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ABSTRACT

Diffusion models have recently advanced video restoration, but applying them to
real-world video super-resolution (VSR) remains challenging due to high latency,
prohibitive computation, and poor generalization to ultra-high resolutions. Our
goal in this work is to make diffusion-based VSR practical by achieving efficiency,
scalability, and real-time performance. To this end, we propose FlashVSR,
the first diffusion-based one-step streaming framework towards real-time VSR.
FlashVSR runs at ∼17 FPS for 768 × 1408 videos on a single A100 GPU by
combining three complementary innovations: (i) a train-friendly three-stage dis-
tillation pipeline that enables streaming super-resolution, (ii) locality-constrained
sparse attention that cuts redundant computation while bridging the train–test res-
olution gap, and (iii) a tiny conditional decoder that accelerates reconstruction
without sacrificing quality. To support large-scale training, we also construct
VSR-120K, a new dataset with 120k videos and 180k images. Extensive exper-
iments show that FlashVSR scales reliably to ultra-high resolutions and achieves
state-of-the-art performance with up to ∼ 12× speedup over prior one-step diffu-
sion VSR models. We will release code, models, and the dataset to foster future
research in efficient diffusion-based VSR.

1 INTRODUCTION

Video super-resolution(VSR) has wide application in smartphone photography, social networks, and
live streaming. It recovers a high-quality video from an original low-quality video, either because
of imperfect capturing or compression losses. Many VSR methods have been proposed recently to
reconstruct high-resolution (HR) videos from such degraded LR inputs (Wang et al., 2019; Chan
et al., 2021; 2022a; Cao et al., 2021; Liu et al., 2022a; Zhou et al., 2024; Yang et al., 2024a; Xie
et al., 2025; Li et al., 2025). Recently, with the rapid development of video generation models,
researchers have found that a pretrained diffusion model can also significantly improve the visual
quality of video restoration (Wang et al., 2025b;a; Xie et al., 2025; Chen et al., 2025b). Still, as
mobile video and online streaming have become popular, there is a much higher demand for a VSR
system that can handle high-resolution and infinitely long videos in real time.

However, achieving high-resolution, high-quality, and real-time streamable video super-resolution
remains highly challenging, particularly for diffusion-based VSR. We identify three major obstacles:
(1) high lookahead latency of chunk-wise processing. Due to memory constraints, most approaches
divide long videos into overlapping chunks and process them independently, introducing redundant
computation on overlapped frames and a high lookahead latency before the entire chunk finishes
processing; (2) high computational cost of dense 3D attention. For better visual quality, most video
generation models use full spatiotemporal attention, which has quadratic complexity in resolution,
making it prohibitively expensive for long, high-resolution videos; (3) a potential train–test reso-
lution gap. Most attention-based VSR models are trained on medium-resolution videos but often
degrade when applied to higher resolutions (e.g., 1440p). Our analysis shows this gap stems from
mismatched positional encoding ranges between training and inference.

In this work, we handle all three of these challenges and build FlashVSR, the first diffusion-based
video super-resolution model towards real-time and streamable processing. As shown in Fig. 1,
FlashVSR achieves near real-time inference at 17 FPS at a resolution of 768×1408 on a single A100
GPU. This is significantly faster than all other diffusion-based VSR methods, including STAR (Xie
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Figure 1: Efficiency and performance comparison in high-resolution video restoration. Compared
to state-of-the-art VSR models (e.g., DOVE and SeedVR2-3B), FlashVSR restores sharper textures
and more detailed structures. It achieves near real-time performance at 17 FPS on 768×1408 videos
using a single A100 GPU, corresponding to a measured 11.8× speedup over the fastest one-step
diffusion VSR model. (Zoom in for best view)

et al., 2025) (∼ 120× faster) and the strongest one-step diffusion-based baseline SeedVR2-3B
(Wang et al., 2025a) (∼ 12× faster). Additionally, benefiting from its streaming design we will
soon introduce, FlashVSR only introduces 8 frames of lookahead latency, whereas previous chunk-
based methods introduce latency equal to the segment length (∼ 80 frames). FlashVSR further
scales reliably up to 1440p, delivering detail-rich videos, as shown in the right example of Fig. 1
and the Appendix C.1. FlashVSR achieves these advances through three key innovations.

A training-friendly distillation scheme for one-step streaming VSR model. Directly training an
efficient and high-quality VSR model is challenging. Instead, we design a training-friendly three-
stage processive distillation pipeline: (i) training a joint image–video VSR with full-attention VSR
and using it as the teacher model, (ii) finetuning it to a block-sparse causal attention adaptation
introduced above, and (iii) further distilling it into a one-step VSR model. Another advantage of
FlashVSR is that it naturally supports parallel frame processing during training, since all latent
frames only depend on the current LR frames as input. In contrast, in previous autoregressive
VSRs (Huang et al., 2025; Lin et al., 2025b), the processing of a new frame only starts after the
generation of the previous frame, resulting in heavy-loaded serial unfolding during training time.

Sparse attention with locality constraints. For video super-resolution, conventional dense 3D
attention introduces substantial computational redundancy, which motivates us to adopt block-sparse
attention for efficient processing. Specifically, we first compute a coarse attention map by pooling
the key–value features, and then apply full attention only to the top-k regions with the highest scores.
Moreover, for high-resolution videos, we further introduce spatial local windows to constrain the
attention range of each query, aligning the relative positional encoding range between training and
inference. These designs improve the generalization of our model to high-resolution videos. To the
best of our knowledge, this is the first diffusion-based VSR using sparse attention.

Tiny conditional decoder. After the accelerating diffusion transformer block (DiT), the causal 3D
VAE decoder becomes the primary runtime bottleneck, consuming nearly 70% of the inference time
at 768× 1408 resolution. To address this, we introduce a tiny conditional decoder that leverages LR
frames as auxiliary inputs in addition to latents, thereby simplifying HR reconstruction and enabling
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a more compact design. With the same parameter budget, our ablation shows that it outperforms its
unconditional variant, while preserving visual quality comparable to the original VAE decoder and
reducing decoding time to roughly 1/7.

Additionally, we construct a new large-scale dataset, VSR-120K, comprising 120k videos (average
length >350 frames) and 180k high-quality images, filtered via automated quality control. Existing
VSR datasets are limited in scale and video quality, e.g., DOVE contains only 2K videos. Our
dataset enables joint image-video training and will be publicly released to advance VSR research.

Extensive quantitative and qualitative results show that FlashVSR achieves state-of-the-art perfor-
mance with up to ∼ 12× speedup, while locality-constrained attention mitigates the resolution-
induced train–test gap for robust generalization to ultra-high-resolution videos.

2 RELATED WORK

2.1 REAL-WORLD VIDEO SUPER-RESOLUTION

Early research in video super-resolution (VSR) often relied on simple synthetic degradations (e.g.,
bicubic downsampling) (Wang et al., 2019; Fuoli et al., 2019; Li et al., 2020; Chan et al., 2021;
2022a; Cao et al., 2021; Liu et al., 2022a), but these methods perform poorly on real-world data. To
mitigate this gap, some works collected paired data from consumer devices (Yang et al., 2021; Wei
et al., 2023), but these datasets are small and sensor-biased. Later approaches introduced composite
degradations combining blur, noise, and compression artifacts (Wang et al., 2021; Yang et al., 2021;
Chan et al., 2022b; Zhou et al., 2024; Yang et al., 2024a; Xie et al., 2025).

The recent success of diffusion models in image restoration (Ai et al., 2024; Dong et al., 2025; Qu
et al., 2024; Yu et al., 2024; Yue et al., 2025) has motivated their use in VSR (Zhou et al., 2024;
Zhang & Yao, 2024; Yang et al., 2024a; Li et al., 2025; Xie et al., 2025). For instance, Upscale-
A-Video (Zhou et al., 2024) employs optical-flow-guided propagation, MGLD-VSR (Yang et al.,
2024a) introduces motion-aware objectives, and DiffVSR (Li et al., 2025) adopts staged optimiza-
tion. More recent frameworks leverage large-scale video diffusion priors (Blattmann et al., 2023;
Yang et al., 2024b; Wan et al., 2025), such as SeedVR (Wang et al., 2025b;a), and DOVE (Chen
et al., 2025b). While effective in enforcing temporal consistency, these methods are hindered by the
high cost of dense 3D attention and reliance on chunk-based inference, leading to large lookahead
latency and inefficiency, even in one-step models.

2.2 STREAMING VIDEO DIFFUSION MODELS

Practical VSR must handle sequences lasting minutes or longer, making streaming capability essen-
tial for deployment. Recent studies have extended diffusion models from short clips to long stream-
ing video generation. Diffusion Forcing (Chen et al., 2024a) reformulates denoising as block-wise
sequential processing, enabling causal decoding. Follow-up works (Yin et al., 2024b; Chen et al.,
2025a; Teng et al., 2025; Guo et al., 2025; Huang et al., 2025; Lin et al., 2025b) combined causal
attention, KV-cache, and distillation to compress multi-step diffusion into a few denoising steps, en-
abling efficient online generation. However, these works primarily focus on video synthesis rather
than restoration tasks such as VSR. Moreover, recent autoregressive video diffusion models rely on
“student forcing” training to mitigate error accumulation, which requires predicting the previous
output. This leads to serial unfolding of the forward process, reducing training efficiency.

2.3 VIDEO DIFFUSION ACCELERATION

Despite their strong performance, diffusion models remain computationally expensive, limiting
real-time applications. Existing acceleration strategies mainly fall into three categories: Feature
caching. Works such as DeepCache (Xu et al., 2018), FasterDiffusion (Li et al., 2023), and recent
adaptations for video diffusion transformers(DiT) (Peebles & Xie, 2023; Selvaraju et al., 2024; Chen
et al., 2024b; Liu et al., 2025) reduce redundancy by reusing intermediate activations. One-step dis-
tillation. Methods based on rectified flows (Liu et al., 2022b; 2023), score distillation (Lin et al.,
2025a; Zhang et al., 2024), and adversarial training (Yin et al., 2024a; Wang et al., 2023b) compress
iterative denoising into a single step, with representative examples including OSEDiff (Wu et al.,
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2024), SinSR (Wang et al., 2024), and TSD-SR (Dong et al., 2025). Extensions to VSR such as
DOVE (Chen et al., 2025b) and SeedVR2 (Wang et al., 2025a) achieve competitive results. Sparse
attention. FlashAttention (Dao et al., 2022) improves memory and computation efficiency while
also supporting block-sparse mechanisms, thereby reducing memory usage and accelerating atten-
tion computation. Techniques such as Sparse VideoGen (Xi et al., 2025), Sparse VideoGen2 (Yang
et al., 2025), and others (Zhang et al., 2025; Shen et al., 2025) exploit spatiotemporal or semantic
sparsity to reduce memory and computation while maintaining quality.

Despite recent advances, most methods remain inefficient, high-latency, and poorly generalized at
high resolutions. In contrast, we introduce FlashVSR, the first diffusion-based VSR unifying one-
step distillation, a train-friendly streaming design, and locality-constrained sparse attention. With a
tiny conditional decoder for video restoration, FlashVSR addresses the key challenges of efficiency,
temporal scalability, and high-resolution generalization, achieving near real-time performance and
moving diffusion-based VSR closer to practical deployment.

3 METHOD

We present FlashVSR, an efficient diffusion-based one-step streaming framework for video super-
resolution (VSR), achieving near real-time inference (17 FPS at 768×1408 on a single A100 GPU).
Furthermore, to train a high-quality VSR, we also construct a large-scale high-quality dataset, VSR-
120K. As illustrated in Fig. 2, FlashVSR builds on a three-stage distillation framework, enhanced
with locality-constrained sparse attention to mitigate the train–infer resolution gap, and a tiny con-
ditional decoder that reduces the cost of the 3D VAE decoder. Details are introduced below.

3.1 VSR-120K DATASET

To overcome the limited scale and quality of existing VSR datasets, we construct VSR-120K, a
large-scale dataset for joint image–video super-resolution training. We collect raw data from open
repositories such as Videvo, Pexels, and Pixabay1, containing 600k video clips and 220k high-
resolution images. For quality control, we employ LAION-Aesthetic predictor (Schuhmann et al.,
2022) and MUSIQ (Ke et al., 2021) for visual quality, and RAFT (Teed & Deng, 2020) for motion
filtering. The final dataset consists of 120k videos (average length >350 frames) and 180k high-
quality images. We will release VSR-120K for public research use. See Appendix A for details.

3.2 THREE-STAGE DISTILLATION PIPELINE

To build a high-quality and efficient VSR model, we design a three-stage distillation pipeline: (1)
joint video–image training to establish a strong teacher, (2) causal sparse attention adaptation for
streaming efficiency, and (3) distribution-matching distillation into a one-step student.

Stage 1. Video–Image Joint SR Training. We adapt a pretrained video diffusion model (WAN2.1
1.3B (Wan et al., 2025)) to super-resolution by jointly training on videos and images, treating images
as single-frame videos (f=1) to enable a unified 3D attention formulation. As illustrated in Stage 1
of Fig. 2, we apply a block-diagonal segment mask that restricts attention within the same segment:

αij =
exp

( qik
⊤
j√
d

)
1[ seg(i) = seg(j) ]∑

l exp
( qik

⊤
l√
d

)
1[ seg(i) = seg(l) ]

, (1)

where seg(i) denotes the segment identity of token i (image or video clip) and α denotes the normal-
ized attention weight. Block-sparse constraints are omitted so the teacher retains full spatiotemporal
priors. A fixed text prompt is used for conditioning, with cross-attention keys and values reused
across samples. We further introduce a lightweight low-resolution(LR) Proj-In layer to project LR
inputs into the feature space instead of using the VAE encoder. Training employs the standard flow
matching loss (Lipman et al., 2022).

Stage 2. Block-Sparse Causal Attention Adaptation. We adapt the Stage 1 full-attention DiT
into a Sparse-Causal DiT by introducing causal masking and block-sparse attention, as illustrated

1https://www.videvo.net/, https://www.pexels.com/, https://pixabay.com/

4

https://www.videvo.net/
https://www.pexels.com/
https://pixabay.com/


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Stage 2

Causal LR 
Proj-In

+

Block-Sparse Causal Adaptation

Flow Matching Loss

Sparse-Causal DiT

Block-Sparse
Causal

Attention

Video-Image Joint SR Training

LR 
Proj-In

+ Full-Attn DiT

LR Videos/Images Stage 1
Joint Image-

Video 
Attention

Stage 3

Causal LR 
Proj-In

+
One-Step

Sparse-Causal DiT

Block-Sparse
Causal

Attention

Copy-Init -
Add 

Noise

Distribution Matching Loss 𝛻𝜃𝐷𝐾𝐿

Causal 
Decoder

MSE Loss + LPIPS Loss 

Flow Matching Loss

No Grad

DMD One-Step Distillation

Full-Attn DiT

Real Score

Full-Attn DiT

Fake Score

Noise
Latents

Noise
Latents

Video
Latents

Noise
Latents

Noise
Latents

Image
Latents

Video
Latents

Video
Latents

GT Video

Flow Matching Loss

Figure 2: Overview of the three-stage training pipeline of FlashVSR, covering video–image joint
SR training, adaptation with block-sparse causal attention for streaming inference, and distribution-
matching one-step distillation combined with reconstruction supervision.

in Fig. 2. The causal mask restricts each latent to its current and past positions. Following (Zhang
et al., 2025; Shen et al., 2025), queries and keys are partitioned into non-overlapping blocks of size
(2, 8, 8) and reshaped into (B, block num, 128, C) with block num = L/128. Within each block,
average pooling yields compact block-level features to compute a coarse block-to-block attention
map. The top-k most relevant block pairs are selected, and full 128 × 128 attention is applied
only to these regions with the original (Q,K, V ). This reduces attention cost to 10–20% of the
dense baseline without performance loss. The LR Proj-In layer is converted to a causal variant for
streaming inference, and training continues with the flow matching loss on video data only.

Stage 3. Distribution-Matching One-Step Distillation. Recent studies on one-step streaming
video diffusion focus on video generation, typically requiring clean past frames as input for motion
plausibility. Teacher forcing (conditioning on ground truth) (Lin et al., 2025b) causes error accumu-
lation during inference, while student forcing (conditioning on predicted latents) (Lin et al., 2025b;
Huang et al., 2025) alleviates this but requires sequential unfolding, reducing efficiency.

In Stage 3 (Fig. 2), we refine the Stage 2 sparse-causal DiT into a one-step model Gone and propose
a parallel training paradigm for streaming VSR. The model takes LR frames and Gaussian noise as
input, with all latents trained under a unified timestep using a block-sparse causal attention mask.
The Stage 1 full-attention DiT serves as the teacher Greal, while its copy Gfake learns the distribution
of fake latents, following the DMD pipeline by Yin et al. (2024a)). Here, zpred denotes the predicted
latent, and xpred the reconstructed HR frame. The overall objective combines distribution-matching
distillation, flow matching, and pixel-space reconstruction losses:

L = LDMD(zpred, Gone, Greal, Gfake)︸ ︷︷ ︸
distribution-matching distillation

+LFM(zpred, Gfake)︸ ︷︷ ︸
flow matching

+ ∥xpred − xgt∥22 + λLlpips(xpred, xgt)︸ ︷︷ ︸
decoder reconstruction

, (2)

where λ = 2. Due to memory constraints, two latents are randomly selected per iteration for
decoding, with previous ones detached from gradients.

Since training and inference rely only on LR frames and noise, the train–infer gap is eliminated. As
a one-step model, the later layers of Gone already contain clean latent information propagated via the
KV-cache for temporal continuity. The core insight is that, unlike video generation, VSR is strongly
conditioned on LR frames, so clean historical latents are unnecessary for motion plausibility. The
model focuses on content reconstruction, while temporal consistency is refined in later layers via
the KV-cache. This design enables efficient parallel training while preserving high fidelity and
eliminating the train–infer gap. Further discussion is provided in Appendix B.4.
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Figure 3: Locality-Constrained Sparse Attention. Left: At ultra-high resolutions, performing in-
ference beyond the trained positional encoding range produces artifacts (e.g., repetition or blur).
Restricting each query to a local attention window keeps the positional encoding range consistent
between training and inference, thereby preventing artifacts. Right: Two local window rules, namely
boundary-preserved and boundary-truncated, are illustrated. The final sparse attention mask is com-
puted within these local masks.

3.3 LOCALITY-CONSTRAINED SPARSE ATTENTION

We observed that for super-resolution, model trained medium-resolution may fail to generalize to
ultra-high resolutions (e.g., 1440p), leading to repeated patterns and blurring as shown in illustrated
in Fig. 3. Our analysis shows that this arises from the periodicity of positional encodings: when the
positional range at inference far exceeds that seen during training, certain dimensions repeat their
patterns, degrading self-attention, as shown in the bottom of Fig. 3.

To address this, we introduce locality-constrained attention, which restricts each query at inference
to a limited spatial neighborhood, thereby aligning the attention range with that used in training.
With the relative formulation of RoPE (Su et al., 2024), this simple constraint eliminates the train–
inference gap of positional range. This approach closes the resolution gap and enables consistent
performance even on high-resolution inputs, as shown in the middle of Fig. 3. This design is further
validated through quantitative results in Sec. 4.4 and qualitative visualizations in Appendix C.1.

3.4 TINY CONDITIONAL DECODER

Tiny Conditional 
Decoder

Wan DecoderWan Encoder

Pixel Shuffle

HR Video

LR Video

MSE Loss
+

LPIPS Loss

MSE Loss + LPIPS Loss

Figure 4: Training pipeline of the TC Decoder.

After obtaining the one-step streaming model,
we find the VAE decoder dominates inference
(∼ 70% runtime) and becomes the bottleneck.
To address this, we design a Tiny Conditional
Decoder (TC Decoder, Fig. 4), which, instead
of merely shrinking the original VAE decoder,
conditions reconstruction on both LR frames
and latents. This reduces decoding complex-
ity and preserves fine details with fewer param-
eters. Let xpred denote the reconstructed HR
frame, xgt the ground truth, and xwan the Wan decoder output. Training combines pixel-level su-
pervision with distillation from the original Wan decoder:

L = ∥xpred − xgt∥22 + λLLPIPS(xpred, xgt) + ∥xpred − xwan∥22 + λLLPIPS(xpred, xwan), (3)
where λ = 2. The TC Decoder achieves nearly 7× faster decoding than the original VAE decoder
while maintaining comparable quality, and under the same parameter budget it consistently outper-
forms unconditional tiny decoders.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

FlashVSR is built upon Wan 2.1–1.3B (Wan et al., 2025) and fine-tuned with LoRA (Hu et al., 2022)
(rank 384). All stages are trained on the VSR-120K dataset, with paired LR–HR videos and images
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Table 1: Quantitative comparison on YouHQ40, REDS, SPMCS (synthetic), VideoLQ (real) and
AIGC30 (AIGC). Best in red, second-best in blue.

Dataset Metric Upscale-A-Video STAR RealViformer DOVE SeedVR2-3B Ours-Full Ours-Tiny

YouHQ40

PSNR ↑ 23.19 23.19 23.67 24.39 23.05 23.13 23.31
SSIM ↑ 0.6075 0.6388 0.6189 0.6651 0.6248 0.6004 0.6110
LPIPS ↓ 0.4585 0.4705 0.4476 0.4011 0.3876 0.3874 0.3866
NIQE ↓ 4.834 7.275 3.360 4.890 3.751 3.382 3.489
MUSIQ ↑ 43.07 35.05 62.73 61.60 62.31 69.16 66.63
CLIPIQA ↑ 0.3380 0.2974 0.4451 0.4437 0.4909 0.5873 0.5221
DOVER ↑ 6.889 7.363 9.739 11.29 12.43 12.71 12.66

REDS

PSNR ↑ 24.84 24.01 25.96 25.60 24.83 23.92 24.11
SSIM ↑ 0.6437 0.6765 0.7092 0.7257 0.7042 0.6491 0.6511
LPIPS ↓ 0.4168 0.371 0.2997 0.3077 0.3124 0.3439 0.3432
NIQE ↓ 3.104 4.776 2.722 3.564 3.066 2.425 2.680
MUSIQ ↑ 53.00 46.25 63.23 65.51 61.83 68.97 67.43
CLIPIQA ↑ 0.2998 0.2807 0.3583 0.4160 0.3695 0.4661 0.4215
DOVER ↑ 6.366 6.309 8.338 9.368 8.725 8.734 8.665

SPMCS

PSNR ↑ 23.95 23.68 25.61 25.46 23.62 23.84 24.02
SSIM ↑ 0.6209 0.6700 0.7030 0.7201 0.6632 0.6346 0.6450
LPIPS ↓ 0.4277 0.3910 0.3437 0.3289 0.3417 0.3436 0.3451
NIQE ↓ 3.818 7.049 3.369 4.168 3.425 3.151 3.302
MUSIQ ↑ 54.33 45.03 65.32 69.08 66.87 71.05 69.77
CLIPIQA ↑ 0.4060 0.3779 0.4150 0.5125 0.5307 0.5792 0.5238
DOVER ↑ 5.850 4.589 8.083 9.525 8.856 9.456 9.426

VideoLQ

NIQE ↓ 4.889 5.534 3.428 5.292 5.205 3.803 4.070
MUSIQ ↑ 44.19 40.19 57.60 45.05 43.39 55.48 52.27
CLIPIQA ↑ 0.2491 0.2786 0.3183 0.2906 0.2593 0.4184 0.3601
DOVER ↑ 5.912 5.889 6.591 6.786 6.040 8.149 7.481

AIGC30

NIQE ↓ 5.563 6.212 4.189 4.862 4.271 3.871 4.039
MUSIQ ↑ 47.87 38.62 50.74 50.59 50.53 56.89 55.80
CLIPIQA ↑ 0.4317 0.3593 0.4510 0.4665 0.4767 0.5543 0.5087
DOVER ↑ 10.24 11.00 11.24 12.34 12.48 12.65 12.50

synthesized via the RealBasicVSR degradation pipeline (Chan et al., 2022b). Training is conducted
on 32 A100-80G GPUs, while evaluation uses a single A100. All stages use a batch size of 32,
taking about 2, 1, and 2 days for Stages 1–3, respectively. Stage 1 uses 89-frame clips (768× 1280)
and paired images; Stage 2 continues training with videos only; Stage 3 adopts the same setting.
The AdamW optimizer (Loshchilov & Hutter, 2017) is used with learning rate 1× 10−5 and weight
decay 0.01. The TC Decoder is trained separately on 61-frame clips (384× 384) for about 2 days.

4.2 DATASETS, METRICS, AND BASELINES

We evaluate on three synthetic datasets (YouHQ40 (Zhou et al., 2024), REDS (Nah et al., 2019),
SPMCS (Yi et al., 2019)), one real-world dataset (VideoLQ (Chan et al., 2022b)), and an AI-
generated set (AIGC30). Synthetic LR frames are generated using the same degradation pipeline
as training. We evaluate with PSNR (Wikipedia contributors, 2024), SSIM (Wang et al., 2004),
LPIPS (Zhang et al., 2018), MUSIQ (Ke et al., 2021), CLIPIQA (Wang et al., 2023a), and
DOVER (Wu et al., 2023) on datasets with ground truth (YouHQ40, REDS, SPMCS), and only with
the no-reference metrics (MUSIQ, CLIPIQA, DOVER) on datasets without ground truth (VideoLQ,
AIGC30). We compare FlashVSR against RealViFormer (Zhang & Yao, 2024) (non-diffusion trans-
former), STAR (Xie et al., 2025) and Upscale-A-Video (Zhou et al., 2024) (multi-step diffusion),
and DOVE (Chen et al., 2025b) and SeedVR2-3B (Wang et al., 2025a) (one-step diffusion). We also
report results using the Wan Decoder (Ours-Full) and the proposed TC Decoder (Ours-Tiny).

4.3 COMPARISON WITH EXISTING METHODS

Quantitative Comparisons. We compare FlashVSR with state-of-the-art real-world video super-
resolution methods. For multi-step diffusion-based models, we adopt their default configurations,
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Figure 5: Visualization results of video super-resolution on real-world and AIGC videos.

Table 2: Efficiency comparison (peak memory, runtime, and parameters) on 101 × 768 × 1408
videos. FPS is computed from the measured runtime.

Metric Upscale-A-Video STAR DOVE SeedVR2-3B Ours-Full Ours-Tiny

Peak Mem. (GB) 18.39 24.86 25.44 52.88 18.33 11.13
Runtime (s) / FPS 811.71 / 0.12 682.48 / 0.15 72.76 / 1.39 70.58 / 1.43 15.50 / 6.52 5.97 / 16.92
Params (M) 1086.75 2492.90 10548.57 3391.48 1780.14 1752.18

using 15 sampling steps for STAR and 30 steps for Upscale-A-Video. Tab. 1 reports the quantita-
tive results. FlashVSR consistently outperforms competing methods across all datasets, achieving
superior performance particularly on perceptual metrics such as MUSIQ, CLIPIQA, and DOVER.
Moreover, compared to using the original VAE decoder from Wan, the proposed TC Decoder further
improves reconstruction metrics while maintaining efficiency. We also note that RealViFormer has
an inherent advantage on REDS, since this dataset is included in its training set. Overall, the evalu-
ation highlights the effectiveness of FlashVSR in delivering high-quality video super-resolution.

Qualitative Comparisons. To provide a more intuitive comparison of visual quality in real-world
scenarios, we present qualitative results on VideoLQ and AIGC30 in Fig. 5. For clarity, we also
enlarge selected local patches to better illustrate the differences among the LR frames and outputs
of all methods. FlashVSR produces sharper and more detailed reconstructions compared to base-
lines, with textures and structures that appear more natural. For instance, in the last row of Fig. 5,
FlashVSR restores clearer hand textures and bookshelf details, yielding results that are visually
more realistic. These qualitative observations are consistent with the quantitative improvements on
perceptual metrics. Additional visualizations are provided in the Appendix C.1.

Efficiency Analysis. Tab. 2 reports the efficiency comparison on 101-frame videos at 768 × 1408
resolution. With streaming inference, block-sparse attention, one-step distillation, and a lightweight
conditional decoder, FlashVSR achieves substantial efficiency gains over all baselines. It runs 136×
faster than Upscale-A-Video (30 steps), 114× faster than STAR (15 steps), and still 11.8× faster
than the fastest one-step model SeedVR2-3B, while also using much less peak memory (11.1 GB

8
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Table 5: Ablation of Locality-constrained Attention. Both Boundary-Truncated and Boundary-
Preserved outperform Global Attention across all metrics. Best in red, second-best in blue.

Method PSNR ↑ SSIM ↑ LPIPS ↓ NIQE ↓ MUSIQ ↑ CLIPIQA ↑ DOVER ↑

Global Attention 24.21 0.6988 0.3423 3.152 65.57 0.5594 9.1259
Boundary-Truncated 24.60 0.7155 0.3385 2.850 67.47 0.6278 9.5132
Boundary-Preserved 24.87 0.7232 0.3304 2.968 67.16 0.6029 9.3259

vs. 52.9 GB). STAR uses chunk-wise inference (chunk size 32, overlap 0.5), and most methods
process entire sequences in one pass. In contrast, FlashVSR adopts streaming inference, reducing
lookahead latency to just 8 frames (vs. 32 for STAR and 101 for others). These results demonstrate
the practicality of FlashVSR for real-world deployment.

4.4 ABLATION STUDY

Table 3: Sparse vs. Full Attention.

Metric 13.6% Sparse Full Attn.

PSNR ↑ 24.11 24.65
SSIM ↑ 0.6511 0.6630
LPIPS ↓ 0.3432 0.3320
NIQE ↓ 2.680 2.878
MUSIQ ↑ 67.43 65.77
CLIPIQA ↑ 0.4215 0.4110
DOVER ↑ 8.665 8.750

Sparse Attention. We evaluate the impact of sparse atten-
tion on REDS. As shown in Tab. 3, FlashVSR with 13.6%
sparsity achieves nearly identical reconstruction and percep-
tual quality compared to a full-attention baseline (KV-cache
size 85 frames). At 768 × 1408, it reduces inference time
from 1.105s to 0.355s per 8 frames (3.1× speedup), thereby
substantially improving efficiency without compromising vi-
sual quality. This indicates that sparse attention effectively
prunes redundant interactions, mitigating computational over-
head while preserving essential spatiotemporal dependencies
for high-quality video super-resolution.

Table 4: Ablation of tiny conditional decoder.

Metric Wan Decoder Ours Unconditional Variant

PSNR ↑ 32.58 31.08 29.96
SSIM ↑ 0.9417 0.9244 0.9079
LPIPS ↓ 0.0715 0.1014 0.1231

Tiny Conditional Decoder. We evaluate the
proposed TC Decoder on 200 randomly se-
lected unseen videos, where all inputs are com-
pressed using the Wan VAE encoder and recon-
structed by three decoders: the original Wan de-
coder, our TC Decoder, and an unconditional
variant. As shown in Tab. 4 and Fig. 5, the TC
Decoder achieves nearly identical visual quality to the Wan decoder, and its quantitative metrics are
also close. For a 101-frame video at 768× 1408 resolution, it decodes in 1.60s compared to 11.13s
for the Wan decoder, achieving a ∼ 7× speedup. Moreover, it consistently outperforms the uncon-
ditional variant across PSNR, SSIM, and LPIPS, demonstrating the effectiveness of incorporating
LR frame conditions. The TC Decoder provides substantial acceleration with minimal fidelity loss,
making it well-suited for practical video super-resolution deployment.

Locality-constrained Attention. Fig. 3 illustrates that the proposed locality-constrained attention
mask alleviates repeated patterns and blurring at ultra-high resolutions by aligning positional encod-
ing ranges between training and inference. To quantitatively validate its effectiveness, we evaluate
on 15 high-resolution videos (1536× 2688, average 305 frames). We consider two variants depend-
ing on boundary handling (Fig. 3): Boundary-Preserved and Boundary-Truncated, both with a recep-
tive field restricted to 1152× 1152 and matched sparsity to global attention. Results are reported in
Tab. 5. Compared to global attention, both variants consistently improve across all metrics. Notably,
Boundary-Truncated achieves slightly higher perceptual quality, while Boundary-Preserved main-
tains competitive performance with better fidelity. These results confirm that locality-constrained
attention effectively enhances VSR performance on ultra-high-resolution videos.

5 CONCLUSION

We presented FlashVSR, an efficient diffusion-based one-step framework for streaming video super-
resolution. By combining streaming distillation, locality-constrained sparse attention, and a tiny
conditional decoder, FlashVSR achieves state-of-the-art quality with near real-time efficiency and
strong scalability to ultra-high resolutions. Our results demonstrate both its effectiveness and prac-
ticality, underscoring the potential of FlashVSR for real-world video applications.
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REPRODUCIBILITY STATEMENT

We will release the code, the VSR-120K dataset, and pretrained model weights to facilitate repro-
ducibility. Implementation details are provided in Sec. 4.1 and Appendix B, while the evaluation
benchmarks and metrics are described in Sec. 4.2.
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A VSR-120K DATASET

A.1 DATA SOURCES.

The VSR-120K dataset is constructed from publicly accessible video and image platforms, includ-
ing Videvo, Pexels, and Pixabay. We begin with approximately 600k raw video clips. To ensure
sufficient spatial resolution, only videos with resolution higher than 1080p are retained. These
videos, primarily professional stock footage, generally exhibit higher visual quality than typical
web-crawled content, while also providing diverse temporal dynamics essential for video super-
resolution. In addition to video data, we gather 220k high-resolution photos from Pexels, requiring
the shorter side to exceed 1024 pixels. A substantial portion of these images are 4K or higher, offer-
ing clean textures and fine-grained spatial details. Since videos are usually stored in compressed for-
mats (e.g., mp4), individual frames may suffer from compression artifacts or degraded quality. The
image subset therefore complements the video corpus by providing pristine high-fidelity supervision
for spatial reconstruction. After filtering, the combined video–image corpus provides a large-scale,
high-quality foundation for joint training. Videos contribute both strong visual quality and diverse
temporal information, while images supply superior spatial detail to mitigate compression artifacts.
Together, they form a complementary dataset that supports robust VSR model development.

A.2 VISUAL QUALITY FILTERING.

Although stock photography and video generally exhibit high visual quality, many samples still
suffer from extensive defocus regions, low contrast, or other artifacts that make them unsuitable
for VSR training. To automatically filter such cases, we adopt two complementary predictors. The
LAION-Aesthetic predictor provides a single global score, while MUSIQ evaluates both the full
image and four local crops (top-left, top-right, bottom-left, bottom-right). For each image, we take
the aesthetic score and the averaged MUSIQ scores as its final quality indicators. For videos, each
clip is divided into 8-second segments, from which 4 frames are uniformly sampled. Each sampled
frame is evaluated with the same protocol, and the average score across the 4 frames is assigned to
the segment. Segments below the threshold are discarded, while consecutive high-quality segments
are merged into a single annotation with start and end frame indices.

A.3 MOTION FILTERING.

For video super-resolution, static or near-static clips provide limited temporal information. To guar-
antee sufficient motion diversity, we estimate optical flow using RAFT (Teed & Deng, 2020) on the
sampled frames of each segment. The ℓ2 norm of the flow field is used to quantify motion strength.
Segments with insufficient average motion are filtered out.

After the above filtering steps, we obtain 120k high-quality video clips and 180k high-resolution
images from the initial 600k videos and 220k images. The primary goal of VSR-120K is to provide
a large-scale resource for robust training. This dataset supports joint image–video super-resolution
learning and offers a reliable foundation for training FlashVSR as well as future VSR models.

B IMPLEMENTATION DETAILS

B.1 CAUSAL LR PROJECTION-IN LAYER

In streaming VSR, it is crucial to efficiently incorporate information from low-resolution (LR)
frames into the diffusion backbone while preserving temporal causality. To this end, we propose
a lightweight Causal LR Projection-In Layer, as shown in Fig. 6. The design aligns with Wan’s
Video DiT compression scheme, which applies 4× temporal compression and 8× spatial compres-
sion. Specifically, every 4 consecutive LR frames are grouped into a video clip. Each clip is first
passed through a 2D pixel-shuffle layer to match the 8× spatial compression. The resulting feature
map is then processed by two 3D CausalConv layers, each performing 2× temporal compression, to
produce a compact representation of the current clip. To ensure temporal consistency, we maintain a
causal cache: the feature representation from the previous clip is carried forward and fused with the
current one, ensuring smooth propagation of conditional information across time while maintaining
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Causal LR Projection-In Layer

Causal Conv3D1

Pad
Causal Conv3D2

MLP

Causal Conv3D1

Cache
Causal Conv3D2

MLP

Causal Conv3D1

Cache
Causal Conv3D2

MLP

Video Clip 0 Video Clip 1 Video Clip 2

PixelShuffle PixelShuffle PixelShuffle

Figure 6: Architecture of the Causal LR Projection-In Layer.

Table 6: Quantitative results of different KV-cache eviction strate-
gies on the REDS dataset.

Metric Sliding-Window Uniform Eviction Head-wise Eviction

PSNR ↑ 24.11 24.31 23.61
SSIM ↑ 0.6511 0.6601 0.6461
LPIPS ↓ 0.3432 0.3439 0.3812
NIQE ↓ 2.680 2.770 3.107
MUSIQ ↑ 67.43 66.12 62.71
CLIPIQA ↑ 0.4215 0.4097 0.3615
DOVER ↑ 8.665 8.411 8.021

Figure 7: Illustration of
the sink attention effect in
specific attention heads.

causality. Finally, an MLP layer aggregates the compressed features and projects them into the same
latent space as the DiT backbone. The resulting conditional embedding is added element-wise to
the patchified latent tokens of the DiT, allowing the LR frames to directly guide high-resolution re-
construction. This design offers two key advantages: (i) it introduces LR guidance with negligible
overhead, and (ii) the causal cache mechanism ensures consistency across clips during streaming
inference.

B.2 FIXED TEXT CONDITIONING

In practical streaming VSR tasks, video content may vary significantly, and providing a scene-
specific caption for each case would introduce additional computational overhead. To avoid this
issue, we adopt a fixed prompt as the textual condition for all scenes: “Cinematic, High Contrast,
highly detailed, taken using a Canon EOS R camera, hyper detailed photo-realistic maximum detail,
Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect
without deformations.” This strategy not only eliminates the cost of generating dynamic captions but
also simplifies the image–video joint training process, since both images and videos can share the
same cross-attention key–value representations.

B.3 KV-CACHE EVICTION STRATEGIES

By default, FlashVSR adopts a sliding-window strategy for KV-cache eviction. However, we also
conduct a preliminary exploration of alternative strategies, such as importance-based eviction. The
importance score is derived from the coarse block-to-block attention map of the previous latent, and
the least important KV entries are discarded to retain only the most relevant context. We evaluate
two variants on the REDS dataset: (i) head-wise eviction, where KV entries are evicted indepen-
dently for each attention head within a layer, and (ii) uniform eviction, where all heads in the same
attention layer share a common eviction decision. Results are reported in Table 6. The uniform evic-
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Figure 8: Comparison of four training pipelines for stream video diffusion: Teacher Forcing, AAPT,
Self-Forcing, and FlashVSR.

tion strategy provides no improvement over the sliding-window baseline, while head-wise eviction
leads to a clear performance drop.

We attribute this degradation to the lack of temporal continuity in FlashVSR’s attention maps: im-
portance scores from one latent do not reliably transfer to the next. Furthermore, we observe a sink
attention effect in certain heads, where attention is disproportionately focused on the first frame
(Fig. 7). Under head-wise eviction, this bias causes the KV entries of the first frame to be consis-
tently preserved, leading to blurred textures and structural distortions.

B.4 DISCUSSION ON STREAM VSR PIPELINES

In Fig. 8, we illustrate four training pipelines for stream video diffusion models: Teacher Forc-
ing (Lin et al., 2025b), AAPT (Lin et al., 2025b), Self-Forcing (Huang et al., 2025), and our pro-
posed FlashVSR. The first three are devised for video generation, whereas FlashVSR targets video
super-resolution (VSR).

Teacher Forcing. During training, Teacher Forcing conditions the model on the ground-truth previ-
ous video clip, whereas inference relies on the previously predicted clip. This mismatch introduces
a train–inference gap, leading to error accumulation during inference (Lin et al., 2025b).

AAPT. AAPT unfolds the forward pass sequentially, conditioning each predicted clip on the previ-
ously generated one. This setup aligns the training and inference procedures but prevents parallel
training, limiting efficiency.

Self Forcing. Similar to AAPT, Self Forcing also requires waiting for the output of the previous
predicted clip. At timestep 0, this output is fed back into the Video DiT, updating the KV-cache.
The updated cache then guides the generation of the current video clip, ensuring consistency with
the inference procedure. However, like AAPT, this approach also prohibits parallel training.

We posit that the above dilemma stems from the objective of video generation, which must model
motion plausibility from scratch and thus benefits from explicitly accessing complete past predic-
tions early in the stack. In contrast, VSR receives strong conditioning from the low-resolution (LR)
frames; the model’s main burden is spatial detail restoration rather than free-form motion synthesis.
In a one-step formulation, later layers naturally refine clean latent features that summarize historical
context useful for temporal alignment. FlashVSR. Guided by this insight, FlashVSR discards past
predicted clips as inputs. As shown in Fig. 8, both training and inference take only LR frames and
noise latents. This eliminates the train–inference gap while enabling efficient parallel training.
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At inference, FlashVSR runs causally in a streaming manner: for frame t, the model consumes the
current LR frame and noise ϵt and produces the latent in a single step,

zt = Gone(LRt, ϵt; KV<t) ,

where KV<t stores the cached keys and values from the most recent latents within a sliding window
across all layers. After generating zt, the cache is updated and carried forward to the next frame.

How temporal consistency is ensured. The cached representations from different layers play com-
plementary roles. Early-layer KV states aggregate contextual cues primarily aligned with the LR in-
puts, ensuring that structural and motion information remains faithful to the observed low-resolution
video. Later-layer KV states contain progressively cleaner latent representations, which encode re-
fined high-frequency details. When propagated across frames, these cleaner features stabilize tex-
tures and fine details over time. By jointly leveraging early- and late-layer memory, the KV-cache
implicitly aligns content across frames, ensuring temporal consistency, even though FlashVSR con-
ditions only on the current LR inputs.

C MORE EXPERIMENT RESULTS

C.1 ADDITIONAL VISUALIZATION RESULTS

To further demonstrate the effectiveness of our approach in practical scenarios, we provide additional
visualizations on both real-world video super-resolution and AIGC video enhancement, as shown in
Fig. 9. It can be observed that our method achieves clearer frames with superior detail restoration
compared to existing baselines.

In addition, Fig. 10 shows qualitative results on high-resolution videos (1536 × 2688), highlight-
ing the effectiveness of our proposed locality-constrained attention. While global attention suffers
from repeated textures and blurring due to mismatched positional encoding ranges, both Boundary-
Preserved and Boundary-Truncated variants produce sharper and more stable frames by aligning
positional encoding ranges between training and inference. These visual findings are consistent
with the quantitative analysis in Sec. 4.4.

We also provide a demo video [FlashVSR.mp4] to further showcase the super-resolution capa-
bility of FlashVSR. Due to file size limitations, the demo video may be compressed; the original
version exhibits even higher visual quality.

C.2 USER STUDY

We conducted a blind user study to compare five one-step VSR models: Ours-Tiny, Ours-Full,
SeedVR2-3B, DOVE, and RealViformer, based on human preference. Following APT Lin et al.
(2025a), we employed the GSB test to compute preference scores. Specifically, the score is defined
as G−B

G+S+B , where G is the number of samples judged as “good,” B is the number of samples judged
as “bad,” and S is the number of samples considered “similar” (i.e., no preference). The score
ranges from −100% to 100%, with 0% indicating no preference between the compared methods.
The study includes 32 test sets, covering both real-world and AIGC-degraded low-resolution videos.
Participants evaluated three aspects: Overall Quality, Video Fidelity, and Video Quality. Twenty
researchers with backgrounds in computer vision participated in the user study. The user study
interface is shown in Fig. 11, and the results are summarized in Table 7. As can be seen, FlashVSR
with TC decoder achieves higher user preference compared to prior approaches, and its performance
is comparable to that of the original WAN decoder (Ours-Full).

D LLM USAGE STATEMENT

We used a large language model(LLM) only to refine grammar and conciseness in some paragraphs.
LLM was not involved in formulating research ideas, designing methods, conducting experiments,
analyzing results, or drawing conclusions. All scientific contributions, insights, and claims presented
in this paper are entirely our own.
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Figure 9: Additional visualization results of video super-resolution on real-world and AIGC videos.
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Figure 10: Additional visualization results on high-resolution video super-resolution.
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Figure 11: Screenshot of the user study interface for subjective evaluation.

Table 7: User study results (GSB scores, in %) for five one-step VSR models on 32 test sets, includ-
ing both real-world and AIGC-degraded videos. Higher values indicate stronger user preference.

Method Overall Quality ↑ Video Fidelity ↑ Video Quality ↑

Ours-Tiny 0.0% 0.0% 0.0%
Ours-Full 2.2% -3.1% 6.4%
SeedVR2-3B -33.1% -20.3% -40.5%
DOVE -30.2% -14.5% -34.5%
RealViformer -44.9% -17.6% -49.2%
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