and the resulting information flow—is governed by the theoretical framework rather than by dataset-specific statistics. The predicted population-level information dynamics therefore generalize naturally across domains.

To further evaluate this generality in a behavioral task, we conducted sequential-classification experiments on both CIFAR-10 and IndoorCVPR. CIFAR-10 has similar spatial resolution to MNIST (32×32 vs. 28×28) with ten classes. IndoorCVPR is substantially more challenging, containing

Figure S10: Sequential MNIST with fixed RNN weights. Training performance of networks initialized with Fisher-information-optimized weights compared against standard schemes (Xavier, Kaiming, orthogonal, and unitary). Plotted are the cross-entropy loss and accuracy on the Sequential MNIST task, evaluated across four independent random seeds.

high-resolution images (128×128) spanning 67 categories. Learning all 67 classes would require a substantially more expressive decoder, which is outside the scope of this work: our focus is on the encoding and memory dynamics of the recurrent network, not on optimizing a deep classification head. Therefore, to maintain the same simple architecture used throughout the paper—an RNN paired with a single-layer MLP decoder—we restricted IndoorCVPR to five representative classes. This setup ensures that differences in performance primarily reflect the network’s memory properties rather than decoder complexity.

Across both datasets (Fig. S11 S12), Fisher-information-optimized initialization consistently yields lower loss, higher accuracy, and faster convergence than standard initialization schemes (Xavier, Kaiming, orthogonal, and unitary). These results mirror those obtained on Sequential MNIST and strongly support the theoretical prediction: Fisher-optimal initialization enhances long-range memory by maintaining sensitivity of the recurrent activity at late time steps to small perturbations in early inputs. This stabilizes gradient flow and allows the decoder to train more reliably and efficiently on sequential tasks.

Figure S11: Sequential classification on CIFAR10 with fixed RNN weights. Using the same Sequential-MNIST framework, we apply the RNN to the CIFAR10 dataset. Training performance is shown for networks initialized with Fisher-information-optimized weights compared against standard schemes (Xavier, Kaiming, orthogonal, and unitary). Plotted are the cross-entropy loss and accuracy on the sequential classification task, evaluated across four independent random seeds.

Figure S12: Sequential classification on IndoorCVPR with fixed RNN weights. Using the same Sequential-MNIST framework, we apply the RNN to the IndoorCVPR dataset restricted to five classes (airport.inside, artstudio, auditorium, bakery, bar). Training performance is shown for networks initialized with Fisher-information-optimized weights compared against standard schemes (Xavier, Kaiming, orthogonal, and unitary). Plotted are the cross-entropy loss and accuracy on the sequential classification task, evaluated across four independent random seeds.