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ABSTRACT

Crystal structure modeling using geometric graph neural networks is important
in various machine learning applications in materials science. In these appli-
cations, capturing SE(3)-invariant geometric features in crystal structures is a
fundamental requirement for these networks. One approach is to model with
orientation-standardized structures through structure-aligned coordinate systems
called ‘frames.’ However, unlike molecules, determining frames for crystal struc-
tures is not trivial due to their infinite and highly symmetric nature. In the search
for effective frames for crystals, we point out that existing work assumes a statically
fixed frame for each structure based solely on its structural information, regardless
of the task under consideration. Here, we rethink the role of frames, questioning
whether such simplistic alignment with the structure is sufficient, and propose the
concept of dynamic frames. While accommodating the infinite and symmetric na-
ture of crystals, these frames give each atom its own dynamic view of the structure,
focusing only on those atoms actively interacting with it. We demonstrate this
concept by utilizing the attention mechanism in a recent transformer-based crystal
encoder, developing a new encoder architecture called CrystalFramer. Extensive
comparisons with conventional frames and crystal encoders show the superior
performance of the proposed method in various crystal property prediction tasks.

1 INTRODUCTION

Geometric graph neural networks (Xie & Grossman, 2018; Chen et al., 2019; Choudhary & DeCost,
2021; Chen & Ong, 2022; Lin et al., 2023), including transformer variants (Yan et al., 2022; 2024;
Taniai et al., 2024), play a central role in machine learning (ML)-based structural modeling of
materials. This technology provides a powerful alternative to conventional simulation methods,
such as density functional theory (DFT), for high-throughput prediction of material properties.
Furthermore, it also serves as the basis for various ML applications in materials science, such as
material representation learning (Suzuki et al., 2022) and generation (Jiao et al., 2023).

A key requirement for these networks is the ability to capture essential features of materials embedded
in their crystal structures. Crystal structures are periodic, infinitely repeating arrangements of atoms in
3D space, typically represented by minimum repeatable patterns called unit cells. Material properties,
such as formation energy and bandgap, are invariant under rigid transformations (i.e., rotations and
translations) in crystal structures, as well as under variations in their unit cells. This fact leads to the
so-called periodic SE(3) invariance (Yan et al., 2022) as an essential property for crystal encoders.
Therefore, recent studies have explored various forms of richer yet invariant structural information
beyond the simplest interatomic distances (Chen & Ong, 2022; Duval et al., 2023; Yan et al., 2024).

One approach, which has shown promising results for molecules (Puny et al., 2022), is the use of
‘frames.’ A frame is a coordinate system aligned equivariantly to a given structure to provide an
orientation-standardized view of the structure (see Fig. 1, left). Frames allow arbitrary networks to
directly exploit rich 3D structural features, including the relative positions between atoms and their
directions, without imposing any architectural constraints. However, determining frames for crystals
is more challenging than for molecules, primarily due to the infinite and symmetric nature of crystals.

In this work, we study a new family of frames for crystal structures in rethinking the role of frames.
We hypothesize that the essential role of frames is not merely to provide a structure-aligned coordinate
system for a given structure, but rather to align the coordinate system with the interatomic interactions
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Proposed dynamic framesConventional static frame

Layer 1 Layer 2
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𝒆𝟐

𝒆𝟑

Frame

Figure 1: Conventional static frame and proposed dynamic frames. Conventional frames are
determined statically to align with the structure, ensuring consistency under rotation and providing a
canonical global representation of the structure. This is schematically illustrated by curved arrows.
By contrast, the proposed dynamic frames are determined for each atom in each message-passing
layer, by considering the local dynamic environment around that atom in that layer.

acting on the structure. Following this belief, we propose a novel concept of dynamic frames. These
frames define local coordinate systems centered on individual atoms by dynamically accounting for
the atoms actively engaged in learned interactions in each interatomic message-passing layer (Fig. 1,
right). This concept challenges the conventional notion of ‘static frames,’ which are based on the
premise of providing fixed views of structures (Puny et al., 2022). Thus, whether such a dynamic
frame is effective or not is an unexplored non-trivial question, which we aim to answer.

To verify this concept, we develop several types of dynamic frames by utilizing the self-attention
mechanism (Taniai et al., 2024) to quantify the interaction engagement. We perform extensive
comparisons on datasets derived from the JARVIS, Materials Project (MP), and Open Quantum
Materials Database (OQMD), and show that our method outperforms existing frame methods for
crystals (Duval et al., 2023; Yan et al., 2024) and other state-of-the-art networks (Choudhary &
DeCost, 2021; Chen & Ong, 2022; Yan et al., 2022; 2024; Lin et al., 2023; Taniai et al., 2024) for
various crystal property prediction tasks. We will release our code upon acceptance.

2 PRELIMINARIES

2.1 CRYSTAL STRUCTURE

A crystal structure is described by its 3D unit cell slice, denoted as (A,P, L) following Yan et al.
(2022). A unit cell is a parallelepipedal structure containing a finite number, say N , of atoms.
The species (atomic numbers) and 3D Cartesian coordinates of these atoms are provided as A =
[ai, a2, ..., aN ] ∈ N1×N and P = [p1,p2, ...,pN ] ∈ R3×N . The parallelepipedal cell shape is given
by three vectors: L = [l1, l2, l3] ∈ R3×3, called lattice vectors. By tiling the parallelepiped unit cell
to fill 3D space, the species and positions of all the atoms in the crystal structure are determined as

Â = {ai(n)|ai(n) = ai,n ∈ Z3, 1 ≤ i ≤ N}, (1)

P̂ = {pi(n)|pi(n) = pi + Ln,n ∈ Z3, 1 ≤ i ≤ N}. (2)

Following Taniai et al. (2024), we use i to denote the i-th atom in a unit cell, and i(n) to denote its
duplicate by a unit-cell translation: Ln = n1ℓ1 + n2ℓ2 + n3ℓ3. We use j and j(n) similarly.

2.2 TRANSFORMERS FOR CRYSTAL STRUCTURES

Geometric graph neural networks are used as crystal encoders in various materials-related tasks.
These encoders typically represent the state of a given crystal structure by a set of atom-wise abstract
state features,X = [x1,x2, ...,xN ] ∈ Rd×N . These states are initially provided as atom embeddings,
X(0) ← AtomEmbedding(A), which only symbolically represent atomic species. The encoders
then evolve these states through interatomic message-passing layers, X(t+1) ← f t(X(t), P, L), to
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eventually reflect the atomic states in the given structure appropriate for a target task. Since the
seminal work of Xie & Grossman (2018) and Schütt et al. (2018), graph neural networks (GNNs)
have long been the standard for crystal encoders until the advent of transformer-based networks by
recent work (Yan et al., 2022; 2024; Taniai et al., 2024).

In particular, Taniai et al. (2024) have developed simple physics-informed formalism for crystal
encoders using a self-attention mechanism. By imitating interatomic potential summations for energy
calculations in physics simulations, they model the evolution of current state x using infinitely
connected distance-decay attention. This attention mechanism models the interactions between each
unit-cell atom i and all the infinitely repeating atoms j(n) in the entire crystal structure as

x′i =
1

Zi

N∑
j=1

∑
n∈Z3

exp

(
qTi kj√
dK
−
∥pj(n) − pi∥2

2σ2
i

)(
vj +ψij(n)

)
. (3)

Here, query q, key k, and value v are linear projections of current state x. Scalar σi is a tail-
length variable of Gaussian distance-decay attention adaptively derived from xi. Vector ψij(n) is a
geometric position embedding that encodes the distance, ∥pj(n) − pi∥, between atoms i and j(n).
Scalar Zi =

∑
j

∑
n exp(qTi kj/

√
dK − ∥pj(n) − pi∥2/2σ2

i ) is the normalizer of softmax attention
weights. The exponential distance-decay factor in Eq. 3 provably ensures its rapid convergence within
a finite range of cell shifts n (Taniai et al., 2024).

Their method, called Crystalformer, enjoys a good balance between a strong physically-motivated
inductive bias and the flexibility of abstract feature representations, and is considered the state of the
art with other GNN-based (Lin et al., 2023) and transformer-based (Yan et al., 2024) methods.

We utilize Crystalformer as a baseline in this work. This is because its architecture closely follows
the standard softmax attention (Vaswani et al., 2017) and is suitable to demonstrate our concept of
dynamic frames, while other existing transformers (Yan et al., 2022; 2024) use distinct channel-wise
sigmoid attention. We discuss this more in Sec. 6. Our method in Sec. 3 will extend position
embedding ψij(n) in Eq. 3 to incorporate richer yet invariant information than distance ∥pj(n) − pi∥.

2.3 FRAMES FOR SE(3)-INVARIANT STRUCTURAL MODELING

Frame averaging. Puny et al. (2022) have introduced Frame Averaging (FA) as a general framework
to adapt networks to become invariant (or equivariant) to certain symmetries of the input data.
Although FA is originally explained by group representation theory, we provide its high-level review
specifically focused on SE(3)-invariant modeling of 3D point clouds. Given a point cloud as P , FA
computes a frame, F ∈ F(P ), as a coordinate system inherent to and aligned with P (Fig. 1, left).
For example, F is principal component analysis (PCA) applied to P . Each frame F thus provides
a geometric transformation that maps P to a canonical, rotation-invariant representation as FP .
However, F(P ) may not uniquely provide a single frame due to algorithmic ambiguities in F or
symmetries in P . Even in such cases, FA allows us to derive rotation-invariant (i.e., SO(3)-invariant)
networks f̄F from arbitrary networks f , by averaging f ’s outputs over all possible finite frames as

f̄F (X,P ) =
1

|F(P )|
∑

F∈F(P )

f(X,FP ). (4)

The translation invariance is further attained by using relative positions (e.g., Fpj − Fpi) in f ,
bringing the SE(3) invariance to f̄F . FA can powerfully adapt arbitrary networks to be SE(3) invariant
without constraining the architectural design. However, it hinders efficiency as the computation
increases with the number of possible frames. Stochastic FA by Duval et al. (2023) mitigates this
issue by randomly selecting a single frame from F(S) during training, enforcing networks f to learn
the invariance to frame variations and approximately achieving the SE(3) invariance.

PCA frames. Puny et al. (2022) originally applied FA for molecules using PCA-based frames,
and Duval et al. (2023) later extended it for crystals by simply treating unit cell structures P as
finite-sized point clouds. These PCA frames compute three orthogonal eigenvectors {e1, e2, e3}
of the covariance matrix of P , corresponding to eigenvalues λ1 ≥ λ2 ≥ λ3, as the frame axes:
F = [e1, e2, e3]

T . Because of the sign ambiguity of the eigenvectors, PCA produces eight frames for
O(3)/E(3) invariance and four frames for SO(3)/SE(3) invariance with the restriction of det(F ) = 1.
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Although PCA is well-established, it suffers from eigenvalue degeneration for highly symmetric data,
such as crystal structures. For example, PCA for cubes produces identity covariance matrices up to a
constant scale, whose eigenvectors are arbitrary vectors e ∈ R3. The crystal frame construction by
Duval et al. (2023) is thus vulnerable to this degeneration issue and, moreover, sensitive to unit-cell
variations of the same crystal structure.

Lattice frames. Yan et al. (2024) have proposed frames based on the lattice vectors of crystals, as
similar to reduced cells (i.e., uniquely determined minimum cells) (Niggli, 1928). Specifically, their
method selects a lattice point, e = n1ℓ1 + n2ℓ2 + n3ℓ3, with the minimum non-zero norm ∥e∥2
as first axis e1, and selects the second and third smallest ones as axes e2 and e3 while ensuring
rank(e1, e2, e3) is full. The signs of these axes are adjusted so that the angles between e1 and e2
and between e1 and e3 become acute and the coordinate system is right-handed (i.e., det (F ) > 0).

Notice that these existing frame methods for crystals, specifically PCA and lattice frames, all provide
a statically fixed frame for each crystal structure. Also, both rely on unit cell representations (either
points P or lattice vectors L), which are rather artificially-introduced crystal descriptions that may
not necessarily reflect the physical properties of materials (see Appendix A for more discussion).
These observations motivate us to propose the concept of dynamic frames, as we discuss next.

3 DYNAMIC FRAMES

In the search for effective frames for crystals, we challenge the conventional notion of frames, which
implicitly follows the simple premise of representing structures in a canonical manner (Puny et al.,
2022; Duval et al., 2023; Yan et al., 2024). Let us reconsider how frames work in GNNs, whose
interatomic message-passing layers are assumed to include the following general operation:

x′i =

N∑
j=1

∑
n∈Z3

wij(n)fi←j(n)(X, P̂ ). (5)

This equation describes that state xi of each unit-cell atom i is evolved through abstract influences or
messages, fi←j(n), from atoms j(n) in the crystal structure, with scaling weights wij(n). In standard
GNNs (Xie & Grossman, 2018), these weights are pre-defined as neighborhood graphs with a cut-off
radius. In recent transformer architectures, the weights are determined dynamically via self-attention,
with (Yan et al., 2022; 2024) or without (Taniai et al., 2024) relying on an explicit cut-off radius.

The role of frames in Eq. 5 is to offer more informative invariant edge features than distances through
frame-projected coordinates FP̂ in the design of fi←j(n). From this perspective, constructing a
frame shared for the state updates of all atoms i, as done in conventional methods, is not preferable,
because the frame construction can be influenced even by atoms j(n) with zero weights in Eq. 5. In
other words, particularly when the state of atom i is updated in Eq. 5, this atom has its own partial and
local view of the entire crystal structure, P̂ , with weights wij(n) acting as a mask on the structure.

This interpretation leads to a new concept of dynamic frames. That is, we define frames locally for
each atom i to align them with its interatomic interactions acting dynamically on the structure, instead
of directly aligning them with the structure itself. We denote these dynamic atom-wise frames as Fi.
Each Fi is determined based on the masked view of structure P̂ with weights wij(n), by emphasizing
or de-emphasizing the presence of atoms j(n) with larger or smaller weights. Thus, these frames Fi

change dynamically depending on target atoms i and also on the layers in a GNN, as shown in Fig. 1.

We hypothesize that dynamically adapting frames for each atom i in each message-passing layer
(Eq. 5) provides better invariant edge features via projected coordinates FiP̂ . We also point out that
these frames are defined with the entire crystal structure, P̂ , reconstructed from (P,L). This fact
highlights an advantage of our frames being invariant to unit cell variations of the same structure.

3.1 FRAME DEFINITIONS

We now present several instances of this new family of frames. These frames Fi are constructed
for each target atom i in each message-passing layer (Eq. 5), by using coordinates P̂ and weights
wij(n) of atoms j(n) in the structure. We typically assume wij(n) ≥ 0, but we can use real-valued
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weights, for example, by using their absolute values for frame construction. For brevity, we denote
rij(n) = ∥pj(n) − pi∥2 and r̄ij(n) = (pj(n) − pi)/rij(n), both derived from P̂ .

Weighted PCA frames. The first instance of dynamic frames extends the original PCA frames (Puny
et al., 2022; Duval et al., 2023). For each target atom i in each message-passing layer, we compute a
3× 3 weighted covariance matrix, Σi =

∑
j

∑
n wij(n)r̄ij(n)r̄

T
ij(n), and computes its orthogonal

eigenvectors {e1, e2, e3} as the axes of a frame: Fi = [e1, e2, e3]
T . For the sign ambiguity of

eigenvectors, we adopt the stochastic FA (Duval et al., 2023) and generate a single frame by randomly
flipping the signs of these vectors while ensuring det(Fi) = 1. However, there remains another
possible ambiguity in this weighted PCA scheme owing to eigenvalue degeneration by symmetries1.

Max frames. To avoid the degeneration of PCA, we also propose to directly select atoms j(n) with
large weights wij(n) and use their directions r̄ij(n) to determine axes {e1, e2, e3} of Fi. Specifically,
we select first axis e1 as r̄ij(n) with maximum weight wij(n). For the second axis, we find r̄ij(n)

with maximum adjusted-weight (1− |e1 · rij(n)|)wij(n), which avoids selecting a direction parallel
to e1. The selected vector, denoted as r̄2, is further orthogonalized by the Gram-Schmidt method
as ê2 ← r̄2 − (e1 · r̄2)e1, and normalized to a unit vector as e2 ← ê2/∥ê2∥2. Finally, third axis
e3 is simply obtained as e3 = e1 × e2, which ensures the orthogonality and det(Fi) = 1. In this
process, multiple atoms may have the same weight. For this ambiguity, we add small perturbation
noise to each weight wij(n), resulting in randomly selecting a single frame from possible ones. This
perturbation scheme is considered a type of stochastic FA (Duval et al., 2023) outlined in Sec. 2.3.

Since these frame construction processes are not stably differentiable, we omit the computation of the
gradients from frames Fi to weights wij(n) during training2. Still, weights wij(n) receive gradients
from x′ in Eq. 5 to learn their main function of allowing or blocking messages fi←j(n) from j(n)
to i. Therefore, we can successfully train a network that includes the dynamic frame construction
without using these frame gradients.

3.2 CRYSTALFRAMER ARCHITECTURE

We demonstrate the proposed concept using Crystalformer (Taniai et al., 2024) as the baseline archi-
tecture, as mentioned in Sec. 2.2, and consequently develop a new architecture called CrystalFramer
(Fig. 2). We here regard Eq. 3 as Eq. 5. Thus, we regard the softmax self-attention weights (i.e.,
exponential weights normalized by Zi in Eq. 3) as dynamic scaling weights wij(n) in each message-
passing layer (Eq. 5). Likewise, we regard the position-augmented value vectors, vj + ψij(n), as
messages fi←j(n). In the process of updating each state xi using Eq. 3, we first compute the attention
weights as wij(n). Then, we dynamically construct a local frame as matrix Fi, by following one of
the procedures outlined in Sec. 3.1. Finally, we compute ψij(n) using Fi and perform Eq. 3. The
following explains how to derive invariant edge features ψij(n) given frame Fi.

Invariant edge features using a dynamic frame. For invariant edge feature ψij(n), Crystal-
former originally uses linearly projected Gaussian basis functions (GBFs) encoding distance rij(n).
Specifically, GBFs are provided as mapping b(x) = [b1, b2, · · · , bD]T from scalar x to a vector of
pre-defined dimension D, whose k-th component is computed as a Gaussian as

bk(x;µk, σk) = exp
(
−(x− µk)

2/2σ2
k

)
. (6)

Here, µk and σk are pre-defined as µk = µmin + (k − 1)(µmax − µmin)/(D − 1) and σk = s(µmax −
µmin)/(D − 1) with four hyperparameters {µmax, µmin, s,D}. Intuitively, b(x) encodes scalar x into
a soft one-hot vector, using D Gaussians uniformly distributed between µmin and µmax. Widths σk of
these Gaussians are given proportional to the interval distance, controlled by scaling factor s.

1We confirmed that covariance matrices Σi computed with a pretrained Crystalformer model suffered from
eigenvalue degeneration at two degrees in about 10% of cases and at three degrees in about 1% of cases. These
cases cause rotation ambiguities for two or three (all) axes of Fi. To mitigate this issue, we add small perturbation
noise to wij(n) in Σi, which stochastically breaks the symmetries in the structural data and empirically helps to
compute non-degenerate eigenvalues and eigenvectors. This scheme is considered a type of stochastic FA.

2The gradients of the eigenvectors in PCA become numerically unstable when the eigenvalues are degenerate,
as the gradients depend on the computation of 1/(λi − λj) for i ̸= j. Also, the max-frame procedure is not
differentiable due to the use of argmax operations. Although we tried approximating the gradients of argmax, for
example, by using a straight-through estimator technique or temperature annealing of softmax, simply ignoring
the frame gradients gave the best results.
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Figure 2: CrystalFramer architecture. Dynamic frame construction and frame-based invariant edge
features (highlighted in red) are introduced to a transformer for crystals (Taniai et al., 2024).

We retain their distance-based edge feature and further add frame-based edge features to ψij(n).
Specifically, following existing work (Yan et al., 2024), we invariantly represent direction vector
r̄ij(n) by projecting onto the frame coordinate system, as θij(n) = Fir̄ij(n). Its k-th component
is calculated as ek · r̄ij(n), the cosine value of the angle between k-th frame axis ek and direction
r̄ij(n). We convert each component to a vector via GBFs. By combining the distance-based and three
angle-based features via linear projections, we obtain our geometric relative position encoding:

ψij(n) =W0bdist
(
rij(n)

)
+

∑
k=1,2,3

Wkbangl

(
θ
(k)
ij(n)

)
. (7)

This ψij(n) as a whole essentially encodes the 3D relative position vector: rij(n) = pj(n) − pi.
Furthermore, its angle part can be interpreted to encode the absolute deviations of rij(n) in angle
from the three primary directions of interatomic interactions (i.e., e1, e2, e3) around target atom i.
Here, four weight matrices {W0,W1,W2,W3} are trainable parameters provided per layer. We also
use two types of GBFs (bdist and bangl) with different hyperparameters for the distance and angles.
Specifically, we set {µmin, µmax, s,D} to { 14.064 Å, 14.0Å, 1.0, 64} for bdist, as suggested by Taniai
et al. (2024). We also set to {−1.0, 1.0, 4.0, 64} for bangl, using the range [−1.0, 1.0] of cosine values
and relatively larger width-scale s that empirically works better for angles. Note that if r̄ij(n) is
undefined due to zero division (i.e., j(n) = i), we provide bangl(r̄ij(n)) = 0.

Overall architecture. The proposed network precisely follows the Crystalformer architecture (Taniai
et al., 2024) as shown in Fig. 2, except for the newly introduced frame construction (Sec. 3.1) and an-
gular edge features (Eq. 7) highlighted in the figure. As we will see in Sec. 5, these simple extensions
bring drastic performance improvements to the baseline method. Below we summarize the important
network design aspects. The overall architecture consists of the input atom-embedding layer and the
stack of four self-attention blocks, followed by the global mean pooling and the final feed-forward
network with two linear layers. The self-attention blocks adopt the normalization-free architecture
(left part of Fig. 2) by Huang et al. (2020) for better training stability. The infinite summation in
self-attention (Eq. 3) is computed convergently and efficiently, by adaptively determining the range
of unit-cell shifts n to sufficiently cover the neighbor radius of 3.5σi based on dynamic Gaussian
tail-length σi. We also employ multi-head self-attention as in the original transformer (Vaswani et al.,
2017) using eight heads. So we construct frames per unit-cell atom, per head, and per layer. For
further architectural details, please refer to the original work (Taniai et al., 2024).
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4 RELATED WORK

The notion of invariant structural modeling widely covers various invariance properties. The most
elementary one is the invariance to the permutation of data-point indices i in structural data (i.e., A
and P in Sec. 2.1), which was first addressed by PointNet (Qi et al., 2017) and DeepSets (Zaheer et al.,
2017) and is now inherited by GNNs and transformers. The ML community has then shifted its focus
to invariance to geometric transformations, such as rotations with or without translations (i.e., so-
called SO(3)/O(3) or SE(3)/E(3) invariance). In particular, the periodicity of crystals introduces more
complex invariance notions, such as periodic SE(3) invariance (Yan et al., 2022), which additionally
require invariance to unit-cell variations of the same crystal structure. These geometric invariance
properties have been studied in three main approaches using 1) invariant features, 2) equivariant
features, and 3) frames. We briefly review them below, focusing primarily on crystal structures.

Invariant features. The most straightforward approach is to rely entirely on naturally invariant
geometric quantities, such as the lengths of relative position vectors, throughout a model (Xie &
Grossman, 2018; Chen et al., 2019; Ying et al., 2021; Yan et al., 2022; Taniai et al., 2024). However,
such distance-based GNNs and transformers have the limited expressibility (Pozdnyakov & Ceriotti,
2022). Thus, recent studies have explored more advanced geometric features, such as the angles
between triplets using 3-body interactions (Park & Wolverton, 2020; Choudhary & DeCost, 2021;
Chen & Ong, 2022) at the cost of increased computational complexity. More recently, PotNet by Lin
et al. (2023) used the sum of pre-defined interatomic scalar potentials as more physically-informed
invariant edge features than distances.

Equivariant features. The so-called equivariant networks, based on group representation theory,
make another active research area in 3D structural modeling and include invariant networks as special
cases. While we refer readers to recent surveys (Gerken et al., 2023; Duval et al., 2024; Han et al.,
2024) for more comprehensive reviews, the initial approach specifically using GNNs for 3D point
clouds and atomic systems was proposed by Thomas et al. (2018). Subsequently, this approach has
been extended, for example, to introduce better nonlinearity forms (Batzner et al., 2022; Brandstetter
et al., 2022) or attention mechanisms (Fuchs et al., 2020), or to improve efficiency (Liao & Smidt,
2023; Liao et al., 2024) in molecular structure modeling. Essentially, these methods use spherical
harmonic representations of unit direction vectors r̄ij as rotation-equivariant edge features, and
then equivariantly transform them through specially designed networks. These equivariant features
form type-L vectors, whose type-1 features can express 3D equivariant vectors such as forces, while
type-0 can be used for invariant prediction. However, these equivariant networks are constrained by
restricted nonlinearity forms and the increasing computational complexity to model higher frequency
components. Because of these constraints, the use of equivariant networks for crystals rather than
molecules is relatively limited. For example, eComFormer (Yan et al., 2024) has exploited equivariant
features in part within each message-passing block for invariant crystal property prediction.

Frames. As explained in Sec. 2.3, Puny et al. (2022) introduced the FA and applied the PCA frames
for molecules. Duval et al. (2023) further extended it in two ways, by proposing the stochastic FA to
improve the efficiency and the PCA frames for crystals by simply treating their unit cell structures P
as finite point clouds. Cheng et al. (2021) used plane waves in crystal structures as invariant positional
features, which implicitly use reciprocal lattice vectors as a frame. Similarly, Yan et al. (2024)
proposed iComFormer using transformed lattice vectors with reduced ambiguities as a frame. Lin
et al. (2024) proposed minimal FA for efficient FA, while ensuring exact invariance and equivariance.

Our work contributes to this line of research on frame-based invariant networks, providing a new
perspective on the previous notion of frames through the introduction of dynamic frames. While
there are several local frame methods in the molecular modeling literature (Du et al., 2022; 2023;
Pozdnyakov & Ceriotti, 2023), they lack the perspective of our dynamic frames (see Appendix B for a
detailed comparative discussion). We incorporate these dynamic frames into a simple distance-based
transformer model for crystals (Taniai et al., 2024) to enhance its expressive power.

5 EXPERIMENTS

To validate the effectiveness of the proposed dynamic frames, we conducted extensive experiments
on crystal property prediction, comparing them with conventional PCA frames (Duval et al., 2023),
lattice frames (Yan et al., 2024), and other state-of-the-art architectures for property prediction.
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Datasets. We use three datasets: the JARVIS (55,723 materials), MP (69,239 materials), and
OQMD (817,636 materials), using snapshots available through a Python package (jarvis-tools). These
datasets provide several material properties, such as formation energy and bandgap, simulated by
DFT calculations. For further dataset descriptions, see Appendix C. Choudhary & DeCost (2021) and
Yan et al. (2022) made great efforts to evaluate many methods on the JARVIS and MP datasets using
consistent data splits. Following these and later studies (Lin et al., 2023; Yan et al., 2024; Taniai
et al., 2024), we use the same data splits and cite their reported scores to reduce the computational
burden. Additionally, we use the much larger-scale OQMD dataset to evaluate the scalability.

Training settings. To assess the pure effects of introducing the frames, we precisely follow the
training settings of the baseline method, Crystalformer (Taniai et al., 2024). The only change is
the number of epochs. We have increased it to account for the increased complexity of our edge
feature design (i.e., our method takes longer to converge, but reduces validation losses more rapidly.).
Specifically for the JARVIS dataset, we train our model from scratch by optimizing the mean absolute
loss function using Adam (Kingma & Ba, 2015) for a total of 2000 epochs, while enabling the frames
from the beginning. A summary of detailed training settings, such as the number of epochs, batch
size, and learning rate for the three datasets, can be found in Appendix D.

5.1 CRYSTAL PROPERTY PREDICTION

Tables 1 and 2 extensively compare the mean absolute errors of the proposed and existing methods
for the JARVIS (5 tasks) and MP (4 tasks) datasets. We omit several earlier methods from the tables,
providing full results in Appendix E. Overall, our method with max frames achieves the best results
in most tasks, significantly boosting the performance of the baseline Crystalformer model. Such
improvements never fade even when feeding the much larger OQMD dataset, as shown in Table 3. It
is also worth noting that the current state-of-the-art, ComFormer, uses finely-tuned hyperparameters
(e.g., learning rate, loss function, number of layers, graph structure) for each individual task, whereas
we simply adjust the number of epochs and batch size for each dataset. In the bottom parts of Tables 1
and 2, our weighted PCA frame method shows relatively limited improvements, which we will
discuss in more detail in Appendix F. Nevertheless, it outperforms its conventional counterpart using
PCA frames. Additionally, we evaluate a variant using static local frames. These frames are similar
to max frames but constructed with static weights, wij(n) = exp(−r2ij(n)). As a result, these static
local frames rely solely on the distances to neighbors and do not account for dynamic self-attention
weights. The max frame method outperforms this static counterpart in most tasks. These results
successfully validate the effectiveness of our concept of dynamic frames.

5.2 EFFICIENCY COMPARISON

Table 4 compares the model efficiency of several top-performing architectures. Notably, despite the
superior performance of the proposed method, it requires significantly fewer parameters than PotNet,
Matformer, and iComFormer. Compared to Crystalformer, it introduces a small overhead of about
100K parameters owing to projection matrices {W1,W2,W3} in Eq. 7. Given the performance gains
shown in Tables 1–3, this high cost-performance ratio also highlights the effectiveness of our feature
design using dynamic frames. Meanwhile, the training and test times are more than double compared
to Crystalformer, mainly due to the increased computation cost of

∑
n wij(n)ψij(n). As noted by

Taniai et al. (2024), this part is the main bottleneck in Crystalformer and also in our model. Since
our current configuration uses largely overlapping GBFs (s = 4.0) for angular features, pruning
GBFs (i.e., reducing D) could improve runtime. Pre-training without frames to efficiently learn
attention weights first may also accelerate overall training. Nonetheless, the test time is still faster
than PotNet, Matformer, and iComFormer, which are hindered by relatively heavy data preprocessing.
In Appendix G, we further discuss scalability for large structures.

6 DISCUSSION AND LIMITATIONS

Visual analysis. Figure 3 displays four types of frames generated for a test material (JVASP-30609)
in the JARVIS formation energy prediction task. While the PCA (Duval et al., 2023) and lattice (Yan
et al., 2024) frames are static, the proposed weighted PCA and max frames exhibit dynamic behavior
based on learned attention weights. In each layer, our frames seem to capture distinct local motifs,
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Table 1: Property prediction results on the JARVIS dataset. Accuracies are in mean absolute error.
The sizes of training, validation, and test splits are listed under each property name. Bold indicates
the best results, underline the second best. Full results covering earlier methods are in Appendix E.

Form. energy Total energy Bandgap (OPT) Bandgap (MBJ) E hull
44578 / 5572 / 5572 44578 / 5572 / 5572 44578 / 5572 / 5572 14537 / 1817 / 1817 44296 / 5537 / 5537

Method eV/atom eV/atom eV eV eV

Matformer (Yan et al., 2022) 0.0325 0.035 0.137 0.30 0.064
PotNet (Lin et al., 2023) 0.0294 0.032 0.127 0.27 0.055
eComFormer (Yan et al., 2024) 0.0284 0.032 0.124 0.28 0.044
iComFormer (Yan et al., 2024) 0.0272 0.0288 0.122 0.26 0.047

Crystalformer (Taniai et al., 2024) 0.0306 0.0320 0.128 0.274 0.0463
— w/ PCA frames (Duval et al., 2023) 0.0325 0.0334 0.144 0.292 0.0568
— w/ lattice frames (Yan et al., 2024) 0.0302 0.0323 0.125 0.274 0.0531
— w/ static local frames 0.0285 0.0292 0.122 0.261 0.0444
— w/ weighted PCA frames (proposed) 0.0287 0.0305 0.126 0.279 0.0444
— w/ max frames (proposed) 0.0263 0.0279 0.117 0.242 0.0471

Table 2: Property prediction results on the MP dataset.
Formation energy Bandgap Bulk modulus Shear modulus
60000 / 5000 / 4239 60000 / 5000 / 4239 4664 / 393 / 393 4664 / 392 / 393

Method eV/atom eV log(GPa) log(GPa)

Matformer 0.021 0.211 0.043 0.073
PotNet 0.0188 0.204 0.040 0.065
eComFormer 0.0182 0.202 0.0417 0.0729
iComFormer 0.0183 0.193 0.0380 0.0637

Crystalformer 0.0186 0.198 0.0377 0.0689
— w/ PCA frames 0.0197 0.217 0.0424 0.0719
— w/ lattice frames 0.0194 0.212 0.0389 0.0720
— w/ static local frames 0.0178 0.191 0.0354 0.0708
— w/ weighted PCA frames (proposed) 0.0197 0.214 0.0423 0.0715
— w/ max frames (proposed) 0.0172 0.185 0.0338 0.0677

Table 3: Property prediction results on the OQMD dataset.
Form. energy (eV/atom) Bandgap (eV) E hull (eV/atom)

Method 654108 / 81763 / 81763 653388 / 81673 / 81673 654108 / 81763 / 81763

Crystalformer 0.02115 0.06028 0.06759
CrystalFramer (max frames) 0.01871 0.05805 0.06607

Table 4: Efficiency comparison. Per-epoch training time includes validation, and per-material test
time includes preprocessing, such as graph construction. The runtimes are evaluated for the formation
energy prediction in the JARVIS dataset using a single NVIDIA A6000 GPU with 48GB VRAM.

Model Arch. type Time/epoch Test/mater. #Params. #Params./block

PotNet GNN 43 s 313 ms 1.8 M 527 K
Matformer Transformer 60 s 20.4 ms 2.9 M 544 K
iComFormer Transformer 59 s 54.8 ms 5.0 M 855 K
Crystalformer Transformer 32 s 6.6 ms 853 K 206 K
CrystalFramer Transformer 74 s 16.8 ms 952 K 231 K

such as octahedra with a green central atom (magnesium) surrounded by blue atoms (fluorine) and
tetrahedra with a red central atom (tin) surrounded by blue atoms (magnesium). These local structures
are common and sometimes distorted, as in this case. The ability to capture these local structures and
measure distortions via relative positions may contribute to the high performance observed. A more
detailed analysis, including comparative discussions on different frames, visualizations for a different
material, and an examination of frame evolution during training, is provided in Appendix F. In
particular, the frame evolution analysis (Appendix F.3) shows that max frames converge faster during
training due to the discrete nature of their construction. While this characteristic may contribute to
the superior performance of max frames, it causes noticeable discontinuity to the model and may
limit its generalization to out-of-domain data, as discussed in Appendix H.

Baseline choice. This study used Crystalformer (Taniai et al., 2024) for demonstration, since its
architecture using the standard multi-head softmax attention is suitable for dynamic frames. Other
existing transformers for crystals (Yan et al., 2022; 2024) use distinct channel-wise sigmoid attention,

9
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Crystal structure (MgSnF4)

Sn Mg F Max frames

Layer 2Layer 1 Layer 3 Layer 4

Lattice framePCA frame

Weighted PCA frames

Figure 3: Frame visualizations. Conventional PCA and lattice frames provide a global coordinate
system based solely on the structure. The proposed dynamic frames extract different structural
information for each atom and layer using dynamic attention weights, shown as varying transparency.

similar to maximally multi-headed attention. Since we compute a frame and angular features per
atom, per head, and per layer, such channel-wise attention is not preferable. However, we consider
the Crystalformer model using Eq. 3 to be simply the original fully-connected self-attention (Vaswani
et al., 2017), x′i = Z−1i

∑
j exp(q

T
i vj/

√
dK + ϕij)(vj +ψij), with two straightforward extensions:

1) relative position encoding (ϕij and ψij) by Shaw et al. (2018) and 2) duplication of each atom j as
j(n) using

∑
n to account for crystal periodicity. Because of the widely proven practicability and

versatility of the original transformer architecture in many fields (Lin et al., 2021), our demonstration
can be thought to provide the basis for transformer-based crystal encoders using dynamic frames.

Equivariant prediction. While this study focuses on SE(3) invariance, Puny et al. (2022) applied FA
also to predict equivariant quantities, such as force vectors, by applying inverse mapping F−1 on
f(X,FP ) in Eq. 4 before the averaging. In our case, one potential equivariant extension would thus
invariantly output atom-wise geometric quantities ui from x′i (e.g., via ui = Wx′i) and inversely
map them as F−1i ui. Another potential extension, similar to recent work (Shi et al., 2023), would
equivariantly tie the outputs to the input structure, for example, by ui =

∑
j

∑
n wij(n)rij(n). These

equivariant extensions will enable force and relaxed structure prediction (Chanussot et al., 2021; Tran
et al., 2023; Bihani et al., 2024), which are crucial for surface property analysis. Further investigation
and detailed analysis of these equivariant extensions are left as future work.

Application to molecules. Transformers for molecular structures have been developed (Ying et al.,
2021; Wang et al., 2023; Shi et al., 2023; Liu et al., 2024), and our dynamic frames could also
be applied to them. However, crystal and molecular structures have very different characteristics.
In particular, molecular structures sometimes have so few atoms that they locally take on a low-
dimensional structure and are unlikely to form an effective frame. Extending our method to molecules
is another interesting future direction of this research.

7 CONCLUSION

In this study, we revisited the challenge of determining effective frames for the SE(3)-invariant
modeling of crystal structures. We proposed a new concept of dynamic frames based on the strengths
of interatomic interactions, advocating that frames should consider the local dynamic environment
around each atom rather than the static global structure. We integrated these frames into an existing
transformer-based network for crystal property prediction (Taniai et al., 2024) and conducted com-
parative evaluations with conventional frame construction methods (Duval et al., 2023; Yan et al.,
2024) and other state-of-the-art networks (Choudhary & DeCost, 2021; Yan et al., 2022; Lin et al.,
2023). The results confirmed the hypothesis, demonstrating the superior performance of the proposed
method. While the demonstration was limited to crystal structures, the underlying principle of using
the strengths of interactions to determine frames has potential for diverse applications beyond crystal
structures, such as molecular structure modeling and ML-based particle and liquid simulations.
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A LIMITATIONS OF UNIT-CELL-BASED CRYSTAL REPRESENTATIONS

The conventional PCA frames explained in Sec. 2.3 implicitly assume a unique lattice representation
such as the Niggli reduced cell (Niggli, 1928). Similarly, the lattice frames assume a primitive
cell and convert it to a cell similar to the reduced one. Otherwise, these frames are affected by the
arbitrariness of unit cell representations, such as supercells and conventional cells.

Traditionally, primitive cells and conventional cells are used to represent periodic structures. Primitive
cells are defined as the smallest repeating units of a lattice, having the minimum volume and containing
only a single lattice point within each cell. By following a mathematical procedure on primitive cells,
their unique representations called reduced unit cells can be obtained (Santoro & Mighell, 1970). On
the other hand, conventional cells are defined as unit cells that are not necessarily primitive but are
designed to exhibit symmetry in an easily understandable way. The notion of conventional cells is
often illustrated by the face-centered cubic lattice and the body-centered cubic lattice. Figure A1
compares a conventional cell and the Niggli reduced cell of a face-centered cubic structure. Examining
the conventional unit cell easily reveals that it represents a cubic lattice, with atoms located at each
corner and at each face center. However, this fact is obscured in the reduced cell. Therefore, reduced
cells can be said to sacrifice the interpretability of physically important information, such as symmetry,
in order to uniquely represent periodic structures.

Conventional cell

Reduced cell

Figure A1: Conventional cell (green) and Niggli reduced cell (blue) for a face-centered cube.

B COMPARISON TO EXISTING LOCAL FRAMES FOR MOLECULES

In the molecular modeling literature, several local frames have been proposed (Du et al., 2022; 2023;
Pozdnyakov & Ceriotti, 2023). The concept of our dynamic frames, being both dynamic and local, is
distinct from these frames for molecules, which are local but static. Below we discuss this perspective
in more detail.

We first clarify the terminology regarding ‘dynamic’ and ‘static’ in this context. We use ‘dynamic’
to describe behavior that is influenced by the model’s internal states estimated for a given structure.
For instance, interatomic interactions modeled within a GNN reflect these internal states and evolve
dynamically layer by layer. Dynamic frames are designed to align with these interatomic interactions.
While the molecular modeling literature often uses ‘dynamic’ to describe temporally evolving
structures, our work does not assume such temporal dynamics. Similarly, we use ‘static’ to describe
behavior that is unaffected by the model’s internal states.

Du et al. (2022) propose static edge-wise frames. These edge-wise frames, denoted as Fij =
[e1, e2, e3]

T using our notation, are 3 × 3 orthogonal matrices defined individually for each edge
(i, j). From Eq. 2 in their paper, the axes of Fij are defined as e1 = unit(pi−pj), e2 = unit(pi×pj),
and e3 = e1 × e2, where unit(x) = x/∥x∥ is L2 normalization. Here, the centroid of the structure
is pre-shifted to the origin, as p ← p − p̄ using p̄ = 1

N

∑
i pi. Thus, these frames are translation

invariant, even though e2 appears to depend on absolute positions. However, performing such a global
centroid shift for crystals is not straightforward due to their infinite periodicity, unless a specific unit
cell description is utilized.
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Du et al. (2023) propose frame-based equivariant message passing using static edge-wise and
node-wise frames. These edge-wise frames Fij are identical to those used in their earlier work (Du
et al., 2022) (see above). Their node-wise frames Fi are defined similarly to Fij , but with pj replaced
by the cluster centroid around i: p̄i = 1

|N(i)|
∑

j∈N(i) pj . Thus, the axes of Fi are provided as
e1 = unit(pi − p̄i), e2 = unit(pi × p̄i), and e3 = e1 × e2. (See Eqs. 13 and 14 in their paper for
the definitions.) To ensure translation invariance, these node-wise frames also rely on global centroid
normalization. Moreover, when applied to crystal structures. their highly symmetric nature will often
cause p̄i ≃ pi, resulting in unstable frame construction.

Pozdnyakov & Ceriotti (2023) propose ensemble of many 3-body interactions called the equiv-
ariant coordinate-system ensemble. For each target atom i, they construct many triplets of atoms
(i, j, j′) using pairs of neighbors (j, j′) and then construct a local frame for each triplet as Fijj′ .
Although these triplet-wise frames are local, they do not reflect dynamic internal states of the model.
Also, modeling 3-body interactions is computationally expensive.

Overall, these methods all employ specific types of static local frames, such as node-wise (Du et al.,
2023), edge-wise (Du et al., 2022; 2023), or triplet-wise (Pozdnyakov & Ceriotti, 2023) frames. None
of them leverage the model’s internal states for frame construction.

In Sec. 5.1, we further compare the proposed method using dynamic frames with its static counterpart
variant, which is based on static local frames. The results in Tables 1 and 2 demonstrate the superior
performance of the proposed dynamic frames, highlighting the conceptual difference between these
two families of frames.

C DATASET SPECIFICATIONS

We use the following three sources of materials data for evaluations. They are all publicly available
through a Python package (jarvis-tools) created by Choudhary et al. (2020).

The JARVIS-DFT 3D 2021 is a collection of 55,723 materials provided by Choudhary et al. (2020)
and is accessible as dft_3d_2021 via jarvis-tools (or as dft_3d in older versions). These materi-
als are annotated with various simulated properties using two DFT calculation methods, OptB88vdW
(OPT) and TBmBJ (MBJ). Following recent studies (Yan et al., 2022; 2024; Lin et al., 2023;
Taniai et al., 2024), we use formation energy (formation_energy_peratom), total energy
(optb88vdw_total_energy), bandgap (optb88vdw_bandgap and mbj_bandgap), and
energy above hull or E hull (ehull) as regression targets.

The Materials Project (MP) database (Jain et al., 2013) is an online public materials database
providing various synthetic materials and their DFT-calculated properties. We specifically use
its snapshot collected by Chen et al. (2019), which contains 69,239 materials and is accessible
as megnet via jarvis-tools. Following recent studies (Yan et al., 2022; 2024; Lin et al., 2023;
Taniai et al., 2024), we use formation energy (e_form), bandgap (gap pbe), bulk modulus (bulk
modulus), and shear modulus (shear modulus) as regression targets. For bulk and shear
modulus, we use the data splits provided by Yan et al. (2022).

The Open Quantum Materials Database (OQMD) is another online public materials database
by Kirklin et al. (2015). We specifically use its snapshot provided as oqmd_3d_no_cfid
in jarvis-tools, which contains 817,636 materials with three DFT-calculated properties: for-
mation energy (_oqmd_delta_e), bandgap (_oqmd_band_gap), and energy above hull
(_oqmd_stability). We use these properties as regression targets. We will release our data splits
along with our codes in the future.

D TRAINING PARAMETERS

Table A1 summarizes the training settings for the JARVIS, MP, and OQMD datasets. Specifically for
the JARVIS dataset, we optimize the mean absolute loss function using the Adam optimizer (Kingma
& Ba, 2015) with (β1, β2) = (0.9, 0.98), weight decay of 10−5 (Loshchilov & Hutter, 2019), and a
batch size of 256 materials. We employ the warm-up-free inverse square root scheduling (Huang
et al., 2020) for the learning rate, with the initial learning rate of 5.0 × 10−4 and decay factor of√
4000/(4000 + t) according to the total train steps t. The model weights are initialized through the
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strategy for the normalization-free transformer architecture by Huang et al. (2020), which improves
the training stability. The training is iterated for a total of 2000 epochs. Stochastic weight averaging
(SWA) (Izmailov et al., 2018) is adopted for model selection for testing and validation. Except for the
increased number of epochs, we use the same settings with the baseline Crystalformer model (Taniai
et al., 2024) to evaluate the pure effects of introducing the frames. For the OQMD dataset, which was
not used by the baseline method, we use similar settings with a larger batch size of 1024 materials
and fewer epochs of 200.

Table A1: Detailed training settings.
Hyperparameters Settings (JARVIS, MP, OQMD)

Loss function Mean absolute error
Optimizer AdamW with (β1, β2) = (0.9, 0.98)
Weight decay 10−5

Gradient norm clipping 1.0
Initial learning rate α 5.0× 10−4

Learning rate scheduling per step α
√

4000/(4000 + t)
Warm-up steps 0 (no warm-up)
Batch size 256, 128, 1024
Number of epochs 2000, 800, 200
Dropout rate 0.0
SWA epochs 50, 50, 20

E FULL BENCHMARK RESULTS

Tables A2 and A3 provide the full versions of Tables 1 and 2, adding the results of CGCNN (Xie &
Grossman, 2018), SchNet (Schütt et al., 2018), MEGNet (Chen et al., 2019), GATGNN (Louis et al.,
2020), M3GNet (Chen & Ong, 2022), and ALIGNN (Choudhary & DeCost, 2021).

F DETAILED VISUAL ANALYSIS OF FRAMES

F.1 COMPARISON BETWEEN WEIGHTED PCA FRAMES AND MAX FRAMES

As shown in Tables 1 and 2, the max frame method performed very well, while the weighted PCA
variant did not. In Fig. 3, the weighted PCA frames do not seem to capture the local structure very
well compared to the max frames. This is because all the attention weights, even small ones, can
influence the composition of the weighted PCA frames. In other words, the weighted PCA frames
look at the structure over a broader area, while the max frames focus on relatively close neighbors.
This difference seems to have a positive effect on the max frames and a negative effect on the weighted
PCA frames in most tasks, except for the E hull in the MP dataset (Table 2).

For the E hull prediction, it is suggested by Taniai et al. (2024) that the inclusion of long-range
interatomic interactions is a critical factor. This implication can reasonably explain the better
performance of the weighted PCA frames for the E hull. That is, the weighted PCA frames emphasize
distant atoms and help deliver more meaningful messages from these distant atoms that are important
for the E hull prediction.

F.2 FRAME VISUALIZATIONS FOR A DIFFERENT MATERIAL

Figure. A2 shows the frame visualizations for another test material (JVASP-85272). This structure
consists of carbon (red atoms) and nitrogen (blue atoms), forming a tetrahedral structure. Both
dynamic models first attend to the central tetrahedral structure in the first two layers, and then increase
the attention to relatively distant red atoms in the subsequent layers. However, the max frames capture
these structures more clearly than the weighted PCA frames, as observed in the first example.

We have also noticed a general tendency for our models to attend to close neighbors in shallow
layers and relatively distant neighbors in deeper layers. This tendency is also reasonable. Since the
states of atoms are initialized as symbolic atomic species without rich information, they must gather
information about their surroundings in shallow layers to configure their states. In deeper layers,
these atoms become ready to engage in complex interactions with selected distant atoms.
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Table A2: Property prediction results on the JARVIS dataset (full).
Form. energy Total energy Bandgap (OPT) Bandgap (MBJ) E hull

44578 / 5572 / 5572 44578 / 5572 / 5572 44578 / 5572 / 5572 14537 / 1817 / 1817 44296 / 5537 / 5537

Method eV/atom eV/atom eV eV eV

CGCNN (Xie & Grossman, 2018) 0.063 0.078 0.20 0.41 0.17
SchNet (Schütt et al., 2018) 0.045 0.047 0.19 0.43 0.14
MEGNet (Chen et al., 2019) 0.047 0.058 0.145 0.34 0.084
GATGNN (Louis et al., 2020) 0.047 0.056 0.17 0.51 0.12
M3GNet Chen & Ong (2022) 0.039 0.041 0.145 0.362 0.095
ALIGNN (Choudhary & DeCost, 2021) 0.0331 0.037 0.142 0.31 0.076
Matformer (Yan et al., 2022) 0.0325 0.035 0.137 0.30 0.064
PotNet (Lin et al., 2023) 0.0294 0.032 0.127 0.27 0.055
eComFormer (Yan et al., 2024) 0.0284 0.032 0.124 0.28 0.044
iComFormer (Yan et al., 2024) 0.0272 0.0288 0.122 0.26 0.047

Crystalformer (Taniai et al., 2024) 0.0306 0.0320 0.128 0.274 0.0463
— w/ PCA frames (Duval et al., 2023) 0.0325 0.0334 0.144 0.292 0.0568
— w/ lattice frames (Yan et al., 2024) 0.0302 0.0323 0.125 0.274 0.0531
— w/ static local frames 0.0285 0.0292 0.122 0.261 0.0444
— w/ weighted PCA frames (proposed) 0.0287 0.0305 0.126 0.279 0.0444
— w/ max frames (proposed) 0.0263 0.0279 0.117 0.242 0.0471

Table A3: Property prediction results on the MP dataset (full).
Formation energy Bandgap Bulk modulus Shear modulus
60000 / 5000 / 4239 60000 / 5000 / 4239 4664 / 393 / 393 4664 / 392 / 393

Method eV/atom eV log(GPa) log(GPa)

CGCNN 0.031 0.292 0.047 0.077
SchNet 0.033 0.345 0.066 0.099
MEGNet 0.030 0.307 0.060 0.099
GATGNN 0.033 0.280 0.045 0.075
M3GNet 0.024 0.247 0.050 0.087
ALIGNN 0.022 0.218 0.051 0.078
Matformer 0.021 0.211 0.043 0.073
PotNet 0.0188 0.204 0.040 0.065
eComFormer 0.0182 0.202 0.0417 0.0729
iComFormer 0.0183 0.193 0.0380 0.0637

Crystalformer 0.0186 0.198 0.0377 0.0689
— w/ PCA frames 0.0197 0.217 0.0424 0.0719
— w/ lattice frames 0.0194 0.212 0.0389 0.0720
— w/ static local frames 0.0178 0.191 0.0354 0.0708
— w/ weighted PCA frames (proposed) 0.0197 0.214 0.0423 0.0715
— w/ max frames (proposed) 0.0172 0.185 0.0338 0.0677

F.3 EVOLUTION OF DYNAMIC FRAMES DURING TRAINING

We further examined how dynamic frames evolve throughout the training process, by visualizing
frames using model checkpoints taken at 200-epoch intervals. Figure A3 compares the evolution
of the weighted PCA frames and max frames for the same material as Fig. 3. We observed that the
weighted PCA frames fluctuated throughout training, whereas the max frames stabilized quickly
during the early stages. As frame fluctuations can introduce noise, the early stabilization of the max
frames may explain their superior performance compared to the weighted PCA frames.

G SCALABILITY FOR LARGE STRUCTURES AND SUPERCELLS

Since the proposed CrystalFramer is based on a self-attention mechanism, its computational complex-
ity is O(Nk), where N is the number of atoms in the unit cell and k is the number of neighbors per
unit-cell atom. In the infinitely connected attention of Crystalformer (Taniai et al., 2024) defined in
Eq. 3, neighbors j(n) are adaptively determined for each atom i in each layer. The current implemen-
tation computes neighbors by periodically repeating the unit cell within a finite range. Consequently,
k becomes a multiple of N , resulting in an overall computational complexity of O(N2).

In practice, the training of CrystalFramer has successfully scaled to relatively large structures in the
MP dataset, which features an average of 30 atoms per unit cell and a maximum of 296 atoms. For
inference, the method can handle even larger structures than during training, as it requires significantly
less memory and supports per-material (non-batched) processing.
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Crystal structure (C3N4)

C N Max frames

Layer 2Layer 1 Layer 3 Layer 4

Lattice framePCA frame

Weighted PCA frames

Figure A2: Frame visualizations for a different material.

Weighted PCA Frame Max Frame

Figure A3: Evolution of dynamic frames during training. We visualize the weighted PCA frames
and max frames using model checkpoints taken every 200 epochs, starting from epoch 100 until 2000.
Frames from earlier checkpoints are overlaid with higher transparency. Notably, the max frames
stabilize more quickly than the weighted PCA frames.

Scalability for larger structures becomes crucial especially when processing supercells. Supercells are
often utilized when structures deviate from perfect periodicity, such as in the presence of impurities,
defects, or surfaces. We consider the following two potential approaches to improve efficiency with
large supercells.

Mixed atom embedding. Structures with impurities or defects are often represented using site
occupancy, which indicates the probabilities of different elements occupying an atomic site. Instead
of modeling such structures with supercells, we can efficiently represent the site occupancy by mixing
atomic embedding vectors. In this case, each ai represents a probability distribution over elements
rather than a single element. The corresponding atomic state can then be initialized as a linear blend
of atom embeddings: xi ←

∑
element ai(element)AtomEmbedding(element). This approach can

keep the structure size small without using a supercell, thereby maintaining overall efficiency.

Distance-based neighbor search. When unit cells are large, the current cell-based neighbor identifi-
cation method will produce redundant neighbors, forcing k ≥ N . By employing a more compact
set of neighbors through nearest neighbor search, the complexity is reduced from O(N2) to O(Nk),
improving efficiency for larger structures.

Since structures with imperfect periodicity are common in realistic scenarios, developing scalable
models for these structures is an important direction for future research.
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H ANALYSIS OF MODEL’S CONTINUITY.

Dym et al. (2024) pointed out that frame-based models generally exhibit discontinuous characteristics,
which are also inherent in our approach. To empirically assess the degree of this discontinuity in
our trained models, we analyze the variations in their outputs for a given crystal structure under
perturbations.

The results in Figure A4 show that the model using weighted PCA frames exhibits a significantly
smoother transition compared to the model using max frames. However, as shown in Tables 1 and 2,
the weighted PCA frame method has lower performance, indicating that higher continuity does not
necessarily translate to better performance. The discontinuous behavior of max frames may have
facilitated the early stabilization of frames during training, as discussed in Appendix F.3, leading to
the superior performance.

Meanwhile, the discontinuity of the model using max frames becomes more significant as deviations
from the original structure increase. This trend suggests that the model may have limited generaliza-
tion to out-of-domain data. The technique of weighted frames proposed by Dym et al. (2024) could
be applied to improve the continuity of our models using max frames.

Input structure Max frame

Atomic position perturbation rate

N
e

tw
o
rk
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u
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u
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Atomic position perturbation rate

Weighted PCA frame

Figure A4: Continuity under perturbations. We examine the transitions in the outputs of trained
models for a test material under perturbations of an atom’s position. Specifically, we use Be2InPb
(JVASP-70556) from the JARVIS formation energy prediction task and perturb one of the beryllium
(Be) atoms along the direction of a lattice vector. The model using weighted PCA frames shows a
smoother transition compared to the model using max frames.
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