
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS INFINITE-LONG PREFIX IN TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompting and context-based fine-tuning methods, which we call Prefix Learning,
have been proposed to enhance the performance of language models on various
downstream tasks. They are empirically efficient and effective, matching the
performance of full parameter fine-tuning, but the theoretical understandings are
limited. In this paper, we aim to address this limitation by studying their ability
from the perspective of prefix length. In particular, we provide a convergence
guarantee for training an ultra-long prefix in a stylized setting using the Neural
Tangent Kernel (NTK) framework. Based on this strong theoretical guarantee, we
design and implement an algorithm that only needs to introduce and fine-tune a
few extra trainable parameters instead of an infinite-long prefix in each layer of a
transformer, and can approximate the prefix attention to a guaranteed polynomial-
small error. Preliminary experimental results on vision, natural language, and math
data show that our method achieves superior or competitive performance compared
to existing methods like full parameters fine-tuning, P-Tuning V2, and LoRA. This
demonstrates our method is promising for parameter-efficient fine-tuning.

1 INTRODUCTION

The advent of Large Language Models (LLMs) and Vision LLMs (vLLMs) has significantly advanced
the field of Artificial Intelligence (AI), with prominent examples like ChatGPT (ChatGPT, 2022),
GPT-4 (Achiam et al., 2023; Bubeck et al., 2023), Claude (Claude-3, 2024), Llama (Touvron et al.,
2023a;b), Gemini (Gemini, 2024), ViT (Dosovitskiy et al., 2020), DETR (Carion et al., 2020), BLIP
(Li et al., 2022; 2023a), CLIP (Radford et al., 2021). They have exhibited impressive performances
across a spectrum of tasks, encompassing chat systems (Maaz et al., 2023; Xu et al., 2023a; Zheng
et al., 2024), text-to-image conversion (Qiao et al., 2019; Frolov et al., 2021; Zhang et al., 2023),
AI mathematical inference (Hendrycks et al., 2020; Yu et al., 2023a; Yao et al., 2023), and many
more. However, despite these advancements, pre-existing LLMs often fall short in specialized
domains that demand a deeper understanding of professional knowledge (Tajbakhsh et al., 2016;
Devlin et al., 2018; Gururangan et al., 2020; Hu et al., 2021; Sun, 2023; Kasneci et al., 2023; Li
et al., 2023b; Thirunavukarasu et al., 2023; Li et al., 2024b; Wang et al., 2024). This has led to
the development of fine-tuning/adaptation (Shi et al., 2022; Xu et al., 2023b; Shi et al., 2024a)
methodologies aimed at enhancing the proficiency of these models in executing more specialized
tasks (Mangrulkar et al., 2022). Several notable contributions in this area, such as LoRA (Low-Rank
Adaptation, Hu et al. (2021)), P-Tuning (Liu et al., 2021b; 2023), and (IA)3 (Liu et al., 2022), have
displayed performances rivaling those of full-parameter fine-tuning techniques. This underscores the
potential of these fine-tuning strategies to further refine the capabilities of Large Language Models.

Among the methods proposed, most context-based fine-tuning methods, e.g., Prompt-Tuning (Lester
et al., 2021; Liu et al., 2021a), Prefix-Tuning (Li & Liang, 2021), P-Tuning (Liu et al., 2023; 2021b),
use enhanced input sequences (or virtual prompt, a.k.a soft prompt) to optimize their model outputs.
These methods are gaining significant interest due to their ease of implementation across various
model architectures, and also prevention of catastrophic forgetting with static pre-trained parameters
(Wang et al., 2023b; Sohn et al., 2023; Yang et al., 2024). We call the above approaches Prefix
Learning since they improve the performance by optimizing a prefix matrix added to the input in
each attention layer of the LLMs (see detailed formulation in Section 2).

Despite its wide use and strong empirical performance, we still have a limited understanding of
why and how prefix learning operates (Wang et al., 2023a; Petrov et al., 2024a;b). One common
phenomenon in prior empirical studies is that prefix learning results in better downstream performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

P X

Attention

Prefix Attention NTK-Attention (ours)

k X

: Trainable Parameter

: Frozen Parameter

: Layer Input Matrix

Complexity = O(mL+L)
Num Params = md

Complexity = O(Ld+L)
Num Params = rs + sd + r

22

W
W

: Backbone

Attention
ZA ZB

Figure 1: Illustration of existing prefix attention methods (Algorithm 1) and our NTK-Attention (Al-
gorithm 2). Compared to the former, NTK-Attention significantly reduces the number of parameters
and the time complexity. Here, X ∈ RL×d is the input of this layer, W = [WQ,WK ,WV] is frozen
weights of attention, P ∈ Rm×d is the trainable prefix matrix and ZA ∈ Rr×s, ZB ∈ Rs×d, k ∈ Rr

are the trainable parameters in our method. L is the input length, d the input dimension, m the
prefix length, and r a hyperparameter in NTK-attention (i.e., the dimension of the constructed feature
mapping; see Section 4). Note that m≫ L and m≫ d, and r = poly(d) (usually be chosen to d or
2d), s ≤ ⌊d/2⌋ (low-rank of ZA, ZB) are used in our experiments.

when the prefix length increases (Lester et al., 2021; Liu et al., 2023). We call this phenomenon
scaling law in prefix learning: the longer the prefix, the larger downstream dataset the model can fit,
and thus the better performance the model would have. Then intuitively, we would like to ask:

What happens when the prefix length is large or even tends to infinity?

The answer to this cannot be directly figured out via empirical evaluations, since it is impractical to
implement networks with ultra-long or even infinite prefixes in practice. Therefore, we first perform
a theoretical analysis of prefix learning. We study the optimization of ultra-long prefix learning via
the Neural Tangent Kernel (NTK) technique (Jacot et al., 2018), which has been used for analyzing
overparameterized networks and thus is suitable for ultra-long prefix learning. Based on the insights
gained from the analysis, we propose our method, NTK-attention, which reparameterizes prefix
learning and can approximate infinite-long prefix learning using a finite number of parameters. We
also conduct some empirical evaluations of our method on vision, natural language understanding,
and math inference datasets to demonstrate its effectiveness.

Specifically, we have made the following contributions:

• We first perform a theoretical analysis of optimizing an ultra-long prefix in a stylized attention
network; see Section 3. We consider a simplified attention network, and show that when prefix
length m is sufficiently large (i.e., prefix learning is sufficiently over-parameterized), the training
can be analyzed via NTK, which leads to our theoretical guarantee of convergence to small errors.
This also provides theoretical support for scaling law in prefix learning.

• We then propose our NTK-Attention (Algorithm 2), motivated by the above strong theoretical
guarantee; see Section 4. Our method approximates existing prefix attention (Algorithm 1) by
utilizing three trainable parameters ZA, ZB and k, to replace the parameter in prefix attention
(the prefix matrix P). This allows scaling the prefix length without large memory usage and
computational time that increases with the prefix length. It reduces the computation complexity
from O(mL) to O(L2), where L is the input length and m is the prefix length. See Figure 1 for an
illustration.

• We further conduct experiments on vision, language and math datasets to verify our theoretical
results; see Section 5. The experiments include (1) a comparison among our NTK-Attention, full
parameters fine-tuning, and LoRA on CIFAR-100, Food-101 and Tiny-Imagenet datasets with the
same pretrained ViT backbone; (2) a comparison among our NTK-Attention, P-Tuning V2, and
LoRA on SuperGLUE, WikiText-103, Penn TreeBank and LAMBADA datasets with the same
pretrained ChatGLM3-6B and OPT-{125M, 350M, 1.3B, 2.7B, 6.7B} family; (3) a comparison
among our NTK-Attention and LoRA on GSM8K and MATH datasets with supervised fine-tune
pretrained models LLAMA-3.2; (4) an ablation study to validate sensitivity of hyper-parameters in
NTK-Attention; (5) a comparison of the computational costs between our method and standard
prefix learning on random data. The empirical results show that on average our NTK-Attention

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

method achieves better performance than the competitors. For example, on SuperGLUE datasets, it
achieves an average accuracy that is 1.07% higher than LoRA and 12.94% higher than P-Tuning
V2. It is also observed that our method maintains low time and memory costs while those of
prefix learning scales with prefix length. The experimental results demonstrate that our method is
effective and efficient and supports our theoretical analysis.

1.1 RELATED WORK

Prefix Learning. Prefix Learning (Lester et al., 2021; Ding et al., 2021; Wang et al., 2022b; Zhou
et al., 2022; Liu et al., 2021a; Petrov et al., 2024a; Wu et al., 2023), including Prompt-Tuning (Lester
et al., 2021), Prefix-Tuning (Li & Liang, 2021), P-Tuning (Liu et al., 2023; 2021b), Reweighted
In-Context Learning (RICL) (Chu et al., 2023) and so on, is proposed to enhance the performance
of language models on the downstream tasks and to reduce the costs of computational resources of
fine-tuning the whole model. Those methods optimize task-specific prompts for downstream task
improvement. On the other hand, besides the Parameter-Efficient-Fine-Tuning (PEFT) approaches
(Mangrulkar et al., 2022) we mentioned above, Retrieval Augmented Generation (RAG) (Lewis et al.,
2020; Jiang et al., 2023; Gao et al., 2023b) and Chain-of-Thought (CoT) prompting (Wei et al., 2022b;
Wang et al., 2022a; Fu et al., 2022) can also be considered as prefix learning. We conclude all these
works to an optimization problem that improves the prefix based on task-specific measurements.

Neural Tangent Kernel. Neural Tangent Kernel (NTK) (Jacot et al., 2018) studies the gradient flow
of neural networks in the training process. They showed neural networks are equivalent to Gaussian
processes in the infinite-width limit at initialization. A bunch of works has explained the strong
performance and the learning ability of neural networks at over-parameterization, such as (Li & Liang,
2018; Du et al., 2019; Song & Yang, 2019; Allen-Zhu et al., 2019; Wei et al., 2019; Bietti & Mairal,
2019; Lee et al., 2020; Chizat & Bach, 2020; Shi et al., 2021; Zhou et al., 2021; Seleznova & Kutyniok,
2022; Gao et al., 2023a; Li et al., 2024a; Shi et al., 2024c) and many more. Furthermore, Arora et al.
(2019) gave the first exact algorithm on computing Convolutional NTK (CNTK), Alemohammad
et al. (2020) proposed Recurrent NTK, and Hron et al. (2020) presented infinite attention via NNGP
and NTK for attention networks. These works have demonstrated advanced performance by utilizing
NTK in different neural network architectures. In particular, Malladi et al. (2023) have studied the
training dynamic of fine-tuning LLMs via NTK and confirmed the efficiency of such methods.

Theory of Understanding Large Language Models. Since the complicated transformer-based
architecture and stochastic optimization process of LLMs lead the study of their behaviors to be a
challenge, analyzing LLMs through some theoretical guarantee helps in providing insights to improve
and design the next generation of AI systems. This topic includes efficient LLMs (Alman & Song,
2023; 2024a;b; Han et al., 2024; Kacham et al., 2023; Addanki et al., 2023; Deng et al., 2024; Shi
et al., 2024b), optimization of LLMs (Deng et al., 2023; Li et al., 2024a), white-box transformers (Yu
et al., 2023b;c; Ferrando et al., 2024; Pai et al., 2024), analysis of emergent abilities of LLMs (Brown
et al., 2020; Wei et al., 2022a; Allen-Zhu & Li, 2023a;b;c; 2024), etc. Especially, (Alman & Song,
2023) proved that the hardness of fast attention can be achieved within n1+o(1) times executions,
one effective way is to construct a high-order polynomial mapping based on Taylor expansion of the
exponential function exp(·), and it inspired the design of our NTK-Attention method.

2 PRELIMINARY: PREFIX LEARNING

In this section, we provide the detailed formulation for prefix learning, which optimizes prefix
matrices in the attention layers of transformer-based LLMs. Focusing on one single-layer attention
network, we formalize it as a regression problem that optimizes a prefix matrix.

Prefix for Attention Computation. Let X ∈ RL×d be an input matrix to the attention network,
where L and d are the input length and dimension. Prefix learning freezes the query, key, and
value parameter matrices in the pretrained attention network (denoted as WQ,WK ,WV ∈ Rd×d,
respectively). It introduces a trainable prefix matrix P ∈ Rm×d, which stands for m virtual token

vectors (or soft prompt). Let S :=

[
P
X

]
be the concatenation of the prefix and the input. Then

the query, key, and value matrices are given by Q := XWQ,KP := SWK , VP := SWV , and the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

attention with the prefix is:

PrefixAttn(X,P) := Softmax(
QK⊤

P√
d

) · VP ∈ RL×d. (1)

Here Softmax is the row-wise softmax computation, i.e., for any d1, d2 > 0, Z ∈ Rd1×d2 ,
Softmax(Z) := [S(Z1,∗),S(Z2,∗), · · · ,S(Zd1,∗)]

⊤ ∈ Rd1×d2 where S(z) := exp(z)
⟨exp(z),1d2

⟩ ∈ Rd2 for

any z ∈ Rd2 . The attention computation with prefix is summarized in Algorithm 1.

Prefix Learning. The prefix P is trained on a fine-tuning dataset. Denote the dataset as Dpl =
{(Xi, Yi)}ni=1 where n is the dataset size, and Xi, Yi ∈ RL×d. Let ℓ(·, ·) denote the loss function for
the specific task (e.g., prompting, context-based fine-tuning, etc). The training objective of prefix
learning is then:

min
P∈Rm×d

Lpl(W) :=

n∑
i=1

ℓ(PrefixAttn(Xi, P), Yi). (2)

Scaling Prefix Length. A rich line of studies (Liu et al., 2021b; Lester et al., 2021; Liu et al., 2023;
Reynolds & McDonell, 2021; Arora et al., 2022; Brown et al., 2020; Dong et al., 2022; Shi et al.,
2023; Von Oswald et al., 2023; Xu et al., 2024; Fu et al., 2022; Agarwal et al., 2024; Kaplan et al.,
2020; Hoffmann et al., 2022) have reported a common observation that as the prefix length increases,
the model’s ability to master complex skills also improves. Specifically, the performance of fine-tuned
models is enhanced when the prefix length grows within a certain range. A similar trend is observed
in prompting methods and in-context learning (ICL), where longer and more complex prompts lead
to better inference abilities in LLMs, and providing more examples in ICL results in improved LLM
performance. We summarize this as the scaling law in prefix learning: the longer the prefix length for
fine-tuning, the larger dataset the model can fit, thus, the more complicated skill it can master. This
motivates investigating prefix learning with long prefixes.

In this paper, we examine the implications of using a significantly large prefix length, denoted
as m ≫ L and m ≫ d, which is prevalent across various prompt-based methods. The primary
objective of Prefix Learning is to enhance the LLMs’ outputs by identifying an advanced prefix
during the generation process. For instance, the search for optimal example pairs to improve ICL
(Nguyen & Wong, 2023) and the development of prompt engineering tailored for agent frameworks to
address specific task requirements (dif, 2024) often necessitate the use of exceptionally long prefixes.
Moreover, given the modern application demands related to long-context scenarios, optimizing
previous tokens to improve next-token prediction can be framed as a prefix optimization problem.
Thus, a thorough investigation into the optimization of infinitely long prefixes is essential for
understanding the theoretical significance of the prefix matrix in LLMs.

3 THEORETICAL ANALYSIS OF PREFIX LEARNING VIA NTK

In this section, we explore the theory behind prefix learning with ultra-long prefixes. We first present
the theoretical setting for a simplified model F(W,x, a) in Section 3.1, and then in Section 3.2 intro-
duce the formal definition of the neural tangent kernel for our problem and confirm the convergence
of the kernel matrices needed for performing NTK analysis. In Section 3.3 we state the main result, a
convergence guarantee of prefix learning in this setting (the detailed analysis is in the appendix).

3.1 PROBLEM SETUP

Model. The attention computation with prefix P given is by Eq. (1). Since the attention parameters

are fixed, it can be rewritten as Softmax(X̃P⊤ + b) ·
[
PWV

b′

]
where X̃ = XWQW

⊤
K/
√
d, b =

XWQW
⊤
KX⊤/

√
d, and b′ = XWV . We view the input sequence as one token (i.e., assuming

L = 1) such that the input X and thus X̃ become vectors, simplifying our analysis from matrix-form
calculations to vector-form. Furthermore, ignoring the bias terms, and introducing notations x := X̃⊤

and W = P⊤, the attention simplifies to Softmax(xW) ·W⊤WV =
∑

r∈[m] exp(w
⊤
r x)wrWV∑

r∈[m] exp(w
⊤
r x)

where

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

wr is the r-th column of W . We therefore consider the following two-layer attention model:

F(W,x, a) := m

∑
r∈[m] exp(w

⊤
r x)wrar∑

r∈[m] exp(w
⊤
r x)

(3)

with the hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer weights a= [a1, a2,
. . . , am]⊤ ∈ Rm. Such a stylized setting has been widely used for studying the learning behavior of
transformer-based models (Deng et al., 2023; Chu et al., 2023; 2024; Li et al., 2024a), and they gave
detailed derivations and guarantees for its connection to attention. Furthermore, our analysis can be
extended to models with bias terms and matrix inputs rigorously.

Training. Consider a training datasetD = {(xi, yi)}ni=1 where the i-th data point (xi, yi) ∈ Rd×Rd.
Assume ∥xi∥2 ≤ 1 and ∥yi∥2 ≤ 1 for any i ∈ [n]. The training loss is measured by the ℓ2 norm
of the difference between model prediction F(W,xi, a) and ideal output vector yi. Formally, the
training objective is:

L(W) :=
1

2

n∑
i=1

∥F(W,xi, a)− yi∥22. (4)

The weights W are initialized to W (0) as follows: ∀r ∈ [m], sample wr(0) ∼ N (0, Id) indepen-
dently. For output-layer a, randomly sample ar ∼ Uniform{−1,+1} independently for r ∈ [m] and
fix a during the training. Then use gradient descent (GD) to update the trainable weights W (t) with a
fixed learning rate η > 0. Then for t ≥ 0:

W (t+ 1) := W (t)− η · ∇WL(W (t)). (5)

3.2 NEURAL TANGENT KERNEL

Here, we give the formal definition of NTK in our analysis, which is a kernel function that is driven
by hidden-layer weights W (t) ∈ Rd×m. To present concisely, we first introduce an operator function
in the following. For all r ∈ [m], k ∈ [d] and i ∈ [n]:

vk,r(W) := Wk,r · ar · 1m −Wk,∗ ◦ a ∈ Rm, Gi,r(W) := mSr(W
⊤xi) · ⟨vk,r,S(W⊤xi)⟩ ∈ R

where S(z) = exp(z)
⟨exp(z),1m⟩ ∈ Rm for any z ∈ Rm, and ◦ denotes element-wise product.

Then, we define the kernel matrix H(W (t)) as an nd× nd Gram matrix, where its (k1, k2)-th block
is an n× n matrix for k1, k2 ∈ [d], and the (i, j)-th entry of the block is:

[Hk1,k2]i,j(W (t)) :=
1

m
x⊤
i xj

m∑
r=1

Gi,r(W (t)) · Gj,r(W (t)).

We can show that Sr(W⊤xi) = O(1
m) and ⟨vk,r,S(W⊤xi)⟩ = O(1), thus Gi,r(W) is O(1). Then

H(W) is close to H∗ := H(W (0)) when W is close to W (0). This kernel convergence is the key
needed for the NTK analysis and is formalized below (details in Appendix H).
Lemma 3.1 (Kernel convergence, informal version of Lemma H.3). For δ ∈ (0, 0.1) and B =

max{Cσ
√

log(nd/δ), 1}. Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m and satisfy ∥w̃r − wr(0)∥2 ≤ R for
any r ∈ [m], where R is some constant in (0, 0.01). Define H̃ := H(W̃) ∈ Rnd×nd. Then with
probability at least 1− δ, we have ∥H∗ − H̃∥ ≤ 8R

√
nd · exp(22B).

3.3 MAIN RESULT: LOSS CONVERGENCE GUARANTEE

Assumption on NTK H∗. In the NTK analysis framework for the convergence of training neural
networks, one widely-used and mild assumption is that H∗ is a positive definite (PD) matrix, i.e., its
minimum eigenvalue λ := λmin(H

∗) > 0 (Du et al., 2019; Oymak & Soltanolkotabi, 2020). With
this, our main result is presented as follows.
Theorem 3.2 (Main result, informal version of Theorem J.2). Assume λ > 0. For any ϵ, δ ∈ (0, 0.1),
B = max{Cσ

√
log(nd/δ), 1}, m = λ−2 poly(n, d, exp(B)), η = λm−1/ poly(n, d, exp(B))

and T̂ = Ω((mηλ)−1 log(nd/ϵ)). Then, after T̂ iterations of update (Eq. (5)), we have L(W (T̂)) ≤
ϵ holds with probability at least 1− δ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proof sketch of Theorem 3.2. We use the math induction to show that the weight w perturbation is
small so that the loss landscape is almost convex around the network’s initialization in Lemma J.3,
Lemma J.4 and Lemma J.5, which are based on Lemma 3.1. Then, we conclude the results by
standard convex optimization analysis. See the complete proof in Appendix J.1.

Discussion. Theorem 3.2 mainly describes the following fact for any dataset with n data points. After
initializing the prefix matrix from a normal distribution, assuming the minimum eigenvalue of NTK
λ > 0, setting m to be a large enough value so that the network is sufficiently over-parameterized.
Then with proper learning rate, the loss can be minimized in finite training time to an arbitrarily
small error ϵ. Corresponding to the real-world implementation, it explains that adequately long
prefix learning can master downstream tasks when fine-tuning LLMs. Furthermore, it also helps us
understand the working mechanism of prefix learning, inspiring us to explore the direction of using
ultra-long prefixes.

Now we connect our theory to the scaling law in prefix learning. Following (Kaplan et al., 2020),
we focus on the relationship between the loss and the computational cost. We prove that the loss
decreases with the computational cost scaling up, providing a theoretical confirmation about the
scaling law in prefix learning.

Proposition 3.3 (Scaling Law in Prefix Learning). We define N := O(md) as the number of
parameters, D := O(n) as the size of training dataset, Ccpt := O(NDT) as the total compute cost,
and α := nd. We choose T as Theorem 3.2, then the loss of training, denotes L, satisfies:

L ≈ α

[exp(ηλCcpt)]
1
α

Proof sketch of Proposition 3.3. This proof follows from the definitions of Ccpt, N, D and α and
Theorem 3.2.

Proposition 3.3 shows that the training loss of the prefix learning converges exponentially as we
increase the computational cost Ccpt, which primarily depends on the number of parameters and the
training time in prefix learning, further indicating a possible relationship for formulating scaling law
in prefix learning.

4 NTK-ATTENTION: APPROXIMATE INFINITE-LONG PREFIX ATTENTION

The preceding section discussed the convergence guarantee of training sufficiently long prefixes P in
attention networks (recall that the trainable parameter W is just P⊤). This strong theoretical property
inspires us to scale up the prefix length m. However, such prefix learning (Algorithm 1) necessitates
a time complexity of O(mLd+ L2d) in each layer of the model, this is impractical due to a large m.

This section proposes an approximate algorithm to make long prefix learning practical. Our algorithm,
NTK-Attention, is designed to output an approximation of PrefixAttn(X,P) (Eq. (1)) in time within
O(L1+o(1)) and without using the long prefix matrix P . We present the derivation and motivation of
our algorithm in Section 4.1, formalize the NTK-Attention algorithm in Section 4.2, and provide an
approximation guarantee in Section 4.3.

4.1 DERIVATION: REPLACING PREFIX P WITH TRAINABLE PARAMETERS Z, k

There exists a wealth of attention approximation algorithms capable of executing attention com-
putations within n1+o(1) time (Han et al., 2024; Liang et al., 2024a;b). However, our focus lies
predominantly with the polynomial method (Tsai et al., 2019; Katharopoulos et al., 2020; Alman &
Song, 2023; 2024b). This method has exhibited exceptional performance in terms of both time and
space complexity through the use of a streaming algorithm.

Polynomial method. In the context of attention networks, the query, key, and value state matrices,
denoted as Q,K, V ∈ RL×d, are assumed to have all entries bounded (Alman & Song, 2023).
Under this condition, the polynomial method first constructs a linear mapping ϕ : Rd → Rr, where

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

r = poly(d) (Alman & Song, 2023), and it satisfies the following relation (i, j ∈ [L], Qi,Kj ∈ Rd

represent the i-th row of Q and the j-th row of K respectively):

ϕ(Qi)
⊤ϕ(Kj) ≈ exp(Q⊤

i Kj/
√
d). (6)

Here, the mapping ϕ(·) is constructed based on the Taylor expansion of the exponential function,
and the larger value of r ≥ d would bring the approximation (Eq. (6)) with a smaller error. This
is guaranteed by Lemma 3.4 in Alman & Song (2023), refer to a copy in Lemma K.7. The i-th
row of the approximate attention (denoted as PolyAttni ∈ R1×d) then can be computed as follows:

PolyAttni :=
ϕ(Qi)

⊤ ∑L
j=1 ϕ(Kj)V

⊤
j

ϕ(Qi)⊤
∑L

j=1 ϕ(Kj)
∈ R1×d,∀i ∈ [L].

Now recall that given an input matrix X ∈ RL×d, thus, Q = XWQ, and we have [KP , VP] =

[
P
X

]
·

[WK ,WV] =

[
PWK PWV

XWK XWV

]
. Let KC := PWK , VC := PWV ∈ Rm×d and K := XWK , V :=

XWV ∈ RL×d. We thus expand the i-th row of the prefix attention, PrefixAttni(X,P) ∈ R1×d as:

PrefixAttni(X,P) =
exp(Q⊤

i K
⊤/
√
d)V + exp(Q⊤

i K
⊤
C /
√
d)VC

exp(Q⊤
i K

⊤/
√
d)1L + exp(Q⊤

i K
⊤
C /
√
d)1m

≈ exp(Q⊤
i K

⊤/
√
d)V + ϕ(Qi)

⊤Z

exp(Q⊤
i K

⊤/
√
d)1n + ϕ(Qi)⊤k

where

Z =

m∑
j=1

ϕ(KC,j)V
⊤
C,j ∈ Rr×d, k =

m∑
j=1

ϕ(KC,j) ∈ Rr. (7)

Here, the first step explicitly computes the softmax function, and the second step holds since replacing
exp(Q⊤

i K
⊤/
√
d) by Eq. (6), which is exp(Q⊤

i K
⊤
C,j/
√
d) ≈ ϕ(Qi)

⊤ϕ(KC,j),∀j ∈ [m].

Therefore, checking the training process of P , we observe that P is updating iff Z and k are updating.
Hence, we can replace P by utilizing trainable parameters Z and k in Eq. (7) to re-parameterize
the prefix attention. This is the key to how NTK-Attention approximates prefix attention without a
large number of parameters.

4.2 ALGORITHM

To present our algorithm, based on ϕ, we define: Φ(A) = [ϕ(A1,∗), · · · , ϕ(AL,∗)]
⊤ ∈ RL×r,∀A ∈

RL×d. Below we present our NTK-Attention method in Algorithm 2, and for comparison also present
the traditional prefix attention for prefix learning in Algorithm 1.

Implementation Detail of ϕ. In order to find a balance between approximation and efficient
computation of NTK-Attention, we use the first-order polynomial method. In particular, we choose
r = d, and the function ϕ is given by ϕ(z) := d−

1
4 ·(z◦1z≥0d

+exp(z)◦1z<0d
)+1d ∈ Rd,∀z ∈ Rd,

where 1z≥0d
∈ Rd is an indicative vector and its i-th entry for i ∈ [d] equals 1 only when zi ≥ 0,

and 0 otherwise.

Initialization, Approximation and Training of Z and k. In Section 3.1, we initialize the parameter
W = P⊤ by wr(0) ∼ N (0, Id) for r ∈ [m]. Since the pretrained weights WQ,WK ,WV ∈ Rd×d

are known, the initialization of Z and k, denotes Z(0) and k(0), can then be computed by Eq. (7)
using P (0) = W (0)⊤. However, consider that Z caches rd parameters for r = poly(d), which
is insufficient parameter-efficient. In response to it, we choose s ≤ ⌊d/2⌋ as an appropriately
small integer, then Z(0) ≈ ZA(0) · ZB(0) is decomposed into two low-rank matrices ZA(0) ∈
Rr×s, ZB(0) ∈ Rs×d. For training, let gZA

(t) ∈ Rr×s, gZB
(t) ∈ Rs×d and gk(t) ∈ Rr denote the

gradients of ZA(t), ZB(t) and k(t) at time t, and η denote the learning rate. Then the update rule is:

ZA(t+ 1) := ZA(t)− η · gZA
(t), ZB(t+ 1) := ZB(t)− η · gZB

(t), k(t+ 1) := k(t)− η · gk(t).

Number of Trainable Parameters. Since given r and s as two hyper-parameters in NTK-Attention,
for each attention layer in transformer-based architecture, we denote β := r

d , then the number of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of different fine-tuning methods on the SuperGLUE datasets. The base model
is ChatGLM3-6B. The methods include P-Tuning V2, LoRA, and our NTK-Attention method. The
metric on these datasets is accuracy (measured in %). The best score on each dataset is boldfaced.

Method Num Params Task Average
BoolQ CB Copa MultiRC RTE

P-Tuning V2 m = 1 0.12M 65.69±0.32 67.06±0.37 52.00±1.00 53.59±0.28 65.97±0.22 60.86±0.44

P-Tuning V2 m = 10 1.15M 66.67±0.23 74.07±0.00 54.00±0.00 54.17±0.71 66.55±0.25 63.10±0.24

P-Tuning V2 m = 100 11.47M 69.42±0.02 74.54±0.47 64.50±0.50 61.62±2.28 76.77±0.83 69.37±0.82

P-Tuning V2 m = 200 22.94M 67.51±0.15 70.11±0.28 60.00±0.50 58.37±0.91 70.83±0.44 65.36±0.46

LoRA r′ = 8 3.67M 76.52±0.10 90.23±0.39 86.50±0.50 65.09±0.41 87.76±0.37 81.24±0.35

NTK-Attention (ours), r = 128, s = 16 3.78M 75.06±0.12 96.04±0.84 88.00±2.00 65.85±0.33 86.59±0.52 82.31±0.76

trainable parameters could be computed by (βs+ β + s)d where integer β ≥ 1 and s ≤ ⌊d/2⌋. This
is more flexible when adjusting the practical efficiency needs. For LoRA with its hyper-parameter
r′ ≤ ⌊d/2⌋, where r′ is the rank number used for approximation, its number of trainable parameters
is 4r′d and for prefix attention with its hyper-parameter m ≥ 1, its number of trainable parameters is
md in each attention layer. By choosing (βs+ β + s) ≤ 4r′, the higher efficiency of NTK-Attention
compared to LoRA will be satisfied.

Algorithm 1 Prefix Attention

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value
weights WQ,WK ,WV ∈ Rd×d, trainable
prefix matrix P ∈ Rm×d

Output: Exact output Attn ∈ RL×d

1: procedure PREFIXATTEN(X)
2: S ←

[
P⊤, X⊤]⊤

3: Q,KP , VP ← XWQ, SWK , SWV

4: A← exp(QK⊤
P /
√
d)

5: D ← diag(A1m+L)
6: return D−1AVP

7: end procedure

Algorithm 2 NTK-Attention (w/o low-rank)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value
weights WQ,WK ,WV ∈ Rd×d, trainable
weights Z ∈ Rr×d and k ∈ Rr

Output: Approx output T ∈ RL×d

1: procedure NTK-ATTEN(X)
2: Q,K, V ← XWQ, XWK , XWV ,
3: Â← exp(QK⊤/

√
d)

4: D̂ ← diag(Â1L +Φ(Q)k)

5: T ← D̂−1(ÂV +Φ(Q)Z)
6: return T
7: end procedure

4.3 ERROR BOUND AND COMPLEXITY REDUCTION

Introducing an ultra-long prefix matrix P ∈ Rm×d to satisfy the conditions in Theorem J.2 requires
md parameters for m ≥ Ω(λ−2 poly(n, d, exp(B))), while it also bring a O(m(m + L)d) time
complexity to compute Algorithm 1. Our NTK-Attention relieve this by replacing P with Z and k,
where we state our theoretical guarantee as follows:
Theorem 4.1 (Error bound with reduced time complexity, informal version of Theorem K.2). Let
m denote the prefix length. Given an input matrix X ∈ RL×d and prefix matrix P ∈ Rm×d,
we denote Q = XWQ, KC = PWK and VC = PWV . If the condition Eq. (7), ∥Q∥∞ ≤
o(
√
logm), ∥KC∥∞ ≤ o(

√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then Algo-

rithm 2 outputs a matrix T ∈ RL×d within time complexity of O(L2d) that satisfies:
∥T − PrefixAttn(X,P)∥∞ ≤ 1/ poly(m). (8)

Furthermore, if we replace the original attention operation (attention computation on input X with
K = XWK and V = XWV) with fast attention algorithms like HyperAttention (Han et al., 2024),
then NTK-Attention can be even more efficient, achieving Eq. (8) within complexity O(L1+o(1)d)
(see Corollary K.3 for proofs).

5 EMPIRICAL EVALUATIONS

In this section, we evaluate our method NTK-Attention on natural language understanding, math
inference, and fine-grained image classification tasks. All our experiments use the Huggingface (Wolf

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

et al., 2019) trainer with AdamW optimizer (Kingma & Ba, 2014), and all optimizer hyper-parameters
are set to the defaults. We provide more details in Appendix B.

Evaluation on Natural Language Understanding Datasets. In this experiment, we utilize five
binary classification datasets in SuperGLUE (Wang et al., 2019) for evaluation: the BoolQ, CB,
Copa, MultiRC, and RTE datasets. We use a pretrained LLM ChatGLM3-6B (Zeng et al., 2022; Du
et al., 2022) as the base model. For comparison, we choose P-Tuning V2 (Liu et al., 2023; 2021b)
which is a standard prefix learning method, and choose LoRA (Hu et al., 2021) which is a popular
parameter-efficient fine-tuning method often achieving state-of-the-art. P-Tuning V2 uses different
lengths of virtual prefix {1, 10, 100, 200}, and LoRA uses rank r′ = 8. We choose r = 128 (the
dimension of each head of ChatGLM3-6B) and s = 16 for our NTK-Attention.

LLAMA-3.2-1B LLAMA-3.2-3B
0

20

40

60

80

Ac
cu

ra
cy

 S
co

re
s

0.0 0.0

25.9

57.0

30.9

66.6

GSM8K
Zero-Shot
LoRA
NTK-Attention

LLAMA-3.2-1B LLAMA-3.2-3B
0.0

2.5

5.0

7.5

10.0

12.5

15.0

0.0 0.0

4.6

12.6

5.0

14.4

MATH
Zero-Shot
LoRA
NTK-Attention

Figure 2: Compare our results with LoRA and Zero-Shot on Math
inference datasets. The y-axis is the accuracy.

The results are provided in Ta-
ble 1. Our NTK-Attention
method achieves much higher
performance than P-Tuning V2.
Interestingly, as m increases,
the performance of P-Tuning
V2 also improves, which is con-
sistent with our analysis. Our
analysis also suggests that NTK-
Attention approximates ultra-
long prefix learning and thus
can perform better than P-
Tuning V2. The experimen-
tal results also show that NTK-
Attention achieves better perfor-
mance than LoRA on CB, Copa,
and MultiRC datasets, and achieves better average performance over all the datasets. These results
show that NTK-Attention can be a promising efficient fine-tuning method.

Evaluation on Language Modeling Tasks. In this experiment, we focus on the scalability of
NTK-Attention on a family of language models of different sizes, the OPT family with the model
sizes 125M, 350M, 1.3B, 2.7B and 6.7B (Zhang et al., 2022). We introduce three text datasets,
which are WikiText-103 (Merity et al., 2016), Penn TreeBank (Marcus et al., 1993), and LAMBADA
(Paperno et al., 2016), to compare the scalability of NTK-Attention with LoRA (Hu et al., 2021) and
P-Tuning V2 (Liu et al., 2023; 2021b). As we choose r′ = 8 for LoRA, m = 32 for P-Tuning V2,
and r = 2d and s = 10 for our NTK-Attention, the numbers of trainable parameters are aligned to the
same as 32d for each attention layer. The results are stated in Table 3, which shows the improvement
of NTK-Attention compared to baselines when scaling the model size.

Evaluation on Math Inference Datasets. In order to thoroughly verify the effectiveness of NTK-
Attention, we conduct experiments on the math inference task, which includes GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) datasets. These are considered as fair benchmarks to test
the complex capability of LLMs. We follow Yu et al. (2023a) to supervised fine-tune two pretrained
models LLAMA-3.2-1B and LLAMA-3.2-3B (Touvron et al., 2023a;b) with dataset MetaMathQA
(Yu et al., 2023a). We state our results in Figure 2, and we use accuracy scores for counting the
matched answers for evaluation. As we can see, our NTK-attention (r = d, s = 16) is better than the
two baselines, LoRA and Zero-Shot, where LoRA uses r′ = 16 for LLAMA-3.2-1B and r′ = 32 for
LLAMA-3.2-3B.

Evaluation on Vision Datasets. We evaluate the method on three image classification datasets:
CIFAR-100 (Krizhevsky et al., 2009), Food-101 (Bossard et al., 2014), and Tiny-Imagenet (mn-
moustafa, 2017). The base model to be fine-tuned on these datasets is ViT-Base (Dosovitskiy et al.,
2020) that is pretrained on the ImageNet-21k (Deng et al., 2009). We compare our method to two
baselines: (1) FFT (Full parameters Fine-Tuned) that fine-tunes all parameters; (2) LoRA that
fine-tunes the base model with the popular LoRA method (Hu et al., 2021) with rank r′ = {16, 32}.
The results are presented in Table 2. Our method performs much better than FFT: 7.40%, 5.81% and
13.26% higher accuracy on the three datasets, respectively. Note that FFT updates all parameters
and has much higher computational costs than LoRA or our method. Our method has a similar

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Performance of different fine-tuning methods on the CIFAR-100, Food-101 and Tiny-
Imagenet datasets. The base model is ViT-Base. The methods include FFT, LoRA, and our method
NTK-Attention. The metric is accuracy (measured in %). The best score on each dataset is boldfaced.

Method Num Params Dataset Average
CIFAR-100 Food-101 Tiny-Imagenet

FFT 86.39M 85.15±0.13 84.76±0.07 76.20±0.23 82.04±0.14

LoRA r′ = 16 7.08M 92.17±0.05 89.38±0.33 88.22±0.09 89.92±0.16

LoRA r′ = 32 14.16M 92.01±0.20 89.86±0.11 90.16±0.12 90.68±0.14

NTK-Attention (ours), r = 64, s = 32 7.09M 92.55±0.03 90.57±0.01 89.46±0.10 90.86±0.05

Table 3: Performance of different fine-tuning methods on OPT-{125M, 350M, 1.3B, 2.7B, 6.7B}
pretrained models with WikiText-103, Penn TreeBank and LAMBADA datasets. The metric is
perplexity (PPL), with its smaller value standing for better performance. The best score on each
dataset and model is boldfaced.

Model Method Num Params Datasets Average
WikiText-103 Penn TreeBank LAMBADA

LoRA, r′ = 8 30.50 35.97 46.02 37.50
OPT-125M P-Tuning V2, m = 32 0.29M 2264.22 963.09 1762.19 1663.17

NTK-Attention, r = 2d, s = 10 31.41 33.52 45.39 36.77

LoRA, r′ = 8 24.76 30.41 38.80 31.32
OPT-350M P-Tuning V2, m = 32 0.77M 7383.48 1339.43 14020.36 7581.09

NTK-Attention, r = 2d, s = 10 25.67 28.85 36.97 30.50

LoRA, r′ = 8 16.71 21.27 24.16 20.71
OPT-1.3B P-Tuning V2, m = 32 1.57M 2230.76 540.17 3480.77 2083.9

NTK-Attention, r = 2d, s = 10 17.04 20.09 24.04 20.39

LoRA, r′ = 8 15.06 19.61 22.13 18.93
OPT-2.7B P-Tuning V2, m = 32 2.62M 772.48 277.99 3378.18 1476.22

NTK-Attention, r = 2d, s = 10 14.83 18.52 21.85 18.40

LoRA, r′ = 8 12.81 17.36 19.38 16.52
OPT-6.7B P-Tuning V2, m = 32 4.19M 2051.10 409.37 4709.46 2389.98

NTK-Attention, r = 2d, s = 10 12.56 16.68 18.81 16.02

performance to LoRA with r′ = 32, achieving slightly better average accuracy. These results on
vision datasets also provide positive empirical support for our method.

Ablation Study. We validate the sensitivity of hyper-parameters r and s and give the results in
Appendix B.3. The results firstly indicate that choosing r = d and s = 4 is enough for high-
performance fine-tuning on LLAMA-3.1-8B. Also, we follow Table 4 to suggest choosing a larger
value of r primarily instead of s to achieve supernal accuracy.

Empirical Evaluation of Computational Cost. We also provide experimental results of the compu-
tational costs of NTK-Attention (Algorithm 2) and the standard Prefix Attention (Algorithm 1) in
Appendix B.2. The results show that Prefix Attention’s run time is quadratic and memory usage is
linear in the prefix length, so its costs are typically much higher, while NTK-Attention maintains a
small run time and memory usage.

6 CONCLUSION

In this study, we illuminated the principles of prefix learning for fine-tuning when the prefix length
is large. We conducted an in-depth theoretical analysis, demonstrating that when the prefix length
is sufficiently large, the attention network is over-parameterized, and the Neural Tangent Kernel
technique can be leveraged to provide a convergence guarantee of prefix learning. Based on these
insights, we proposed a novel efficient fine-tuning method called NTK-Attention, which approximates
prefix attention using two trainable parameters to replace the large prefix matrix, thus significantly
mitigating memory usage issues and reducing computational cost for long prefixes. We also pro-
vided empirical results to support our theoretical findings, demonstrating NTK-Attention’s superior
performance on downstream tasks over baselines across natural language, math, and vision datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

The innovation engine for genai applications. https://github.com/langgenius/dify,
2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Raghav Addanki, Chenyang Li, Zhao Song, and Chiwun Yang. One pass streaming algorithm for
super long token attention approximation in sublinear space. arXiv preprint arXiv:2311.14652,
2023.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. arXiv preprint arXiv:2006.10246, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023a.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023b.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023c.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
laws. arXiv preprint arXiv:2404.05405, 2024.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
and Christopher Re. Ask me anything: A simple strategy for prompting language models. In The
Eleventh International Conference on Learning Representations, 2022.

Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of laplace.
Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

11

https://github.com/langgenius/dify

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Timothy Chu, Zhao Song, and Chiwun Yang. Fine-tune language models to approximate unbiased
in-context learning. arXiv preprint arXiv:2310.03331, 2023.

Timothy Chu, Zhao Song, and Chiwun Yang. How to protect copyright data in optimization of
large language models? In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
17871–17879, 2024.

Claude-3. Introducing the next generation of claude. Anthropic News, March 2024. URL https:
//www.anthropic.com/news/claude-3-family/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
Openprompt: An open-source framework for prompt-learning. arXiv preprint arXiv:2111.01998,
2021.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In ICLR. arXiv preprint arXiv:1810.02054, 2019.

12

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-family/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320–335, 2022.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Sergey Foss, Dmitry Korshunov, Stan Zachary, et al. An introduction to heavy-tailed and subexpo-
nential distributions, volume 6. Springer, 2011.

Stanislav Frolov, Tobias Hinz, Federico Raue, Jörn Hees, and Andreas Dengel. Adversarial text-to-
image synthesis: A review. Neural Networks, 144:187–209, 2021.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023a.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023b.

Gemini. Welcome to the gemini era. Google Deepmind Technologies, May 2024. URL https:
//deepmind.google/technologies/gemini/.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathematica, 70(3):231–283,
1981.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms in
independent random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk
for deep attention networks. In International Conference on Machine Learning, pp. 4376–4386.
PMLR, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

13

https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Aleksandr Khintchine. Über dyadische brüche. Mathematische Zeitschrift, 18(1):109–116, 1923.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of statistics, pp. 1302–1338, 2000.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in
Neural Information Processing Systems, 33:15156–15172, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of softmax: Prov-
able optimization, applications in diffusion model, and beyond. arXiv preprint arXiv:2405.03251,
2024a.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neural
networks: Unlocking the potential of large language models in mathematical reasoning and modular
arithmetic. arXiv preprint arXiv:2402.09469, 2024b.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 374–382, 2023b.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024c.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv preprint
arXiv:2405.05219, 2024a.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably efficient
learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024b.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language
processing. arxiv. arXiv preprint arXiv:2107.13586, 2021a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021b.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. Advances in neural information processing systems,
26, 2013.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mohammed Ali mnmoustafa. Tiny imagenet, 2017. URL https://kaggle.com/
competitions/tiny-imagenet.

Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural
networks via coupled initialization a worst case analysis. In International Conference on Machine
Learning, pp. 16083–16122. PMLR, 2022.

Tai Nguyen and Eric Wong. In-context example selection with influences. arXiv preprint
arXiv:2302.11042, 2023.

15

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Druv Pai, Sam Buchanan, Ziyang Wu, Yaodong Yu, and Yi Ma. Masked completion via structured
diffusion with white-box transformers. In The Twelfth International Conference on Learning
Representations, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Aleksandar Petrov, Philip Torr, and Adel Bibi. When do prompting and prefix-tuning work? a
theory of capabilities and limitations. In The Twelfth International Conference on Learning
Representations, 2024a.

Aleksandar Petrov, Philip HS Torr, and Adel Bibi. Prompting a pretrained transformer can be a
universal approximator. arXiv preprint arXiv:2402.14753, 2024b.

Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan: Learning text-to-image
generation by redescription. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1505–1514, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration.
2013.

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
of depth and initialization. In International Conference on Machine Learning, pp. 19522–19560.
PMLR, 2022.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh Jha.
The trade-off between universality and label efficiency of representations from contrastive learning.
In The Eleventh International Conference on Learning Representations, 2022.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large
Foundation Models, 2023.

Zhenmei Shi, Yifei Ming, Ying Fan, Frederic Sala, and Yingyu Liang. Domain generalization via
nuclear norm regularization. In Conference on Parsimony and Learning, pp. 179–201. PMLR,
2024a.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024b.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024c.

Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
Lu Jiang. Visual prompt tuning for generative transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19840–19851, 2023.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhongxiang Sun. A short survey of viewing large language models in legal aspect. arXiv preprint
arXiv:2303.09136, 2023.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B
Gotway, and Jianming Liang. Convolutional neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312, 2016.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances in
Adaptive Data Analysis, 3(01n02):115–126, 2011.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022a.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36, 2023a.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Multitask
prompt tuning enables parameter-efficient transfer learning. arXiv preprint arXiv:2303.02861,
2023b.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Junda Wu, Tong Yu, Rui Wang, Zhao Song, Ruiyi Zhang, Handong Zhao, Chaochao Lu, Shuai Li,
and Ricardo Henao. Infoprompt: Information-theoretic soft prompt tuning for natural language
understanding. Advances in Neural Information Processing Systems, 36, 2023.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023a.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2023b.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional ability?
an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2024.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Shaochen
Zhong, Bing Yin, and Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and
beyond. ACM Transactions on Knowledge Discovery from Data, 18(6):1–32, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023a.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin
Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural
Information Processing Systems, 36:9422–9457, 2023b.

Yaodong Yu, Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and Yi Ma. Emer-
gence of segmentation with minimalistic white-box transformers. arXiv preprint arXiv:2308.16271,
2023c.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. arXiv preprint
arXiv:2310.17513, 2023.

Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image diffusion
model in generative ai: A survey. arXiv preprint arXiv:2303.07909, 2023.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16816–16825, 2022.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

1.1 Related Work . 3

2 Preliminary: Prefix Learning 3

3 Theoretical Analysis of Prefix Learning via NTK 4

3.1 Problem Setup . 4

3.2 Neural Tangent Kernel . 5

3.3 Main Result: Loss Convergence Guarantee . 5

4 NTK-Attention: Approximate Infinite-Long Prefix Attention 6

4.1 Derivation: Replacing Prefix P with Trainable Parameters Z, k 6

4.2 Algorithm . 7

4.3 Error Bound and Complexity Reduction . 8

5 Empirical Evaluations 8

6 Conclusion 10

A Algorithm Details and Computational Complexity Analysis 22

B Experimental Details 22

B.1 Setup Details . 22

B.2 Additional Empirical Complexity Analysis . 23

B.3 Additional Ablation Study . 24

C Naive NTK-Attention Implementation with Flash-Attention 24

D Further Discussions 25

E Preliminary of Analysis 26

E.1 Facts . 26

E.2 Probability . 26

F Definitions of NTK Analysis 28

F.1 Loss function . 29

G Gradient Computation 29

G.1 Computing Gradient . 29

G.2 Gradient Descent . 31

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H Neural Tangent Kernel 34

H.1 Kernel Perturbation . 34

H.2 Kernel PSD during Training Process . 37

I Loss Decomposition 37

I.1 Bounding C0 . 42

I.2 Bounding C1,2 . 46

I.3 Bounding C2 . 48

I.4 Bounding C3 . 49

I.5 Bounding Loss during Training Process . 52

I.6 Helpful Lemma . 52

J Convergence of Prefix Learning 55

J.1 Main Result . 55

J.2 Induction Part 1. For Weights . 56

J.3 Induction Part 2. For Loss . 56

J.4 Induction Part 3. For Gradient . 57

J.5 Bounding Loss at Initialization . 58

K NTK-Attention 58

K.1 Definitions . 58

K.2 Error Bound . 58

K.3 Tools from Fast Attention . 59

L Taylor Series 59

Roadmap. In Appendix A, we present the details of our method and prefix attention, and give a
complexity and memory analysis.

The experimental details for our empirical evaluation is shown in Appendix B. We give a naive
implementation of NTK-Attention within Python code in Appendix C. We provide more discussions
on our work in Appendix D, including the limitations and societal impacts of this paper.

We provide the preliminary we use in our analysis in Appendix E, including helpful probability tools.
We provide the basic definitions in Appendix F, and give helpful Lemmas about gradient computation
in Appendix G. Then we present our adaptation of NTK in our analysis in Appendix H, in Appendix I
show how to decompose the training objective to simplify proofs, and finally post our main results
and the proofs for analyzing the training in Appendix J.

In Appendix K, we compute the error bound on our NTK-Attention approximating ultra-long prefix
in attention. In Appendix L, we state helpful tools about the Taylor series.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A ALGORITHM DETAILS AND COMPUTATIONAL COMPLEXITY ANALYSIS

Here, we give the detailed version of two algorithms of this paper, which are prefix attention and
NTK-Attention. Moreover, we comment on each computation step with its corresponding complexity
to demonstrate our memory and complexity reduction in detail.

From Algorithm 3 and Algorithm 4, we can see the comparison analysis of memory reduction (from
O(md) to O(rd+ r)) and complexity reduction (from O(mL+ L2) to O(Ld+ L2) since m≫ L
and m≫ d) between two fine-tuning methods, indicating the efficiency of our NTK-Attention.

Algorithm 3 Prefix Attention (Detailed version of Algorithm 1)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value weights WQ,WK ,WV ∈ Rd×d, trainable prefix
matrix P ∈ Rm×d ▷ Additional memory usage O(md)
Output: Exact output Attn ∈ RL×d

1: procedure PREFIXATTENTION(X)

2: Concatenate input matrix with prefix matrix S ←
[
P
X

]
∈ R(m+L)×d

3: Compute query, key, and value matrices for attention Q← XWQ ∈ RL×d, KP ← SWK ∈
R(m+L)×d, VP ← SWV ∈ R(m+L)×d ▷ Time complexity O(Ld2 + 2(m+ L)d2)

4: Compute exponential matrix A← exp(QK⊤
P /
√
d) ∈ RL×(m+L) ▷ Time complexity

O(L(m+ L)d)
5: Compute summation of exponential matrix D ← diag(A1m+L) ∈ RL×L ▷ Time

complexity O(L(m+ L))
6: Compute prefix attention output Attn← D−1AVP ∈ RL×d ▷ Here D−1A ∈ RL×(m+L) is

the attention matrix (a.k.a attention scores). This step implements A multiply VP first, then get
D−1 · (AVP) with time complexity O(L(m+ L)d+ L2d)

7: return Attn
8: end procedure

Algorithm 4 NTK-Attention (Detailed version of Algorithm 2, w low-rank)

Input: Input matrix X ∈ RL×d

Parameters: Frozen query, key and value weights WQ,WK ,WV ∈ Rd×d, trainable weights
ZA ∈ Rr×s, ZB ∈ Rs×d and k ∈ Rr ▷ Additional memory usage O(rs+ sd+ r)
Output: Approximating output T ∈ RL×d

1: procedure NTK-ATTENTION(X)
2: Compute query, key, and value matrices for attention Q← XWQ ∈ RL×d, K ← XWK ∈

RL×d, V ← XWV ∈ RL×d ▷ Time complexity O(3Ld2)

3: Compute approximating exponential matrix Â← exp(QK⊤/
√
d) ∈ RL×L ▷ Time

complexity O(L2d)

4: Compute approximating summation of exponential matrix D̂ ← diag(Â1L + Φ(Q)k) ∈
RL×L ▷ Time complexity O(L2 + Lr)

5: Compute approximation of prefix attention output T ← D̂−1(ÂV +Φ(Q)ZA ·ZB) ∈ RL×d

▷ This step implements Z := ZA · ZB first, compute ÂV +Φ(Q)Z secondly, then implements
D̂−1 · (ÂV +Φ(Q)ZA · ZB), time complexity O(2L2d+ Lr2 + rsd)

6: return T
7: end procedure

B EXPERIMENTAL DETAILS

B.1 SETUP DETAILS

Here, we give the details of the setup for the experiments in Section 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• Learning rate η = 0.001 (default).

• Learning rate scheduler: Cosine.

• Adam hyper-parameter β1 = 0.9 (default).

• Adam hyper-parameter β2 = 0.999 (default).

• Adam hyper-parameter ϵ = 1× 10−8 (default).

• Platform: PyTorch (Paszke et al., 2019) and Huggingface (Wolf et al., 2019).

• GPU device information: 8 V100 GPUs, 8 4090 GPUs and 4 H800 GPUs.

• Number of training epochs 30.

• Batch size for vision tasks: 256 (for best effort).

• Batch size for natural language task: 32 (for best effort).

• Max input length for natural language task: 128 for each feature, e.g. BoolQ has two dataset
features: question and passage, for each data, we select the first 128 tokens in question and
passage of the data respectively, and concatenate them to be the input.

• Quantization: fp16 and bf16.

B.2 ADDITIONAL EMPIRICAL COMPLEXITY ANALYSIS

We state an additional empirical complexity analysis here to support our claim practically. We
evaluate the complexity reduction on one layer to show how much efficiency our NTK-Attention will
demonstrate per layer.

Setup. Firstly, we choose d = 32 and r = d, and randomly initialize attention weights
WQ,WK ,WV ∈ Rd×d. For the trainable parameters in NTK-Attention and Prefix Attention, we
initialize P ∈ Rm×d, Z ∈ Rd×d and k ∈ Rd randomly, either. We then scale the prefix length,
denotes m, within the range {20, 21, · · · , 216} for comparison. The input length L is chosen from
{32, 64, 128, 256}. For computation, we initialize a new input matrix X ∈ RL×d and compute
NTK-Attention and Prefix Attention respectively. We repeat each computation with a different setup
10000 times and record the maximum, minimum, and mean values. The inference is run on an AMD
CPU to compare FLOPS fairly between two algorithms (this also works on GPU devices).

Figure 3: Run time and the number of parameters of one-layer NTK-Attention and Prefix Attention
(on random input data). x-axis: the number of parameters; y-axis: run time. Input length L is chosen
from {32, 64, 128, 256}, dimension d = 32 and prefix length m is chosen from {20, 21, · · · , 216}.

0M 0.2M 0.4M 0.6M 0.8M 1M
number of parameters (scale with prefix length, per layer)

0 s

0.02 s

0.04 s

0.06 s

0.08 s

0.1 s

0.12 s

0.14 s

0.16 s

ru
nn

in
g

tim
e

prefix-attn, L=32
prefix-attn, L=64
prefix-attn, L=128
prefix-attn, L=256
ntk-attn, L=32
ntk-attn, L=64
ntk-attn, L=128
ntk-attn, L=256

3K 3.5K 4K 4.5K 5K 5.5K 6K
1e-4 s

2e-4 s

3e-4 s

4e-4 s

5e-4 s

6e-4 s

7e-4 s

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Results. We demonstrate our result in Figure 3. The x-axis is the number of parameters (representing
memory usage), and the y-axis shows the run time in seconds. Note that the number of parameters is
computed by the summation of every number in NTK-Attention or Prefix Attention. For example,
m = 1024, d = 32, the number of parameters of Prefix Attention is md+ 3d2 = 35840; the number
of parameters if NTK-Attention is 4d2 + d = 4128.

As expected, the number of parameters of Prefix Attention increases linearly with the prefix length
m, and its running time increases quadratically with m. While our method, NTK-Attention, has
computational costs unaffected by the prefix length. It maintains a small running time and low
memory usage as shown in the figure. Roughly speaking, the cost of NTK-Attention is close to Prefix
Attention with a very small prefix length m = 32.

B.3 ADDITIONAL ABLATION STUDY

Setup. We provide an additional ablation study for the sensitivity of the hyper-parameters of NTK-
Attention r and s here and the results are given in Table 4. In particular, this experiment is run
on pretrained LLAMA-3.1-8B-Instruct model (d = 128 for each head in attention) (Touvron et al.,
2023a;b) with dataset WikiText-103 (Merity et al., 2016). We utilize 4 H800 GPU devices to train the
model with different settings within 2 epochs on the training dataset and evaluate them on the test
dataset. The metric is cross-entropy loss and its smaller value stands for better performance.

Results. We show the NTK-Attention with the weakest setting r = 128, s = 4 is able to achieve
competitive performance with r = 256, r = 64. This further ensures the parameter efficiency of
NTK-Attention.

Moreover, Table 4 also demonstrates that choosing a big value for hyper-parameter r primarily
will lead to better evaluation loss since NTK-Attention with (r, s) = (256, 32) requires 12.85M
parameters but achieve superior performance compared to NTK-Attention with (r, s) = (128, 64)
(requires 16.91M parameters).

However, we discover that an increased value for r might cause huge complexity - when setting
r = 512, the computational complexity 4Ld will lead the GPU out-of-memory (OOM) since it’s
usually unaffordable even for H800 (80GiB memory). Thus, we also suggest using r = d or r = 2d
to make LLMs to learn downstream tasks.

Table 4: The results of ablation study to the NTK-Attention hyper-parameters r and s with pretrained
LLM LLAMA-3.1-8B-Instruct and dataset WikiText-103 on H800 GPUs (80GiB).

Hyper-parameters Num Parameters Evaluation Loss Training Loss

(r, s)=(128, 4) 1.18M 2.48 2.38
(r, s)=(128, 8) 2.23M 2.57 2.50
(r, s)=(128, 16) 4.33M 2.74 2.72
(r, s)=(128, 32) 8.52M 2.47 2.38
(r, s)=(128, 64) 16.91M 2.41 2.31

(r, s)=(256, 4) 1.84M 2.47 2.39
(r, s)=(256, 8) 3.41M 2.43 2.36
(r, s)=(256, 16) 6.55M 2.51 2.53
(r, s)=(256, 32) 12.85M 2.28 2.33
(r, s)=(256, 64) 25.43M 2.21 2.15

(r, s)=(512, 4) 3.15M (OOM since 4Ld complexity) - -

C NAIVE NTK-ATTENTION IMPLEMENTATION WITH FLASH-ATTENTION

Below, we provide a naive Python code to implement our NTK-Attention that is written in only
10 lines, which supports the simplicity of implementation. Our code utilizes the function of Flash
Attention function (Dao et al., 2022; Dao, 2023; Shah et al., 2024).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1 def ntk_attn_forward(self, query_states, key_states, value_states,
attention_mask):

2 attn_outputs, lse = _flash_attention_forward(
3 query_states, key_states, value_states, attention_mask,
4 is_causal=self.is_causal, return_attn_probs=True
5) # Call flash-attn function to get attn_output and logsumexp
6

7 Z = torch.matmul(self.Z_A, self.Z_B) # Low-rank approximate Z
8 k = self.k
9 phi_query_states = self.phi(query_states)

10

11 se = lse.exp() # Compute sumexp
12 scale_factor = (se + torch.matmul(phi_query_states, k)) / se
13

14 attn_output = scale_factor * (attn_output * se + torch.matmul(
phi_query_states, Z))

15

16 return attn_output

D FURTHER DISCUSSIONS

Prior works (Arora et al., 2019; Alemohammad et al., 2020; Hron et al., 2020) had already given
exact algorithms for computing the extension of NTK to neural nets and conducted experiments
showing enhanced performance from adding NTK into models, while in this paper, our contributions
are not limited to this. Our theory about NTK of attention with the infinite-long prefix provides more
insights. We clarify this further in the following.

Can LLMs master any advanced reasoning skill through self-planning and prompting? We
will answer that it may be possible. Since an attention network can converge on any dataset with the
infinite-long prefix, we can tell that for any advanced reasoning skill that is equivalent to training on
a well-constructed dataset, there exists an ultra-long prefix matrix satisfying the training objective
smaller than any positive value ϵ > 0. It’s noteworthy that this conclusion is not only suitable for
LLMs with outstanding performance but also can be worked on those small language models with
common performance.

What is NTK-Attention used for? What is the meaning of proposing this method? The attention
with an infinite-long prefix is superior due to its over-parameterization phenomenon, whereas it
is nearly impossible to implement practically, our NTK-Attention method gives us a chance to
approximate the infinite-long prefix and makes it possible for us to study its empirical properties in
experiments. Besides, any form of prefix learning can be formulated into the training of Z ∈ Rd×d

and k ∈ Rd in NTK-Attention, we can compress prompts into Z and k if ϕ(·) by utilizing Lemma K.7,
hence, the approaches in Prefix Learning would be much more efficient.

Comparison between NTK-Attention and LoRA. LoRA in (Hu et al., 2021; Zeng & Lee, 2023;
Hu et al., 2024) is a popular efficient fine-tuning method for large base models. Usually, LoRA
makes adaptation on Query and Value projections WQ,WV ∈ Rd×d; denote the adaptation as
W∆Q,W∆V ∈ Rd×d. Given an input X ∈ RL×d, LoRA computes D̃−1ÃX(WV +W∆V), where
Ã := exp(X(WQ + W∆Q)W

⊤
KX⊤), D̃ := diag(Ã1L), and WK ∈ Rd×d is the Key projection

weights. So LoRA updates query and value weights during training, while our NTK-Attention
compresses the additional prefix P into Z and k (Algorithm 2), which is a completely different
mechanism. Our method also achieves comparable performance to LoRA in our experiments in
Section 5. Also, note that the two methods are orthogonal to each other and can be used together.

Connection to the newest SOTA LLM on math inference tasks, GPT-o1 1. On September 12-th,
2024, OpenAI released the newest SOTA LLM on math inference tasks, GPT-o1, which is trained
by Reinforcement Learning (RL) methods to enhance the Chain-of-Thought (CoT) ability. Li et al.
(2024c) explained the necessity of CoT for LLM on complicated inference tasks, meanwhile, they
also emphasized how the embedding size and the CoT length affect the capability to solve high-order
problems. Connecting to our work, we believe that these empirical and theoretical results support the

1https://openai.com/o1/

25

https://openai.com/o1/

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

conclusion of our work since we consider CoT as a specific application of Prefix Learning. Moreover,
we think our scaling law in prefix learning is more universal for explaining the LLMs’ context-based
advanced skills. However, even when we present our theory, we still have a limited understanding
of prefix learning, for example, what is the relationship between prefix length and complexity of
problems that aim to solve; if we want to solve an NP problem by LLM, how long is the prefix needed
for inference? We don’t know the answers. Thus, explaining prefix learning, or particularly, CoT, is
still a fascinating and challenging problem for future work.

Limitations. The work has limited experimental analysis and results. While empirical evaluations
have been provided for some datasets and LLM models, the proposed method is widely applicable
to different data and models, so comprehensive evaluations on more datasets and more practical
methods can provide stronger empirical support.

Besides, the computational efficiency of NTK-Attention is insufficiently better than prefix attention
when m < d, since the design of NTK-Attention is toward the ultra-big value of m, such we only
compare to the prefix attention with prefix length m≫ d to meet the over-parameterization setting in
our analysis.

Societal impact. This paper presents work whose goal is to advance the understanding of context-
based fine-tuning methods (prefix learning) theoretically. There are many positive potential societal
consequences of our work, such as inspiring new algorithm design. Since our work is theoretical in
nature, we do not foresee any potential negative societal impacts which worth pointing out.

E PRELIMINARY OF ANALYSIS

We provide our notations for this paper as follows:

Notations In this paper, we use integer d to denote the dimension of networks. We use integer m to
denote the prefix length in prefix learning, we think m is an ultra-big number. We use L to denote
the input length in language models. ∇xf(x) and df(x)

dx are both means to take the derivative of
f(x) with x. Let a vector z ∈ Rn. We denote the ℓ2 norm as ∥z∥2 := (

∑n
i=1 z

2
i)

1/2, the ℓ1 norm as
∥z∥1 :=

∑n
i=1 |zi|, ∥z∥0 as the number of non-zero entries in z, ∥z∥∞ as maxi∈[n] |zi|. We use z⊤

to denote the transpose of a z. We use ⟨·, ·⟩ to denote the inner product. Let A ∈ Rn×d, we use vec(A)
to denote a length nd vector. We denote the Frobenius norm as ∥A∥F := (

∑
i∈[n],j∈[d] A

2
i,j)

1/2. For
any positive integer n, we use [n] to denote set {1, 2, · · · , n}. We use E[] to denote the expectation.
We use Pr[] to denote the probability. We use ϵ to denote the error. We define λmin(·) as a function
that outputs the minimum eigenvalues of the input matrix, e.g. matrix A ∈ Rn×n has eigenvalues
{λ1, λ2, · · · , λn}, λmin(A) = min{λ1, λ2, · · · , λn}.

E.1 FACTS

Fact E.1. For any x ∈ (−0.01, 0.01), we have

exp(x) = 1 + x+Θ(1)x2.

Fact E.2. For any x ∈ (0, 0.1), we have
n∑

i=1

xi ≤ 1

1− x
.

E.2 PROBABILITY

Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in (Chernoff, 1952) below.
Lemma E.3 (Chernoff bound, (Chernoff, 1952)). Let X =

∑n
i=1 Xi, where Xi = 1 with probability

pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in (Hoeffding, 1994).
Lemma E.4 (Hoeffding bound, (Hoeffding, 1994)). Let X1, · · · , Xn denote n independent bounded
variables in [ai, bi] for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as (Bernstein, 1924).
Lemma E.5 (Bernstein inequality, (Bernstein, 1924)). Let X1, · · · , Xn denote n independent zero-
mean random variables. Suppose |Xi| ≤M almost surely for all i. Then, for all positive t,

Pr[

n∑
i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
)

Then, we give the Khintchine’s inequality in (Khintchine, 1923; Haagerup, 1981) as follows:
Lemma E.6 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d
sign random variables, and let z1 · · · , zn be real numbers. Then there are constants C > 0 so that
for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2).

We give Hason-wright inequality from (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)
below.
Lemma E.7 (Hason-wright inequality, (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)). Let
x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K Let A be
an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F), t/(K2∥A∥)}).

We state Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000).
Lemma E.8 (Lemma 1 on page 1325 of Laurent and Massart, (Laurent & Massart, 2000)). Let
X ∼ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each one has zero
mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t).

Here, we provide a tail bound for sub-exponential distribution (Foss et al., 2011).
Lemma E.9 (Tail bound for sub-exponential distribution, (Foss et al., 2011)). We say X ∈ SE(σ2, α)
with parameters σ > 0, α > 0, if

E[eλX] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α}).

In the following, we show the helpful lemma of matrix Chernoff bound as in (Tropp, 2011; Lu et al.,
2013).
Lemma E.10 (Matrix Chernoff bound, (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of
positive-semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax

as follows:

µmin := n · λmin(E
X∈X

(X))

µmax := n · λmax(E
X∈X

(X)).

Then

Pr[λmin(

n∑
i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑
i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

F DEFINITIONS OF NTK ANALYSIS

This section provides the fundamental definitions of our NTK analysis in this paper.

To begin with, we re-denote our weight of prefix in attention as W ∈ Rd×m and a ∈ {−1,+1}m as
follows2:
Definition F.1. We choose a ∈ {−1,+1}m to be weights that each entry ar is randomly sampled
from −1 with probability 1/2 and +1 with probability 1/2.

Let W ∈ Rd×m denote random Gaussian weights, i.e., each entry independently draws fromN (0, σ2).
For each r ∈ [m], we use wr ∈ Rd to denote the r-th column of W .

Since we have established the equivalence between the ultra-long prefix matrix in attention and our
theory in Section 3.1, it’s reasonable we utilize the following definition of F to decompose the model
function and facilitate our analysis.
Definition F.2. We define function F : Rd×m × Rd × Rm → Rd

F(W,x, a) = m

∑
r∈[m] ar exp(w

⊤
r x)wr∑

r∈[m] exp(w
⊤
r x)

Here we use wr ∈ Rd to denote the r-th column of W ∈ Rd×m.

To further break down the complicated F for more convenience analysis. We give an operator function
α as follows:
Definition F.3. We define α(x) as follows

α(x) := ⟨exp(W⊤︸︷︷︸
m×d

x︸︷︷︸
d×1

),1m⟩

Thus, we can rewrite F in the following claim.
Claim F.4. We can rewrite F(W,x, a) ∈ Rd as follows

F(W,x, a) = mα(x)−1︸ ︷︷ ︸
scalar

W︸︷︷︸
d×m

(a︸︷︷︸
m×1

◦ exp(W⊤x)︸ ︷︷ ︸
m×1

)

Proof. We can show

F(W,x, a) =m

∑
r∈[m] ar exp(w

⊤
r x)wr∑

r∈[m] exp(w
⊤
r x)

=mα(x)−1
∑
r∈[m]

ar exp(w
⊤
r x)wr

2Note that the proof of the case with a and without a are similar. We mainly focus on the proofs under the
setting that includes a.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

=mα(x)−1W (a ◦ exp(W⊤x))

where the first step follows from Definition F.2, the second step follows from Definition F.3 and
simple algebras, the third step follows from wr ∈ Rd is denoting the r-th column of W ∈ Rd×m and
simple algebras.

In the following Definition F.6 and Definition F.5, we further derive and define two operator functions
to convenient our analysis.
Definition F.5. We define β as follows

βk := Wk,∗ ◦ a,∀k ∈ [d]

Let β ∈ Rd×m be defined as β︸︷︷︸
d×m

= W︸︷︷︸
d×m

diag(a)︸ ︷︷ ︸
m×m

Here, we define softmax.
Definition F.6. We define S ∈ Rm as follows

S := α(x)−1︸ ︷︷ ︸
scalar

· exp(W⊤x)︸ ︷︷ ︸
m×1

.

Here, we use β and S to re-denote the model function F.
Definition F.7. For each k ∈ [d], let W⊤

k,∗ denote the k-th row of W , we define

Fk(W,x, a) := mα(x)−1︸ ︷︷ ︸
scalar

⟨Wk,∗︸ ︷︷ ︸
m×1

◦ a︸︷︷︸
m×1

, exp(W⊤x)︸ ︷︷ ︸
m×1

⟩

Then, we can rewrite it as

Fk(W,x, a) := m⟨βk,S⟩.

F.1 LOSS FUNCTION

Here, we state the training objective that we aim to solve in the analysis.
Definition F.8. Given a datasetD = {(xi, yi)}ni=1 ⊂ Rd×Rd. Let function F : Rd×m×Rd×Rm →
Rd be defined as Definition F.2, we define the training objective L : Rm×d → R as follows:

L(W) := 0.5

n∑
i=1

∥F(W,xi, a)− yi∥22

G GRADIENT COMPUTATION

In this section, we first compute the gradients that we need for the analysis of NTK. Then we define
the training dynamic of our model in the process of gradient descent.

G.1 COMPUTING GRADIENT

We give our computation of the gradients as the following lemma.
Lemma G.1. If the following conditions hold

• Let W ∈ Rd×m and a ∈ Rm be defined as Definition F.1.

• Let α(x) ∈ R be defined as Definition F.3

• Let S ∈ Rm be defined as Definition F.6

• Let F ∈ Rd be defined as Definition F.7

Then, we can show that for each r ∈ [m]

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• Part 1. For k1 ∈ [d], we have

dW⊤x

dwr,k1

= xk1
er

• Part 2. For k1 ∈ [d], we have

d exp(W⊤x)

dwr,k1

= (xk1
er) ◦ exp(W⊤x)

• Part 3. For k1 ∈ [d], we have

dα(x)

dwr,k1

= ⟨xk1er, exp(W
⊤x)⟩

• Part 4. For k1 ∈ [d], we have

dα(x)−1

dwr,k1

= −α(x)−1⟨xk1er,S⟩

• Part 5. For k1 ∈ [d], we have

dS

dwr,k1

= − ⟨xk1er,S⟩ · S+ (xk1er) ◦ S

• Part 6. For k1, k ∈ [d] and k1 ̸= k, we have

dF(W,x, a)k
dwr,k1

= + 0−mxk1
· Sr · ⟨βk,S⟩+mxk1

Srβk,r

• Part 7. For k1, k ∈ [d] and k1 = k, we have

dF(W,x, a)k
dwr,k

= +m⟨a ◦ er,S⟩ −mxk · Sr · ⟨βk,S⟩+mxkSrβk,r

• Part 8. For k ∈ [d], we have

dF(W,x, a)k
dwr

=marSr · ek −m⟨βk,S⟩Sr · x+mβk,rSr · x

Proof. Proof of Part 1.

dW⊤x

dwr,k1

= xk1
er

where this step follows from simple differential rules.

Proof of Part 2.

d exp(W⊤x)

dwr,k1

= exp(W⊤x) ◦ dW
⊤x

dwr,k1

= (xk1
er) ◦ exp(W⊤x)

where the first step follows from chain rules, the second step follows from Part 1 of this Lemma.

Proof of Part 3.

dα(x)

dwr,k1

= ⟨d exp(W
⊤x)

dwr,k1

,1m⟩

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

= ⟨xk1
er, exp(W

⊤x)⟩
where the first step follows from Definition F.3 and simple algebras, the second step follows from
Part 2 of this Lemma.

Proof of Part 4.

dα(x)−1

dwr,k1

= − α(x)−2 dα(x)

dwr,k1

= − α(x)−1⟨xk1er,S⟩
where this step follows from chain rules, the second step follows from Part 3 of this Lemma.

Proof of Part 5.

dS

dwr,k1

=
dα(x)−1

dwr,k1

· exp(W⊤x) + α(x)−1 · d exp(W
⊤x)

dwr,k1

= − α(x)−1⟨xk1er,S⟩ · exp(W⊤x) + α(x)−1 · (xk1er) ◦ exp(W⊤x)

= − ⟨xk1
er,S⟩ · S+ (xk1

er) ◦ S
where the first step follows from Definition F.6 and differential rules, the second step follows from
Part 2 and Part 4 of this Lemma, the last step follows from simple algebras.

Proof of Part 6. For k1 ̸= k

dF(W,x, a)k
dwr,k1

= +m⟨ dβk

dwr,k1

,S⟩+m⟨βk,
dS

dwr,k1

⟩

= −m⟨xk1
er,S⟩ · ⟨βk,S⟩+m⟨βk, (xk1

er) ◦ S⟩
= + 0−mxk1 · Sr · ⟨βk,S⟩+mxk1Srβk,r

where the first step follows from Definition F.7 and simple algebras, the second step follows from
Definition F.5, simple algebras and Part 5 of this Lemma, the last step follows from simple algebras.

Proof of Part 7. For k1 = k

dF(W,x, a)k
dwr,k

= +m⟨ dβk

dwr,k
,S⟩+m⟨βk,

dS

dwr,k
⟩

= +m⟨a ◦ er,S⟩ −m⟨xker,S⟩ · ⟨βk,S⟩+m⟨βk, (xker) ◦ S⟩
= +m⟨a ◦ er,S⟩ −mxk · Sr · ⟨βk,S⟩+mxkSrβk,r

where the first step follows from Definition F.7 and simple algebras, the second step follows from
Definition F.5, simple algebras and Part 5 of this Lemma, the last step follows from simple algebras.

Proof of Part 8.

This part of proof follows from the combination of Part 6 and Part 7 of this Lemma.

G.2 GRADIENT DESCENT

After we computed the gradient of the model function above, we are now able to define the training
dynamic of F by updating weight using gradient descent.

We use er to denote a vector where the r-th coordinate is 1 and everywhere else is 0. ∀r ∈ [m],∀k ∈
[d], we have dF(W,x,a)k

dwr
∈ Rd can be written as

dFk(W,x, a)

dwr︸ ︷︷ ︸
d×1

= marSr · ek −m⟨βk,S⟩Sr · x+mβk,rSr · x. (9)

Hence, by defining several following dynamical operator functions, we can further convenient our
proofs.

We first define ui(τ) ∈ Rm for simplification as follows:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Definition G.2. For each i ∈ [n], we define ui(τ) ∈ Rm as

ui(τ)︸ ︷︷ ︸
m×1

:= exp(W (τ)⊤︸ ︷︷ ︸
m×d

xi︸︷︷︸
d×1

)

Secondly, we re-denote αi(τ) ∈ R below, which holds due to the definition of α(x) and the updating
of W ∈ Rd×m.
Definition G.3. For each i ∈ [n], we define αi(τ) ∈ R as

αi(τ)︸ ︷︷ ︸
scalar

:= ⟨ui(τ)︸ ︷︷ ︸
m×1

, 1m︸︷︷︸
m×1

⟩.

We define βk(τ) ∈ Rm for convenience.
Definition G.4. For each k ∈ [d], we define βk(τ) ∈ Rm as

βk(τ)︸ ︷︷ ︸
m×1

= (Wk,∗(τ))︸ ︷︷ ︸
m×1

◦ a︸︷︷︸
m×1

Remark G.5. The purpose of defining notation β is to make our proofs more aligned with softmax
NTK proofs in previous work (Li et al., 2024a).

We define θk,i(τ) ∈ Rm for convenience as follows :
Definition G.6. For each i ∈ [n], for each k ∈ [d], we define θk,i(τ) ∈ Rm as follows

θk,i(τ)︸ ︷︷ ︸
m×1

:= βk(τ)︸ ︷︷ ︸
m×1

·αi(τ)
−1︸ ︷︷ ︸

scalar

We denote Sr(τ).
Definition G.7. For each i ∈ [n]. Let Si(τ) ∈ Rm be defined as

Si(τ)︸ ︷︷ ︸
m×1

:= αi(τ)
−1︸ ︷︷ ︸

scalar

· ui(τ)︸ ︷︷ ︸
m×1

for integer τ ≥ 0. For r ∈ [m], we denote Si,r(τ) ∈ R as the r-th entry of vector Si(τ).

Now, we can define F at different timestamps.
Definition G.8 (F(τ), dynamic prediction). For each k ∈ [d], for each i ∈ [n], we define Fi(τ) ∈ Rd,
for any timestamp τ , as

Fk,i(τ) := m⟨u(τ),1m⟩−1⟨W (τ)k,∗ ◦ a, u(τ)⟩.

Here xi ∈ Rd. It can be rewritten as

Fk,i(τ) = m · ⟨βk(τ)︸ ︷︷ ︸
m×1

,Si(τ)︸ ︷︷ ︸
m×1

⟩.

and also

Fk,i(τ) = m · ⟨θk,i(τ)︸ ︷︷ ︸
m×1

, ui(τ)︸ ︷︷ ︸
m×1

⟩

We consider d-dimensional MSE loss.
Definition G.9 (Loss function over time). We define the objective function L as below:

L(W (τ)) :=
1

2

∑
i∈[n]

∑
k∈[d]

(Fk,i(τ)− yk,i)
2.

Thus, we define the gradient of w.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Definition G.10 (∆wr(τ)). For any r ∈ [m], we define ∆wr(τ) ∈ Rd as below:

∆wr(τ)

:=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,rSi,r(τ) · x

)

Here, we utilize v to simplify ∆wr(τ), we have the following:

Definition G.11. For each k ∈ [d], for each r ∈ [m], we define vk,r(τ) ∈ Rm as follows

vk,r(τ) := βk,r(τ) · 1m − βk(τ).

Note that we can simplify the gradient calculation by the fact 1 = ⟨1m,Si(τ)⟩ for i ∈ [n]. Thus, we
have the following claim.

Claim G.12. We can rewrite ∆wr(τ) as follows

∆wr(τ) = m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi + arSi,r(τ)ek

)

Proof. We have

∆wr(τ)

=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,rSi,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ βk,r⟨1m,Si(τ)⟩Si,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i)

·
(
arSi,r(τ) · ek − ⟨βk(τ),Si(τ)⟩Si,r(τ) · x+ ⟨βk,r · 1m,Si(τ)⟩Si,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek + ⟨βk,r · 1m − βk(τ),Si(τ)⟩Si,r(τ) · x

)
=m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arSi,r(τ) · ek + ⟨vk,r(τ),Si(τ)⟩Si,r(τ) · x

)
where the first step follows from Definition G.10, the second step follows from the fact 1 =
⟨1m,Si(τ)⟩ for i ∈ [n], the third and fourth steps follow from simple algebras, the last step follows
from Definition G.11.

We use the gradient descent (GD) algorithm with the learning rate η to train the network. As we only
train the hidden layer W and fix a, we have the following gradient update rule.

Definition G.13 (Gradient descent). The gradient descent algorithm for optimizing the weight matrix
W is defined as:

W (τ + 1) = W (τ)− η∆W (τ).

where ∆W (τ) ∈ Rd×m and ∆wr(τ) ∈ Rd is the r-th column of ∆W (τ) defined in Definition G.10.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

H NEURAL TANGENT KERNEL

Now in this section, we give the exact computation of NTK in our analysis below.
Definition H.1 (Kernel function, Definition 3.6 in (Li et al., 2024a)). For simplicity, we denote
S(W⊤xi) as Si ∈ Rm

≥0 and vk,r = βk,r · 1m − βk ∈ Rm. We define the function (Gram matrix)
H : Rd×m → Rnd×nd as following

H(W) :=

H1,1 H1,2 · · · H1,d

H2,1 H2,2 · · · H2,d

...
...

. . .
...

Hd,1 Hd,2 · · · Hd,d

 ,

and for each k1, k2 ∈ [d], we have Hk1,k2
∈ Rn×n is defined as

[Hk1,k2
]i,j(W) :=

1

m
x⊤
i xj

m∑
r=1

⟨vk1,r,Si⟩ ·mSi,r · ⟨vk2,r,Sj⟩ ·mSj,r.

For any timestamp τ , for simplicity, we denote H(τ) := H(W (τ)) and denote H(0) as H∗.

H.1 KERNEL PERTURBATION

The purpose of this section is to prove Lemma H.3. In the proof, we do not use concentration
inequality. Please see Remark H.2 for more details.
Remark H.2. In the proof of Lemma H.3, we do not use concentration bound as previous work (Song
& Yang, 2019; Munteanu et al., 2022; Gao et al., 2023a). The reason is that we consider the worst
case. In general, E[H(W)−H(W̃)] ̸= 0nd×nd. Thus, using the concentration bound may not gain
any benefits.

Lemma H.3. If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let R ∈ (0, 0.01).

• Let xi ∈ Rd and ∥xi∥2 ≤ 1 for all i ∈ [n].

• Let W̃ = [w̃1, · · · , w̃m] ∈ Rd×m, where w̃1, · · · , w̃m are are i.i.d. draw from N (0, σ2Id).

• Let W = [w1, · · · , wm] ∈ Rd×m and satisfy ∥w̃r − wr∥2 ≤ R for any r ∈ [m].

• Let vk,r = βk,r · 1m − βk ∈ Rm, for any k ∈ [d] and for any r ∈ [m]. Note that βk,r is the
r-th in βk.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(W̃⊤xi)⟩, ∀i ∈ [n].

• Let H be defined as Definition H.1.

Then, we have

• Part 1. Then with probability at least 1− δ/poly(nd),

|[Hk1,k2
]i,j(W)− [Hk1,k2

]i,j(W̃)| ≤ 8R · exp(22B).

• Part 2. Then with probability at least 1− δ, we have

∥H(W)−H(W̃)∥F ≤ 8R
√
nd · exp(22B).

Proof. For simplicity, we give the following notations:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

• Note that S̃i := exp(W̃ (τ)⊤xi) · α̃−1
i .

• Note that β̃k := W̃k,∗ ◦ a.

• Note that ṽk,r := β̃k,r · 1m − β̃k.

Proof of Part 1. We have

|[Hk1,k2
]i,j(W)− [Hk1,k2

]i,j(W̃)| =mx⊤
i xj

m∑
r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

here, we define:

B1,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · Sj,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r
B2,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r
B3,r := ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
B4,r := ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r,Si⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
B5,r := ⟨vk1,r,Si⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r
B6,r := ⟨vk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r − ⟨ṽk1,r, S̃i⟩ · S̃i,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r

Before we bound all terms, we provide a tool as follows:

∥vk,r − ṽk,r∥22 =

m∑
r1=1

(vk,r,r1 − ṽk,r,r1)
2

=

m∑
r1=1

(βk,r − βk,r1 − β̃k,r + β̃k,r1)
2

=

m∑
r1=1

(arWk,r − ar1Wk,r − arW̃k,r + ar1W̃k,r)
2

=

m∑
r1=1

(ar(Wk,r − W̃k,r) + ar1(W̃k,r1 −Wk,r1))
2

≤
m∑

r1=1

(|Wk,r − W̃k,r|+ |W̃k,r1 −Wk,r1 |)2

≤
m∑

r1=1

4R2

≤m4R2 (10)

where the first step follows from the definition of ℓ2 norm, the second step follows from the definition
of vk,r, the third step follows from Definition F.5, the fourth and fifth steps follow from simple
algebras, the sixth step follows from ∥wr − vr∥∞ ≤ ∥wr − vr∥2 ≤ R, the last step follows from
simple algebras.

To bound B1,r, we have

|B1,r| := |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · Sj,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · (Sj,r − S̃j,r)|

≤ exp(15B)

m
· |Sj,r − S̃j,r|

≤ R exp(19B + 3R)

m2

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where the first step follows from the definition of B1,r, the second step follows from simple algebras,
the third step follows from Part 6 of Lemma L.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1,
the last step follows from Part 12 of Lemma L.1.

To bound B2,r, we have

|B2,r| := |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r,Sj − S̃j⟩ · S̃j,r|

≤ 2B exp(12B)

m2
· |⟨ 1

2B
vk2,r,Sj − S̃j⟩|

≤ 2BR exp(16B + 3R)

m2

where the first step follows from the definition of B2,r, the second step follows from simple algebras,
the third step follows from Part 6 of Lemma L.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1,
the last step follows from Part 13 of Lemma L.1 and ∥vk,r∥∞ ≤ 2B by simple algebras.

To bound B3,r, we have

|B3,r| := |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r, S̃j⟩ · S̃j,r − ⟨vk1,r,Si⟩ · Si,r · ⟨ṽk2,r, S̃j⟩ · S̃j,r|

= |⟨vk1,r,Si⟩ · Si,r · ⟨vk2,r − ṽk2,r, S̃j⟩ · S̃j,r|

≤ exp(12B)

m2
· |⟨vk2,r − ṽk2,r, S̃j⟩|

≤ 2R exp(15B)

m2

where the first step follows from the definition of B3,r, the second step follows from simple algebras,
the third step follows from Part 6 of Lemma L.2 and 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1,
the last step follows from Cauchy-Schwarz inequality, Eq. (10) and ∥Si∥2 ≤ exp(3B)√

m
.

The proof of bounding B4,r is similar to the proof of bounding B1,r, we have |B4,r| ≤ R exp(19B+3R)
m2 .

The proof of bounding B5,r is similar to the proof of bounding B2,r, we have |B5,r| ≤
2BR exp(16B+3R)

m2 .

The proof of bounding B6,r is similar to the proof of bounding B3,r, we have |B6,r| ≤ 2R exp(15B)
m2 .

Now we combine all terms, we have

|[Hk1,k2]i,j(W)− [Hk1,k2]i,j(W̃)| =mx⊤
i xj

m∑
r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

≤m

m∑
r=1

(B1,r +B2,r +B3,r +B4,r +B5,r +B6,r)

≤m

m∑
r=1

(|B1,r|+ |B2,r|+ |B3,r|+ |B4,r|+ |B5,r|+ |B6,r|)

≤m

m∑
r=1

8R exp(22B)

m2

≤ 8R · exp(22B)

where the second step follows from ∥xi∥2 ≤ 1, the third step follows from simple algebras, the fourth
step follows from R ≤ B, B ≤ exp(B) and the combination of all terms, the last step follows from
simple algebras.

Proof of Part 2. This proof follows from Part 1 of this Lemma and the definition of Frobenius
norm.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

H.2 KERNEL PSD DURING TRAINING PROCESS

Claim H.4. If the following conditions hold:

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let timestamp τ ≥ 0 denotes as a integer.

• Denote H∗ as H(W) in Definition H.1.

• Denote H(τ) as H(W̃) in Definition H.1.

• Let D := 2λ−1 · exp(20B)
√
nd
m ∥Y − F(0)∥F

• Let ∥wr(t)− wr(0)∥2 ≤ D < R = λ/ poly(n, d, exp(B)), ∀r ∈ [m], ∀t ≥ 0

Then, with a probability at least 1− δ, we have

λmin(H(τ)) ≥ λ/2

Proof. By Lemma H.3, with a probability at least 1− δ, we have

∥H∗ −H(τ)∥F ≤ 8R
√
nd exp(22B)

≤ λ/2 (11)

where the first step follows from Part 2 of Lemma H.3, the second step follows by choice of R.

By eigenvalue perturbation theory, we have

λmin(H(τ)) ≥ λmin(H
∗)− ∥H(τ)−H∗∥

≥ λmin(H
∗)− ∥H(τ)−H∗∥F

≥ λmin(H
∗)− λ/2

≥ λ/2

where the first step comes from triangle inequality, the second step is due to Frobenius norm, the
third step is due to Eq. (11), the last step follows from λmin(H

∗) = λ.

I LOSS DECOMPOSITION

In this section, we provide the lemma below to decompose it into five terms, and then we will give
bounds to four terms.

Lemma I.1. Assuming the following condition is met:

• Let W ∈ Rd×m and a ∈ Rm as Definition F.1.

• Let λ = λmin(H
∗)

• For i, j ∈ [n] and k1, k2 ∈ [d].

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

• Let η > 0 denote the learning rate.

• Let scalar v0,k,i ∈ R be defined as follows

v0,k,i :=m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

• Let scalar v1,k,i ∈ R be defined as follows

v1,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · (−η⟨∆wr(τ), xi⟩)

• Let scalar v2,k,i ∈ R be defined as follows

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• Gradient Property. η∥∆wr(i)∥2 ≤ 0.01, ∀r ∈ [m], ∀i ∈ [τ]

• C0 = 2⟨vec(F(τ)− Y), vec(v0)⟩

• C1 = 2⟨vec(F(τ)− Y), vec(v1)⟩

• C2 = 2⟨vec(F(τ)− Y), vec(v2)⟩

• C3 = ∥F(τ + 1)− F(τ)∥2F

Then, we can show

∥F(τ + 1)− Y ∥2F = ∥F(τ)− Y ∥2F + C0 + C1 + C2 + C3.

Proof. The expression ∥Y −F(τ +1)∥2F = ∥ vec(Y −F(τ +1))∥22 can be rewritten in the following:

∥ vec(Y − F(τ + 1))∥22
= ∥ vec(Y − F(τ)− (F(τ + 1)− F(τ)))∥22
= ∥ vec(Y − F(τ))∥22 − 2 vec(Y − F(τ))⊤ vec(F(τ + 1)− F(τ))

+ ∥ vec(F(τ + 1)− F(τ))∥22.
(12)

where the first step follows from simple algebra, the last step follows from simple algebra.

Recall the update rule (Definition G.13),

wr(τ + 1) = wr(τ)− η ·∆wr(τ)

In the following manner, ∀k ∈ [d], we can express Fk(τ + 1)− Fk(τ) ∈ Rn:

Fk,i(τ + 1)− Fk,i(τ)

=m
∑
r∈[m]

(θk,i,r(τ + 1)ui,r(τ + 1)− θk,i,r(τ)ui,r(τ))

= +
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑
r∈[m]

θk,i,r · (ui,r(τ + 1)− ui,r(τ))

= +
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

+m
∑
r∈[m]

θk,i,r(τ) · ui,r(τ) · (exp(−η⟨∆wr(τ), xi⟩)− 1)

= +
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

+m
∑
r∈[m]

θk,i,r(τ)ui,r(τ) · (−η⟨∆wr(τ), xi⟩+Θ(1)η2⟨∆wr(τ), xi⟩2)

= v0,k,i + v1,k,i + v2,k,i (13)

where the first step is due to the definition of Fk,i(τ), the second step is from the simple algebra, the
third step is due to |η∆wr(τ)

⊤xi| ≤ 0.01 (due to Gradient Property and ∥xi∥2 ≤ 1), the fourth
step follows from the Taylor series approximation, the last step follows from

v0,k,i :=m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

v1,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · (−η⟨∆wr(τ), xi⟩)

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

Here v0,k,i and v1,k,i are linear in η and v2,k,i is quadratic in η. Thus, v0,k,i and v1,k,i are the first
order term, and v2,k,i is the second order term.

We can rewrite the second term in the Eq. (12) above as below:

⟨vec(Y − F(τ)), vec(F(τ + 1)− F(τ))⟩
= ⟨vec(Y − F(τ)), vec(v0 + v1 + v2)⟩
= ⟨vec(Y − F(τ)), vec(v0)⟩+ ⟨vec(Y − F(τ)), vec(v1)⟩+ ⟨vec(Y − F(τ)), vec(v2)⟩

where the first step follows from Eq.(13), the second step follows from simple algebras.

Therefore, we can conclude that

∥F(τ + 1)− Y ∥2F = ∥F(τ)− Y ∥2F + C0 + C1 + C2 + C3.

The below lemma analyzes the first-order term that is making progress.
Lemma I.2 (Progress terms). If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ))

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition F.5.

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Let Si(τ) ∈ Rm be defined as Definition G.7.

• Let vk,r := βk,r(τ) · 1m − βk(τ) ∈ Rm

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v1,1,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,1,k,i =m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

• Let C1,1 := 2⟨vec(F(τ)− Y), vec(v1,1)⟩

Then, we have

• C1,1 ≤ −1.6mη vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

Proof. We have

v1,1,k,i =m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2
∑
r∈[m]

βk,r(τ) · αi(τ)
−1 · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2
∑
r∈[m]

βk,r(τ) · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

= m2
∑
r∈[m]

⟨βk,r(τ) · 1m,Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j − yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2
∑
r∈[m]

(⟨vk,r,Si(τ)⟩+ ⟨βk(τ),Si(τ)⟩) · Si,r

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi

=m2(Q1,1,k,i +Q1,2,k,i)

where the first step follows from the definition of v1,1,k,i, the second step follows from Definition G.6,
the third step follows from Definition G.7, the fourth step follows from ⟨βk,r(τ) · 1m,Si⟩ = βk,r(τ),
the fifth step follows from the definition of vk for k ∈ [d] and simple algebras, the last step holds
since we define

Q1,1,k,i :=
∑
r∈[m]

⟨vk,r,Si(τ)⟩ · Si,r(τ)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi,

Q1,2,k,i :=
∑
r∈[m]

⟨βk(τ),Si(τ)⟩ · Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) ·
(
(⟨vk2,r,Sj(τ)⟩) · Sj,r(τ)

)
· x⊤

j)xi.

Bounding first term. Then for the first term Q1,1,k,i, we have its quantity

n∑
i=1

d∑
k=1

Q1,1,k,i(Fk,i(τ)− yk,i) = −
1

m
η vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

where this step follows from Definition H.1.

Bounding second term. On the other hand, for the second term Q1,2,k,i, we have its quantity,

|
n∑

i=1

d∑
k=1

Q1,2,k,i(Fk,i(τ)− yk,i)|

≤ η|exp(9B)

m3

n∑
i=1

n∑
j=1

m∑
r=1

d∑
k=1

d∑
k2=1

σrCk,k2,r(Fk,i(τ)− yk,i)(Fk2,j(τ)− yk2,j)|

≤ η
exp(9B)

m3
· |

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · ∥(F(τ)− Y)⊗ (F(τ)− Y)∥1

≤ η
exp(9B)

m3
· |

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · ∥F(τ)− Y ∥21

≤ η
nd exp(9B)

m3
· |

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · ∥F(τ)− Y ∥2F

≤ η
exp(9B)

m3λ
|

m∑
r=1

σr max
k,k2∈[d]

Ck,k2,r| · vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

where the first step follows from 0 ≤ Si,r ≤ exp(3B)
m by Part 11 of Lemma L.1, ∥Si∥2 ≤ exp(3B)√

m
,

∥xi∥ ≤ 1 and

Ck,k2,r := ∥βk(τ)∥2 · ∥vk2,r∥2, σr ∈ {+1,−1}

the second and third steps follow from the definition of Kronecker product, the fourth step follows
from ∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d, the last step follows from vec(F(τ)−Y)⊤H(τ) vec(F(τ)−

Y) ≥ λ∥F− Y ∥2F .

Thus, by following Part 2 and Part 3 of Lemma L.2, we have

Ck,k2,r = ∥βk(τ)∥2 · ∥vk2,r∥2 ≤ 2mB2.

Besides, we apply Hoeffding inequality (Lemma E.4) to all random variables σr maxk,k2∈[d] Ck,k2,r

for r ∈ [m], especially E[
∑m

r=1 σr maxk,k2∈[d] Ck,k2,r] = 0 due to the symmetry of ar, we have

|
n∑

i=1

d∑
k=1

Q1,2,k,i(Fk,i(τ)− yk,i)|

≤ Cη
nd exp(9B)

m3λ
· vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y) ·mB2

√
m log(nd/δ)

with probability at least 1− δ/poly(nd).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Note that by Lemma condition, we have

C
nd exp(9B)

m3λ
·mB2

√
m log(nd/δ) ≤ 0.2

1

m
.

Finally, we complete the proof with the result

C1,1 ≤ −1.6mη vec(F(τ)− Y)⊤H(τ) vec(F(τ)− Y)

Below, we prove all other terms are small when m is large enough compared to the progressive term.
Lemma I.3 (Minor effects on non-progress term). If the following

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√

log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d]

• Let scalar v0,k,i ∈ R be defined as follows

v0,k,i :=m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

• Let scalar v1,2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,2,k,i = m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ) · (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi

• Let scalar v2,k,i ∈ R be defined as follows

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• Let C0 := 2⟨vec(F(τ)− Y), vec(v0)⟩

• Let C1,2 := 2⟨vec(F(τ)− Y), vec(v1,2)⟩

• Let C2 := 2⟨vec(F(τ)− Y), vec(v2)⟩

• Let C3 := ∥F(τ + 1)− F(τ)∥2F

Then, we have

• |C0| ≤ 0.1mηλ · ∥F(τ)− Y ∥2F
• |C1,2| ≤ 0.1mηλ · ∥F(τ)− Y ∥2F

• |C2| ≤ η2m · n2d2 exp(16B) · ∥F(τ)− Y ∥2F
• |C3| ≤ η2m2 · ∥F(τ)− Y ∥2F

Proof. This proof follows from Lemma I.4, Lemma I.5, Lemma I.6 and Lemma I.7.

I.1 BOUNDING C0

Lemma I.4. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition F.5.

• Let αi(τ) ∈ R be defined as Definition F.3.

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Let Si(τ) ∈ Rm be defined as Definition G.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

• Let η ∈ (0, 1/m) denote the learning rate.

• Let scalar v0,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v0,k,i =m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

• Let C0 := 2⟨vec(F(τ)− Y), vec(v0)⟩

Then, with a probability at least 1− δ/poly(nd), we have

|C0| ≤ 0.1ηmλ∥F(τ)− Y ∥2F .

Proof. By Claim G.12, we have

∆wr(τ) = m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi + arSi,r(τ)ek

)
Then the k1-th entry ∆wr,k(τ) for k1 ∈ [d] should be

∆wr,k1
(τ) = m

n∑
i=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Si(τ)⟩ · Si,r(τ) · xi,k1

+ arSi,r(τ)ek,k1

)
(14)

We have

v0,k,i = m
∑
r∈[m]

(θk,i,r(τ + 1)− θk,i,r(τ)) · ui,r(τ + 1)

= m
∑
r∈[m]

(βk,r(τ + 1)αi(τ + 1)−1 − βk,r(τ)αi(τ)
−1) · ui,r(τ + 1)

= m
∑
r∈[m]

(βk,r(τ + 1)αi(τ + 1)−1 − βk,r(τ + 1)αi(τ)
−1

+ βk,r(τ + 1)αi(τ)
−1 − βk,r(τ)αi(τ)

−1) · ui,r(τ + 1)

= m
∑
r∈[m]

(βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

+ (βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · ui,r(τ + 1)

=m(Q0,1,k,i +Q0,2,k,i)

where the first step follows from the definition of v0,k,i, the second step follows from Definition G.6,
the third and fourth steps follow from simple algebras, the last step hold since we define

Q0,1,k,i :=
∑
r∈[m]

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1) · ui,r(τ + 1),

Q0,2,k,i :=
∑
r∈[m]

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · ui,r(τ + 1).

Bounding first term. For the first term Q0,1,k,i, we have its quantity

|
n∑

i=1

d∑
k=1

Q0,1,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1) · ui,r(τ + 1)(Fk,i(τ)− yk,i)|

≤ exp(B) · |
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ + 1) · (αi(τ + 1)−1 − αi(τ)
−1)(Fk,i(τ)− yk,i)|

≤ B exp(B) · |
n∑

i=1

d∑
k=1

m∑
r=1

ar(αi(τ + 1)−1 − αi(τ)
−1) · (Fk,i(τ)− yk,i)|

≤ B exp(B) · |
m∑
r=1

ar(αi(τ + 1)−1 − αi(τ)
−1)| ·

√
nd∥F(τ)− Y ∥F (15)

where the first step follows from the definition of Q0,1,k,i, the second step follows from Part 4
of Lemma L.1 and Definition G.2, the third step follows from Part 1 of Lemma L.1 and ∥U∥1 ≤√
nd∥U∥F for U ∈ Rn×d.

By Part 2 of Lemma I.9, we have

αi(τ + 1)−1 − αi(τ)
−1 ≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(27B)√
m

· ∥F(τ)− Y ∥F .

Then we apply Hoeffding inequality (Lemma E.4) to random variables ar(αi(τ + 1)−1 − αi(τ)
−1)

for r ∈ [m], and by E[
∑m

r=1 ar(αi(τ + 1)−1 − αi(τ)
−1)] = 0, we have

|
m∑
r=1

ar(αi(τ + 1)−1 − αi(τ)
−1)|

≤ (η

√
nd exp(15B)

m3
+ η2

nd exp(27B)√
m

) · ∥F(τ)− Y ∥F ·
√
m log(nd/δ). (16)

with probability at least 1− δ/poly(nd).

Through combining Eq. (16) and Eq.(15), we can show that

|
n∑

i=1

d∑
k=1

Q0,1,k,i(Fk,i(τ)− yk,i)|

≤ (η
nd exp(17B)

m3
· ∥F(τ)− Y ∥2F + η2

nd
√
nd exp(29B)√

m
· ∥F(τ)− Y ∥2F) ·

√
m log(nd/δ)

with a probability at least 1− δ/poly(nd).

Thus, by Lemma condition, we can show

η
nd exp(17B)

m3
·
√

m log(nd/δ) ≤ 0.01ηλ,

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

η2
nd
√
nd exp(29B)√

m
·
√
m log(nd/δ) ≤ η

nd
√
nd exp(29B)

m
·
√

log(nd/δ) ≤ 0.01ηλ.

Bounding second term. On the other hand, for the second term Q0,2,k,i, we have its quantity

|
n∑

i=1

d∑
k=1

Q0,2,k,i(Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · ui,r(τ + 1) · (Fk,i(τ)− yk,i)|

≤ exp(B) · |
n∑

i=1

d∑
k=1

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · αi(τ)
−1) · (Fk,i(τ)− yk,i)|

≤ exp(2B)

m
· |

n∑
i=1

d∑
k=1

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · (Fk,i(τ)− yk,i)|

≤ exp(2B)

m
· |

n∑
i=1

d∑
k=1

m∑
r=1

(Wk,r(τ + 1) · ar −Wk,r(τ) · ar) · (Fk,i(τ)− yk,i)|

≤ η
exp(2B)

m
· |

n∑
i=1

d∑
k=1

m∑
r=1

ar ·m ·
n∑

j=1

d∑
k1=1

(Fk1,j(τ)− yk1,j)

·
(
⟨vk1,r(τ),Sj(τ)⟩ · Sj,r(τ) · xj,k + arSj,r(τ)ek1,k

)
· (Fk,i(τ)− yk,i)|

≤ η
exp(5B)

m
· |

m∑
r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r| · ∥(F(τ)− Y)⊗ (F(τ)− Y)∥1

≤ η
exp(5B)

m
· |

m∑
r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥21

≤ η
nd exp(5B)

m
· |

m∑
r=1

σr max
j,k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥2F

where the first step follows from the definition of Q0,2,k,i, the second and third steps follow from
Part 4 of Lemma L.1, the fourth step follows from Definition F.5, the fifth step follows from Eq.(14),
the sixth step follows from the definition of Kronecker product, 1 ≤ Si,r ≤ exp(3B)

m by Part 11 of
Lemma L.1, ∥xi∥2 ≤ 1 and defining

Cj,k,k1,r := ⟨Sj , vk1,r⟩+ ek1,k, σr ∈ {+1,−1},

the seventh step follows from the definition of ℓ1 norm, the last step follows from ∥U∥1 ≤
√
nd∥U∥F

for U ∈ Rn×d.

Thus, by following Part 6 of Lemma L.2, we have

Cj,k,k1,r = ⟨Sj , vk1,r⟩+ ek1,k

≤ exp(6B) + 1

≤ exp(7B)

where the last step follows from simple algebras.

We apply Hoeffding inequality (Lemma E.4) to σr maxj,k,k1∈[d] Cj,k,k1,r for r ∈ [m].

By E[
∑m

r=1 σr maxj,k,k1∈[d] Cj,k,k1,r] = 0, we have

|
n∑

i=1

d∑
k=1

Q0,2,k,i(Fk,i(τ)− yk,i)| ≤ η
nd exp(5B)

m
· ∥F(τ)− Y ∥2F · exp(6B)

√
m log(nd/δ).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

with probability at least 1− δ/poly(nd).

Then, by Lemma condition, we have

η
nd exp(5B)

m
· exp(7B)

√
m log(nd/δ) ≤ 0.01ηλ.

Now we can complete the proof by combining all terms, we have

|C0| ≤ 0.1ηmλ∥F(τ)− Y ∥2F .

I.2 BOUNDING C1,2

Lemma I.5. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition F.5.

• Let αi(τ) ∈ R be defined as Definition F.3.

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Let Si(τ) ∈ Rm be defined as Definition G.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v1,2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v1,2,k,i = m2
∑
r∈[m]

θk,i,r(τ) · ui,r(τ) · (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi

• Let C1,2 := 2⟨vec(F(τ)− Y), vec(v1,2)⟩

Then, with a probability at least 1− δ/poly(nd), we have

|C1,2| ≤ 0.1ηmλ∥F(τ)− Y ∥2F

Proof. We have the quantity of v1,2,k,i

|
n∑

i=1

d∑
k=1

v1,2,k,i(Fk,i(τ)− yk,i)|

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

≤ |
n∑

i=1

d∑
k=1

m2
m∑
r=1

θk,i,r(τ) · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m2
m∑
r=1

βk,r(τ)αi(τ)
−1 · ui,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ |
n∑

i=1

d∑
k=1

m2
m∑
r=1

βk,r(τ)Si,r(τ)

· (−η
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ ηm2|
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ)Si,r(τ)

· (−
n∑

j=1

d∑
k2=1

(Fk2,j(τ)− yk2,j) · arSj,r(τ)e⊤k2
)xi · (Fk,i(τ)− yk,i)|

≤ η exp(6B)

m∑
r=1

|ar ·max
k∈[d]

βk,r(τ)| · ∥(F(τ)− Y)⊗ (F(τ)− Y)∥1

≤ η exp(6B)

m∑
r=1

|ar ·max
k∈[d]

βk,r(τ)| · ∥F(τ)− Y ∥21

≤ ηnd exp(6B)

m∑
r=1

|ar ·max
k∈[d]

βk,r(τ)| · ∥F(τ)− Y ∥2F

where the first step follows from the definition of v1,2,k,i, the second step follows from Definition G.6,
the third step follows from Definition F.5, the fourth step follows from Definition G.7, the fifth step
follows from simple algebras, the sixth step follows from 0 ≤ Sj,r ≤ exp(3B)

m , ∥xi∥2 ≤ 1 and the
definition of Kronecker product, the seventh step follows from the definition of ℓ1 norm, the last step
follows from ∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d.

Then by Part 1 of Lemma L.1, we have

|max
k∈[d]

βk,r(τ)| ≤ B

We apply Hoeffding inequality (Lemma E.4) to random variables ar ·maxk∈[d] βk,r(τ) for r ∈ [m].
By E[

∑m
r=1 ar ·maxk∈[d] βk,r(τ)] = 0, we have

|
n∑

i=1

d∑
k=1

v1,2,k,i(Fk,i(τ)− yk,i)| ≤ ηnd exp(6B)B∥F(τ)− Y ∥2F

with a probability at least 1− δ/poly(nd).

By the Lemma condition, we have

nd exp(6B)B ≤ 0.1mλ

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

I.3 BOUNDING C2

Lemma I.6. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let βk(τ) ∈ Rm be defined as Definition F.5.

• Let αi(τ) ∈ R be defined as Definition F.3.

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Let Si(τ) ∈ Rm be defined as Definition G.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let scalar v2,k,i ∈ R be defined as follows (we omit (τ) in the following terms)

v2,k,i :=m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2

• Let C2 := 2⟨vec(F(τ)− Y), vec(v2)⟩

Then, with a probability at least 1− δ/poly(nd), we have

|C2| ≤ η2m · n2d2 exp(16B)∥F(τ)− Y ∥2F

Proof. We have

⟨∆wr(τ), xi⟩2

≤
(
m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

)2

≤ exp(12B) · ∥F(τ)− Y ∥21
≤ nd exp(12B) · ∥F(τ)− Y ∥2F (17)

where the first step follows from Claim G.12, the second step follows from the definition of ℓ1 norm,
0 ≤ Sj,r ≤ exp(3B)

m by Part 11 of Lemma L.1 and Part 6 of Lemma L.2, last step follows from
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d.

Then, we can show that

|
n∑

i=1

d∑
k=1

v2,k,i(Fk,i(τ)− yk,i)|

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

≤ |
n∑

i=1

d∑
k=1

m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · η2 ·Θ(1) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑
k=1

m

m∑
r=1

θk,i,r(τ) · ui,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑
k=1

m

m∑
r=1

βk,r(τ) · αi(τ)
−1 · ui,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2|
n∑

i=1

d∑
k=1

m

m∑
r=1

βk,r(τ) · Si,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(3B)|
n∑

i=1

d∑
k=1

m∑
r=1

βk,r(τ) · ⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(4B)|
n∑

i=1

d∑
k=1

m∑
r=1

ar⟨∆wr(τ), xi⟩2 · (Fk,i(τ)− yk,i)|

≤ η2 exp(4B)|
m∑
r=1

ar max
i∈[n]
⟨∆wr(τ), xi⟩2| ·

√
nd∥F(τ)− Y ∥F

≤ η2
√
mnd exp(4B)|

m∑
r=1

ar max
i∈[n]
⟨∆wr(τ), xi⟩2|

where the first step follows from the definition of v2,k,i, the second step follows from simple algebras,
the third step follows from Definition G.6, the fourth step follows from Definition G.7, the fifth
step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1, the sixth step follows from
Part 1 of Lemma L.1 and Definition F.5, the seventh step follows from definition of ℓ1 norm and
∥U∥1 ≤

√
nd∥U∥F for U ∈ Rn×d, the last step follows from Lemma I.8.

Next, by Eq.(17), applying Hoeffding inequality (Lemma E.4) to ar maxi∈[n]⟨∆wr(τ), xi⟩2 for
r ∈ [m] and E[

∑m
r=1 ar maxi∈[n]⟨∆wr(τ), xi⟩2] = 0, we have

|
n∑

i=1

d∑
k=1

v2,k,i(Fk,i(τ)− yk,i)| ≤ η2
√
mn2d2 exp(16B) · ∥F(τ)− Y ∥2F ·

√
m log(nd/δ)

with a probability at least 1− δ/poly(nd).

By the Lemma condition, we have

η2
√
mn2d2 exp(16B) ·

√
m log(nd/δ) ≤ η2m · n2d2 exp(16B)

Then we complete the proof.

I.4 BOUNDING C3

Lemma I.7. If the following conditions hold

• Let λ = λmin(H
∗)

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

• Let βk(τ) ∈ Rm be defined as Definition F.5.

• Let αi(τ) ∈ R be defined as Definition F.3.

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Let Si(τ) ∈ Rm be defined as Definition G.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

• Let η > 0 denote the learning rate.

• Let C3 := ∥F(τ + 1)− F(τ)∥2F

Then, with a probability at least 1− δ/poly(nd), we have

|C3| ≤ η2m2∥F(τ)− Y ∥2F

Proof. We have

|C3| = ∥F(τ + 1)− F(τ)∥2F

=

n∑
i=1

d∑
k=1

(Fk,i(τ + 1)− Fk,i(τ))
2

=

n∑
i=1

d∑
k=1

m2(⟨βk(τ + 1),Si(τ + 1)⟩ − ⟨βk(τ),Si(τ)⟩)2

=

n∑
i=1

d∑
k=1

m2
(m∑

r=1

(βk,r(τ + 1) · Si,r(τ + 1)− βk,r(τ) · Si,r(τ))
)2

=

n∑
i=1

d∑
k=1

m2
(m∑

r=1

(βk,r(τ + 1) · Si,r(τ + 1)− βk,r(τ + 1) · Si,r(τ)

+ βk,r(τ + 1) · Si,r(τ)− βk,r(τ) · Si,r(τ))
)2

=

n∑
i=1

d∑
k=1

m2
(m∑

r=1

(βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ))

+ (βk,r(τ + 1)− βk,r(τ)) · Si,r(τ))
)2

=

n∑
i=1

d∑
k=1

m2(Q3,1,i,k +Q3,2,i,k)
2

where the first step follows from the definition C2, the second step follows from the definition of
Frobenius norm, the third step follows from Definition G.8, the fourth, fifth and sixth steps follow
from simple algebras, the last step follows from defining

Q3,1,i,k =

m∑
r=1

βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ)),

Q3,2,i,k =

m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · Si,r(τ).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Bounding first term. For the first term, we have

|Q3,1,i,k| = |
m∑
r=1

βk,r(τ + 1) · (Si,r(τ + 1)− Si,r(τ))|

= |
m∑
r=1

ar · wr,k(τ + 1) · (Si,r(τ + 1)− Si,r(τ))|

≤ |B ·
m∑
r=1

ar · (Si,r(τ + 1)− Si,r(τ))|

≤ | exp(3B) ·
m∑
r=1

ar ·max
i∈[n]

(αi(τ + 1)−1 − αi(τ)
−1)|

where the first step follows from the definition of Q3,1,i,k, the second step follows from Definition F.5,
the third step follows from Part 1 of Lemma L.1, last step follows from Part 4 of Lemma L.1,
Definition G.7 and B ≤ exp(B).

Then by Part 2 of Lemma I.9, applying Hoeffding inequality (Lemma E.4) to the random variables
ar·maxi∈[n](αi(τ+1)−1−αi(τ)

−1 for r ∈ [m] and E[
∑m

r=1 ar·maxi∈[n](αi(τ+1)−1−αi(τ)
−1] =

0, we have

|Q3,1,i,k| ≤ (η

√
nd exp(18B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(30B)√
m

· ∥F(τ)− Y ∥F) ·
√

m log(nd/δ)

with a probability of at least 1− δ/poly(nd).

By the Lemma condition, we have

(η

√
nd exp(18B)

m3
+ η2

nd exp(30B)√
m

) ·
√
m log(nd/δ) ≤ 1

2
√
nd

η

Bounding second term. On the other hand, for the second term Q3,2,k,i, we have

|Q3,2,k,i| = |
m∑
r=1

(βk,r(τ + 1)− βk,r(τ)) · Si,r(τ)|

= η|
m∑
r=1

ar∆wr,k(τ) · Si,r(τ)|

≤ η
exp(3B)

m
|

m∑
r=1

ar∆wr,k(τ)|

≤ η exp(3B)
∣∣∣ m∑
r=1

ar

n∑
j=1

d∑
k1=1

(Fk1,j(τ)− yk1,j)

·
(
⟨vk1,r(τ),Sj(τ)⟩ · Sj,r(τ) · xi,k + arSj,r(τ)ek,k1

)∣∣∣
≤ η

exp(6B)

m
|

m∑
r=1

ar max
j∈[n],k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥1

≤ η

√
nd exp(6B)

m
|

m∑
r=1

ar max
j∈[n],k,k1∈[d]

Cj,k,k1,r| · ∥F(τ)− Y ∥F

where the first step follows from the definition of Q3,2,k,i, the second step follows from Defini-
tion G.13, the third step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1, the fourth step
follows from Claim G.12, the fifth step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1,
∥xi∥2 ≤ 1 and defining

Cj,k,k1,r := ⟨vk1,r(τ),Sj(τ)⟩+ ek,k1
,

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

the last step follows from ∥U∥1 ≤
√
nd∥U∥F for U ∈ Rn×d.

Now we follow from Part 6 of Lemma L.2, applying Hoeffding inequality (Lemma E.4) to random
variables ar maxj∈[n],k,k1∈[d] Cj,k,k1,r for r ∈ [m] and E[

∑m
r=1 ar maxj∈[n],k,k1∈[d] Cj,k,k1,r] = 0,

we have

|Q3,2,k,i| ≤ η

√
nd exp(13B)

m
· ∥F(τ)− Y ∥F ·

√
m log(nd/δ) ≤ 1

2
√
nd

η

Finally, we combine all terms, we have

|C3| =
n∑

i=1

d∑
k=1

m2((
1

2
√
nd

η +
1

2
√
nd

η) · ∥F(τ)− Y ∥F)2

≤ η2m2∥F(τ)− Y ∥2F

I.5 BOUNDING LOSS DURING TRAINING PROCESS

Lemma I.8. If the following conditions hold

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

Then we have

∥F(τ)− Y ∥F ≤ O(
√
nmd)

Proof. This proof follows from ∥yi∥ ≤ 1 for i ∈ [n] and Definition G.8.

I.6 HELPFUL LEMMA

Lemma I.9. If the following conditions hold

• Let λ = λmin(H
∗).

• Let C > 10 denote a sufficiently large constant.

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k1 ∈ [d].

• Let αi(τ) ∈ R be defined as Definition F.3.

• Let βk(τ) ∈ Rm be defined as Definition F.5.

• Let θk,i(τ) ∈ Rm be defined as Definition G.6.

• Let ui(τ) ∈ Rm be defined as Definition G.2.

• Let Si(τ) ∈ Rm be defined as Definition G.7.

• Let vk := βk,r(τ) · 1m − βk(τ) ∈ Rm.

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Then with a probability at least 1− δ/poly(nd), we have

• Part 1.

αi(τ + 1)− αi(τ) ≤ η

√
nd exp(9B)

m
· ∥F(τ)− Y ∥F + η2m1.5 · nd exp(21B) · ∥F(τ)− Y ∥F

• Part 2.

αi(τ + 1)−1 − αi(τ)
−1 ≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(27B)√
m

· ∥F(τ)− Y ∥F

Proof. Proof of Part 1.

We have

αi(τ + 1)− αi(τ)

= ⟨ui(τ + 1),1m⟩ − ⟨ui(τ),1m⟩
= ⟨ui(τ + 1)− ui(τ),1m⟩
= ⟨exp(W (τ + 1)⊤xi)− exp(W (τ)⊤xi),1m⟩
= ⟨exp(W (τ)⊤xi) ◦ (exp(−η∆W (τ)⊤xi)− 1m),1m⟩
= ⟨exp(W (τ)⊤xi) ◦ (−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)

2),1m⟩
= ⟨−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)

2, exp(W (τ)⊤xi)⟩
≤ exp(B) · ⟨−η∆W (τ)⊤xi +Θ(1)η2 · (∆W (τ)⊤xi)

2,1m)⟩

≤ η

√
nd exp(9B)

m
· ∥F(τ)− Y ∥F + η2m1.5 · nd exp(21B) · ∥F(τ)− Y ∥F

where the first step follows from Definition F.3, the second step follows from simple algebras, the
third step follows from Definition G.2, the fourth step follows from simple algebra, the fifth step
follows from Fact E.1, the sixth step follows from simple algebras, the seventh step follows from Part
4 of Lemma L.1, last step follows from Part 1 and Part 2 of Lemma I.10.

Proof of Part 2. We have

αi(τ + 1)−1 − αi(τ)
−1 = αi(τ + 1)−1αi(τ)

−1 · (αi(τ + 1)− αi(τ))

≤ exp(6B)

m2
· (αi(τ + 1)− αi(τ))

≤ η

√
nd exp(15B)

m3
· ∥F(τ)− Y ∥F + η2

nd exp(27B)√
m

· ∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Part 4 of Lemma L.2,
the last step follows from Part 1 of this Lemma.

Lemma I.10. If the following conditions hold

• Let λ = λmin(H
∗).

• Let W (τ) ∈ Rm×d be defined as Definition G.13, let a ∈ Rm be defined as Definition F.1.

• Let C > 10 denote a sufficiently large constant.

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let δ ∈ (0, 0.1).

• Let m ≥ Ω(λ−2n2d2 exp(30B)
√
log(nd/δ)).

• Let r ∈ [m], let i, j ∈ [n], let k, k2 ∈ [d].

• Let Si(τ) ∈ Rm be defined as Definition G.7.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

• Let vk,r := βk,r(τ) · 1m − βk(τ) ∈ Rm.

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

• Let η = λ/(m · poly(n, d, exp(B))) denote the learning rate.

Then with a probability at least 1− δ/poly(nd), we have

• Part 1.

|⟨η∆W (τ)⊤xi,1m⟩| ≤ η

√
nd exp(8B)

m
· ∥F(τ)− Y ∥F

• Part 2.

|⟨η2(∆W (τ)⊤xi)
2,1m⟩| ≤ η2m1.5 · nd exp(20B) · ∥F(τ)− Y ∥F

Proof. Proof of Part 1. We have

|⟨η∆W (τ)⊤xi,1m⟩|

= η|
m∑
r=1

⟨∆wr(τ), xi⟩|

≤ η
∣∣∣ m∑
r=1

m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

∣∣∣
≤ η

∣∣∣ m∑
r=1

m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨βk,r(τ) · 1m − βk(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

∣∣∣
≤ η

∣∣∣ m∑
r=1

m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
arwr,k + ⟨−a ◦Wk,∗(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

∣∣∣
≤ η

exp(3B)

m

m∑
r=1

σr max
j∈[n],k∈[d]

Cj,k,r∥F(τ)− Y ∥1

≤ η

√
nd exp(3B)

m

m∑
r=1

σr max
j∈[n],k∈[d]

Cj,k,r∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Claim G.12, the
third step follows from the definition of vk,r, the fourth step follows from Definition F.5 and simple
algebras, the fifth step follows from ∥xi∥2 ≤ 1, 1 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1,
definition of ℓ1 norm and defining

Cj,k,r := |wr,k|+ |⟨−Wk,∗(τ),Sj(τ)⟩|+ ∥ek∥, σr ∈ {+1,−1},

the last step follows from ∥U∥1 ≤
√
nd∥U∥F for U ∈ Rn×d.

Thus, by following Part 1 and Part 11 of Lemma L.2 and Hoeffding inequality (Lemma E.4), we have

|⟨η∆W (τ)⊤xi,1m⟩| ≤ η

√
nd exp(8B)

m
· ∥F(τ)− Y ∥F

with a probability at least 1− δ/poly(nd).

Proof of Part 2. We have

|⟨η2(∆W (τ)⊤xi)
2,1m⟩|

≤ η2
m∑
r=1

(⟨∆wr(τ), xi⟩)2

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

≤ η2
m∑
r=1

(
m

n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · Sj,r(τ) · x⊤

j + arSj,r(τ)e
⊤
k

)
xi

)2

≤ η2 exp(6B)

m∑
r=1

(n∑
j=1

d∑
k=1

(Fk,i(τ)− yk,i) ·
(
⟨vk,r(τ),Sj(τ)⟩ · x⊤

j + are
⊤
k

)
xi

)2

≤ η2m exp(20B) · ∥F(τ)− Y ∥21
≤ η2m

√
nmd exp(20B) · ∥F(τ)− Y ∥1

≤ η2m1.5 · nd exp(20B) · ∥F(τ)− Y ∥F

where the first step follows from simple algebras, the second step follows from Claim G.12, the
third step follows from 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of Lemma L.1, the fourth step follows from
⟨vk,r(τ),Sj(τ)⟩ ≤ exp(6B) by Part 6 of Lemma L.2, ∥xi∥2 ≤ 1, exp(6B) + 1 ≤ exp(7B) and the
definition of ℓ1 norm, the fifth step follows from Lemma I.8, the last step follows from ∥U∥1 ≤ ∥U∥F
for U ∈ Rn×d.

J CONVERGENCE OF PREFIX LEARNING

Here, we provide all the properties we need for math induction for NTK happening.

Definition J.1 (Properties). We state the following properties

• General Condition 1. Let λ = λmin(H
∗) > 0

• General Condition 2. Let B := max{Cσ
√
log(nd/δ), 1}.

• General Condition 3. Let η be defined as

η := λ/(m poly(n, d, exp(B))).

• General Condition 4. Let D := 2λ−1 · exp(20B)
√
nd
m ∥Y − F(0)∥F

• General Condition 5. Let wr and ar be defined as Definition F.1.

• General Condition 6. D < R = λ/poly(n, d, exp(B))

• General Condition 7. m = λ−2 poly(n, d, exp(B))

• Weight Condition. ∥wr(t)− wr(0)∥2 ≤ D < R, ∀r ∈ [m]

• Loss Condition. ∥ vec(F(i)− Y)∥22 ≤ ∥ vec(F(0)− Y)∥22 · (1−mηλ/2)i, ∀i ∈ [t]

• Gradient Condition. η∥∆wr(i)∥2 ≤ 0.01 ∀r ∈ [m], ∀i ∈ [t]

J.1 MAIN RESULT

Our main result is presented as follows.

Theorem J.2 (Main result, formal version of Theorem 3.2). For any ϵ, δ ∈ (0, 0.1), if the following
conditions hold

• Let λ = λmin(H
∗) > 0

• Let B = max{Cσ
√
log(nd/δ), 1}

• Let m = λ−2 poly(n, d, exp(B))

• Let η = λ/(m poly(n, d, exp(B)))

• Let T̂ = Ω((mηλ)−1 log(nd/ϵ))

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Then, after T̂ iterations, with probability at least 1− δ, we have

∥F(T̂)− Y ∥2F ≤ ϵ.

Proof. We have ∥F(0)− Y ∥2F ≤ nd as Lemma J.6. Using the choice of T̂ , it follows directly from
the alternative application of Lemma J.3 and Lemma J.4.

J.2 INDUCTION PART 1. FOR WEIGHTS

In this section, we introduce the induction lemma for weights.

Lemma J.3 (Induction Part 1 for weights). If the following conditions hold

• Suppose properties in Definition J.1 are true

For t+ 1 and ∀r ∈ [m], it holds that:

∥wr(t+ 1)− wr(0)∥2 ≤ D.

Proof. We have

η

∞∑
i=0

(1−mηλ/2)i ≤ η
4

mλ
(18)

where this step follows from Fact E.2.

∥wr(t+ 1)− wr(0)∥2 ≤ η

t∑
τ=0

∥∆wr(τ)∥2

≤ η

t∑
τ=0

√
nd exp(11B) · ∥F(t)− Y ∥F

≤ η
√
nd exp(11B) ·

t∑
τ=0

(1−mηλ/2)i · ∥F(0)− Y ∥F

≤ 2η
1

mλ

√
nd exp(11B) · ∥F(0)− Y ∥F

≤ D

where the third step follows from the triangle inequality, the second step follows from Eq. (22), the
third step follows from Lemma J.4, the fourth step follows from Eq. (18), the last step follows from
General Condition 4. in Definition J.1.

J.3 INDUCTION PART 2. FOR LOSS

Now, we present our next induction lemma.

Lemma J.4 (Induction Part 2 for loss). Let t be a fixed integer.

If the following conditions hold

• Suppose properties in Definition J.1 are true

Then we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2)t+1 · ∥F(0)− y∥2F .

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Proof. We have

∥F(t+ 1)− y∥2F
≤ ∥F(t)− y∥2F + C0 + C1 + C2 + C3

= ∥F(t)− y∥2F + C0 + C1,1 + C1,2 + C2 + C3

≤ ∥F(t)− y∥2F · (1 + 0.1ηmλ− 1.6ηmλ+ 0.1ηmλ+ η2m · n2d2 exp(16B) + η2m2)

≤ ∥F(t)− y∥2F · (1− 1.4ηmλ+ η2m · n2d2 exp(16B) + η2m2) (19)

where the first step follows from Lemma I.1, the second step follows from the definitions of C1, C1,1

and C1,2, the third step follows from Lemma I.2 and Lemma I.3.

Choice of parameter. Here, we explain the condition setting in Definition J.1:

• To get our results in Lemma I.2 and Lemma I.3, we have to let m ≥ Ω(λ−2n2d2 ·exp(30B)·√
log(nd/δ)).

• If we let η ≤ O(λ/(mn2d2 exp(16B))), we can have

η2m · n2d2 exp(16B) + η2m2 ≤ 0.9ηmλ. (20)

Thus, combining Eq. (19) and Eq. (20), we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2) · ∥F(t)− y∥2F (21)

Then by Eq. (21), we conclude all ∥F(τ)− y∥2F for τ ∈ [t], we have

∥F(t+ 1)− y∥2F ≤ (1−mηλ/2)t+1 · ∥F(0)− y∥2F

J.4 INDUCTION PART 3. FOR GRADIENT

In this section, we present the induction lemma for gradients.

Lemma J.5 (Induction Part 3 for gradient). Let t be a fixed integer.

If the following conditions hold

• Suppose properties in Definition J.1 are true

Then we have

η∥∆wr(t)∥2 ≤ 0.01,∀r ∈ [m]

Proof. Firstly, we have

∥∆wr(t)∥2 ≤ ∥∆wr(t)∥1

≤
d∑

k1=1

∣∣∣m n∑
i=1

d∑
k=1

(Fk,i(t)− yk,i) ·
(
⟨vk,r(t),Si(t)⟩ · Si,r(t) · xi,k1 + arSi,r(t)ek,k1

)∣∣∣
≤
√
nd exp(11B)∥F(t)− Y ∥F (22)

where the first step follows from ∥U∥F ≤ ∥U∥1 for U ∈ Rn×d, the second step follows from
Claim G.12, the last step follows from the definition of 4 ℓ1 norm, 0 ≤ Si,r ≤ exp(3B)

m by Part 11 of
Lemma L.1, ∥xi∥2 ≤ 1 and Part 6 of Lemma L.2.

Then by the property of η in Definition J.1, we have

η∥∆wr(t)∥2 ≤ 0.01,∀r ∈ [m]

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

J.5 BOUNDING LOSS AT INITIALIZATION

Lemma J.6. If the following conditions hold

• Denote F(τ) ∈ Rn×d as Definition G.8.

• Let Y ∈ Rn×d denote the labels.

Then we have

∥F(0)− Y ∥F ≤ O(
√
nd)

Proof. This proof follows from ∥yi∥ ≤ 1 for i ∈ [n] and Definition G.8.

K NTK-ATTENTION

In this section, we compute the error bound of our NTK-Attention in approximating prefix matrix P ∈
Rm×d. In Appendix K.1, we provide the formal definition of our NTK-Attention. In Appendix K.2,
we give our main theorem of error bound. In Appendix K.3, we state tools from (Alman & Song,
2023).

K.1 DEFINITIONS

Definition K.1. If the following conditions hold:

• Given input X ∈ RL×d, prefix matrix P ∈ Rm×d.

• Let S :=

[
P
X

]
∈ R(m+L)×d.

• Given projections WQ,WK ,WV ∈ Rd×d

• Let Q := XWQ ∈ RL×d.

• Let KP := SWQ ∈ R(m+L)×d

• Let VP := SWV ∈ R(m+L)×d

• Let A := exp(QK⊤
P) ∈ RL×(m+L).

• Let D := diag(A1(m+L)) ∈ RL×L.

We define:

Attn(Q,K, V) := D−1AVP .

K.2 ERROR BOUND

Here, we provide our two statements about error bound.
Theorem K.2 (Formal version of Theorem 4.1). Given an input matrix X ∈ RL×d and prefix
matrix P ∈ Rm×d, we denote Q = XWQ, KC = PWK and VC = PWV . If the condition Eq. (7),
∥Q∥∞ ≤ o(

√
logm), ∥KC∥∞ ≤ o(

√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then

Algorithm 2 outputs a matrix T ∈ RL×d within time complexity of O(L2d) that satisfies:

∥T − PrefixAttn(X,P)∥∞ ≤ 1/ poly(m).

Proof. Following Definition K.1, we can have matrix A ∈ RL×(m+L) as follows:

A = QK⊤

=
[
exp(XWQW

⊤
KX⊤) exp(XWQW

⊤
KP⊤)

]
58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

where the second step follows from K = SWK and S =

[
P
X

]
.

Our Algorithm 2 actually implement on using Q = XWQ and PWK to approximate
exp(XWQW

⊤
KP⊤) by Lemma K.7.

Trivially, this proof follows from Theorem K.5 and Lemma K.7.

Corollary K.3. Given an input matrix X ∈ RL×d and prefix matrix P ∈ Rm×d, we denote Q =
XWQ, KC = PWK and VC = PWV . If the condition Eq. (7), ∥Q∥∞ ≤ o(

√
logm), ∥KC∥∞ ≤

o(
√
logm), ∥VC∥∞ ≤ o(

√
logm) and d = O(logm) holds, then there exists an algorithm that

outputs a matrix T ∈ RL×d within time complexity of O(L1+o(1)d) that satisfies:

∥T − PrefixAttn(X,P)∥∞ ≤ 1/ poly(m).

Proof. The algorithm and proof can trivially follow from Algorithm 1, 2, 3 and Theorem 1 in
HyperAttention (Han et al., 2024).

K.3 TOOLS FROM FAST ATTENTION

In this section, we introduce some tools from previous work which we have used.

Definition K.4 (Approximate Attention Computation AAttC(n, d,B, ϵa), Definition 1.2 in (Alman
& Song, 2023)). Let ϵa > 0 and B > 0 be parameters. Given three matrices Q,K, V ∈ Rn×d, with
the guarantees that ∥Q∥∞ ≤ B, ∥K∥∞ ≤ B, and ∥V ∥∞ ≤ B, output a matrix T ∈ Rn×d which is
approximately equal to D−1AV , meaning,

∥T −D−1AV ∥∞ ≤ ϵa.

Here, for a matrix M ∈ Rn×n, we write ∥M∥∞ := maxi,j |Mi,j |.
Theorem K.5 (Upper bound, Theorem 1.4 in (Alman & Song, 2023)). There is an algorithm that
solves AAttC(n, d = O(log n), B = o(

√
log n), ϵa = 1/ poly(n)) in time n1+o(1).

Definition K.6 (Definition 3.1 in (Alman & Song, 2023)). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma K.7 (Lemma 3.4 in (Alman & Song, 2023)). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ B,
and ∥K∥∞ ≤ B. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 1), there is a
positive integer g bounded above by

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2

})
,

and a positive integer r bounded above by

r ≤
(
2(g + d)

2g

)
such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition K.6) of A ∈ Rn×n.
Furthermore, we can construct the matrices U1 := ϕ(Q) and U2 := ϕ(K) through a function ϕ(·)
defining Ã = U1U

⊤
2 can be computed in O(n · r) time.

L TAYLOR SERIES

In this section, we provide some perturbation analysis for NTK analysis.

Lemma L.1 (Lemma B.1 in (Li et al., 2024a)). If the following conditions hold

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√
log(nd/δ), 1}.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• Let V = [v1, · · · , vm] and vr denote the vector where ∥vr − wr∥2 ≤ R, ∀r ∈ [m].

• Let xi ∈ Rd and ∥xi∥2 ≤ 1, ∀i ∈ [n].

• Let R ∈ (0, 0.01).

• Let Si and S̃i be the softmax function corresponding to W and V respectively.

• Let αi = ⟨1m, exp(W⊤xi)⟩ and α̃i = ⟨1m, exp(V ⊤xi)⟩, ∀i ∈ [n].

Then, with probability at least 1− δ/poly(nd), we have

• Standard inner product

– Part 1. |⟨wr, xi⟩| ≤ B, ∀i ∈ [n], ∀r ∈ [m]

– Part 2. |⟨vr, xi⟩| ≤ B +R, ∀i ∈ [n], ∀r ∈ [m]

– Part 3. |⟨wr − vr, xi + xj⟩| ≤ 2R, ∀i, j ∈ [n], ∀r ∈ [m]

• exp function

– Part 4. exp(−B) ≤ exp(⟨wr, xi⟩) ≤ exp(B), ∀i ∈ [n], ∀r ∈ [m]

– Part 5. exp(−B −R) ≤ exp(⟨vr, xi⟩) ≤ exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

– Part 6. | exp(⟨wr − vr, xi + xj⟩)− 1| ≤ 4R, ∀i, j ∈ [n], ∀r ∈ [m]

– Part 7. | exp(⟨wr, xi⟩)− exp(⟨vr, xi⟩)| ≤ R exp(B +R), ∀i ∈ [n], ∀r ∈ [m]

• softmax S function

– Part 8. |αi − α̃i| ≤ mR exp(B +R),∀i ∈ [n]

– Part 9. |α−1
i − α̃−1

i | ≤ R
m exp(3B + 2R),∀i ∈ [n]

– Part 10. |Si,r| ≤ exp(2B)/m,∀i ∈ [n],∀r ∈ [m]

– Part 11. |S̃i,r| ≤ exp(2B + 2R)/m,∀i ∈ [n],∀r ∈ [m]

– Part 12. |Si,r − S̃i,r| ≤ R
m exp(4B + 3R),∀i ∈ [n],∀r ∈ [m]

– Part 13. for any z ∈ Rm and ∥z∥∞ ≤ 1, we have |⟨z,Si⟩ − ⟨z, S̃i⟩| ≤ R exp(4B +
3R),∀i ∈ [n]

Lemma L.2. If the following conditions hold

• Let C > 10 denote a sufficiently large constant

• Let B := max{Cσ
√

log(nd/δ), 1}.

• Let W = [w1, · · · , wm] and wr be random Gaussian vectors from N (0, σ2Id).

• wr for r ∈ [m] satisfies ∥wr∥2 ≤ B with probability at least 1 − δ/poly(nd) as in
Lemma L.1.

• Let a ∈ Rm be defined as Definition F.1.

• Define βk := Wk,∗ ◦ a ∈ Rm for k ∈ [d] as Definition F.5.

• Define vk,r := βk,r · 1m − βk ∈ Rm for k ∈ [d] and r ∈ [m] as Definition H.1.

• Define αi for i ∈ [n] as Definition F.3.

Then, with probability at least 1− δ/poly(nd), we have

• Part 1. |βk,r| ≤ B

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

• Part 2. ∥βk∥2 ≤ B
√
m

• Part 3. ∥vk,r∥2 ≤ 2
√
mB

• Part 4. |α−1| ≤ exp(B)/m

• Part 5. ⟨βk,Si⟩ ≤ exp(4B)

• Part 6. ⟨vk,r,Si⟩ ≤ exp(6B)

Proof. Proof of Part 1. We can get the proof by Gaussian tail bound.

Proof of Part 2. We have

∥βk∥2 =

√√√√ m∑
r=1

β2
k,r

≤

√√√√ m∑
r=1

B2

≤
√
m ·B

where the first step follows from the definition of ℓ2 norm, the second step follows from Part 1 of this
Lemma, the last step follows from simple algebras.

Proof of Part 3. We have

∥vk,r∥2 =

√√√√ m∑
r1=1

(βk,r − βk,r1)
2

≤

√√√√ m∑
r1=1

β2
k,r + β2

k,r1
+ |2βk,rβk,r1 |

≤

√√√√ m∑
r1=1

4B2

≤ 2
√
m ·B

where the first step follows from the definition of ℓ2 norm, the second step follows from simple
algebras, the third step follows from Part 1 of this Lemma, the last step follows from simple algebras.

Proof of Part 4. This proof follows from Part 4 of Lemma L.1 and Definition F.3.

Proof of Part 5. We have

⟨βk,Si⟩ ≤ ∥βk∥2 · ∥Si∥2
≤
√
mB · ∥Si∥2

≤
√
mB ·

√√√√ m∑
r=1

S2i,r

≤
√
mB ·

√√√√ m∑
r=1

exp(6B)

m2

≤
√
mB ·

√
exp(6B)

m
≤ B exp(3B)

≤ exp(4B)

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

where the first step follows from Cauchy-Schwarz inequality, the second step follows from Part 2
of this Lemma, the third step follows from the definition of ℓ2 norm, the fourth step follows from
Part 11 of Lemma L.1, the fifth step follows from triangle inequality, the sixth step follows from
B ≤ exp(B), last step follows from simple algebras.

Proof of Part 6. This proof follows from Part 3 of this Lemma, B ≤ exp(B) and Part 11 of
Lemma L.1.

62

	Introduction
	Related Work

	Preliminary: Prefix Learning
	Theoretical Analysis of Prefix Learning via NTK
	Problem Setup
	Neural Tangent Kernel
	Main Result: Loss Convergence Guarantee

	NTK-Attention: Approximate Infinite-Long Prefix Attention
	Derivation: Replacing Prefix with Trainable Parameters
	Algorithm
	Error Bound and Complexity Reduction

	Empirical Evaluations
	Conclusion
	Algorithm Details and Computational Complexity Analysis
	Experimental Details
	Setup Details
	Additional Empirical Complexity Analysis
	Additional Ablation Study

	Naive NTK-Attention Implementation with Flash-Attention
	Further Discussions
	Preliminary of Analysis
	Facts
	Probability

	Definitions of NTK Analysis
	Loss function

	Gradient Computation
	Computing Gradient
	Gradient Descent

	Neural Tangent Kernel
	Kernel Perturbation
	Kernel PSD during Training Process

	Loss Decomposition
	Bounding
	Bounding
	Bounding
	Bounding
	Bounding Loss during Training Process
	Helpful Lemma

	Convergence of Prefix Learning
	Main Result
	Induction Part 1. For Weights
	Induction Part 2. For Loss
	Induction Part 3. For Gradient
	Bounding Loss at Initialization

	NTK-Attention
	Definitions
	Error Bound
	Tools from Fast Attention

	Taylor Series

