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ABSTRACT

We present MIRAI, a benchmark designed to systematically evaluate LLM agents
as temporal forecasters to predict international events. Our benchmark features an
agentic environment with tools for accessing an extensive database of historical,
structured events and textual news articles. We refine the GDELT1 event database
with careful cleaning and parsing to curate a series of relational prediction tasks with
varying forecasting horizons, assessing LLM agents’ abilities from short-term to
long-term forecasting. We further implement APIs to enable LLM agents to utilize
different tools via a code-based interface. Notably, MIRAI features a dynamic
data construction pipeline that supports periodically downloading recent news and
events, and automatically generates the most recent test split. This allows us to
evaluate any newly released model in a contamination-free manner as we can always
construct a test split later than its knowledge cutoff date. MIRAI comprehensively
evaluates the agents’ capabilities in three dimensions: 1) autonomously source
and integrate critical information from large global databases; 2) write codes with
both domain-specific APIs and libraries for tool-use; and 3) jointly reason over
historical knowledge from diverse formats and timespan to accurately predict
future events. We establish a benchmark for evaluating LLM agents’ international
event forecasting abilities, advancing the development of more reliable models for
analyzing international relations. 2

1 INTRODUCTION

Accurate forecasting of international events is crucial (Brown & Lee, 2018), as understanding the evo-
lution of geopolitical developments enables stakeholders to make well-informed decisions, mitigate
risks, and seize opportunities in the interconnected world. Traditionally, researchers in international
relations rely on domain expertise (Smith & Doe, 2020; Johnson & Roberts, 2019). They conduct
detailed analyses of the complex interplay among nations, considering alliances, trade agreements,
ideological affinities, and historical rivalries to forecast events such as conflicts, collaborations, or
alliance shifts (Davis & Nguyen, 2017). With the rapid development of deep learning techniques, fore-
casting through data-driven neural networks becomes an attractive alternative. Despite their success,
current methods rely on single types of information—either structured knowledge graphs (Mahdis-
oltani et al., 2015; Jin et al., 2020b; Li et al., 2021c) or textual datasets (Zou et al., 2022; Reddy
et al., 2023). Knowledge graphs, although organized, can suffer from incompleteness (Huang et al.,
2023; Galárraga et al., 2017) or bias (Huang et al., 2024), while textual analyses can lack necessary
factual groundings of their reasoning to historical evidence, which compromises the interpretability
and validation of their forecasts. These limitations raise concerns about AI forecasters’ reliability,
particularly for high-stake scenarios (Mclean et al., 2009).
Large Language Model (LLM) agents present a promising path to overcome these challenges (Sumers
et al., 2024; Liu et al., 2023b; Weng, 2023; noa; Wang et al., 2023). These advanced AI systems
exhibit the potential to mimic human experts by utilizing a diverse set of tools to automatically gather
and process information from various sources, including text, knowledge graphs, and numerical
data (Shen et al., 2023; Lu et al., 2023b; Zhuang et al., 2023b; Li et al., 2023b). Trained on extensive
textual corpora, LLMs (Achiam et al., 2023; Anthropic, 2023; DeepMind, 2023; Touvron et al.,
2023) are capable of grasping the subtleties of international relations, reasoning through complex
relationships with linguistic explanations, and planning their tool usage effectively (Yuan et al.,
1GDELT: https://www.gdeltproject.org/
2We released our anonymous code repository for the data construction pipeline here, constructed benchmark
here, and an interactive agent demo here.
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036 Express intent to meet 
or negotiate

172 Impose administrative 
sanctions

(2023-11-18,
AUS, ?, CHN)

042 Make a visit
050 Engage in diplomatic 

cooperation

2023-11-1 2023-11-3 2023-11-4 2023-11-7 2023-11-18

News 1: Albanese first 
Australian leader to visit 

China in 7 years

News 2: China, Australia 
agree to ease tensions

Related news

2023-11-17

News 3: Anthony 
Albanese to meet with 
Japanese counterpart

News 4: Australia 
accuses China of injuring 

navy divers with sonar

110 Disapprove; 112Accuse

042 Make a visit
050 Engage in diplomatic 

cooperation

Relations

Query

Ground truths

LLM predictions

Figure 1: An example of forecasting the relations between Australia and China on 2023-11-18.
The agent fails to predict the change of relation and makes a wrong forecast.

2023; Liu et al., 2023a; Valmeekam et al., 2023; Ma et al., 2023b). Such capability opens up new
possibilities for developing transparent and interpretable forecasting models that can be further
scrutinized and refined.
Despite the immense potential of LLM agents for event forecasting, there is a lack of standardized
benchmarks to assess their forecasting abilities in the realm of intricate international events. To
address this gap, we introduce MIRAI (Multi-Information FoRecasting Agent Interface), the first fore-
casting benchmark designed as an agentic environment with rich structured and textual information.
Leveraging the timely-updated Global Database of Events, Language, and Tone (GDELT) (Leetaru &
Schrodt, 2013b), MIRAI adapts real-world international event data to create event-forecasting tasks in
different test timeframes and across various time horizons. Our preparation script of MIRAI features
a dynamic data construction pipeline that supports periodically downloading recent news and events,
and automatically generate the most recent test split. This unique design allows us to consistently
generate new contamination-free test sets, such that we can evaluate the forecasting capability of any
recent LLM as long as its training data cutoff is before our split—a critical feature absent in previous
forecasting benchmarks that only provided fixed datasets often predating most LLMs’ knowledge
cutoffs. Furthermore, MIRAI’s agentic environment enables LLMs to interact with both relational
and textual databases through APIs, facilitating autonomous information gathering, processing, and
application in a contextually relevant manner.
We evaluate both open and closed source LLMs on MIRAI with ReAct-style (Yao et al., 2023b)
agents using “Single Function” and “Code Block” action types. Our extensive experiments spanned
multiple test splits (2023-11, 2023-12, 2024-01, 2024-02) and revealed: 1) Temporal forecasting tasks
are challenging for LLM agents, with the highest-performing GPT-4o-mini agent using full suite of
APIs achieves a 30.3 F1 score in second-level relation prediction tasks; while tasks involving long-
term and fine-grained event forecasting are even more challenging; 2) The “Code Block” tool-use
strategy, which allows more flexible interactions, demands robust code generation capabilities. E.g.
GPT-4o-mini is able to better utilize and benefit from this strategy than other models we evaluate.
These findings emphasize the need for ongoing research into temporal reasoning and the effective use
of tools by LLM agents. We expect that MIRAI could serve as a standard benchmark for evaluating
LLMs in event forecasting. This would support the development of more precise and reliable models
for political analysis, enhancing our understanding of global dynamics. To facilitate further research
and development in this area, we release the code for our dataset construction pipeline and commit
to updating our dataset split every month, ensuring that MIRAI remains a contamination-free and
challenging benchmark for assessing LLM agent capabilities in international event forecasting.
In summary, our contributions are two-fold:
• We present MIRAI as a comprehensive benchmark uniquely combining three critical aspects for

evaluating LLM agents’ temporal forecasting capabilities:
– An agentic environment with APIs for information integration, tool use, and reasoning.
– Diverse data from structured events and textual news.
– A dynamic pipeline ensuring contamination-free test splits beyond model knowledge cutoffs.

• Extensive experiments across models, relations, horizons, and temporal splits reveal key challenges
in reasoning and tool use, offering insights and directions for advancing LLM forecasting agents.

2 THE MIRAI BENCHMARK

In this section, we introduce MIRAI benchmark from: the specifics of the data and task (Sec. 2.1), the
implemented agents and environments (Sec. 2.2), and the database construction details (Sec. 2.3).

2.1 DATA AND TASK

We introduce MIRAI, a benchmark crafted for evaluating LLM agents for temporal forecasting in the
realm of international events, with tool-use and complex reasoning. We consider forecasting as the
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Figure 2: MIRAI comprehensive global event coverage. (a) Circular chart: Relation hierarchy and
distribution in MIRAI. (b) Heatmap: Global events intensity, including areas of conflict (red) and
mediation (blue). (c) Heatmap: Event frequency by region.
process of collecting essential historical data and performing temporal reasoning to anticipate the
outcomes of future events.
Structured and Textual Event Representations. Formally, we represent an event as et = (t, s, r, o)
corresponding to Dt

e, where t is the timestamp3, s, o ∈ C are respectively the subject and object
countries4 from the country pool C, r ∈ R denotes the relation type defined by CAMEO ontol-
ogy5 (Boschee et al., 2015a), and Dt

e is the set of source news articles that mentioned event e at
timestamp t. Events at timestamp t form a set Et = {et1, ..., etM}, where M is the number of unique
events at time t, with {Et}Tt=1 being able to organize to temporal graphs where countries are nodes
and relations are edges. Correspondingly, Dt = {dt1, ..., dtN} is the set of all news articles at t, where
N is the number of unique news articles at time t, with {Dt}Tt=1 as the full document collection.
This dual representation of structured events and their associated textual information allows for a
comprehensive analysis of international events, leveraging both the concise, categorized nature of the
event tuples and the rich contextual details provided by the news articles.
Hierarchical Event Categories. As shown in Figure 2a, we incorporate two hierarchical relation
levels from the CAMEO ontology to facilitate a detailed and comprehensive analysis of geopolitical
dynamics. The first level includes 20 broad categories, represented by a two-digit code (e.g.,
“01: Public Statement” or “04: Consult”), which are subdivided into second-level categories
identified by a three-digit code that corresponds to its parent category. For example, “03: Express
intent to cooperate” is a first-level category that includes 10 different second-level relations
such as “036: Express intent to meet”. Subsequently, the quadruple “(2023-11-03, AUS,
036, CHN)” denotes that on 3 November 2023, the Australian leader announces a planned visit to
China. These relations are also organized along two dimensions, from Verbal to Material and
from Conflict to Cooperation, to form a quadratic categorization in the inner circle of Figure 2a.
Event Forecasting Task. The task of event forecasting (t + l, s, ?, o) is to predict all the events
between a pair of countries s and o, happening l days in the future from the current time t. Formally,
given historical events E≤t and associated news articles D≤t up to the current time t, our goal is to
forecast future relationships Et+l

s,o between a pair of countries. This includes utilizing both structured
event data and textual information, considering interactions not only between the target countries but
also involving third parties, such as interactions with their mutual neighbors.
A forecasting task example in Figure 1 shows predicting Australia’s actions towards China on
18 November 2023, based on information up to 17 November 2023. The query is formatted as
“(2023-11-17 + [1 day], AUS, ?, CHN)”, with a temporal distance of one day. Historical events show
long-standing tensions between the two countries. Despite recent news of the Australian leader’s
visit to China and agreement to ease tensions, the overall relationship remains characterized by

3Each timestamp uniquely represents a day, formatted in "YYYY-MM-DD".
4In this paper, the term "country" includes all countries, dependent territories, special geographic areas, and their
subdivisions. We use the standardized ISO-3166 Alpha-3 codes for country names, e.g. "AUS" for Australia.

5CAMEO, the Conflict and Mediation Event Observations, is a well-established ontology meticulously developed
by domain experts over years, for categorizing international political events across multiple levels of granularity.
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def get_relation_distribution
(head_entities, tail_entities): 
    curr_data = data_kg.copy() 
    curr_data.drop_duplicates(…)
    … 
    return relation_counts
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class Date: 
  """Represents a date."""   

def get_relation_distribu-
tion(head_entities, tail_en-
tities) -> Dict[CAMEOCode, 
int]: 
     """Gets distribution of 
  relations."""
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# Below is the event distribution between AUS and CHN 
before 2023-11-18
CAMEOCode(code='042'): 45,  CAMEOCode(code='036'): 37, 
CAMEOCode(code='040'): 23, CAMEOCode(code='061'): 17, 
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(3) Execute

(2) Act
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Figure 3: Overview of the LLM agent’s forecasting process using the ReAct strategy. The
framework consists of three main steps: (1) Think: Agent analyzes status and plans next action based
on query and API specs. (2) Act: The agent generates a “Single Function” call or a “Code Block” to
retrieve and analyze relevant data. (3) Execute: Python interpreter runs generated code, producing
observations. These steps are repeated performed until the agent reaches final forecast.

Disapprove and Accuse actions on certain focuses. The agent, overly relying on short-term news,
incorrectly predicts Diplomatic cooperation.

2.2 AGENTS AND ENVIRONMENTS

Similar to human political analysts, LLM agents must leverage a variety of information sources to
make reliable predictions. We provide an environment with coding APIs to facilitate flexible access
to various knowledge sources. Our LLM agent uses these APIs to interact with the environment for
forecasting through the ReAct strategy (Yao et al., 2023a), characterized by the iterative process of
think, act, and observe. This approach enables the agent to analyze the situation, retrieve data, and
observe outcomes to make informed forecasts.
APIs. We provide the LLM agent with a comprehensive set of APIs to access a rich database of
historical events and news articles. The API contains the essential data classes and functions designed
for the various types of information within the database. Data classes cover unary types (e.g., date,
country, relation) and composite types (e.g., date range, event, news articles). Functions, executable
in Python, enable efficient database querying. The function design is characterized in two aspects:
• Information types. These functions cover diverse information types: country and relation map-

pings, hierarchies, and events and news articles statistics (counts, listings, and distributions). For
example, map_relation_description_to_cameo takes a relation description and returns the
five most likely relations with their CAMEO codes, names, and descriptions, providing precise
relation information as needed.

• Search conditions. Additionally, the API functions for events and news articles offer optional pa-
rameters for tailored searches based on different criteria. For instance, get_event allows searches
specifying conditions like date_range, head_entities, tail_entities, relations, and
text_description to retrieve specific events from the database.

The data classes and functions provided in the API are shown in Appendix E.
Interactions with Environment. The environment is equipped with a Python code sandbox with full
API and database access. MIRAI informs agents how to interact with the environment through API
Specifications, including detailed Python docstrings for all data classes and functions that abstract
implementation details. Agents use the ReAct strategy to iteratively alternate between think, act, and
observe to gather information and forecast. The pipeline is illustrated in Figure 3.
1. Think. Specifically, the agent first thinks about the current situation. If confident based on the

current information and analysis, it delivers a final forecast and stops. Otherwise, it plans further
actions. In the first step shown in Figure 3, the agent plans to first retrieve recent events directly
involving the two countries and then verify the details by checking related news articles.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. Act. Next, the agent acts by generating executable codes to interact with the environment in
two forms: “Single Function” for straightforward data retrieval or “Code Block” for complex
operations including loops and conditionals. The agent can use API-defined functions and safe,
well-established Python libraries such as numpy, networkx, and scikit-learn. Figure 3
illustrates that the agent can write either a “Code Block” with an imported library and an inline
loop, or a “Single Function” call with targeted countries as an argument.

3. Observe. The environment executes the agent’s code using a Python interpreter with full API
and database access. All execution results are passed back to the agent as ‘Observations’. For
successful executions, the agent observes the corresponding output. For failures, it observes a
specified error message along with the error type. In the figure, execution results are sent to the
agent’s memory for the next iteration.

These ‘Thought’, ‘Action’, and ‘Observation’ from the previous iterations are stored in the agent’s
memory base and used as the context for subsequent steps. Variables defined in previously generated
code remain available for future actions. Examples of agents performing forecasting using “Code
Block” and “Single Function” are shown in Appendix F. Prompts are shown in Appendix I.

2.3 DATASET CONSTRUCTION

Our database construction process involves three main steps: (1) raw data collection, (2) structured
data cleaning, and (3) textual data processing. Throughout this process, we carefully consider critical
aspects such as preventing test information leakage, standardizing information formats, ensuring data
accuracy, verifying source reliability, and addressing ethical concerns.
Raw Data Collection. We construct the database based on the GDELT project6, which captures
global news media and extracts event information every 15 minutes, containing attributes about the
event date, actor, action (relation), geography, and source news. The dataset used in this paper spans
from January 1, 2023, upto February 29, 2024, providing a comprehensive base for our multi-split
test design. Given GDELT’s rapid updates and diverse sources, rigorous cleaning is essential.
Structured Data Cleaning. We refine the structured event data through four key steps: (1) Temporal
alignment: Event dates are aligned with news publication dates to prevent information leakage. (2)
Event actor standardization: Country codes are standardized to ISO-3166 norms, excluding missing
or outdated codes to ensure consistency and eliminate ambiguity. (3) Event scope delimitation: We
filter out all domestic events where the subject is identical to the object at the country level, focusing
exclusively on international events to maintain relevance to our research objectives. (4) Event relation
standardization: Event codes are standardized to the second level of the CAMEO ontology, balancing
specificity with consistency and reliability. Third-level relations are omitted due to inconsistent
hierarchical depth and increased risk of extraction errors at this granular level
Textual Data Processing. For associated news articles, we implement the following steps: (1)
Source reliability threshold: We retain events with at least 50 daily news mentions. This reduces
the influence of less reliable sources such as personal blogs and decreases erroneously extracted
events. (2) Textual context extraction: News titles and content are sourced from the corresponding
URLs of each event, retaining only textual information. (3) Text cleaning: We apply rigorous text
cleaning procedures to reduce noise while enhancing the reliability and ethical integrity of the
textual information, following the OBELICS protocol (Laurençon et al., 2023). This process operates
at both paragraph and document levels, filtering low-value content with low word counts or high
character/word repetition ratios and removing excessive special characters. Importantly, we employ a
list of flagged words to identify and eliminate potentially sensitive or inappropriate content, aligning
our data collection with ethical standards.
Test Splits Construction. We construct multiple test splits (2023-11, 2023-12, 2024-01, 2024-02),
each covering a one-month period from November 2023 to February 2024. For each test split: (1)
Enhanced filtering: We apply higher thresholds (100 daily mentions, 5 news articles) to ensure test
data quality and reliability. (2) Query formation: We construct (t, s, ?, o) queries, with answers listing
relations between countries at time t. (3) Balanced sampling: For each month, we sample 100 queries
to form balanced test splits, ensuring representation across dates, countries, and CAMEO code types.
This multi-split design evaluates model performance across different time periods, assessing temporal
robustness of forecasting capabilities. Using the same processing script, we can generate test split for
any following month keep MIRAI a contamination-free and challenging benchmark.

6https://www.gdeltproject.org/
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Table 1: Evaluation results with different agent tools and the tool-use strategies. The best-performing
score is highlighted in bold and the second-best is underlined.

Agent
Tool-Use Binary

KL (⇓)
Quad

KL (⇓)
First-level Relation (%) Second-level Relation (%)

Action Type API Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

Direct IO — — 6.5±1.7 15.9±1.5 27.6±8.1 19.7±5.9 18.8±6.9 6.6±1.5 5.1±0.4 3.5±0.8

ZS-COT — — 6.9±0.8 10.1±0.8 27.6±4.0 36.0±4.5 26.7±4.1 10.2±1.4 17.4±1.1 10.5±0.7

ReAct
Single Function Event-Only 33.5±0.7 6.7±0.7 44.3±3.9 54.2±3.9 41.4±1.7 25.3±2.6 47.4±2.4 26.9±1.9

Single Function News-Only 6.1±1.0 12.8±0.6 27.8±3.1 25.9±2.9 21.8±2.3 6.3±2.2 9.0±2.0 5.4±1.3

ReAct
Single Function All 3.1±0.5 5.9±1.0 47.6±5.8 58.3±2.6 44.2±4.0 28.7±3.9 51.0±4.0 29.6±3.7

Code Block All 5.1±0.9 8.9±0.5 27.1±4.0 38.6±2.5 25.9±2.2 11.6±2.4 26.3±2.0 12.6±1.7

Analysis and Documentation. The resulting dataset contains 1,296,991 GDELT event records,
corresponding to 75,341 unique (t, s, r, o) events and 401,013 unique news articles. Figures 2b and
2c illustrate the global distribution of our curated events, highlighting varying intensities of conflict
and mediation across regions. We provide additional details of the benchmark data and human
evaluation of the data quality in Appendix G. A standardized datasheet (Gebru et al., 2021) for MIRAI
is in Appendix J, clearly and comprehensively documenting its motivation, composition, collection
process, recommended uses, distribution, and maintenance.
Evaluation metrics. We instruct the agent to generate forecasts in a JSON dictionary, using two-digit
first-level CAMEO codes as keys and lists of three-digit second-level codes as values. Evaluation
involves calculating precision, recall, and F1 score between the predicted and ground-truth lists.
Moreover, we map the predicted and ground truth relations to their respective binary and quadratic
classes (as shown in Figure 2a). To measure prediction-ground truth alignment, we employ the
empirical Kullback-Leibler (KL) divergence: DKL(P ||Q) =

∑
i P (i) log (P (i)/Q(i)), where P

and Q represent the frequencies of ground-truth and predicted relations respectively. A lower KL
divergence indicates a better alignment of the model’s predictions with the ground-truth list.

3 EXPERIMENTS

In experiments, we compare forecasting performance across various agent methods with different
tool-use (Sec. 3.1). Additionally, we evaluate the impact of different base models on forecasting
(Sec. 3.2), and analyze contamination of the models’ knowledge cutoff over test-time splits (Sec.
3.3). Finally, we conduct an in-depth analysis of key factors to agents’ behavior (Sec. 3.4).

3.1 EVALUATE FORECASTING WITH DIFFERENT AGENT METHODS AND TOOLS

We investigate the effect of different tools (APIs) and agent tool-use strategies. We use GPT-3.5-
Turbo (gpt, 2023) as the base model and evaluate on the 705 unsampled test queries in 2023-11.
For all experiments, we set the model temperature to 0.4 and run 5 times to calculate the mean and
standard deviation. We provide the detailed prompts in Appendix I.
We consider two agent implementations without tool-use: Direct IO and Zero-Shot Chain-of-
Thought (ZS-CoT) (Kojima et al., 2022; Wei et al., 2023). Direct IO let the LLM direcly provide
answers using only its internal knowledge, serving as a baseline to reflect its internal world knowledge.
ZS-CoT prompts the LLM for step-by-step reasoning before final prediction.
We implement ReAct (Yao et al., 2023b) for tool-use agents with two variants: 1) “Single Function”
and 2) “Code Block” (detailed in Sec. 2.2). ReAct agents interact with our provided environments
through an iterative process of thinking, acting, and observing. We thus further create API variants
with access to 1) News-Only APIs, 2) Event-Only APIs, or 3) All API data classes and functions.
The experimental results in Table 1 reveal several key insights into agent performance:
1) MIRAI presents a challenging task for LLM agents. The best agent (ReAct with “Single
Function” using all APIs) for second-level relation predictions achieves a precision of 28.7 and an F1
score of 29.6. These results underscore the complexity and difficulty of the temporal forecasting tasks
in MIRAI and highlight the substantial room for improvement in LLM agents for event forecasting.
2) Predicting fine-grained relations proves more difficult. All models exhibit higher KL divergence
for quadratic than binary classes, and lower F1 scores for second-level predictions compared to first-
level ones. These findings confirm that predicting fine-grained relation types is more challenging.
3) Diverse tool-use is critical for temporal forecasting. ZS-CoT and Direct-IO, which rely solely on
the internal world knowledge of LLMs for forecasting without tool-use, significantly underperform
the ReAct agent with full API access to the database. This emphasizes the importance of basing
forecasting and reasoning on retrieved historical data and knowledge. In terms of tool types, ReAct
agents using News-Only APIs perform much worse than agents with Event-Only APIs. While news
articles provide detailed context for events, they can also introduce noise and lead to issues such as
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Table 2: Evaluation results on the 2024-02 test split using different base LLMs and action types.
The best-performing score is highlighted in bold and the second-best is underlined. Note that
the traditional methods are task-specifically trained on training data up to 2023-06, while all
LLM-based methods are zero-shot with their general pretrained knowledge. Human evaluation
is conducted on a subset of 51 test events due to resource constraints and the time-intensive
nature of expert evaluation.

Base LLM Training Data
Cutoff Date Action Type Binary

KL (⇓)
Quad

KL (⇓)
First-level Relation (%) Second-level Relation (%)

Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

Mistral-7B-Instruct-v0.2 2023-12
Single Func 10.3±1.7 14.2±1.9 38.1±0.5 19.2±4.2 18.9±1.1 21.9±4.1 9.8±3.5 9.3±0.6

Code Block 9.1±2.3 14.3±1.6 31.3±5.1 12.5±2.6 15.1±3.6 13.1±1.2 9.4±1.6 8.4±1.9

Llama-3-8B-Instruct 2023-03
Single Func 9.0±2.4 14.1±1.6 39.8±1.6 15.6±1.2 18.6±0.2 15.8±0.5 11.8±0.6 10.3±0.1

Code Block 9.4±2.6 14.5±1.5 39.5±0.7 12.2±2.4 15.9±2.5 18.9±2.0 8.9±1.7 9.2±0.9

Llama-3.1-8B-Instruct 2023-12
Single Func 7.8±2.3 12.4±3.0 50.1±1.6 21.5±2.2 25.2±2.1 22.7±3.2 16.8±0.5 14.8±0.7

Code Block 9.1±2.3 14.4±1.5 35.7±1.3 15.9±0.0 18.3±0.1 14.7±0.1 12.8±1.0 10.0±0.2

GPT-3.5-Turbo 2021-09
Single Func 3.5±1.3 7.5±2.7 55.7±5.8 40.9±2.6 38.3±4.2 42.4±4.4 34.3±5.0 28.3±3.9

Code Block 5.3±1.4 9.3±2.3 34.8±11.7 34.9±0.9 26.7±3.8 16.8±5.9 26.4±0.5 15.1±2.6

GPT-4o-mini 2023-10
Single Func 4.0±0.9 8.1±1.3 61.3±11.4 34.7±1.9 39.0±6.0 40.0±5.5 32.6±1.6 29.7±3.8

Code Block 3.2±0.8 7.7±1.9 59.8±5.1 37.1±0.4 40.0±3.1 46.5±2.1 29.7±0.6 30.3±1.0

Traditional Forecasting Methods Task-specific
REGCN (Li et al., 2021b) 2023-10 ✓ 0.3 1.0 24.8 78.2 32.4 3.9 25.7 5.6
ForecastQA (Jin et al., 2021a) 2023-10 ✓ 9.7 13.8 55.0 16.2 22.1 40.0 8.8 12.0

Human evaluators — — 0.04 1.37 62.73 88.70 68.29 54.54 74.53 56.78

excessively long context, posing additional challenges for LLM agents. Moreover, the agents using
both types of information achieve the optimal results.

3.2 EVALUATE FORECASTING WITH DIFFERENT BASE LLMS

We then investigate the role of the base LLMs in agent’s performance. We evaluate both open-sourced
LLMs, including Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Llama-3-8B-Instruct, and Llama-
3.1-8B-Instruct (Dubey et al., 2024), as well as close-sourced LLMs including GPT-3.5-Turbo (gpt,
2023) and GPT-4o-mini (gpt, 2024). Comparisons are done on the 2024-02 test split that is after all
models’ training data cutoff date, which comprise 100 data-balanced queries. All models use ReAct
framework with access to all APIs. The action types can be either “Single Function” or “Code Block”
with a maximum tool call limit set to 20 steps. The same prompt is used across all models for fair
comparison, as detailed in Appendix I. The experimental results are presented in Table 2, and we
observe the following findings:
1) Code Block benefits stronger LLMs but hurts weaker models: The “Code Block” action
type provides greater flexibility than the “Single Function”. However, its benefits are not uniformly
achieved across all models. Small open-sourced models and GPT-3.5-Turbo show reduced perfor-
mance with Code Block, while GPT-4o-mini as a strong model gains improvements from it. This
indicates that the ability to generate coherent and practical long Code Blocks is a distinguishing factor
that determines LLMs as reliable forecasting agents.
2) GPT-4o-mini outperforms other models: GPT-4o-mini achieves the highest performance across
many metrics in different levels. Notably, for second-level relation prediction, GPT-4o-mini achieves
F1 scores of 29.7 and 30.3 using “Single Function” and “Code Block”, surpassing all other models.
Among the tested open-sourced smaller models, Llama-3.1-8B-Instruct leads the performance but
still remains a significant performance gap to larger models. This indicates that MIRAI is hard enough,
and can effectively distinguish different LLMs’ reasoning capabilities.
3) MIRAI naturally supports evaluating traditional forecasting methods: We choose a Temporal
Knowledge Graph (TKG) method REGCN (Li et al., 2021b) and a textual method ForecastQA (Jin
et al., 2021a) as examples, trained both models on data up to 2023-06. These trained methods show
strong results on first-level relation prediction, but fall short for fine-grained second-level relation
prediction. We defer the implementation details and experimental discussions to Appendix D.3 and
provide human forecasting performance as a reference in Appendix D.4.
We further conduct the following analysis to better understand agent capabilities:
Can we make a small LM stronger via scaling inference-time compute? It is evident that stronger
LLMs have better agent performance; however, can we enhance a weaker LLM to achieve comparable
forecasting performance using inference-time computation? To explore this, we take Mistral-7B-
Instruct-v0.2 as the base LLM with ReAct using the “Single Function” strategy. For each query, we
perform multiple sampling at a temperature of 0.4. We then consider a variant of self-consistency,
which only keeps entries appearing more than twice. We also calculate F1 (Max@K), which assesses
the F1 score for each instance and keeps the maximum score across all rounds. As shown in Figure 4a,
with more samples, the performance of Mistral-7B-Instruct-v0.2 significantly improves. Initially, a
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Figure 4: a) Self-consistency of Mistral-7B-Instruct-v0.2 model increases with more samples. b) F1
scores of different LLMs on relation prediction, categorized based on the quadratic classes.

0.00 0.25 0.50
First-Level F1

browse_news_article
get_relation_distribution

get_news_articles
get_parent_relation

get_events
map_cameo_to_relation

get_sibling_relations
get_entity_distribution

get_child_relations

Fu
nc

tio
n

0.0 0.2 0.4
Second-Level F1 Invalid

date
Python

syntax error
Repeated

action
Invalid

relations
0

20

40

60

80

43

27 31

12

91

43

72

25

2 4
13

32 7 5 0

Mistral-7B-Instruct-v0.2
Llama-3.1-8B-Instruct
GPT-3.5-Turbo
GPT-4o-mini

Figure 5: a) F1 Accuracy for each API function. b) Code execution error analysis for different LLMs.
single sample achieves an F1 score of 9.3, which is considerably lower than the scores achieved by
larger models. However, as more solutions being sampled, the F1 (Max@K) and self-consistency
of Mistral-7B-Instruct-v0.2 improve progressively. By the 10th samples, the Max@K reaches 38.1,
even surpassing GPT-4o-mini. This result highlights the potential of inference-time search methods
like self-consistency to push the boundaries of smaller language models in event forecasting.
Code execution error analysis. Our implemented agents interact with tools via code but often
encounter execution error. We summarize the dominating error types for different LLMs in Figure 5b.
We observe the invalid date as the most frequent error for smaller models, showing their difficulty in
understanding time restrictions on the available historical data, which is set to before the query event
date. Also, agents including larger models may propose repeated actions that have been conducted
in its previous ReAct steps, failing to generate effective reasoning traces. We find Llama-3.1-8B-
Instruct makes more execution errors than Mistral-7B-Instruct-v0.2 but achieves a better forecasting
performance. We conduct further analysis on agents’ final status in Appendix D.1 on their ReAct
sequence length in Appendix D.2. Overall, GPT-4o-mini makes significantly fewer execution errors.
This enhanced code generation capability contributes to its superior performance for event forecasting.

3.3 ANALYZE CONTAMINATION OF KNOWLEDGE-CUTOFF OVER TEST-TIME SPLITS

Model Training Data
Cutoff Date

Test-Month Splits

2023-11 2023-12 2024-01 2024-02

Llama-3-8B-Instruct 2023-03 6.1±1.5 8.7±1.8 8.7±0.1 10.3±0.1

Llama-3.1-8B-Instruct 2023-12 15.8±5.7 15.9±3.6 16.3±2.0 14.8±0.7

GPT-4-Turbo 2023-12 30.0±1.9 25.8±3.1 32.2±2.8 28.9±3.2

GPT-4o-mini 2023-10 32.8±2.6 25.9±3.2 33.2±0.7 29.7±3.8

Table 3: F1 (⇑) scores of second-level relation
forecasting on different test splits, using “Single
Function”. The best-performing score is high-
lighted in bold and the second-best is underlined.
More results in Appendix D.6.

2023-11 2023-12 2024-01 2024-020
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F1
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 9.70  7.20  7.60
 4.50

Model
Llama 3
Llama 3.1

Figure 6: Llama-3.1 vs Llama-3 over four test
splits. Llama-3.1 is much higher on 2023-11
(before its training data cutoff date). The gap
is smaller afterwards. This shows we need to eval-
uate model using time-split after its cutoff date.

We compare model forecasting performance across multiple test splits in Table 3. MIRAI’s dynamic
data construction pipeline enables the creation of data-contamination-free test sets for newly released
models, allowing us to study the effect of a model’s knowledge cutoff time on forecasting performance.
We focus on comparing two open-sourced Llama3 models (Dubey et al., 2024) with different cutoff
dates but similar training processes. Figure 6 illustrates their performance gap across four test splits.
Notably, Llama-3.1 shows the largest lead over Llama-3 in the 2023-11 split, which is after Llama-3’s
cutoff but before Llama-3.1’s. This gap diminishes in subsequent months, especially by 2024-02.
This observation indicates potential data contamination favoring the model with more recent training
data (especially if eval date is before knowledge-cutoff date). It highlights the necessity of evaluating
models using test splits that are later all compared models’ cutoffs to ensure a rigorous forecasting
task. Our benchmark uniquely supports this requirement, maintaining the integrity of forecasting
assessments by reflecting true forecasting capabilities rather than data exposure advantages.
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Figure 7: Evaluation of LLM Agents in different temporal distances of the forecasting event.
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Figure 8: Action order analysis in LLM agents. a) Tool-Use Transition Graph of called API
functions. Edge thickness indicates transition frequency. b) Freq.(correct) - Freq.(incorrect), in which
blue (red) edges indicate positive (negative) contributions.
3.4 ANALYZING AGENT BEHAVIOURS

Impact of temporal distance of the forecasting target. Our defined event forecasting task varies by
temporal distance l, which specifies how far into the future we want to predict. We thus conduct an
ablation study with l set to 1, 7, 30, and 90 days. Specifically, we fix the query event date and limit the
accessible data to l days prior to the query event date. The experimental results depicted in Figure 7
reveal a clear trend: as the temporal distance increases, the F1 score decreases and KL-divergence
increases. This indicates that the agent’s ability to provide accurate predictions diminishes for events
further in the future. When the temporal distance is small, such as 1 or 7 days, the agent has access to
more recent and relevant information, providing a strong signal (e.g., human experts’ analysis) for
making accurate predictions. Thus, to comprehensively benchmark the forecasting capabilities of
LLM agents, we should focus on long-term predictions such as those spanning 30 or 90 days. These
longer durations require the agents to capture and anticipate potential trend shifts, which may be
influenced by a broader range of factors and more complex dependencies.
Forecasting accuracy on different relation types. We further split the test events into distinct
quadratic relation classes and compute the F1 score for each class, as illustrated in Figure 4b. The
results show that all models exhibit significantly higher performance for “verbal cooperation” and
“material conflict”, while lower in the other two categories. Several factors contribute to these
observations. First, “verbal cooperation” events are more prevalent in the dataset, allowing the
model to retrieve more such historical events. Second, “material conflicts” has a consistent pattern of
extended duration within the same set of countries. Conversely, events categorized under “material
cooperation” and “verbal conflicts”, such as “057: Sign formal agreement” and “084: Return
or release”, tend to be more abrupt and unpredictable, demanding subtle trend analysis and
contextual knowledge, leading to lower performance in these categories. These observations highlight
the need for LLMs capable of understanding the nuances and complexities of different event types.
How tool-use ordering influences forecasting. We further investigate the impact of action or-
der on the agent in “Single Function” mode. Figure 8 shows the transition graph from the initial
query to the correct final answer, with thicker edges indicating more frequent transitions. Typically,
the agent begins with get_relation_distribution or get_event to gather an initial set of
recent and frequent events for key information, and often concludes with browse_news_article
and get_news_articles, which retrieve news content to make accurate forecasts. To further
understand whether each function helps forecasting, we subtract the frequency of incorrect pre-
dictions from those of correct predictions, as shown in Figure 8b. Here, blue edges represent
sequences typically leading to accurate outcomes, and red edges indicate error-prone paths. Actions
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Table 4: Comparison of MIRAI with other temporal reasoning benchmarks. “Method” refers
to the methodology of original and recent models evaluated on the benchmark. Column “Underst.”
stands for Understanding. ICL stands for LLM w/ In-Context Learning. FT stands for fine-tuning.

Benchmark
Temporal Reasoning

Task Format
Information

Method
Underst. Forecast Time Series KG Textual API

TempQuestions (Jia et al., 2018) ✓ KGQA ✓ KGQA Systems
CRONQuestions (Saxena et al., 2021) ✓ KGQA ✓ Bert-based FT
TempoQR (Mavromatis et al., 2021) ✓ KGQA ✓ Bert-based FT

TORQUE (Ning et al., 2020a) ✓ QA ✓ Bert-based FT
TempReason (Tan et al., 2023a) ✓ QA ✓ ✓ ICL + Task FT
TRAM (Wang & Zhao, 2024) ✓ MCQ ✓ ICL + Bert-based FT

TCELongBench (Zhang et al., 2024) ✓ ✓ QA/MCQ ✓ ICL
ForecastQA (Jin et al., 2021b) ✓ MCQ ✓ Bert-based FT
IntervalQA (Zou et al., 2022) ✓ QA/MCQ ✓ ✓ ICL

Approach (Halawi et al., 2024) ✓ QA ✓ ICL
ForecastBench (Karger et al., 2024) ✓ QA ✓ ICL
GDELT (Leetaru & Schrodt, 2013b) ✓ Link Prediction ✓ Graph FT + ICL + Task FT

ICEWS (Boschee et al., 2015b) ✓ Link Prediction ✓ Graph FT + ICL + Task FT

MIRAI ✓ Relation List ✓ ✓ ✓ LLM Agent

like browse_news_article and get_entity_distribution typically result in correct answers
more frequently. Notably, get_news_articles has a direct red link to the answer, suggesting
that this function leads more often to incorrect answers because it only returns news titles, which
are too vague for accurate prediction. However, when followed by browse_news_article and
then providing the answer, the agent is more likely to produce correct outcomes. Similar patterns
are observed with get_event, where adding get_entity_distribution turns a negative link
to a positive one to the answer. Figure 5a further demonstrates how each function contributes to
the final performance, showing get_{child/sibling}_relation are more useful for first-level
prediction. These results emphasize the importance for strategic action planning in LLM agents for
effective temporal forecasting.

4 RELATED WORK

Recent benchmarks for evaluating temporal reasoning in AI systems can be categorized into temporal
understanding and temporal forecasting. Temporal understanding benchmarks (Jia et al., 2018; Saxena
et al., 2021; Mavromatis et al., 2021; Tan et al., 2023a; Wang & Zhao, 2024) assess models’ ability
to comprehend temporal relations in available data. In contrast, temporal forecasting benchmarks,
including our proposed MIRAI, focus on predicting future events based on historical data.
Existing forecasting benchmarks primarily use either QA (Jin et al., 2021b; Zou et al., 2022; Zhang
et al., 2024; Halawi et al., 2024; Schoenegger et al., 2024) or link prediction (Boschee et al., 2015b;
Leetaru & Schrodt, 2013b) task formulations. QA-based benchmarks typically use textual data,
while link prediction tasks often rely on TKGs. MIRAI distinguishes itself by incorporating diverse
information sources and employing a multi-relation prediction task format. Additionally, MIRAI
introduces an agent-based methodology with intermediate reasoning steps and a construction pipeline
that supports dynamic data updates. These features, summarized in Table 4, position MIRAI as a
comprehensive and unique benchmark for evaluating temporal forecasting capabilities. We provide
further discussions in Appendix C.

5 CONCLUSION AND LIMITATION

In conclusion, we introduce MIRAI, a novel benchmark for evaluating LLM agents in temporal
forecasting of international events. Our key contributions include: 1) An agentic environment
with APIs supporting comprehensive evaluation of agents’ capabilities with diverse information
sourcing, code-based tool use, and forecasting reasoning. 2) A dynamic data construction pipeline
enabling monthly updates for contamination-free test splits for evaluating new models. 3) Extensive
benchmarking across various agent methods, prediction horizons, and test-time splits, with in-depth
analysis of factors influencing agent behavior. Our results reveal the challenges LLM agents face in
generating contextually and syntactically correct code and performing complex temporal reasoning.
By providing a standardized, dynamic, and comprehensive evaluation benchmark, MIRAI aims
to contribute to the development of more accurate and trustworthy models for event forecasting,
ultimately supporting more informed decision-making in international relations.
While our work addresses several key challenges, limitations remain, including the need for broader
model coverage, expanded API functionality, and more diverse data types. A full discussion of
limitations can be found in Appendix B.
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A REPRODUCIBILITY STATEMENT

We provide detailed information and explanation of our experimental setup, dataset, and evaluation
metrics, ensuring reproducibility. Specifically, we describe the following:
• Experimental setup (Sec. 3): Detailed descriptions of the hardware and software configurations,

including libraries and tools used.
• Dataset (Sec. 2: Comprehensive information on the dataset construction, including sources,

preprocessing steps, and any techniques applied.
• Evaluation Metrics (Sec. 2.3): Clear definitions for the metrics chosen to evaluate performance.
Additionally, we commit to releasing the following resources for the replication of our results:
• Codebase: The complete codebase, including scripts for dataset construction, model serving, and

evaluation. This is currently available on an anonymous repository here.
• Dataset: The processed dataset, along with detailed instructions on how to construct the dataset

here.
By providing these resources, we aim to ensure that our work is fully reproducible and can be
independently verified by the research community.

B LIMITATIONS

Our benchmark addresses several key challenges in evaluating LLM agents for event forecasting,
including the integration of diverse information sources, the construction of an agentic interactive
environment, and the contamination-free forecasting data and task formulation through its dynamic
design. Despite this significant advantage, we acknowledge the following limitations:
1. Model Coverage: While we have tested representative open-source and closed-source LLMs, our

experiments do not exhaustively cover all available models. Future work could expand to include
a wider range of LLMs for more comprehensive evaluation.

2. API Functionality: The current API, while functional, has room for expansion. Future iterations
could incorporate more sophisticated analytical tools, such as time series analysis functions, to
encourage deeper temporal reasoning. Allowing agents to generate and add custom functions
during their reasoning process could also lead to more diverse problem-solving approaches.

3. Experimental Robustness: The current experiments, while informative, are limited in scope
due to cost and time constraints. Increasing the number of experimental rounds and adjusting
parameters like model temperature could provide more statistically robust results and insights into
model performance variability.

4. Geopolitical Bias: Reliance on GDELT as the primary data source may introduce biases in event
coverage and interpretation, potentially skewing towards Western or English-language media
perspectives. Future work could explore integrating multiple diverse data sources and languages
to mitigate this limitation.

Addressing these limitations in future iterations will further enhance the benchmark’s robustness and
relevance in the rapidly evolving field of AI-driven event forecasting.
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C ADDITIONAL RELATED WORK

C.1 TEMPORAL REASONING BENCHMARKS

Many benchmarks sensing the temporal reasoning ability of AI models have been constructed, but
they have different focuses and settings with MIRAI, particularly in terms of task, information, and
method, as shown in Table 4. One line of benchmarks focuses on the temporal understanding ability
of the model (Jia et al., 2018; Saxena et al., 2021; Mavromatis et al., 2021; Ning et al., 2020a; Tan
et al., 2023a; Wang & Zhao, 2024), such as understanding the temporal relations between available
facts in knowledge graphs (KGs) or text, either a short piece of text or a document corpus. While the
temporal forecasting task largely differs from understanding, where the reasoning target is unseen
in the database for the model, and as such, the model has to not only understand but to reason. For
forecasting, there are two main task formulations among previous benchmarks: the QA task format
for benchmarks with history information represented in textual format (Zou et al., 2022; Zhang
et al., 2024; Jin et al., 2021b; Halawi et al., 2024; Schoenegger et al., 2024; Karger et al., 2024), and
graph link prediction task format for temporal knowledge graph (TKG)-based benchmarks (Boschee
et al., 2015b; Leetaru & Schrodt, 2013b). However, the uniformat of information sources either
lacks of support to clearly structural facts or contextual detail for the model to perform advanced
reasoning, while in MIRAI, we provide both information sources. Additionally, we provide carefully
constructed API with various data classes and functions that access to various part of the data. With
the flexibility provided by code generation, the model is exposed to a broader and more flexible range
of information. More importantly, MIRAI distinguishes itself by introducing an agentic environment
specifically designed to evaluate LLM agents in the forecasting task. This represents a significant
departure from previous work, which has not explored or even considered the potential of performing
temporal forecasting tasks using LLM agents.

C.2 TEMPORAL EVENT FORECASTING BENCHMARKS AND METHODS

Existing Forecasting Benchmarks. LLMs have been tested for their temporal understanding through
tasks such as temporal event ordering or storyline comprehension (Tan et al., 2023b; Ning et al.,
2020b; Zhou et al., 2019; Zhang & Choi, 2021; Wang & Zhao, 2023). In the context of temporal
forecasting, LLMs have been evaluated on traditional structured-event-only benchmarks, such as
ICEWS (2014) (Boschee et al., 2015b) and GDELT (2018) (Leetaru & Schrodt, 2013a); and also been
evaluated on recent text-based temporal forecasting benchmarks, such as IntervalQA (2022) (Zou
et al., 2022) and TCELongBench (2022) (Zhang et al., 2024). However, these evaluations typically
involve providing LLMs with retrieved-context for in-context learning and then directly answering
the forecast question, lacking intermediate reasoning steps and interaction between the LLM and
the database crucial for accurate forecasting. Moreover, although experimental results on these
benchmarks show that significant challenges and research value remain in forecasting, even when
models encounter events before their training cutoff date, these benchmarks still only provide a fixed
timeframe for the testing data, earlier than most recent LLMs.
Traditional TKG and NLP Methods. Significant research has been conducted in the field of
structured event temporal forecasting. Various methods have been proposed, including aggregating
temporal and relational information among entities (Jin et al., 2020a; Li et al., 2021b; Park et al.,
2022), retrieving relevant historical events (Zhu et al., 2020; Sun et al., 2021; Li et al., 2021a), and
modeling the continuous time evolution of events (Trivedi et al., 2017; Ding et al., 2021). Efforts
have also been made to incorporate textual event information into Temporal Knowledge Graphs
(TKGs). Glean (Deng et al., 2020a) and CMF (Deng et al., 2021) integrate textual embeddings
into graph edges, while SeCoGD (Ma et al., 2023a) employs textual topic modeling to separate
subgraphs. The MidEast-TE dataset and LoGo model (Ma et al., 2023c) utilize text clustering to
construct complex events for forecasting with local and global contexts. However, these methods
still perform forecast reasoning solely on graphs using graph-based techniques. Traditional NLP
methods form the event forecasting task as MCQ, for example, the method in ForecastQA (Jin et al.,
2021a) use text embedding models for retrieving related event news articles and appending them
to the forecasting question for a Bert-based classification over answer candidates. Notably, MIRAI
contains both structured and textual event data, supporting the test for both traditional TKG and NLP
methods. We show more experimental results and illustrations in Appendix D.3.
LLMs for TKG and NLP Methods. Recent studies have explored the use of LLMs for temporal
event forecasting by transforming the TKG formulation into text sequences and converting missing
object prediction into next token prediction (Xu et al., 2023b). GPT-NeoX-ICL (Lee et al., 2023)
employs in-context learning of LLMs and constructs prompts as a list of historical events in quadruplet
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format. GENTKG (Liao et al., 2023) enhances the selection of historical event inputs using a temporal
logical rule-based retrieval strategy, while LAMP (Shi et al., 2023) applies LLMs to perform abductive
reasoning to assist the retrieval process. However, these works only investigate LLMs with in-context
learning or simple task-specific fine-tuning. In contrast, MIRAI explores forecasting with an LLM
agent that supports explicit information gathering and reasoning steps, enabling a hybrid approach
that leverages both text and graph data.
C.3 EVALUATION OF LANGUAGE AGENTS

Previous research has investigated the performance of LLM agents in a variety of domains, including
arithmetic reasoning focused on obtaining correct solutions (Roy & Roth, 2015; Cobbe et al.,
2021; Patel et al., 2021), proficiency assessment in utilizing tools and reporting results (Li et al.,
2023a; Xu et al., 2023a; Zhuang et al., 2023a), evaluation of web navigation skills to find specific
websites (Deng et al., 2023; Zhou et al., 2024; Liu et al., 2024), and planning travel itineraries under
given constraints (Xie et al., 2024). However, these evaluations do not fully address the challenges
posed by tasks involving complex international events with diverse information formats and temporal
attributes. MIRAI presents a unique task in this context, where the agent must navigate and reason
over the structured events and textual news articles with temporal information. This setup requires the
agent to effectively handle multilateral relationships and information spanning different time periods.
C.4 LLMS FOR TOOL-USE

Large Language Models (LLMs) have demonstrated remarkable language understanding (Radford
et al., 2018) and reasoning capabilities (Wei et al., 2022). However, they also possess inherent
limitations, such as their inability to provide up-to-date responses based on external knowledge or to
perform complex mathematical reasoning. In response to these challenges, recent advancements have
seen the integration of LLMs with various external tools (Mialon et al., 2023). Notable examples
include TALM (Parisi et al., 2022) and ToolFormer (Schick et al., 2023), which utilize in-context
learning to enhance the model’s ability to leverage different tools in tasks like question answering
and mathematical reasoning. Chameleon (Lu et al., 2023a) employs an LLM as a natural language
planner to deduce the optimal sequence of tools to be used, subsequently executing these tools to
generate the final output. AVIS (Hu et al., 2023) employs dynamic tree search to synthesize the most
effective tool-use sequence. ToolkenGPT (Hao et al., 2023) integrates tool-use operators as special
tokens and trains the model through sequence-to-sequence training. ToolLLM (Qin et al., 2023)
introduces an instruction tuning dataset encompassing over 16,000 real-world APIs, significantly
enhancing the model’s capability to utilize these tools effectively.
C.5 LLMS FOR CODE GENERATION

Early advancements in LLMs have greatly impacted the field of code generation. Notable early
models such as GPT-3 (Brown et al., 2020) and PALM (Chowdhery et al., 2023) have demonstrated
the potential of LLMs to assist in code completion and generation. Subsequent models have built
upon the foundation of pre-trained LLMs, further refining capabilities specific to code generation.
This has led to the development of code-specific LLMs such as Codex (Chen et al., 2021), Code T5
(Wang et al., 2021), CodeGen (Nijkamp et al., 2022), AlphaCode (Li et al., 2022), StarCoder (Li et al.,
2023c), WizardCoder (Luo et al., 2023), and phi-1 (Gunasekar et al., 2023). Moreover, code from
open-source platforms such as GitHub has increasingly been incorporated into the pre-training data
for recent LLMs (Touvron et al., 2023; Achiam et al., 2023). This integration has led to improved
performance of LLMs such as Code Llama (Roziere et al., 2023), Code-Qwen (Bai et al., 2023), and
DeepSeek-Coder (Guo et al., 2024) on popular code-related tasks (Chen et al., 2021; Austin et al.,
2021).
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D ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

D.1 ANALYSIS ON THE FINAL STATUS OF DIFFERENT LLM AGENTS

Table 5: Experiment results with different base LLMs on 2024-02 test splits: Average number of
ReAct iterations and the number of test cases ending in different final statuses.

Model Training Data
Cutoff Date Action Type Avg. Iterations

Final Status

Final Answer Consecutive
Invalid Actions

Consecutive
Repetitive Actions

Max Iterations
Exceeded

Mistral-7B-Instruct-v0.2 2023-12
Single Function 4.53 81 13 5 1

Code Block 2.92 46 54 0 0

Llama-3.1-8B-Instruct 2023-12
Single Function 8.18 76 9 9 6

Code Block 3.65 40 56 5 0

GPT-3.5-Turbo 2021-09
Single Function 2.75 99 1 0 0

Code Block 3.52 87 11 1 1

GPT-4o-mini 2023-10
Single Function 4.65 100 0 0 0

Code Block 4.04 100 0 0 0

Following the experiment on different base LLMs and analysis of their code execution error in in
Sec. 3.2, we further analyze the final status of different agents when they trigger the termination
conditions in the ReAct process. The agent-environment interactions were terminated based on four
different statuses:
• Final Answer: This status is triggered when the model explicitly indicates completion by declaring

a "final answer," indicating that it has generated its final forecast.
• Consecutive Invalid Actions: Interaction is halted if the model consecutively executes non-

executable actions more than three times.
• Consecutive Repetitive Actions: A similar threshold of three consecutive repetitive actions

prompts termination under this status.
• Maximum Iterations Exceeded: Termination occurs if the agent engages in more than 20 rounds

of iterations without making a forecast answer.
We observe from the final status: 1) The GPT series demonstrates enhanced capability in con-
cluding interactions with a final answer: The GPT series frequently concludes interactions with
a final answer, indicating its superior ability to comprehend instructions, utilize tools correctly,
and perform reasoning to generate the final forecast. In contrast, the smaller open-source models,
Mistral-7b-Instruct-v0.2 and Llama-3.1-8B-Instruct, have a round one-tenth of cases and one-half
of the cases generating consecutive invalid answers when using single function and code block,
respectively, suggesting limited abilities in adhering to data types, functions, Python syntax, and
following detailed instructions.
2) Generating code blocks proves more challenging than generating single functions as action:
Across all models, there is a higher occurrence of errors when generating code blocks compared to
single functions. This pattern highlights the greater complexity and increased likelihood of errors
associated with composing multiple lines of code over simple function calls.
3) Advanced models engage in more valid action steps, resulting in better forecasting perfor-
mance: Advanced models, such as GPT-4o-mini, engage in significantly more effective action steps,
as shown by no case in ending with consecutive invalid or repeated actions. Llama-3.1-8B-Instruct,
on the other hand, has the most number of action steps with execution errors in Figure 5 and the most
number of cases ending without a direct final answer. This shows the importance of the planning and
tool-use ability of LLM agents in effectively gathering historical information and making predictions.

D.2 ANALYSIS ON AGENT REACT ITERATION SEQUENCE LENGTH

We further show the correlation of the model’s forecasting performance to the number of ReAct
iterations it takes to reach the final answer. Figure 9 shows the statistics of GPT-3.5-Turbo’s
performance with the “Single Function” action type and 20 as the maximum action steps allowed. It
shows a slightly negative correlation between the two. We further investigate the longest few test
cases, and find the model mostly trapped in code generation errors and fails to self-correct from the
error message, and therefore, fails to gather useful information.

D.3 EVALUATION FOR TRADITIONAL TKG AND NLP FORECASTING METHODS

We include the following additional traditional baselines that are fine-tuned:
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Figure 9: Correlation of F1 Accuracy to Action Sequence Length

Figure 10: Illustration of RE-GCN and the adapted ForecastQA aggregate historical information and
output forecasting probability (0-1) for each relation type. In comparison, examples using LLM agent
in Appendix F provide explicit reasoning traces with better interpretability.

• Structured TKG baseline, we implemented RE-GCN (Li et al., 2021b), which learns relation in
their graph edge embeddings and supports relation prediction.

• Traditional textual baseline, we adopted ForecastQA (Jin et al., 2021a), implementing a Bert-
based classification model with BM25 to retrieve relevant news articles as additional encoder
input.

Figure 10 illustrates the proposed frameworks of REGCN and ForecastQA, along with their threshold-
based prediction processes. REGCN learns entity and relation representations in the event knowledge
graph at each timestamp, modeling temporal development through a recurrent neural network. The
learned representations are then used by a decoder to compute probabilities for each relation type. In
contrast, ForecastQA employs a BERT encoder to process both the original query and retrieved news
articles, utilizing a classification network for relation type probability computation.
We trained these traditional baselines on data prior to 2023-06 and evaluated them on the 2024-02
test split. Optimal thresholds were determined through a search over 0.3, 0.5, 0.7, and 0.9, resulting
in 0.5 for REGCN and 0.3 for ForecastQA. The experimental results of these traditional models are
shown in Table 2, along with LLMs’ performance.
REGCN demonstrates superior performance in predicting higher-level relation types, particularly at
the binary and quadratic levels, suggesting a good level of relation representation learning ability.
However, it struggles with accurate forecasting at the more granular second level. ForecastQA
achieves higher precision but significantly lower recall compared to REGCN, due to only predicting
the relation type “Make a Visit” in most queries.
Notably, data-specific fine-tuning allows these traditional methods to achieve competitive performance
with zero-shot smaller LLM agents, though they still largely underperform the most advanced LLMs.
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Overall, these experiments and findings highlight MIRAI’s value as a comprehensive benchmark for
comparing diverse forecasting methods.
D.4 HUMAN FORECASTING PERFORMANCE AS A REFERENCE

Table 6: Human and LLM agent forecasting performance on the sampled test queries. We have 2
human evaluators and we take the average performance. The best-performing score is highlighted in
bold and the second-best is underlined.

Model Training Data
Cutoff Date Action Type Binary

KL (⇓)
Quad

KL (⇓)
First-level Relation (%) Second-level Relation (%)

Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

Human evaluators — — 0.04 1.37 62.73 88.70 68.29 54.54 74.53 56.78

Mistral-7B-Instruct-v0.2 —
Single Function 10.35 13.74 25.0 14.22 13.64 10.59 12.82 5.51

Code Block 8.21 11.59 30.0 7.04 10.69 23.33 4.74 7.62
GPT-3.5-Turbo

2021-09
Single Function 1.03 3.19 69.17 62.97 54.87 53.33 57.24 45.86

Code Block 3.95 8.16 36.44 48.68 28.74 23.06 36.91 13.46
GPT-4-Turbo

2023-12
Single Function 1.94 4.09 62.5 57.04 40.83 34.31 59.74 31.72

Code Block 0.18 2.77 35.33 54.48 34.03 25.46 56.05 27.83
GPT-4o

2023-10
Single Function 0.17 1.46 47.0 64.12 43.17 32.62 60.3 30.92

Code Block 0.16 1.22 48.06 78.2 53.02 39.0 69.88 40.32

To establish a reference point for our LLM agent evaluations, we conducted a human forecasting task
with the following parameters:
• Scope: 10 queries (t, s, ?, o) covering 51 distinct events.
• Participants: 2 college students (non-political science majors).
• Task: Given an event query (t+ 1, s, ?, o), generate forecasts for all possible relations.
• APIs: Participants used the same API library as the LLM agents.
• Evaluation: Applied the same metrics as those used for LLM agents.
As shown in Table 6, human performance surpassed that of LLM agents in most metrics, especially
in recall. This highlights significant room for improvement in LLM performance.
It is important to note that our evaluators do not specialize in political science and likely fall short of
what domain experts could achieve. This suggests that human forecasting, even at current performance
levels, has room for enhancement.
We also acknowledge that event forecasting is an inherently challenging task for both humans and AI.
The superior performance of non-expert human evaluators underscores the complexity of this task
and the potential for further advancements in both human and AI forecasting capabilities.
D.5 HUMAN EVALUATION ON THE DATASET QUALITY

To further assess dataset quality, we conducted a human evaluation on a subset of the test set
consisting of 10 (t, s, ?, o) queries, corresponding to 51 distinct (t, s, r, o) events. Two human
annotators evaluated whether the ground-truth events were correctly extracted based on their source
news articles, scoring each event as 0 (incorrect) or 1 (correct). The average score across all evaluated
events is 0.82, indicating high accuracy in the sampled test events. This evaluation confirms the
reliability of our data cleaning process and the overall quality of our dataset.
D.6 FORECASTING PERFORMANCE ON DIFFERENT TEST SPLITS

Table 7: Evaluation results of second-level relation forecasting on the different test splits, using
“Single Function” as the action type. The best-performing score is highlighted in bold and the
second-best is underlined.

Model Training Data
Cutoff Date

2023-11 2023-12 2024-01 2024-02

Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

Llama-3-8B-Instruct 2023-03 10.7±4.0 6.1±2.4 6.1±1.5 13.6±3.0 10.2±2.8 8.7±1.8 16.0±1.2 9.0±0.8 8.7±0.1 15.8±0.5 11.8±0.6 10.3±0.1

Llama-3.1-8B-Instruct 2023-12 20.6±9.0 22.3±5.4 15.8±5.7 21.2±7.0 18.5±1.5 15.9±3.6 23.2±1.5 22.4±3.2 16.3±2.0 22.7±3.2 16.8±0.5 14.8±0.7

GPT-4-Turbo 2023-12 33.5±7.5 43.5±5.4 30.0±1.9 31.5±4.5 33.9±0.5 25.8±3.1 36.5±3.4 41.9±4.7 32.2±2.8 33.5±4.4 41.6±1.3 28.9±3.2

GPT-4o-mini 2023-10 41.3±9.0 41.4±1.4 32.8±2.6 39.4±7.5 25.4±2.9 25.9±3.2 45.9±3.1 36.6±1.7 33.2±0.7 40.0±5.5 32.6±1.6 29.7±3.8

We discuss the effect of models’ knowledge cutoff on different test splits in Sec. 3.3. We show the
full forecasting performance of second-level relation prediction with different base models over the
four test splits in Table 7.
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D.7 ANALYSIS WITH RETRIEVE-AUGMENTED GENERATION (RAG) METHODS

Table 8: Evaluation results of GPT-4o-mini on the 2024-02 test split using different non-agentic
methods and the ReAct agent with Single Function action type. The best-performing score is
highlighted in bold and the second-best is underlined.

Method Augmented
Context

Agent
API

Binary
KL (⇓)

Quad
KL (⇓)

First-level Relation (%) Second-level Relation (%)

Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

Direct IO
— — 3.6±1.0 7.6±1.9 39.5±3.2 44.8±3.2 34.9±3.5 15.4±0.8 23.9±3.6 15.4±0.2

CAMEO — 5.0±1.5 7.3±1.9 35.5±4.6 32.6±2.2 28.6±2.7 10.0±1.5 14.2±0.9 10.1±0.8

RAG
Events-Only — 2.2±0.9 5.9±2.0 57.5±3.5 53.4±3.4 50.5±3.8 32.4±1.1 43.9±2.0 33.2±1.4

News-Only — 9.1±2.8 12.7±2.9 47.2±0.8 23.2±2.4 25.4±0.2 19.5±2.0 14.9±2.1 13.4±0.8

All — 2.3±1.4 6.3±2.0 59.0±1.2 48.1±1.2 46.7±0.4 36.4±5.3 38.8±1.2 32.1±2.4

ReAct
— Event-Only 3.3±0.8 7.7±1.4 62.8±10.5 39.0±0.8 41.7±5.3 44.2±3.3 37.0±0.8 30.7±0.9

— News-Only 6.5±1.7 13.0±2.1 41.5±6.1 16.8±0.7 20.2±1.9 17.8±0.2 12.2±1.0 12.5±0.5

— All 3.6±0.9 8.0±1.5 61.7±10.1 38.6±1.9 40.7±5.6 46.3±4.4 32.9±3.8 31.1±2.6

D.7.1 METHODS AND EXPERIMENTAL SETUP

Besides the Direct IO / QA and three ReAct agents with different tool-use that we already imple-
mented in the paper, we add the following baselines:
• Direct QA with Augmentation (for comment Q4)

– QA with CAMEO: We provide the CAMEO ontology in an ordered dictionary format mapping
relation codes to their names and detailed descriptions. This is closer to the QA-format the
authors mention, and a more fair comparison as the model can refer to the output vocabulary
without needing to memorize CAMEO codes.

• RAG Methods
Following recent work, we implement three RAG variants:
– RAG Events-Only: Following GPT-NeoX-ICL ?, we explore rule-based approaches for retriev-

ing historical facts. Using the ’Pair’ and ’Undirectional’ setting, given a query event (s, ?, o, t),
we retrieve historical events (s, r ∈ R, o,< t) and (o, r ∈ R, s, < t). Events are sorted by
recency with a cap of 30, aligning with the default cap of the get_events API function.

– RAG News-Only: Following TCELongBench ?, we employ BM25 retrieval to fetch the most
query-relevant news articles before the query date. The top 15 news articles are retained,
matching the default cap of the get_news_articles API function.

– RAG All: Combines both retrieved structured events and textual news articles.
D.7.2 COMPARISON OF RETRIEVAL STRATEGIES WITH AGENT

Both baseline approaches—CAMEO context augmentation and RAG methods—employ static,
predefined retrieval strategies that are fixed for all queries and executed only once per query.
In contrast, our agentic approach enables dynamic, multi-step information gathering and reason-
ing. The agent can replicate the baseline retrieval strategy by fixing certain API parameter val-
ues, for example, the agent can use the function call get_events(head_entities=[s, o],
tail_entities=[o,s]) to get the retrieved context as RAG Event-Only, and use the function
call get_news_articles(text_description=’(t, s, ?, o)’) to get the retrieved context
as RAG News-Only; its capabilities extend far beyond these static approaches through its flexible
parameter settings for each function call and multiple steps per query.
This multi-step, adaptive approach represents a fundamental shift from static retrieval to dynamic
information gathering and reasoning, though it introduces higher requirements for the LLM’s planning
ability in:
• Automatically selecting optimal information-gathering strategies
• Integrating and reasoning over information of different formats
• Adjusting strategies based on intermediate findings and current context
D.7.3 KEY FINDINGS AND ANALYSIS

Our experiment results reveal several important insights:
Performance of the RAG Baselines:
RAG demonstrates improved precision over Direct IO (15.4% Pre in second-level) when using
either event (32.4% Pre in second-level) or text (19.5% Pre in second-level) information source
independently, with event data contributing more significantly to recall (43.9% Rec in second-level).
When combining the two information sources, RAG achieves higher precision (36.4% Pre in second-
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level) but with a lower recall than RAG Event Only (from 43.9% to 38.8%), leading to a lower overall
F1 score (from 33.2% to 32.1%), this suggests that a simple combination of both information in the
context not effectively and collaboratively contribute to a better forecasting performance.
Comparison and Insights for Agent:
ReAct agents exhibit similar performance patterns with RAG when using different information
sources (changed by the type of API functions available for the agent). Specifically, event data
also contributes to high precision for the agent (62.8% Pre at first-level and 44.2% at second-level),
outperforming RAG baselines. The structured event data consistently provides stronger signals for
forecasting across both approaches, likely due to its standardized format.
However, agent baselines generally obtain a lower recall than RAG baselines. Meanwhile, while
ReAct with full API access achieves higher average F1 scores in second-level relation prediction than
its partial access performance (31.1% than 30.7% and 12.5%), the benefits of combining information
sources aren’t consistent across all relation hierarchies and methods, similar to RAG, suggesting
substantial room for exploring more effective information integration strategies.
This reveals both promises and challenges of the agent’s more flexible retrieval approach: RAG’s
predefined and fixed retrieval strategies can often yield stable performance, while the agent’s dy-
namic and multi-step retrieval allows for flexible information gathering and integration, yet higher
requirements for planning and reasoning sometimes also lead to relatively lower performance.
These observations underscore the core purpose of our benchmark: not just to compare current
methods but to encourage the development of more advanced agentic forecasting approaches. The
current performance patterns suggest significant opportunities for improving agent architectures,
particularly in:
• Developing more robust and automatic planning strategies for multi-step information gathering
• Improving information integration capabilities across different information sources, formats, and

temporal scales

D.8 ANALYSIS WITH HEURISTIC-BASED AND TRADITIONAL TKG METHODS

Table 9: Evaluation results on the 2024-02 test split for relation prediction using heuristic-based
and TKG-based methods and LLM agents based on GPT-4o-mini. The best-performing score is
highlighted in bold and the second-best is underlined.

Method Training Data
Cutoff Date Prompt MRR

(%)(⇑)
Hit@10
(%)(⇑)

Binary
KL (⇓)

Quad
KL (⇓)

First-level Relation (%) Second-level Relation (%)

Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

RE-GCN

2023-06

—

1.6 2.2 0.4 0.8 24.4 90.6 34.3 4.4 83.9 7.9
2023-08 1.9 2.8 0.4 1.1 23.9 86.1 32.9 4.6 40.0 7.0
2023-10 1.7 2.5 0.3 1.0 24.8 78.2 32.4 3.9 25.7 5.6
2023-12 2.9 5.7 0.3 2.5 23.9 74.4 31.3 5.5 28.4 7.9

Recurrency
(Strict)

2023-06

—

17.4 45.0 3.2 3.6 32.8 77.1 42.9 18.7 67.8 27.2
2023-08 17.1 45.3 3.2 3.6 32.3 78.2 42.7 18.0 69.9 26.9
2023-10 15.8 41.0 2.4 3.1 29.7 83.5 41.3 14.3 76.8 23.0
2023-12 17.8 43.2 2.1 2.5 29.8 86.0 41.6 14.2 80.1 23.0

ReAct 2023-10

Set Prediction — — 3.6 8.0 61.7 38.6 40.7 46.3 32.9 31.1
Rank (k=10) — 25.7 0.6 1.4 47.5 70.2 48.9 38.1 61.8 38.2
Rank (k=30) — 12.0 0.3 0.8 34.9 91.2 45.8 22.5 82.8 31.7

Rank (all) 13.9 14.1 2.1 2.8 27.0 86.2 37.9 12.5 81.4 20.2
Rank w.Prob (k=10) — 26.8 1.1 2.5 47.3 67.7 48.3 37.9 59.2 38.2
Rank w.Prob (k=30) — 10.8 0.3 0.6 34.8 86.6 45.3 22.2 76.4 31.0

Rank w.Prob (all) 12.6 14.9 2.4 2.7 28.5 83.0 38.3 12.7 78.6 20.6

D.8.1 TASK FOCUS: RELATION PREDICTION

Previous temporal knowledge graph research has explored both link prediction and relation prediction
tasks, with notable works like DynamicGCN (Deng et al., 2020b), Glean (Deng et al., 2020a), and
CMF (Deng et al., 2021) focusing on relation prediction. It is important to emphasize that neither
task holds inherent priority over the other; rather, each serves distinct analytical purposes tailored to
specific research objectives.
In MIRAI, we focus on relation prediction as our primary task given our interest in studying dynamic
relationship shifts between countries over time. This choice is particularly significant due to the
structured nature of CAMEO relations in international event data. The CAMEO ontology offers a
hierarchically organized framework that encompasses the entire spectrum of international interactions,
ranging from material cooperation (e.g., providing aid, military collaboration) and verbal cooperation
(e.g., diplomatic statements, expressions of support) to verbal conflict (e.g., accusations, rejections)
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and material conflict (e.g., military actions, sanctions). This natural progression of political interac-
tions—from the most cooperative to the most conflictual—provides a clear framework for analyzing
the evolution of international relationships and a nuanced benchmark for assessing models’ capacity
to forecast shifts in these dynamics over time.

D.8.2 EXPERIMENTAL SETUP

We evaluate three approaches in detail:
RE-GCN (Li et al., 2021b):
• Model Architecture: we follow the original method, where the model combines relation-aware

graph convolutional layers with recurrent neural networks to jointly model structural dependencies
and temporal dynamics in TKGs.

• Data Cutoffs: We experiment with four cutoff times (2023-06, 2023-08, 2023-10, 2023-12). For
example, with 2023-10 cutoff, the model trains on data until 2023-10, validates on 2023-11, and
tests on the 2024-02 split.

• Test Input: Uses single-step prediction with a 7-day historical window (t-7 to t-1), aligning with
our agent experiments’ one-day forecasting horizon.

Recurrency (Strict) (Gastinger et al., 2024):
• Model: The original work introduces three baselines that place strong inductive bias on fact

recurrence over time: strict recurrency, relaxed recurrency, and their combination. While the
original work and its scoring functions are specifically designed for link prediction, we adapt the
strict recurrency variant for relation prediction. For a query event (s, ?, o, t), we compute scores
for all relations r ∈ R using:

ϕ∆((s, r, o, t), G) =

{
∆(t,max{k|(s, r, o, k) ∈ G}) if ∃k with (s, r, o, k) ∈ G

0 otherwise
(1)

where ∆(t, k) = k/t measures temporal proximity.
• Data Access: Cutoff dates determine available historical events, e.g., 2023-10 means using only

events before 2023-10-31 for score computation.
ReAct Agent:
• Set Prediction: Uses original prompt and output format, with the output directly used for set

prediction metrics.
• Ranking: Modified prompts for ordered relation lists (k=10, 30, all). Only rank=all configurations

are used for MRR calculation, while all configurations support Hit@10 evaluation.
• Probabilistic Ranking: Additional prompts requesting probability scores for ranked relations.
• Evaluation: All ranking evaluations use time-aware filtering to maintain consistency with other

methods.

D.8.3 METRIC SELECTION AND JUSTIFICATION

Set-based Metrics: For set prediction tasks, models output a discrete set of predicted relations for
each query. We evaluate these predictions using:
• Precision: Proportion of predicted relations that are correct
• Recall: Proportion of actual relations that are predicted
• F1 Score: Harmonic mean of precision and recall
Ranking-based Metrics: For ranking tasks, models output an ordered list of relations with associated
scores. Following TKG conventions of time-aware filtering (Bordes et al., 2013; Han et al., 2021),
we implement:
• Mean Reciprocal Rank (MRR): Average reciprocal of the first correct relation’s rank
• Hit@10: Proportion of queries where at least one correct relation appears in top-10 predictions
Choice of Primary Metrics: We prioritize set-based metrics as our primary evaluation criteria for
Model Capability: The primary consideration is that current LLMs are better suited to generating
discrete predictions through natural language reasoning than producing comprehensive ranked lists.
This is evidenced by our experimental findings:
• List Length Sensitivity: ReAct agent’s performance deteriorates with longer list requirements,

with k=30 and k=all performing worse than k=10 in ranking metrics (Hit@10: 25.7% for k=10 vs
12.0% for k=30).
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• Prompt Sensitivity: Performance varies between pure ranking and probability-weighted ranking
(Hit@10: 25.7% vs 26.8% for k=10, and MRR: 13.9% vs 12.6% for k=all), suggesting that ranking
outputs are sensitive to the prompt formulation and output format.

Given these challenges, we opted for metrics that more directly and reliably assess the agents’ ability
to predict discrete events without the confounding factors introduced by list generation and ranking.

D.8.4 RESULTS ANALYSIS AND IMPLICATIONS

Our comprehensive evaluation reveals several significant insights about different forecasting ap-
proaches:
Performance of the Recurrency Model and Insights for Agents: The experiment results of the
Recurrency (strict) model are shown in row 5-8 of the table. We observe that the Recurrency baseline
demonstrates strong performance in ranking metrics (17.8% MRR and 43.2% Hit@10 with 2023-12
cutoff), leading other models; it also shows consistently high recall (86.0% Recall at first-level
relation, and 80.1% recall at second-level relations with 2023-12 cutoff), suggesting that international
events indeed often follow repetitive patterns.
Comparing with the ReAct agent (Set Prediction, the setting we used in the main paper) in row 9, we
find that although the LLM agent could achieve much higher forecasting precision, it obtains much
lower recall than the Recurrency baseline. We conducted a detailed analysis of this behavior by manu-
ally going through the reasoning traces generated by the LLM agent in the test set. One possible reason
is that the agent has a strong tendency to select only a subset of the most frequent historical events
in its prediction. For example, for the query (2024-02-01,PSE, ?,EGY), it uses function calls like
get_relation_distribution(date_range=DateRange(start_date=Date("2023-01-31"),
end_date=Date("2024-01-31")), head_entities=[ISOCode("PSE")],
tail_entities=[ISOCode("EGY")]), and obtained a full frequency list as:
{CAMEOCode(code=’042’): 32, CAMEOCode(code=’192’): 18,
CAMEOCode(code=’040’): 13, CAMEOCode(code=’043’): 12,
CAMEOCode(code=’046’): 8, CAMEOCode(code=’080’): 6,
CAMEOCode(code=’036’): 4, CAMEOCode(code=’010’): 4,
CAMEOCode(code=’190’): 3, CAMEOCode(code=’073’): 3,
CAMEOCode(code=’030’): 3, CAMEOCode(code=’084’): 3,
CAMEOCode(code=’020’): 3, CAMEOCode(code=’172’): 2,
CAMEOCode(code=’014’): 2, CAMEOCode(code=’070’): 2,
CAMEOCode(code=’044’): 2, CAMEOCode(code=’086’): 1,
CAMEOCode(code=’013’): 1, CAMEOCode(code=’051’): 1}.
It then has a further step of checking recent news articles and obtains its final prediction as 040, 042,
and 192, which are the top three frequent relations.
The effectiveness of simple temporal recurrency heuristics underscores the importance of incorpo-
rating more historical pattern analysis in the future development of forecasting agents, in particular,
improving their recall of capturing a greater proportion of true relationships between countries.
Performance of the TKG Baselines and Insights for Agents: The experiment results of the
RE-GCN are shown in rows 1-4 of the table. We observe that the RE-GCN demonstrates strong
performance in high-level relation prediction, resulting in 0.3 for binary-level relation KL (cooperation
or conflict) and 0.8 for quadratic-level relation KL (verbal/material cooperation/conflict), reflecting its
advantage in capturing the high-level dynamics over bilateral relationships. It also shows consistently
high recall in more fine-grained relation levels (90.6% Recall at first-level relation, and 83.9% recall
at second-level relations with 2023-06 cutoff), suggesting its effectiveness in modeling positive
correlation between query and multiple ground-truth relations.
Comparing with the ReAct agent (Set Prediction, the setting we used in the main paper) in row
9, we find that although the LLM agent also could achieve much higher forecasting precision, it
obtains much lower recall than the RE-GCN baseline. We manually go through the reasoning traces
generated by the LLM agent in the test set, and conclude the following possible insights and future
directions of improvement compared with TKG baselines:
One major possible reason is that the current agent mostly focuses on analyzing only the bilateral
events between the query entities s and o. For instance, it typically sets the function parameter
head_entities to the query subject, and tail_entities to the query object only, obtaining
only events and news directly between the two. However, this analysis largely oversimplifies real
international relationships where countries have engaged in multi-party and complex interactions.
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Events between two countries could be affected by regional or global events. In contrast, TKG
methods excel in capturing this multi-party and multi-relational history by leveraging multi-layer
graph convolutions, where neighboring information is aggregated to enhance the modeling of each
node (entity embedding) and edge (relation embedding). Therefore, when making predictions between
two countries, the TKG models consider a much broader relation network than the current LLM
agents, leading to higher recall and better generalization, especially when the bilateral history is
sparse.
Another problem we observed from the current LLM agent behavior is its tendency to hallucinate,
particularly in listing the existence of relations and interpreting the meanings of relations in the
CAMEO ontology, which leads to lower precision and recall. For example, in the example we
show in Appendix F.3, in its trajectory step 3, the agent attempts to explain and conclude its final
prediction: ’042’ Make a public statement (high frequency in historical data); ’036’ Negotiate
(also high frequency); ’057’: Express intent to cooperate (indicated by recent news context).
However, the correct meanings are Make a visit for ’042’ and Sign formal agreement for ’057’.
This example highlights two issues: firstly, the LLM agent’s overconfidence in its understanding
of the CAMEO ontology without verifying the relation meanings through function calls (such as
map_cameo_to_relation and map_description_to_cameo); secondly, its over-reliance on the
semantic meaning of relations rather than their structural context. In contrast, TKG models learn
relations by leveraging the historical graph structure, which inherently learns to capture the contextual
meaning of each relation.
To enhance future LLM agents, incorporating a hybrid approach that combines semantic understand-
ing with structural learning from TKGs could help to enhance relation modeling and address certain
hallucinations.
D.9 EVALUATION ON IMPACT OF LLM PARAMETER SIZE

Table 10: Evaluation results on the 2024-02 test split using different base LLMs with different
number of model parameters. The best-performing score is highlighted in bold and the second-best
is underlined.

Base LLM Training Data
Cutoff Date Action Type Binary

KL (⇓)
Quad

KL (⇓)
First-level Relation (%) Second-level Relation (%)

Pre. (⇑) Rec. (⇑) F1 (⇑) Pre. (⇑) Rec. (⇑) F1 (⇑)

Llama-3.2-1B-Instruct 2023-12
Single Func 9.5±1.9 16.0±1.7 23.7±6.6 10.0±1.9 11.7±2.8 8.8±2.6 7.2±0.2 6.1±1.3

Code Block 10.1±2.2 16.2±2.2 24.0±5.7 8.1±2.1 10.0±3.4 7.6±1.9 5.7±0.7 5.1±1.8

Llama-3.2-3B-Instruct 2023-12
Single Func 12.1±2.2 15.4±1.9 36.3±2.2 13.1±3.7 16.7±3.0 19.9±0.7 8.3±2.6 9.3±0.9

Code Block 9.3±2.1 15.1±0.5 26.7±0.7 10.5±0.5 11.0±0.8 13.1±1.5 8.0±0.4 7.1±0.3

While LLM’s parameter count can influence model capabilities, it is not the sole or even primary
determinant of performance. Other crucial factors include model architecture, training data quality
and recency, and advanced training techniques. For instance, GPT-4o-mini’s competitive performance
with GPT-3.5-turbo, despite having fewer parameters, can be attributed to more recent architectural
improvements, different training data, and advanced training methodologies.
To systematically investigate the impact of parameter size while controlling for other variables,
we conduct additional experiments comparing models within the same family. Table 10 presents
evaluation results comparing Llama-3.2-1B-Instruct and Llama-3.2-3B-Instruct on the 2024-02 test
split, both sharing the same architecture, training data cutoff (2023-12), and training methodology.
Our analysis reveals two key findings:
1) Parameter size shows a consistent positive correlation with forecasting performance within
the same model family. The 3B model outperforms its 1B counterpart across all prediction levels,
from binary (12.1% vs 9.5% in Single Function mode) to second-level relations (9.3% vs 6.1% in
Single Function mode).
2) The impact of parameter size varies across different action types. While the 3B model
maintains its advantage in both modes, the performance gap between 1B and 3B models narrows with
Code Block actions. This smaller gap likely reflects the increased complexity of code generation, as
our earlier experiments showed that Code Block actions can potentially hurt smaller, less capable
models while benefiting more advanced ones.
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E ADDITIONAL INFORMATION ABOUT API
E.1 OVERVIEW OF API DATA CLASSES AND FUNCTIONS

Table 11: API data classes and their attributes

Class Name Attributes and Types

Date date: str # ‘YYYY-MM-DD’

DateRange start_date: Optional[Date], end_date: Optional[Date]

ISOCode code: str # 3-letter ISO code

Country iso_code: ISOCode, name: str

CAMEOCode code: str # CAMEO code

Relation cameo_code: CAMEOCode, name: str, description: str

Event date: Date, head_entity: ISOCode, relation: CAMEOCode, tail_entity: ISOCode

NewsArticle date: Date, title: str, content: str, events: List[Event]

Table 12: API functions categorized by functionality

Functions related to Countries and Relations

map_country_name_to_iso(name: str) -> List[Country]

map_iso_to_country_name(iso_code: ISOCode) -> str

map_relation_description_to_cameo(description: str) -> List[Relation]

map_cameo_to_relation(cameo_code: CAMEOCode) -> Relation

get_parent_relation(cameo_code: CAMEOCode) -> Relation

get_child_relations(cameo_code: CAMEOCode) -> List[Relation]

get_sibling_relations(cameo_code: CAMEOCode) -> List[Relation]

Functions related to Events

count_events(date_range: Optional[DateRange], head_entities: Optional[List[ISOCode]],

tail_entities: Optional[List[ISOCode]], relations: Optional[List[CAMEOCode]]) -> int

get_events(date_range: Optional[DateRange], head_entities: Optional[List[ISOCode]],

tail_entities: Optional[List[ISOCode]], relations: Optional[List[CAMEOCode]],

text_description: Optional[str]) -> List[Event]

get_entity_distribution(date_range: Optional[DateRange], involved_relations: Optional[

List[CAMEOCode]], interacted_entities: Optional[List[ISOCode]], entity_role: Optional[str

]) -> Dict[ISOCode, int]

get_relation_distribution(date_range: Optional[DateRange], head_entities: Optional[List[

ISOCode]], tail_entities: Optional[List[ISOCode]]) -> Dict[CAMEOCode, int]

Functions related to News

count_news_articles(date_range: Optional[DateRange], head_entities: Optional[List[ISOCode

]], tail_entities: Optional[List[ISOCode]], relations: Optional[List[CAMEOCode]],

keywords: Optional[List[str]]) -> int

get_news_articles(date_range: Optional[DateRange], head_entities: Optional[List[ISOCode]],

tail_entities: Optional[List[ISOCode]], relations: Optional[List[CAMEOCode]], keywords:

Optional[List[str]], text_description: Optional[str]) -> List[Tuple[Date, str]]

browse_news_article(date: Date, title: str) -> str
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F ADDITIONAL FORECASTING EXAMPLES OF LLM AGENT

In this section, we show examples of how LLM agents perform reasoning for the forecasting query.
The query-specific values are highlighted in yellow in the system prompt and query prompt, which
follows the prompt templates shown in Appendix I. For simplicity, we use {api_description} as
a placeholder for the API specification in the prompt, which is replaced by the actual contents shown
in Appendix ?? in experiments.
F.1 GPT-4O-BASED AGENT WITH REACT AND “CODE BLOCK” ACTION

F.1.1 QUERY DETAILS

• Query Quadruplet: (2023-11-03, AUS, ?, CHN)
• Temporal Distance: 1; therefore, the current date is 2023-11-02
• Agent Max Steps: 20
F.1.2 QUERY PROMPT

Please forecast the relations that Australia will take towards China on November 03, 2023 based
on historical information up to November 02, 2023. I.e. forecast the relation CAMEO codes
in query event Event(date=2023-11-03, head_entity=ISOCode(AUS), relation=CAMEOCode(?),
tail_entity=ISOCode(CHN)).

F.1.3 SYSTEM PROMPT

You are an expert in forecasting future events based on historical data. The database contains news
articles from January 1, 2023 to the current date November 02, 2023 and the events extracted from
these articles. The events are in the form of (date, subject country, relation, object country), where
the countries are represented by ISO 3166-1 alpha-3 codes and the relations are represented by the
CAMEO codes defined in the "Conflict and Mediation Event Observations" ontology. The relations
are hierarchical: first-level relations are general parent relations represented by two-digit CAMEO
codes, while second-level relations are more specific child relations represented by three-digit
CAMEO codes. Child relations have the same first two digits as their parent relations. For example,
"01" is a first-level relation, and "010" and "011" are some of its second-level relations. The relations
in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You
have access to a defined Python API that allows you to query the database for historical events and
statistics, and to get precise information about the ISO country codes and CAMEO relation codes.
You are also authorized to utilize additional safe, well-established Python libraries such as numpy,
pandas, scikit-learn, and NetworkX to enhance your data analysis and forecasting accuracy.

The defined API is described as follows:
``` python
{api_description}
```

You will use an iterative approach, interleaving "Thought", "Action", and "Observation"
steps to collect information and perform the forecast. You may perform up to 20 iterations. The steps
are as follows:

- "Thought": Analyze the current information and reason about the current situation, and
predicts which API you want to use (try to use different APIs to collect diverse information) or make
a decision that you want to make a final answer.
- "Action": Use the API to gather more information or provide the final forecast.

- If gathering more data: the action must be an executable Python code snippet that starts with
```python and ends with ```. It can contain multiple lines of codes and function calls using the
defined API or Python libraries. You must use print() to output the results, and only the printed output
will be returned in the observation step.

- If making the final forecast: the action must start immediately with "Final Answer:", and follow
with the answer in the expected JSON format. This should not be enclosed within triple backticks.
- "Observation": Return the printed output of the executed code snippet.
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To make a reasonable forecast, you should collect both news and relational evidence to
support your prediction. When you are fully confident that you accumulate enough information
to make the final forecast, you should start the "Thought" with your reasoning using the news
and structural information to make the prediction, and then start the "Action" step with "Final
Answer:" followed by the answer in the expected JSON format. The answer should be a
JSON dictionary where the keys are the forecasted two-digit first-level CAMEO codes and
the values are lists of forecasted three-digit second-level CAMEO codes that are child relations
of the key. For example, "Action: Final Answer: {"01": ["010", "011", "012"], "02": ["020", "023"]}".

The final answer will be evaluated based on the precision and recall of the forecasted first-
level and second-level relations, so only include confident first-level and second-level CAMEO codes
in your final forecast.

Try to use different APIs and Python libraries to collect diverse information (including
multi-hop relations), such as the precise meaning of CAMEO codes, insights from news content,
relational data, and statistical analyses to support your forecasts. Consider not only the frequency of
the relations but also the temporal aspects of the data when making your forecast.
F.1.4 AGENT REACT PROCESS

1. Thought: To forecast the relations that Australia will take towards China on November 03, 2023,
we need to gather historical data on the interactions between these two countries. This includes
examining the frequency and types of relations observed in the past, as well as any recent trends
or significant events that might influence future relations.
We will proceed with the following steps:
(a) Retrieve Historical Events: Gather events involving Australia (AUS) and China (CHN) to

understand the context and types of relations that have occurred in the past.
(b) Analyze Relation Distribution: Analyze the distribution of different CAMEO codes in these

events to identify the most common types of interactions.
(c) Examine Recent Trends: Focus on recent events to detect any emerging trends or shifts in

relations.
(d) Contextual Analysis: Review news articles to gain insights into the context and underlying

reasons for these relations.
Let"s start by retrieving historical events between Australia and China.
Action:

1 from datetime import datetime
2
3 # Define the date range for the historical data collection
4 start_date = Date("2023-01-01")
5 end_date = Date("2023-11-02")
6 date_range = DateRange(start_date=start_date, end_date=end_date)
7
8 # Define the ISO codes for Australia and China
9 aus_code = ISOCode("AUS")

10 chn_code = ISOCode("CHN")
11
12 # Retrieve historical events involving Australia and China
13 events = get_events(date_range=date_range, head_entities=[aus_code], tail_entities=[

chn_code])
14
15 # Print the retrieved events
16 for event in events:
17 print(event)

Observation:

1 Event(date=Date("2023-11-02"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

2 Event(date=Date("2023-11-02"), head_entity=ISOCode("AUS"), relation=CAMEOCode("040"),
tail_entity=ISOCode("CHN"))

3 Event(date=Date("2023-11-02"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

4 Event(date=Date("2023-11-01"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

5 Event(date=Date("2023-11-01"), head_entity=ISOCode("AUS"), relation=CAMEOCode("173"),
tail_entity=ISOCode("CHN"))
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6 Event(date=Date("2023-11-01"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

7 Event(date=Date("2023-10-31"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

8 Event(date=Date("2023-10-31"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

9 Event(date=Date("2023-10-31"), head_entity=ISOCode("AUS"), relation=CAMEOCode("046"),
tail_entity=ISOCode("CHN"))

10 Event(date=Date("2023-10-30"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

11 Event(date=Date("2023-10-30"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

12 Event(date=Date("2023-10-30"), head_entity=ISOCode("AUS"), relation=CAMEOCode("046"),
tail_entity=ISOCode("CHN"))

13 Event(date=Date("2023-10-29"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

14 Event(date=Date("2023-10-27"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

15 Event(date=Date("2023-10-27"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

16 Event(date=Date("2023-10-26"), head_entity=ISOCode("AUS"), relation=CAMEOCode("173"),
tail_entity=ISOCode("CHN"))

17 Event(date=Date("2023-10-26"), head_entity=ISOCode("AUS"), relation=CAMEOCode("061"),
tail_entity=ISOCode("CHN"))

18 Event(date=Date("2023-10-26"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

19 Event(date=Date("2023-10-25"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

20 Event(date=Date("2023-10-23"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

21 Event(date=Date("2023-10-23"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

22 Event(date=Date("2023-10-23"), head_entity=ISOCode("AUS"), relation=CAMEOCode("031"),
tail_entity=ISOCode("CHN"))

23 Event(date=Date("2023-10-23"), head_entity=ISOCode("AUS"), relation=CAMEOCode("061"),
tail_entity=ISOCode("CHN"))

24 Event(date=Date("2023-10-22"), head_entity=ISOCode("AUS"), relation=CAMEOCode("040"),
tail_entity=ISOCode("CHN"))

25 Event(date=Date("2023-10-22"), head_entity=ISOCode("AUS"), relation=CAMEOCode("061"),
tail_entity=ISOCode("CHN"))

26 Event(date=Date("2023-10-22"), head_entity=ISOCode("AUS"), relation=CAMEOCode("036"),
tail_entity=ISOCode("CHN"))

27 Event(date=Date("2023-10-22"), head_entity=ISOCode("AUS"), relation=CAMEOCode("043"),
tail_entity=ISOCode("CHN"))

28 Event(date=Date("2023-10-22"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

29 Event(date=Date("2023-10-21"), head_entity=ISOCode("AUS"), relation=CAMEOCode("042"),
tail_entity=ISOCode("CHN"))

30 Event(date=Date("2023-10-21"), head_entity=ISOCode("AUS"), relation=CAMEOCode("040"),
tail_entity=ISOCode("CHN"))

2. Thought: The retrieved events indicate a variety of relations between Australia and China. To
forecast the future relations, we need to analyze the distribution of these relations to identify the
most common types and any recent trends.
Next, we will analyze the distribution of the different CAMEO codes in these events to identify
the most frequent interactions. This will help us understand the dominant types of relations and
any emerging patterns.
Action:

1 from collections import Counter
2
3 # Extract the CAMEO codes from the retrieved events
4 cameo_codes = [event.relation.code for event in events]
5
6 # Count the frequency of each CAMEO code
7 cameo_code_counts = Counter(cameo_codes)
8
9 # Print the distribution of CAMEO codes

10 for code, count in cameo_code_counts.items():
11 print(f"CAMEO Code: {code}, Count: {count}")

Observation:

1 CAMEO Code: 042, Count: 10
2 CAMEO Code: 040, Count: 3
3 CAMEO Code: 036, Count: 8
4 CAMEO Code: 173, Count: 2
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5 CAMEO Code: 046, Count: 2
6 CAMEO Code: 061, Count: 3
7 CAMEO Code: 031, Count: 1
8 CAMEO Code: 043, Count: 1

3. Thought: The distribution of CAMEO codes from the historical events between Australia and
China reveals that certain types of interactions are more frequent than others. Specifically, the
most common relations are:
- 042: 10 occurrences
- 036: 8 occurrences
- 040: 3 occurrences
- 061: 3 occurrences
- 046: 2 occurrences
- 173: 2 occurrences
- 031: 1 occurrence
- 043: 1 occurrence
To make a more informed forecast, we should understand what these CAMEO codes represent.
We will map these codes to their descriptions to gain insights into the nature of these interactions.
Action:

1 # Define the CAMEO codes to map
2 cameo_codes_to_map = ["042", "036", "040", "061", "046", "173", "031", "043"]
3
4 # Map the CAMEO codes to their descriptions
5 relations = [map_cameo_to_relation(CAMEOCode(code)) for code in cameo_codes_to_map]
6
7 # Print the descriptions of the CAMEO codes
8 for relation in relations:
9 print(f"CAMEO Code: {relation.cameo_code.code}, Name: {relation.name}, Description: {

relation.description}")

Observation:

1 CAMEO Code: 042, Name: Make a visit, Description: Travel to another location for a meeting
or other event.

2 CAMEO Code: 036, Name: Express intent to meet or negotiate, Description: Offer, promise,
agree to, or otherwise indicate willingness or commitment to meet, visit, or engage in
talks or negotiations.

3 CAMEO Code: 040, Name: Consult, not specified, Description: All consultations and meetings,
not otherwise specified.

4 CAMEO Code: 061, Name: Cooperate economically, Description: Initiate, resume, improve, or
expand economic exchange or cooperation.

5 CAMEO Code: 046, Name: Engage in negotiation, Description: Negotiate or bargain with others
.

6 CAMEO Code: 173, Name: Arrest or detain, Description: Legal or extrajudicial arrests,
detentions, or imprisonments.

7 CAMEO Code: 031, Name: Express intent to engage in material cooperation, Description: Offer
, promise, agree to, or otherwise indicate willingness or commitment to engage in or
expand material cooperative exchange, such as express intent to cooperate economically
, militarily, on judicial matters, and on intelligence.

8 CAMEO Code: 043, Name: Host a visit, Description: Host or receive a visitor at residence,
office or home country.

4. Thought: The mapped CAMEO codes and their descriptions provide valuable insights into the
nature of interactions between Australia and China. Here are the key relations observed:
- 042 (Make a visit): 10 occurrences – Indicates frequent travel for meetings or events.
- 036 (Express intent to meet or negotiate): 8 occurrences – Shows a strong intent to engage in
talks or negotiations.
- 040 (Consult, not specified): 3 occurrences – General consultations and meetings.
- 061 (Cooperate economically): 3 occurrences – Economic cooperation initiatives.
- 046 (Engage in negotiation): 2 occurrences – Actual negotiations or bargaining.
- 173 (Arrest or detain): 2 occurrences – Legal or extrajudicial arrests or detentions.
- 031 (Express intent to engage in material cooperation): 1 occurrence – Intent to cooperate
materially.
- 043 (Host a visit): 1 occurrence – Hosting visitors.
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Given this data, we can see that the most frequent interactions involve visits, expressions of intent
to meet or negotiate, and economic cooperation. These interactions suggest a pattern of diplomatic
engagement and economic collaboration, with occasional legal actions.
To further solidify our forecast, we should examine recent news articles to understand the context
and any underlying reasons for these interactions. This will help us identify any emerging trends
or significant events that might influence future relations.
Next, we will retrieve recent news articles involving Australia and China to gain contextual
insights.
Action:

1 # Define the date range for recent news articles
2 recent_start_date = Date("2023-10-01")
3 recent_end_date = Date("2023-11-02")
4 recent_date_range = DateRange(start_date=recent_start_date, end_date=recent_end_date)
5
6 # Retrieve recent news articles involving Australia and China
7 news_articles = get_news_articles(date_range=recent_date_range, head_entities=[aus_code],

tail_entities=[chn_code])
8
9 # Print the retrieved news articles

10 for article in news_articles:
11 print(article)

Observation:

1 (Date(date="2023-11-02"), "No quick fix to remaining tariffs ahead of China visit")
2 (Date(date="2023-11-02"), "China"s aggression in Indo-Pacific leads to "concern and angst":

Peter Dutton, Australia"s leader of opposition")
3 (Date(date="2023-11-02"), "Australia and China eye new ways to heal old wounds")
4 (Date(date="2023-11-02"), "Albanese must aim beyond bilateral outcomes on Beijing visit")
5 (Date(date="2023-11-02"), "Western Australian Premier Announces Visit to China")
6 (Date(date="2023-11-02"), "Australian PM"s China visit will help normalize relations, says

ex-trade minister")
7 (Date(date="2023-11-02"), "Nicholas Moore on how to get in early on the next big growth

story")
8 (Date(date="2023-11-02"), "PM"s China trip cements new era for ties")
9 (Date(date="2023-11-02"), "PM to take a hard line on trade with China")

10 (Date(date="2023-11-01"), "Australian Prime Minister Anthony Albanese to raise imprisoned
democracy blogger during China visit")

5. Thought: The recent news articles provide valuable context for the relations between Australia
and China. Key themes include:

1. Diplomatic Visits and Engagements: Multiple articles highlight the upcoming visit of
Australian Prime Minister Anthony Albanese to China. This aligns with the frequent occurrence
of CAMEO code 042 (Make a visit).
2. Economic Cooperation and Trade: Discussions around trade and economic cooperation are
prominent, indicating ongoing efforts to improve economic ties. This supports the relevance of
CAMEO codes 061 (Cooperate economically) and 036 (Express intent to meet or negotiate).
3. Concerns and Tensions: Articles mention concerns about China"s aggression in the Indo-
Pacific and human rights issues, suggesting underlying tensions. This is reflected in the occasional
occurrence of CAMEO code 173 (Arrest or detain).
Given the historical data and recent news context, the most likely relations that Australia will
take towards China on November 03, 2023, include diplomatic visits, economic cooperation, and
negotiations, with a possibility of addressing underlying tensions.
Final Answer:

1 {
2 "03": ["031", "036"],
3 "04": ["040", "042", "043", "046"],
4 "06": ["061"],
5 "17": ["173"]
6 }

Action: Final Answer:

1 {
2 "03": ["031", "036"],
3 "04": ["040", "042", "043", "046"],

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

4 "06": ["061"],
5 "17": ["173"]
6 }

F.1.5 AGENT FINAL STATUS

• End State: Final Answer
• Number of Steps Taken: 5
• Final Answer:

1 {
2 "03": ["031", "036"],
3 "04": ["040", "042", "043", "046"],
4 "06": ["061"],
5 "17": ["173"]
6 }

We show the corresponding relation names of the predicted codes here for a better review:

1 {
2 "Express intent to cooperate": ["Express intent to engage in material cooperation", "

Express intent to meet or negotiate"],
3 "Consult": ["Consult, not specified", "Make a visit", "Host a visit", "Engage in

negotiation"],
4 "Engage in material cooperation": ["Cooperate economically"],
5 "Coerce": ["Arrest or detain"]
6 }

• Ground Truth Answer:

1 {
2 "03": ["036"],
3 "04": ["042"],
4 "17": ["172"]
5 }

We show the corresponding relation names of the ground-truth codes here for a better review:

1 {
2 "Express intent to cooperate": ["Express intent to meet or negotiate"],
3 "Consult": ["Make a visit"],
4 "Coerce": ["Impose administrative sanctions"]
5 }

F.2 GPT-4O-BASED AGENT WITH REACT AND “SINGLE FUNCTION” ACTION

F.2.1 QUERY DETAILS

• Query Quadruplet: (2023-11-03, AUS, ?, CHN)
• Temporal Distance: 1; therefore, the current date is 2023-11-02
• Agent Max Steps: 20
F.2.2 QUERY PROMPT

Please forecast the relations that Australia will take towards China on November 03, 2023 based
on historical information up to November 02, 2023. I.e. forecast the relation CAMEO codes
in query event Event(date=2023-11-03, head_entity=ISOCode(AUS), relation=CAMEOCode(?),
tail_entity=ISOCode(CHN)).

F.2.3 SYSTEM PROMPT

You are an expert in forecasting future events based on historical data. The database contains news
articles from January 1, 2023 to the current date November 02, 2023 and the events extracted from
these articles. The events are in the form of (date, subject country, relation, object country), where
the countries are represented by ISO 3166-1 alpha-3 codes and the relations are represented by the
CAMEO codes defined in the "Conflict and Mediation Event Observations" ontology. The relations
are hierarchical: first-level relations are general parent relations represented by two-digit CAMEO
codes, while second-level relations are more specific child relations represented by three-digit
CAMEO codes. Child relations have the same first two digits as their parent relations. For example,
"01" is a first-level relation, and "010" and "011" are some of its second-level relations. The relations
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in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You
have access to a defined Python API that allows you to query the database for historical events and
statistics, and to get precise information about the ISO country codes and CAMEO relation codes.

The defined API is described as follows:
``` python
{api_description}
```

You will use an iterative approach, interleaving "Thought", "Action", and "Observation"
steps to collect information and perform the forecast. You may perform up to 20 iterations. The steps
are as follows:

- "Thought": Analyze the current information and reason about the current situation, and
predicts which API you want to use (try to use different APIs to collect diverse information) or make
a decision that you want to make a final answer.
- "Action": Use the API to gather more information or provide the final forecast.

- If using the API: the action must be only one single line of exactly one function call from the
API with appropriate inputs, without additional code, explanations, or natural language descriptions.

- If making the final forecast: the action must start immediately with "Final Answer:", and follow
with the results in the expected JSON format.
- "Observation": Return the output of the called function.

To make a reasonable forecast, you should collect both news and relational evidence to
support your prediction. When you are fully confident that you accumulate enough information
to make the final forecast, you should start the "Thought" with your reasoning using the news
and structural information to make the prediction, and then start the "Action" step with "Final
Answer:" followed by the answer in the expected JSON format. The answer should be a
JSON dictionary where the keys are the forecasted two-digit first-level CAMEO codes and
the values are lists of forecasted three-digit second-level CAMEO codes that are child relations
of the key. For example, "Action: Final Answer: {"01": ["010", "011", "012"], "02": ["020", "023"]}".

The final answer will be evaluated based on the precision and recall of the forecasted first-
level and second-level relations, so only include confident first-level and second-level CAMEO codes
in your final forecast.

Try to use different APIs to collect diverse information (including multi-hop relations),
such as the precise meaning of CAMEO codes, insights from news content, relational data, and
statistical analyses to support your forecasts. Consider not only the frequency of the relations but also
the temporal aspects of the data when making your forecast.
F.2.4 AGENT REACT PROCESS

1. Thought: To forecast the relations that Australia (AUS) will take towards China (CHN) on
November 03, 2023, I will start by gathering historical data on the interactions between these two
countries. This will include the types of relations, their frequencies, and the context in which they
occurred. I will use the following steps:
(a) Retrieve the distribution of second-level relations between Australia and China.
(b) Analyze the distribution to identify the most common types of interactions.
(c) Examine recent news articles to understand the context and any ongoing trends or events that

might influence future relations.
Action:

1 get_relation_distribution(head_entities=[ISOCode("AUS")], tail_entities=[ISOCode("CHN")])

Observation:

1 {CAMEOCode(code="042"): 32,
2 CAMEOCode(code="036"): 30,
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3 CAMEOCode(code="040"): 17,
4 CAMEOCode(code="061"): 16,
5 CAMEOCode(code="046"): 12,
6 CAMEOCode(code="043"): 11,
7 CAMEOCode(code="010"): 6,
8 CAMEOCode(code="020"): 5,
9 CAMEOCode(code="173"): 5,

10 CAMEOCode(code="012"): 5,
11 CAMEOCode(code="051"): 4,
12 CAMEOCode(code="163"): 3,
13 CAMEOCode(code="128"): 2,
14 CAMEOCode(code="050"): 2,
15 CAMEOCode(code="084"): 2,
16 CAMEOCode(code="090"): 2,
17 CAMEOCode(code="174"): 1,
18 CAMEOCode(code="112"): 1,
19 CAMEOCode(code="130"): 1,
20 CAMEOCode(code="160"): 1,
21 CAMEOCode(code="172"): 1,
22 CAMEOCode(code="192"): 1,
23 CAMEOCode(code="190"): 1,
24 CAMEOCode(code="060"): 1,
25 CAMEOCode(code="030"): 1,
26 CAMEOCode(code="035"): 1,
27 CAMEOCode(code="138"): 1,
28 CAMEOCode(code="071"): 1,
29 CAMEOCode(code="031"): 1}

2. Thought: The distribution of second-level relations between Australia and China shows a va-
riety of interactions, with some relations being more frequent than others. The most common
interactions include:
- "042" (Consult): 32 occurrences
- "036" (Express intent to cooperate): 30 occurrences
- "040" (Assure): 17 occurrences
- "061" (Cooperate economically): 16 occurrences
- "046" (Praise or endorse): 12 occurrences
- "043" (Apologize): 11 occurrences

These frequent interactions suggest a trend towards diplomatic and cooperative engagements.
However, to make a more informed forecast, it is essential to understand the context and any
recent developments that might influence future relations.
Next, I will retrieve recent news articles involving Australia and China to gather insights on the
current context and any ongoing trends or events.
Action:

1 get_news_articles(date_range=DateRange(start_date=Date("2023-10-01"), end_date=Date("
2023-11-02")), head_entities=[ISOCode("AUS")], tail_entities=[ISOCode("CHN")])

Observation:

1 [(Date(date="2023-11-02"), "No quick fix to remaining tariffs ahead of China visit"),
2 (Date(date="2023-11-02"), "China"s aggression in Indo-Pacific leads to "concern and angst"

: Peter Dutton, Australia"s leader of opposition"),
3 (Date(date="2023-11-02"), "Australia and China eye new ways to heal old wounds"),
4 (Date(date="2023-11-02"), "Albanese must aim beyond bilateral outcomes on Beijing visit"),
5 (Date(date="2023-11-02"), "Western Australian Premier Announces Visit to China"),
6 (Date(date="2023-11-02"), "Australian PM"s China visit will help normalize relations, says

ex-trade minister"),
7 (Date(date="2023-11-02"), "Nicholas Moore on how to get in early on the next big growth

story"),
8 (Date(date="2023-11-02"), "PM"s China trip cements new era for ties"),
9 (Date(date="2023-11-02"), "PM to take a hard line on trade with China"),

10 (Date(date="2023-11-01"), "Australian Prime Minister Anthony Albanese to raise imprisoned
democracy blogger during China visit")]

3. Thought: The recent news articles indicate a mix of diplomatic, economic, and security-related
interactions between Australia and China. Key themes include:
- Diplomatic engagements and efforts to normalize relations, as seen in articles about the
Australian Prime Minister"s visit to China and efforts to heal old wounds.
- Economic cooperation and trade discussions, including addressing tariffs and trade issues.
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- Security concerns and criticisms, particularly related to China"s actions in the Indo-Pacific
region and human rights issues.

Given these themes, it is likely that the future relations between Australia and China will involve
a combination of diplomatic assurances, economic cooperation, and some critical statements or
actions related to security and human rights.
Next, I will retrieve detailed descriptions of the most frequent second-level relations to ensure
accurate mapping and understanding of these interactions.
Action:

1 map_cameo_to_relation(CAMEOCode("042"))

Observation:

1 Relation(cameo_code=CAMEOCode("042"), name="Make a visit", description="Travel to another
location for a meeting or other event.")

4. Thought: The relation "042" (Make a visit) involves traveling to another location for a meeting
or other event, which aligns with the recent news about the Australian Prime Minister"s visit to
China. This suggests that diplomatic visits are a significant aspect of the interactions between
Australia and China.
To further refine the forecast, I will retrieve detailed descriptions for the other most frequent
second-level relations: "036", "040", "061", "046", and "043".
Action:

1 map_cameo_to_relation(CAMEOCode("036"))

Observation:

1 Relation(cameo_code=CAMEOCode("036"), name="Express intent to meet or negotiate",
description="Offer, promise, agree to, or otherwise indicate willingness or commitment
to meet, visit, or engage in talks or negotiations.")

5. Thought: The relation "036" (Express intent to meet or negotiate) involves indicating a willingness
or commitment to meet, visit, or engage in talks or negotiations. This aligns with the ongoing
diplomatic efforts and discussions mentioned in the recent news articles.
Next, I will retrieve detailed descriptions for the relations "040", "061", "046", and "043" to further
understand the context of these interactions.
Action:

1 get_parent_relation(CAMEOCode("040"))

Observation:

1 Relation(cameo_code=CAMEOCode("04"), name="Consult", description="All consultations and
meetings.")

6. Thought: The parent relation ‘04‘ (Consult) encompasses all consultations and meetings, which
is consistent with the frequent diplomatic interactions between Australia and China. The specific
relation "040" (Assure) likely involves providing assurances during these consultations.
To further refine the forecast, I will retrieve detailed descriptions for the relations "061", "046",
and "043".
Action:""
Observation: No feedback from the environment due to the null action.

7. Thought: I will continue retrieving detailed descriptions for the relations "061", "046", and "043"
to further understand the context of these interactions.
Action:""
Observation: No feedback from the environment due to the null action.

8. Thought: It seems there was an issue with my previous actions. I will now proceed to retrieve the
detailed descriptions for the remaining frequent second-level relations: "061", "046", and "043".
Action:
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1 map_cameo_to_relation(CAMEOCode("061"))

Observation:

1 Relation(cameo_code=CAMEOCode("061"), name="Cooperate economically", description="Initiate,
resume, improve, or expand economic exchange or cooperation.")

9. Thought: The relation "061" (Cooperate economically) involves initiating, resuming, improving,
or expanding economic exchange or cooperation. This aligns with the recent news articles
discussing trade issues and economic cooperation between Australia and China.
Next, I will retrieve detailed descriptions for the relations "046" and "043".
Action:

1 map_cameo_to_relation(CAMEOCode("046"))

Observation:

1 Relation(cameo_code=CAMEOCode("046"), name="Engage in negotiation", description="Negotiate
or bargain with others.")

10. Thought: The relation "046" (Engage in negotiation) involves negotiating or bargaining with
others. This is consistent with the ongoing discussions and negotiations mentioned in the news
articles, particularly regarding trade and diplomatic issues.
Next, I will retrieve the detailed description for the relation "043".
Action:""
Observation: No feedback from the environment due to the null action.

11. Thought: It seems there was an issue with my previous actions. I will now proceed to retrieve
the detailed description for the relation "043" to complete the understanding of the most frequent
interactions between Australia and China.
Action:

1 map_cameo_to_relation(CAMEOCode("043"))

Observation:

1 Relation(cameo_code=CAMEOCode("043"), name="Host a visit", description="Host or receive a
visitor at residence, office or home country.")

12. Thought: The relation "043" (Host a visit) involves hosting or receiving a visitor at a residence,
office, or home country. This aligns with the diplomatic visits and engagements mentioned in the
recent news articles.
Based on the detailed descriptions and the recent news context, the most frequent interactions
between Australia and China involve diplomatic visits, economic cooperation, negotiations, and
assurances. These interactions suggest a trend towards diplomatic and cooperative engagements,
with some critical statements or actions related to security and human rights.
Given this information, I am confident in forecasting the following relations between Australia
and China on November 03, 2023:
- Diplomatic visits and engagements ("042", "043", "036") - Economic cooperation ("061") -
Negotiations ("046") - Assurances ("040")
Action: Final Answer: {"04": ["040", "042", "043", "046"], "03": ["036"], "06": ["061"]}

F.2.5 AGENT FINAL STATUS

• End State: Final Answer
• Number of Steps Taken: 12
• Final Answer:

1 {
2 "03": ["036"],
3 "04": ["040", "042", "043", "046"],
4 "06": ["061"]
5 }
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We show the corresponding relation names of the predicted codes here for a better review:

1 {
2 "Express intent to cooperate": ["Express intent to meet or negotiate"],
3 "Consult": ["Consult, not specified", "Make a visit", "Host a visit", "Engage in

negotiation"],
4 "Engage in material cooperation": ["Cooperate economically"]
5 }

• Ground Truth Answer:

1 {
2 "03": ["036"],
3 "04": ["042"],
4 "17": ["172"]
5 }

We show the corresponding relation names of the ground-truth codes here for a better review:

1 {
2 "Express intent to cooperate": ["Express intent to meet or negotiate"],
3 "Consult": ["Make a visit"],
4 "Coerce": ["Impose administrative sanctions"]
5 }

F.3 GPT-4O-MINI-BASED AGENT WITH REACT AND “CODE BLOCK” ACTION

F.3.1 QUERY DETAILS

• Query Quadruplet: (2024-02-08, PNG, ?, AUS)
• Temporal Distance: 1; therefore, the current date is 2024-02-07
• Agent Max Steps: 20
F.3.2 QUERY PROMPT

Please forecast the relations that Papua New Guinea will take towards Australia on February 08, 2024
based on historical information up to February 07, 2024. I.e. forecast the relation CAMEO codes
in query event Event(date=2024-02-08, head_entity=ISOCode(PNG), relation=CAMEOCode(?),
tail_entity=ISOCode(AUS)).

F.3.3 SYSTEM PROMPT

You are an expert in forecasting future events based on historical data. The database contains news
articles from January 1, 2023 to the current date February 07, 2024 and the events extracted from
these articles. The events are in the form of (date, subject country, relation, object country), where
the countries are represented by ISO 3166-1 alpha-3 codes and the relations are represented by the
CAMEO codes defined in the "Conflict and Mediation Event Observations" ontology. The relations
are hierarchical: first-level relations are general parent relations represented by two-digit CAMEO
codes, while second-level relations are more specific child relations represented by three-digit
CAMEO codes. Child relations have the same first two digits as their parent relations. For example,
"01" is a first-level relation, and "010" and "011" are some of its second-level relations. The relations
in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You
have access to a defined Python API that allows you to query the database for historical events and
statistics, and to get precise information about the ISO country codes and CAMEO relation codes.
You are also authorized to utilize additional safe, well-established Python libraries such as numpy,
pandas, scikit-learn, and NetworkX to enhance your data analysis and forecasting accuracy.

The defined API is described as follows:
``` python
{api_description}
```

You will use an iterative approach, interleaving "Thought", "Action", and "Observation"
steps to collect information and perform the forecast. You may perform up to 20 iterations. The steps
are as follows:
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- "Thought": Analyze the current information and reason about the current situation, and
predicts which API you want to use (try to use different APIs to collect diverse information) or make
a decision that you want to make a final answer.
- "Action": Use the API to gather more information or provide the final forecast.

- If gathering more data: the action must be an executable Python code snippet that starts with
```python and ends with ```. It can contain multiple lines of codes and function calls using the
defined API or Python libraries. You must use print() to output the results, and only the printed output
will be returned in the observation step.

- If making the final forecast: the action must start immediately with "Final Answer:", and follow
with the answer in the expected JSON format. This should not be enclosed within triple backticks.
- "Observation": Return the printed output of the executed code snippet.

To make a reasonable forecast, you should collect both news and relational evidence to
support your prediction. When you are fully confident that you accumulate enough information
to make the final forecast, you should start the "Thought" with your reasoning using the news
and structural information to make the prediction, and then start the "Action" step with "Final
Answer:" followed by the answer in the expected JSON format. The answer should be a
JSON dictionary where the keys are the forecasted two-digit first-level CAMEO codes and
the values are lists of forecasted three-digit second-level CAMEO codes that are child relations
of the key. For example, "Action: Final Answer: {"01": ["010", "011", "012"], "02": ["020", "023"]}".

The final answer will be evaluated based on the precision and recall of the forecasted first-
level and second-level relations, so only include confident first-level and second-level CAMEO codes
in your final forecast.

Try to use different APIs and Python libraries to collect diverse information (including
multi-hop relations), such as the precise meaning of CAMEO codes, insights from news content,
relational data, and statistical analyses to support your forecasts. Consider not only the frequency of
the relations but also the temporal aspects of the data when making your forecast.
F.3.4 AGENT REACT PROCESS

1. Thought: To forecast the relations that Papua New Guinea (PNG) will take towards Australia
(AUS) on February 08, 2024, I need to gather historical data on events involving these two
countries. Specifically, I will look for patterns in the relations between PNG and AUS in the past
events to understand the likely future interactions.
First, I will check the distribution of relations between PNG and AUS over the past year to identify
any prevalent patterns or trends. This will help me understand the types of relations that have been
most common and could indicate future behavior.
I will use the ‘get_relation_distribution’ API to get this information.
Action:

1 # Define the date range for the past year up to February 07, 2024
2 date_range = DateRange(start_date=Date("2023-02-08"), end_date=Date("2024-02-07"))
3 head_entities = [ISOCode("PNG")] # Papua New Guinea
4 tail_entities = [ISOCode("AUS")] # Australia
5
6 # Get the distribution of relations between PNG and AUS
7 relation_distribution = get_relation_distribution(date_range=date_range, head_entities=

head_entities, tail_entities=tail_entities)
8 print(relation_distribution)

Observation:
1 {CAMEOCode(code=’042’): 8, CAMEOCode(code=’036’): 7, CAMEOCode(code=’043’): 4, CAMEOCode(

code=’057’): 4, CAMEOCode(code=’030’): 2, CAMEOCode(code=’010’): 2, CAMEOCode(code=’
181’): 1, CAMEOCode(code=’051’): 1, CAMEOCode(code=’046’): 1, CAMEOCode(code=’055’):
1, CAMEOCode(code=’130’): 1, CAMEOCode(code=’160’): 1}

2. Thought: The relation distribution between Papua New Guinea (PNG) and Australia (AUS) over
the past year reveals several notable patterns:
• CAMEO Code ‘042’: This relation appears 8 times, which suggests a strong tendency for PNG

to engage in "Make a public statement" towards Australia.
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• CAMEO Code ‘036’: With 7 occurrences, this indicates a frequent pattern of "Negotiate"
relations.

• CAMEO Code ‘043’: This relation, which signifies "Make a public statement, not specified,"
has been observed 4 times, indicating a general trend in public communication.

• CAMEO Code ‘057’: Also appearing 4 times, this suggests some level of "Express intent to
cooperate," which could be significant for future interactions.

• Other codes like ‘030’ (Make a statement, not specified) and ‘010’ (Make statement, not
specified) also show minor interactions.

Given the high frequency of relations involving public statements and negotiations, it is likely that
PNG will continue to engage in similar relations with Australia in the near future.
Next, I will analyze the context of news articles related to PNG and AUS to see if there are
any recent developments or trends that could influence their future relations. This will provide
additional insights into the nature of their interactions.
I will use the ‘get_news_articles‘ API to gather relevant news articles from the past month that
mention both PNG and AUS. This will help me understand current sentiments or events that could
impact their relationship on February 08, 2024.
Action:

1 # Define the date range for the past month leading up to February 07, 2024
2 date_range = DateRange(start_date=Date("2024-01-07"), end_date=Date("2024-02-07"))
3 head_entities = [ISOCode("PNG")] # Papua New Guinea
4 tail_entities = [ISOCode("AUS")] # Australia
5
6 # Get news articles that mention both PNG and AUS
7 news_articles = get_news_articles(date_range=date_range, head_entities=head_entities,

tail_entities=tail_entities)
8 print(news_articles)

Observation:

1 [(Date(date=’2024-02-07’), ’Papua New G u i n e a s PM to Visit Australian Parliament, Address
B e i j i n g s Influence’),

2 (Date(date=’2024-02-07’), "PNG wants to stand on its ’own two feet’: PM Marape"),
3 (Date(date=’2024-02-07’), ’Papua New G u i n e a s PM to address Australian parliament as

Pacific security race with China builds’),
4 (Date(date=’2024-01-11’), "Travel warning issued as ’widespread public disorder’ rages in

Port Moresby")]

3. Thought: The recent news articles regarding Papua New Guinea (PNG) and Australia (AUS)
indicate significant developments that could influence their relations on February 08, 2024.
Notably, the Prime Minister of PNG is scheduled to visit the Australian Parliament and address
issues related to Beijing’s influence in the region. This suggests a proactive approach by PNG to
strengthen ties with Australia, particularly in the context of regional security and cooperation.
The repeated mention of "widespread public disorder" in Port Moresby could indicate internal
challenges for PNG, which may affect its diplomatic posture. However, the focus on addressing
Australian Parliament implies that PNG is keen on maintaining a dialogue with Australia and
possibly negotiating support or partnerships.
Given the historical data showing a strong inclination towards public statements and negotiations
(CAMEO Codes ‘042’ and ‘036’), along with the current political context, it is reasonable to
forecast that PNG will likely engage in similar relations with Australia.
Based on the analysis of both the historical event distribution and the recent news articles, I will
forecast the following CAMEO codes for the relation that Papua New Guinea will take towards
Australia on February 08, 2024:

• CAMEO Code ‘042’: Make a public statement (high frequency in historical data).
• CAMEO Code ‘036’: Negotiate (also high frequency).
• CAMEO Code ‘057’: Express intent to cooperate (indicated by recent news context).

Action:

1 Final Answer: {"04": ["042"], "05": ["057"], "03": ["036"]}
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F.3.5 AGENT FINAL STATUS

• End State: Final Answer
• Number of Steps Taken: 3
• Final Answer:

1 {
2 "03": ["036"],
3 "04": ["042"],
4 "05": ["057"]
5 }

We show the corresponding relation names of the predicted codes here for a better review:

1 {
2 "Express intent to cooperate": ["Express intent to meet or negotiate"],
3 "Consult": ["Make a visit"],
4 "Engage in diplomatic cooperation": ["Sign formal agreement"]
5 }

• Ground Truth Answer:

1 {
2 "01": ["010"],
3 "05": ["051"]
4 }

We show the corresponding relation names of the ground-truth codes here for a better review:

1 {
2 "Make public statement": ["Make statement, not specified"],
3 "Engage in diplomatic cooperation": ["Praise or endorse"]
4 }

F.4 GPT-4O-MINI-BASED AGENT WITH REACT AND “SINGLE FUNCTION” ACTION

F.4.1 QUERY DETAILS

• Query Quadruplet: (2024-02-08, PNG, ?, AUS)
• Temporal Distance: 1; therefore, the current date is 2024-02-07
• Agent Max Steps: 20
F.4.2 QUERY PROMPT

Please forecast the relations that Papua New Guinea will take towards Australia on February 08, 2024
based on historical information up to February 07, 2024. I.e. forecast the relation CAMEO codes
in query event Event(date=2024-02-08, head_entity=ISOCode(PNG), relation=CAMEOCode(?),
tail_entity=ISOCode(AUS)).

F.4.3 SYSTEM PROMPT

You are an expert in forecasting future events based on historical data. The database contains news
articles from January 1, 2023 to the current date February 07, 2024 and the events extracted from
these articles. The events are in the form of (date, subject country, relation, object country), where
the countries are represented by ISO 3166-1 alpha-3 codes and the relations are represented by the
CAMEO codes defined in the "Conflict and Mediation Event Observations" ontology. The relations
are hierarchical: first-level relations are general parent relations represented by two-digit CAMEO
codes, while second-level relations are more specific child relations represented by three-digit
CAMEO codes. Child relations have the same first two digits as their parent relations. For example,
"01" is a first-level relation, and "010" and "011" are some of its second-level relations. The relations
in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You
have access to a defined Python API that allows you to query the database for historical events and
statistics, and to get precise information about the ISO country codes and CAMEO relation codes.

The defined API is described as follows:
``` python
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{api_description}
```

You will use an iterative approach, interleaving "Thought", "Action", and "Observation"
steps to collect information and perform the forecast. You may perform up to 20 iterations. The steps
are as follows:

- "Thought": Analyze the current information and reason about the current situation, and
predicts which API you want to use (try to use different APIs to collect diverse information) or make
a decision that you want to make a final answer.
- "Action": Use the API to gather more information or provide the final forecast.

- If using the API: the action must be only one single line of exactly one function call from the
API with appropriate inputs, without additional code, explanations, or natural language descriptions.

- If making the final forecast: the action must start immediately with "Final Answer:", and follow
with the results in the expected JSON format.
- "Observation": Return the output of the called function.

To make a reasonable forecast, you should collect both news and relational evidence to
support your prediction. When you are fully confident that you accumulate enough information
to make the final forecast, you should start the "Thought" with your reasoning using the news
and structural information to make the prediction, and then start the "Action" step with "Final
Answer:" followed by the answer in the expected JSON format. The answer should be a
JSON dictionary where the keys are the forecasted two-digit first-level CAMEO codes and
the values are lists of forecasted three-digit second-level CAMEO codes that are child relations
of the key. For example, "Action: Final Answer: {"01": ["010", "011", "012"], "02": ["020", "023"]}".

The final answer will be evaluated based on the precision and recall of the forecasted first-
level and second-level relations, so only include confident first-level and second-level CAMEO codes
in your final forecast.

Try to use different APIs to collect diverse information (including multi-hop relations),
such as the precise meaning of CAMEO codes, insights from news content, relational data, and
statistical analyses to support your forecasts. Consider not only the frequency of the relations but also
the temporal aspects of the data when making your forecast.
F.4.4 AGENT REACT PROCESS

1. Thought: To forecast the relations between Papua New Guinea (PNG) and Australia (AUS) for
February 08, 2024, I need to gather historical data on events involving these two countries. I will
start by counting the number of events that have occurred between PNG and AUS in the past
year to see which relations have been most prevalent. This will help me identify potential future
relations.
Action:

1 count_events(date_range=DateRange(start_date=Date("2023-02-08"), end_date=Date("2024-02-07"
)), head_entities=[ISOCode("PNG")], tail_entities=[ISOCode("AUS")])

Observation:

1 33

2. Thought: The count of 33 events indicates that there has been a significant number of interactions
between Papua New Guinea and Australia over the past year. Next, I will analyze the distribution
of relations between these two countries to understand which specific CAMEO relations are most
common. This will help me identify likely future relations.
Action:

1 get_relation_distribution(date_range=DateRange(start_date=Date("2023-02-08"), end_date=Date
("2024-02-07")), head_entities=[ISOCode("PNG")], tail_entities=[ISOCode("AUS")])

Observation:
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1 {CAMEOCode(code=’042’): 8, CAMEOCode(code=’036’): 7, CAMEOCode(code=’043’): 4, CAMEOCode(
code=’057’): 4, CAMEOCode(code=’030’): 2, CAMEOCode(code=’010’): 2, CAMEOCode(code=’
181’): 1, CAMEOCode(code=’051’): 1, CAMEOCode(code=’046’): 1, CAMEOCode(code=’055’):
1, CAMEOCode(code=’130’): 1, CAMEOCode(code=’160’): 1}

3. Thought: The distribution of relations between Papua New Guinea and Australia shows that the
most common relations are as follows:
• CAMEO Code ‘042’: 8 events (likely related to economic agreements or cooperation).
• CAMEO Code ‘036’: 7 events (likely related to diplomatic relations).
• CAMEO Code ‘043’: 4 events (possibly related to trade).
• CAMEO Code ‘057’: 4 events (possibly related to military cooperation).
Given the frequency of these relations, it is likely that Papua New Guinea will continue to engage
in similar interactions with Australia. To further refine my forecast, I will analyze the specific
descriptions of these relations to understand their context better and see if any recent news articles
provide insights into future interactions.
Action:

1 get_relation_distribution(date_range=DateRange(start_date=Date("2023-01-01"), end_date=Date
("2024-02-07")), head_entities=[ISOCode("PNG")], tail_entities=[ISOCode("AUS")])

Observation:

1 {CAMEOCode(code=’042’): 8, CAMEOCode(code=’036’): 7, CAMEOCode(code=’043’): 5, CAMEOCode(
code=’057’): 4, CAMEOCode(code=’030’): 2, CAMEOCode(code=’010’): 2, CAMEOCode(code=’
181’): 1, CAMEOCode(code=’051’): 1, CAMEOCode(code=’046’): 1, CAMEOCode(code=’055’):
1, CAMEOCode(code=’130’): 1, CAMEOCode(code=’160’): 1}

4. Thought: The distribution of relations remains consistent with the previous observation, indicating
that the most common interactions between Papua New Guinea and Australia are primarily focused
on economic agreements (CAMEOCode ‘042’) and diplomatic relations (CAMEOCode ‘036’).
To further understand the context of these relations, I will retrieve recent news articles that mention
Papua New Guinea and Australia to see if there are any specific events or agreements that could
influence the relations on February 08, 2024. This will help me make a more informed forecast.
Action:

1 get_news_articles(date_range=DateRange(start_date=Date("2023-01-01"), end_date=Date("
2024-02-07")), head_entities=[ISOCode("PNG")], tail_entities=[ISOCode("AUS")])

Observation:

1 [(Date(date=’2024-02-07’), ’Papua New G u i n e a s PM to Visit Australian Parliament, Address
B e i j i n g s Influence’),

2 (Date(date=’2024-02-07’), "PNG wants to stand on its ’own two feet’: PM Marape"),
3 (Date(date=’2024-02-07’), ’Papua New G u i n e a s PM to address Australian parliament as

Pacific security race with China builds’),
4 (Date(date=’2024-01-11’), "Travel warning issued as ’widespread public disorder’ rages in

Port Moresby"),
5 (Date(date=’2024-01-11’), ’Papua New Guinea declares state of emergency after deadly riots

’)]

5. Thought: The recent news articles indicate that Papua New Guinea’s Prime Minister is set to visit
the Australian Parliament and address concerns regarding China’s influence in the Pacific. This
suggests a focus on diplomatic relations and security cooperation between PNG and AUS. The
emphasis on standing on their "own two feet" also hints at a desire for economic independence
and cooperation.
Given the historical data showing a strong presence of economic agreements (CAMEOCode
‘042’) and diplomatic relations (CAMEOCode ‘036’), along with the context provided by recent
news articles, it is reasonable to forecast that Papua New Guinea will likely engage in diplomatic
discussions and economic cooperation with Australia on February 08, 2024.
Action:

1 Final Answer: {"04": ["042", "043"], "03": ["036"], "05": ["057"]}
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F.4.5 AGENT FINAL STATUS

• End State: Final Answer
• Number of Steps Taken: 5
• Final Answer:

1 {
2 "03": ["036"],
3 "04": ["042", "043"],
4 "05": ["057"]
5 }

We show the corresponding relation names of the predicted codes here for a better review:

1 {
2 "Express intent to cooperate": ["Express intent to meet or negotiate"],
3 "Consult": ["Make a visit", "Host a visit"],
4 "Engage in diplomatic cooperation": ["Sign formal agreement"]
5 }

• Ground Truth Answer:

1 {
2 "01": ["010"],
3 "05": ["051"]
4 }

We show the corresponding relation names of the ground-truth codes here for a better review:

1 {
2 "Make public statement": ["Make statement, not specified"],
3 "Engage in diplomatic cooperation": ["Praise or endorse"]
4 }
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G ADDITIONAL DETAILS OF THE BENCHMARK

G.1 COUNTRIES AND ISO CODES

We show the ISO 3166 Alpha-3 country codes and names in Table 13 and Table 14.

Table 13: List of Countries and their ISO-3166 Alpha-3 Codes (Part 1)
Code Country Code Country Code Country
AND Andorra ARE United Arab Emirates AFG Afghanistan
ATG Antigua and Barbuda AIA Anguilla ALB Albania
ARM Armenia AGO Angola ATA Antarctica
ARG Argentina ASM American Samoa AUT Austria
AUS Australia ABW Aruba ALA Åland
AZE Azerbaijan BIH Bosnia and Herzegovina BRB Barbados
BGD Bangladesh BEL Belgium BFA Burkina Faso
BGR Bulgaria BHR Bahrain BDI Burundi
BEN Benin BLM Saint Barthélemy BMU Bermuda
BRN Brunei BOL Bolivia BES Bonaire, Sint Eustatius, and Saba
BRA Brazil BHS Bahamas BTN Bhutan
BVT Bouvet Island BWA Botswana BLR Belarus
BLZ Belize CAN Canada CCK Cocos (Keeling) Islands
COD DR Congo CAF Central African Republic COG Congo Republic
CHE Switzerland CIV Ivory Coast COK Cook Islands
CHL Chile CMR Cameroon CHN China
COL Colombia CRI Costa Rica CUB Cuba
CPV Cabo Verde CUW Curaçao CXR Christmas Island
CYP Cyprus CZE Czechia DEU Germany
DJI Djibouti DNK Denmark DMA Dominica
DOM Dominican Republic DZA Algeria ECU Ecuador
EST Estonia EGY Egypt ESH Western Sahara
ERI Eritrea ESP Spain ETH Ethiopia
FIN Finland FJI Fiji FLK Falkland Islands
FSM Micronesia FRO Faroe Islands FRA France
GAB Gabon GBR United Kingdom GRD Grenada
GEO Georgia GUF French Guiana GGY Guernsey
GHA Ghana GIB Gibraltar GRL Greenland
GMB The Gambia GIN Guinea GLP Guadeloupe
GNQ Equatorial Guinea GRC Greece SGS South Georgia and South Sandwich Islands
GTM Guatemala GUM Guam GNB Guinea-Bissau
GUY Guyana HKG Hong Kong HMD Heard and McDonald Islands
HND Honduras HRV Croatia HTI Haiti
HUN Hungary IDN Indonesia IRL Ireland
ISR Israel IMN Isle of Man IND India
IOT British Indian Ocean Territory IRQ Iraq IRN Iran
ISL Iceland ITA Italy JEY Jersey
JAM Jamaica JOR Jordan JPN Japan
KEN Kenya KGZ Kyrgyzstan KHM Cambodia
KIR Kiribati COM Comoros KNA St Kitts and Nevis
PRK North Korea KOR South Korea KWT Kuwait
CYM Cayman Islands KAZ Kazakhstan LAO Laos
LBN Lebanon LCA Saint Lucia LIE Liechtenstein
LKA Sri Lanka LBR Liberia LSO Lesotho
LTU Lithuania LUX Luxembourg LVA Latvia
LBY Libya MAR Morocco MCO Monaco
MDA Moldova MNE Montenegro MAF Saint Martin
MDG Madagascar MHL Marshall Islands MKD North Macedonia
MLI Mali MMR Myanmar MNG Mongolia
MAC Macao MNP Northern Mariana Islands MTQ Martinique
MRT Mauritania MSR Montserrat MLT Malta
MUS Mauritius MDV Maldives MWI Malawi
MEX Mexico MYS Malaysia MOZ Mozambique
NAM Namibia NCL New Caledonia NER Niger
NFK Norfolk Island NGA Nigeria NIC Nicaragua
NLD The Netherlands NOR Norway NPL Nepal
NRU Nauru NIU Niue NZL New Zealand
OMN Oman PAN Panama PER Peru
PYF French Polynesia PNG Papua New Guinea PHL Philippines
PAK Pakistan POL Poland SPM Saint Pierre and Miquelon
PCN Pitcairn Islands PRI Puerto Rico PSE Palestine
PRT Portugal PLW Palau PRY Paraguay
QAT Qatar REU Réunion ROU Romania
SRB Serbia RUS Russia RWA Rwanda
SAU Saudi Arabia SLB Solomon Islands SYC Seychelles
SDN Sudan SWE Sweden SGP Singapore
SHN Saint Helena SVN Slovenia SJM Svalbard and Jan Mayen
SVK Slovakia SLE Sierra Leone SMR San Marino
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Table 14: List of Countries and their ISO-3166 Alpha-3 Codes (Part 2)

Code Country Code Country Code Country
SEN Senegal SOM Somalia SUR Suriname
SSD South Sudan STP São Tomé and Príncipe SLV El Salvador
SXM Sint Maarten SYR Syria SWZ Eswatini
TCA Turks and Caicos Islands TCD Chad ATF French Southern Territories
TGO Togo THA Thailand TJK Tajikistan
TKL Tokelau TLS Timor-Leste TKM Turkmenistan
TUN Tunisia TON Tonga TUR Türkiye
TTO Trinidad and Tobago TUV Tuvalu TWN Taiwan
TZA Tanzania UKR Ukraine UGA Uganda
UMI U.S. Outlying Islands USA United States URY Uruguay
UZB Uzbekistan VAT Vatican City VCT St Vincent and Grenadines
VEN Venezuela VGB British Virgin Islands VIR U.S. Virgin Islands
VNM Vietnam VUT Vanuatu WLF Wallis and Futuna
WSM Samoa XKX Kosovo YEM Yemen
MYT Mayotte ZAF South Africa ZMB Zambia
ZWE Zimbabwe

G.2 RELATIONS AND CAMEO CODES

We show the CAMEO relation codes and names, where the first-level relations are in two digits, and
the second-level relations are in three digits with the first two digits be the same as its parent relation:

• 01: Make public statement
– 010: Make statement, not specified
– 011: Decline comment
– 012: Make pessimistic comment
– 013: Make optimistic comment
– 014: Consider policy option
– 015: Acknowledge or claim responsibility
– 016: Reject accusation or deny responsibility
– 017: Engage in symbolic act
– 018: Make empathetic comment
– 019: Express accord

• 02: Appeal
– 020: Make an appeal or request, not specified
– 021: Appeal for material cooperation
– 022: Appeal for diplomatic cooperation
– 023: Appeal for material aid
– 024: Appeal for political reform
– 025: Appeal to yield
– 026: Appeal to others to meet or negotiate
– 027: Appeal to others to settle dispute
– 028: Appeal to others to engage in or accept mediation

• 03: Express intent to cooperate
– 030: Express intent to cooperate, not specified
– 031: Express intent to engage in material cooperation
– 032: Express intent to engage in diplomatic cooperation
– 033: Express intent to provide material aid
– 034: Express intent to institute political reform
– 035: Express intent to yield
– 036: Express intent to meet or negotiate
– 037: Express intent to settle dispute
– 038: Express intent to accept mediation
– 039: Express intent to mediate

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

• 04: Consult
– 040: Consult, not specified
– 041: Discuss by telephone
– 042: Make a visit
– 043: Host a visit
– 044: Meet at a third location
– 045: Engage in mediation
– 046: Engage in negotiation

• 05: Engage in diplomatic cooperation
– 050:Engage in diplomatic cooperation, not specified
– 051: Praise or endorse
– 052: Defend verbally
– 053: Rally support on behalf of
– 054: Grant diplomatic recognition
– 055: Apologize
– 056: Forgive
– 057: Sign formal agreement

• 06: Engage in material cooperation
– 060: Engage in material cooperation, not specified
– 061: Cooperate economically
– 062: Cooperate militarily
– 063: Engage in judicial cooperation
– 064: Share intelligence or information

• 07: Provide aid
– 070: Provide aid, not specified
– 071: Provide economic aid
– 072: Provide military aid
– 073: Provide humanitarian aid
– 074: Provide military protection or peacekeeping
– 075: Grant asylum

• 08: Yield
– 080: Yield, not specified
– 081: Ease administrative sanctions
– 082: Ease political dissent
– 083: Accede to requests or demands for political reform
– 084: Return or release
– 085: Ease economic sanction or boycott or embargo
– 086: Allow international involvement
– 087: De-escalate military engagement

• 09: Investigate
– 090: Investigate, not specified
– 091: Investigate crime or corruption
– 092: Investigate human rights abuses
– 093: Investigate military action
– 094: Investigate war crimes

• 10: Demand
– 100: Demand, not specified
– 101: Demand material cooperation
– 102: Demand for diplomatic cooperation
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– 103: Demand material aid
– 104: Demand political reform
– 105: Demand that target yield
– 106: Demand meeting or negotiation
– 107: Demand settling of dispute
– 108: Demand mediation

• 11: Disapprove
– 110: Disapprove, not specified
– 111: Criticize or denounce
– 112: Accuse
– 113: Rally opposition against
– 114: Complain officially
– 115: Bring lawsuit against
– 116: Find guilty or liable (legally)

• 12: Reject
– 120: All rejections and refusals
– 121: Reject material cooperation
– 122: Reject request or demand for material aid
– 123: Reject request or demand for political reform
– 124: Refuse to yield
– 125: Reject proposal to meet or discuss or negotiate
– 126: Reject mediation
– 127: Reject plan or agreement to settle dispute
– 128: Defy norms or law
– 129: Veto

• 13: Threaten
– 130: Threaten, not specified
– 131: Threaten non-force
– 132: Threaten with administrative sanctions
– 133: Threaten political dissent
– 134: Threaten to halt negotiations
– 135: Threaten to halt mediation
– 136: Threaten to halt international involvement
– 137: Threaten with repression
– 138: Threaten with military force
– 139: Give ultimatum

• 14: Protest
– 140: Engage in political dissent, not specified
– 141: Demonstrate or rally
– 142: Conduct hunger strike
– 143: Conduct strike or boycott
– 144: Obstruct passage or block
– 145: Protest violently or riot

• 15: Exhibit military posture
– 150: Exhibit military or police power, not specified
– 151: Increase police alert status
– 152: Increase military alert status
– 153: Mobilize or increase police power
– 154: Mobilize or increase armed forces
– 155: Mobilize or increase cyber-forces
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• 16: Reduce relations

– 160: Reduce relations, not specified
– 161: Reduce or break diplomatic relations
– 162: Reduce or stop material aid
– 163: Impose embargo or boycott or sanctions
– 164: Halt negotiations
– 165: Halt mediation
– 166: Expel or withdraw

• 17: Coerce
– 170: Coerce
– 171: Seize or damage property
– 172: Impose administrative sanctions
– 173: Arrest or detain
– 174: Expel or deport individuals
– 175: Use repression
– 176: Attack cybernetically

• 18: Assault
– 180: Use unconventional violence, not specified
– 181: Abduct or hijack or take hostage
– 182: Physically assault
– 183: Conduct suicide or car or other non-military bombing
– 184: Use as human shield
– 185: Attempt to assassinate
– 186: Assassinate

• 19: Fight
– 190: Use conventional military force, not specified
– 191: Impose blockade or restrict movement
– 192: Occupy territory
– 193: Fight with small arms and light weapons
– 194: Fight with artillery and tanks
– 195: Employ aerial weapons
– 196: Violate ceasefire

• 20: Engage in unconventional mass violence
– 200: Use massive unconventional force, not specified
– 201: Engage in mass expulsion
– 202: Engage in mass killings
– 203: Engage in ethnic cleansing
– 204: Use weapons of mass destruction

G.3 HUMAN EVALUATION ON THE DATASET QUALITY

H ADDITIONAL DETAILS ABOUT AGENT SETUP

Final answer extraction. Our agent has two stopping criteria: 1) The agent makes the final answer. 2)
The reasoning process fails to reach an answer, and ends with consecutive invalid actions, consecutive
repetitive actions, or exceeded max iterations. We define and analyze this final status in Appendix D.1.
Afterwards, we always perform an answer extraction step, which is performed by GPT-3.5-Turbo. If
the agent has not generated a final answer during ReAct, we instruct the answer extraction model to
make a prediction based on the ReAct reasoning trace. The prompt for answer extraction is shown in
Appendix I.3.
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I PROMPTS

I.1 SYSTEM PROMPTS

The system prompt provides the necessary background information, task description, and guidelines
for the LLM agent. In our case, we introduce the forecasting task, basic information of the database,
the defined API, and the planning strategies in the system prompt.

I.1.1 SYSTEM PROMPT FOR REACT AGENT WITH ACTION TYPE AS “SINGLE FUNCTION”

System prompt for ReAct agent with action type as single function (part 1)

You are an expert in forecasting future events based on historical data. The database contains
news articles from January 1, 2023 to the current date {current_date_nlp} and the events
extracted from these articles. The events are in the form of (date, subject country, relation,
object country), where the countries are represented by ISO 3166-1 alpha-3 codes and the
relations are represented by the CAMEO codes defined in the ‘Conflict and Mediation Event
Observations’ ontology. The relations are hierarchical: first-level relations are general parent
relations represented by two-digit CAMEO codes, while second-level relations are more
specific child relations represented by three-digit CAMEO codes. Child relations have the
same first two digits as their parent relations. For example, ‘01’ is a first-level relation, and
‘010’ and ‘011’ are some of its second-level relations. The relations in the database are
represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You have
access to a defined Python API that allows you to query the database for historical events and
statistics, and to get precise information about the ISO country codes and CAMEO relation
codes.

The defined API is described as follows:
```python
{api_description}
```

You will use an iterative approach, interleaving ’Thought’, ’Action’, and ’Observation’ steps
to collect information and perform the forecast. You may perform up to {max_iterations}
iterations. The steps are as follows:

- ‘Thought’: Analyze the current information and reason about the current situation, and
predicts which API you want to use (try to use different APIs to collect diverse information)
or make a decision that you want to make a final answer.
- ‘Action’: Use the API to gather more information or provide the final forecast.

- If using the API: the action must be only one single line of exactly one function
call from the API with appropriate inputs, without additional code, explanations, or
natural language descriptions.
- If making the final forecast: the action must start immediately with ‘Final Answer:’,
and follow with the results in the expected JSON format.

- ‘Observation’: Return the output of the called function.

To make a reasonable forecast, you should collect both news and relational evidence to support
your prediction. When you are fully confident that you accumulate enough information to
make the final forecast, you should start the ‘Thought’ with your reasoning using the news
and structural information to make the prediction, and then start the ‘Action’ step with ‘Final
Answer:’ followed by the answer in the expected JSON format. The answer should be a
JSON dictionary where the keys are the forecasted two-digit first-level CAMEO codes and the
values are lists of forecasted three-digit second-level CAMEO codes that are child relations
of the key. For example, ‘Action: Final Answer: "01": ["010", "011", "012"], "02": ["020",
"023"]’.
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System prompt for ReAct agent with action type as single function (part 2)

The final answer will be evaluated based on the precision and recall of the forecasted
first-level and second-level relations, so only include confident first-level and second-level
CAMEO codes in your final forecast.

Try to use different APIs to collect diverse information (including multi-hop relations), such
as the precise meaning of CAMEO codes, insights from news content, relational data, and
statistical analyses to support your forecasts. Consider not only the frequency of the relations
but also the temporal aspects of the data when making your forecast.

I.1.2 SYSTEM PROMPT FOR REACT AGENT WITH ACTION TYPE AS “CODE BLOCK”

System prompt for ReAct agent with action type as code block (part 1)

You are an expert in forecasting future events based on historical data. The database contains
news articles from January 1, 2023 to the current date {current_date_nlp} and the events
extracted from these articles. The events are in the form of (date, subject country, relation,
object country), where the countries are represented by ISO 3166-1 alpha-3 codes and the
relations are represented by the CAMEO codes defined in the ‘Conflict and Mediation Event
Observations’ ontology. The relations are hierarchical: first-level relations are general parent
relations represented by two-digit CAMEO codes, while second-level relations are more
specific child relations represented by three-digit CAMEO codes. Child relations have the
same first two digits as their parent relations. For example, ‘01’ is a first-level relation, and
‘010’ and ‘011’ are some of its second-level relations. The relations in the database are
represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. You have
access to a defined Python API that allows you to query the database for historical events
and statistics, and to get precise information about the ISO country codes and CAMEO
relation codes. You are also authorized to utilize additional safe, well-established Python
libraries such as numpy, pandas, scikit-learn, and NetworkX to enhance your data analysis
and forecasting accuracy.

The defined API is described as follows:
``` python
{api_description}
```

You will use an iterative approach, interleaving ‘Thought’, ‘Action’, and ‘Observation’ steps
to collect information and perform the forecast. You may perform up to max_iterations
iterations. The steps are as follows:

- ‘Thought’: Analyze the current information and reason about the current situation, and
predicts which API you want to use (try to use different APIs to collect diverse information)
or make a decision that you want to make a final answer.
- ‘Action’: Use the API to gather more information or provide the final forecast.

- If gathering more data: the action must be an executable Python code snippet that
starts with ‘```python’ and ends with ‘```’. It can contain multiple lines of codes and
function calls using the defined API or Python libraries. You must use print() to output
the results, and only the printed output will be returned in the observation step.
- If making the final forecast: the action must start immediately with ‘Final Answer:’,
and follow with the answer in the expected JSON format. This should not be enclosed
within triple backticks.

- ‘Observation’: Return the printed output of the executed code snippet.
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System prompt for ReAct agent with action type as code block (part 2)

To make a reasonable forecast, you should collect both news and relational evidence
to support your prediction. When you are fully confident that you accumulate enough
information to make the final forecast, you should start the ‘Thought’ with your reasoning
using the news and structural information to make the prediction, and then start the ‘Action’
step with ‘Final Answer:’ followed by the answer in the expected JSON format. The answer
should be a JSON dictionary where the keys are the forecasted two-digit first-level CAMEO
codes and the values are lists of forecasted three-digit second-level CAMEO codes that are
child relations of the key. For example, ‘Action: Final Answer: {"01": ["010", "011", "012"],
"02": ["020", "023"]}’.

The final answer will be evaluated based on the precision and recall of the forecasted
first-level and second-level relations, so only include confident first-level and second-level
CAMEO codes in your final forecast.

Try to use different APIs and Python libraries to collect diverse information (including
multi-hop relations), such as the precise meaning of CAMEO codes, insights from news
content, relational data, and statistical analyses to support your forecasts. Consider not only
the frequency of the relations but also the temporal aspects of the data when making your
forecast.

I.1.3 SYSTEM PROMPT FOR DIRECT AGENT

System prompt for direct agent

You are an expert in forecasting future events based on historical data. The events are in the
form of (date, subject country, relation, object country), where the countries are represented
by ISO 3166-1 alpha-3 codes and the relations are represented by the CAMEO codes defined
in the ‘Conflict and Mediation Event Observations’ ontology. The relations are hierarchical:
first-level relations are general parent relations represented by two-digit CAMEO codes,
while second-level relations are more specific child relations represented by three-digit
CAMEO codes. Child relations have the same first two digits as their parent relations. For
example, ‘01’ is a first-level relation, and ‘010’ and ‘011’ are some of its second-level
relations. The relations in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. The answer
should be a JSON dictionary where the keys are the forecasted two-digit first-level CAMEO
codes and the values are lists of forecasted three-digit second-level CAMEO codes that are
child relations of the key. For example, ‘Final Answer: {{“01”: [“010”, “011”, “012”], “02”:
[“020”, “023”]}}’.

The final answer will be evaluated based on the precision and recall of the forecasted first-level
and second-level relations, so only include confident first-level and second-level CAMEO
codes in your final forecast.
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I.1.4 SYSTEM PROMPT FOR COT AGENT

System prompt for CoT

You are an expert in forecasting future events based on historical data. The events are in the
form of (date, subject country, relation, object country), where the countries are represented
by ISO 3166-1 alpha-3 codes and the relations are represented by the CAMEO codes defined
in the ‘Conflict and Mediation Event Observations’ ontology. The relations are hierarchical:
first-level relations are general parent relations represented by two-digit CAMEO codes,
while second-level relations are more specific child relations represented by three-digit
CAMEO codes. Child relations have the same first two digits as their parent relations. For
example, ‘01’ is a first-level relation, and ‘010’ and ‘011’ are some of its second-level
relations. The relations in the database are represented in the second-level form.

Your task is to forecast the future relations between two entities in a given query. To make
a reasonable forecast, you should first think and reason based on your background
knowledge. When you are confident that you have conducted enough analysis to make
the final answer, you should start answering by ’Therefore, the final answer is:‘ followed by
the answer in the expected JSON format. The JSON format should be a JSON dictionary
where the keys are the forecasted two-digit first-level CAMEO codes and the values are lists
of forecasted three-digit second-level CAMEO codes that are child relations of the key. For
example, ‘{{“01”: [“010”, “011”, “012”], “02”: [“020”, “023”]}}’.

The final answer will be evaluated based on the precision and recall of the forecasted first-level
and second-level relations, so only include confident first-level and second-level CAMEO
codes in your final forecast.

I.2 QUERY PROMPT

Query prompt

Please forecast the relations that {actor1_name} will take towards {ac-
tor2_name} on {future_date_nlp} based on historical information up to {cur-
rent_date_nlp}. I.e. forecast the relation CAMEO codes in query event
Event(date={future_date}, head_entity=ISOCode({actor1_code}), relation=CAMEOCode(?),
tail_entity=ISOCode({actor2_code})).
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I.3 ANSWER EXTRACTION PROMPT

Answer extraction prompt

Please help me extract final answer for forecasting the future relations between
two entities in a given query: forecast the relations that {actor1_name} will take
towards {actor2_name} on {future_date_nlp} based on historical information up
to current_date_nlp. I.e. forecast the relation CAMEO codes in query event
Event(date={future_date}, head_entity=ISOCode({actor1_code}), relation=CAMEOCode(?),
tail_entity=ISOCode({actor2_code})).

I have used interleaving ‘Thought’, ‘Action’, and ‘Observation’ steps to collect information
from the database and perform the forecast. The database contains news articles from January
1, 2023 to the current date current_date_nlp and the events extracted from these articles.
The events are in the form of (date, subject country, relation, object country), where the
countries are represented by ISO 3166-1 alpha-3 codes and the relations are represented by
the CAMEO codes defined in the ‘Conflict and Mediation Event Observations’ ontology.
The relations are hierarchical: first-level relations are general parent relations represented
by two-digit CAMEO codes, while second-level relations are more specific child relations
represented by three-digit CAMEO codes. Child relations have the same first two digits as
their parent relations. For example, ‘01’ is a first-level relation, and ‘010’ and ‘011’ are some
of its second-level relations. The relations in the database are represented in the second-level
form.

The final forecast answer need to forecast both first-level and second-level CAMEO codes,
and will be evaluated based on the precision and recall of both levels of relations. The final
answer content should be a JSON dictionary where the keys are the forecasted two-digit
first-level CAMEO codes and the values are lists of forecasted three-digit second-level
CAMEO codes that are child relations of the key. For example, {{“01”: [“010”, “011”,
“012”], “02”: [“020”, “023”]}}.

The latest information and forecast I have collected is as follows:
{info}

If final forecast answer has been made in the collected information indicated by "Final
Answer:", you must only reformat the final forecast answer in the expected JSON dictionary
format inside XML tags. For example: <answer>{{“01”: [“010”, “011”, “012”], “02”:
[“020”, “023”]}}</answer>.

Otherwise, if no final forecast is made, you must reason based on the information you have
collected and generate a confident final forecast answer to the query, and then reformat your
answer in the expected JSON dictionary format inside XML tags.
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J DATASHEET FOR MIRAI
J.1 MOTIVATION

1. For what purpose was the dataset created?
The MIRAI dataset was created to evaluate different capabilities of Large Language Model (LLM)
agents in forecasting international events.

2. Who created the dataset and on behalf of which entity?
The dataset was developed by a group of university researchers studying LLM reasoning. All
rights are held by the individuals themselves, rather than by third-party stakeholders.

3. Who funded the creation of the dataset?
The academic institutions support the university reasearch lab that the authors affiliate in.

J.2 COMPOSITION

1. What do the instances that comprise the dataset represent?
Each instance in the dataset represents a record of international events, including the date, involved
countries, and type of event, along with associated news articles and metadata.

2. How many instances are there in total?
The current database comprises 1,296,991 GDELT event records from January 2023 to February
2024, corresponding to 75,341 unique events and 401,013 news articles. Test splits span over
November 2023 to February 2024, each containing 100 balanced-sampled forecasting event
queries. Note these statistics reflect the dataset used in this paper’s experiments. As a dynamic
benchmark, we are committed to periodic updates, continuously expanding the historical database
and creating new test splits.

3. Does the dataset contain all possible instances or is it a sample of instances from a larger set?
The dataset represents a curated sample from the entire GDELT database. It has been created
through meticulously designed data cleaning and preprocessing steps on GDELT raw data, aimed
at enhancing the quality and reliability of the event data.

4. Is there a label or target associated with each instance?
Yes, each instance in the dataset is an event labeled with a relation type derived from the CAMEO7

event taxonomy.
5. Is any information missing from individual instances?

No, all instances are complete with all available information.
6. Are there recommended data splits (e.g., training, development/validation, testing)?

The dataset is flexible in splitting data and expanding future events to new test splits. In this
paper, we provide multiple test splits, spanning from November 2023 to February 2024. Each test
instance utilizes all preceding records as its historical dataset to ensure accuracy and relevance in
analysis. For training and development, users can flexibly use the data prior to the test splits based
on their specific research needs.

7. Are there any errors, sources of noise, or redundancies in the dataset?
The dataset has undergone extensive cleaning and structuring to minimize errors and noise.
However, residual noise from the original GDELT database may still be present.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?
While the dataset is primarily self-contained, it includes URLs to news articles, providing links to
external resources for further context and verification.

9. Does the dataset contain data that might be considered confidential?
No, the dataset contains publicly available data, and does not include confidential information. It
follows the term of use for GDELT, which is an open platform for research and analysis of global
society.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?
The dataset may include descriptions of sensitive events, such as global conflicts, due to its focus
on international relations. However, We conduct rigorous text cleaning procedures to reduce noise
from web content while enhancing the reliability and ethical integrity of the textual information,

7Conflict and Mediation Event Observations (CAMEO): https://parusanalytics.com/eventdata/data.dir/cameo.html
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following the OBELICS protocol (Laurençon et al., 2023). Thorough checks such as flagging
word ratios are employed during the data cleaning process to identify and potentially exclude
inappropriate paragraphs or entire news articles and events. This ensures the minimization of
distressing content while maintaining the integrity and relevance of the dataset for academic study.

J.3 COLLECTION PROCESS

1. How was the data associated with each instance acquired?
Data for each instance was sourced from the GDELT project, which aggregates global event data
and news articles from various worldwide media. Detailed information can be found in Section 2.3
of the paper.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)?
Data collection was facilitated through software programs that aggregate event data and news
articles from various sources. This automated collection is followed by data cleaning processes to
enhance completeness and reliability. For a detailed description of the collection and cleaning
methods, please refer to Section 2.3 of the paper. All dataset construction scripts are available in
Github and also described in its README.

3. Who was involved in the data collection process? (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)
The data collection and preprocessing were conducted by the authors, who are university re-
searchers. This work was performed as part of their academic research activities.

4. Does the dataset relate to people?
No. The dataset does not contain personal data or directly relate to individual people.

5. Did you collect the data from the individuals in questions directly, or obtain it via third
parties or other sources (e.g., websites)?
The dataset does not involve data collected from individuals directly. Instead, it is curated from
the GDELT project, which aggregates information from various global news media sources.

J.4 USES

1. Has the dataset been used for any tasks already?
The dataset has not been used for any tasks other than the ones proposed and examined in this
current paper, specifically for benchmarking the forecasting capabilities of LLM agents in predict-
ing international relations. The dataset has also supported evaluating forecasting performance of
traditional temporal knowledge graph-based methods and natural langugage-based methods.

2. What (other) tasks could the dataset be used for?
In addition to benchmarking LLM agents and traditional forecasting methods, the dataset could
be valuable for research in geopolitics, the development of other event prediction algorithms,
sentiment analysis of international events, and trend analysis in global political dynamics.

3. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?
The dataset was meticulously collected and preprocessed to ensure high quality and reliability.
However, the reliance on the GDELT project as the primary data source and the specific cleaning
process applied might influence its applicability to certain tasks. Users should consider these
factors when applying the dataset to different research areas or methodologies.

4. Are there tasks for which the dataset should not be used?
The dataset should not be used for any tasks that violate the terms of use associated with the
GDELT project. We clearlt cite the terms of use in Appendix J.7.

J.5 DISTRIBUTION

1. Will the dataset be distributed to third parties outside of the entity?
Yes, the dataset, evaluation codes and leaderboards are intended to be publicly available to foster
future research and development.

2. How will the dataset be distributed?
The database and codebase are currently available via an academic website, Google Drive, and
Github. To enhance the accessibility and utility, the distribution of current version of data and its
future updates will be enhanced by uploading the dataset to Hugging Face, and refining the API
into a more user-friendly library format in the future.
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3. Have any third parties imposed IP-based or other restrictions on the data associated with
the instances?
No, there are no IP-based or other restrictions on the data: MIRAI is curated based on the GDELT8

Event Database, which is an open platform for research and analysis of global society and all
datasets released by the GDELT Project are available for unlimited and unrestricted use for any
academic, commercial, or governmental use of any kind without fee; Data are allowed for any
redistribution, rehost, republish, and mirror of the GDELT datasets in any form, with necessary
citations9.

4. Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?
No, there are no export controls or other regulatory restrictions applied to this dataset.

5. When will the dataset be distributed?
The dataset will be made publicly available after the review process is completed, with the current
academic website, Google Drive, and Github, and additional release/updates of arXiv, Hugging
Face, and leaderboard to facilitate a more comprehensive accessibility to the research community.

6. Will the dataset be distributed under a copyright or other IP license, and/or under applicable
terms of use (ToU)?
The dataset will be distributed under the CC BY-NC 4.0 license, allowing for use and distribution
for non-commercial purposes with appropriate attribution.

J.6 MAINTENANCE

1. Who will be supporting/hosting/maintaining the dataset?
The dataset maintenance will be supporting/hosting/maintaining by the authors.

2. How can the owner/curator/manager of the dataset be contacted?
The owner/curator/manager of the dataset can be contacted through the authors’ emails.

3. Will the dataset be updated? (e.g., to correct labeling errors, add new instances, delete
instances)?
Yes, the dataset is designed as a dynamic benchmark with periodic updates. We are committed
to regularly expanding the historical database and creating new test splits. Updates will include
adding new event data, creating new test splits, and potentially correcting any identified errors.
Announcements regarding updates will be made through the project’s official channels.

4. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data would
be retained for a fixed period of time and then deleted?)
NA. This dataset does not contain data related to individuals or personal identifiers. It consists of
aggregated event data and news articles related to international events.

5. Will older version of the dataset continue to be supported/hosted/maintained?
Our dataset is designed as a cumulative, evolving benchmark. Historical event data is continuously
incorporated into the database and remains available for future event forecasting. While we
strongly recommend using the latest test splits to ensure data-contamination-free benchmarking
for all LLM models, older historical data remains an integral part of the dataset. For reproducibility
purposes, we will maintain records of the specific data versions used in published experiments.
Researchers can request access to particular historical snapshots of the dataset, subject to resource
availability. However, for ongoing research and comparisons, we encourage using the most current
version of the dataset and its latest test splits.

6. If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so?
Researchers and developers interested in extending, augmenting, or contributing to the dataset
are encouraged to submit their changes through GitHub pull requests. For additional inquiries or
detailed discussions, contacting the authors via email is recommended.

J.7 TERM OF USE FOR GDELT
Based on https://www.gdeltproject.org/about.html#termsofuse, GDELT
dataset “is an open platform for research and analysis of global society and thus all datasets

8GDELT Project: https://www.gdeltproject.org/
9GDELT Term of Use: https://www.gdeltproject.org/about.html#termsofuse
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released by the GDELT Project are available for unlimited and unrestricted use for any aca-
demic, commercial, or governmental use of any kind without fee.”, as long as “any use or re-
distribution of the data must include a citation to the GDELT Project and a link to this website
(https://www.gdeltproject.org/).”, which we’ve cited in abstract.
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