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Abstract

In this manuscript we propose a framework for the analysis of whole slide images (WSI) on
the cell entity space with self-supervised deep learning on graphs and explore its represen-
tation quality at different levels of application. It consists of a two step process in which the
cell level analysis is performed locally, by clusters of nearby cells that can be seen as small
regions of the image, in order to learn representations that capture the cell environment
and distribution. In a second stage, a WSI graph is generated with these regions as nodes
and the representations learned as initial node embeddings. The graph is leveraged for a
downstream task, region of interest (ROI) detection addressed as a graph clustering. The
representations outperform the evaluation baselines at both levels of application, which has
been carried out predicting whether a cell, or region, is tumor or not based on its learned
representations with a logistic regressor.

Keywords: Computational histopathology, graph neural networks, self-supervised learn-
ing

1. Introduction

The digitization of pathology slides into multi-resolution whole-slide images (WSI) has
revolutionized the clinical practitioners’ work routine and has become a standard method
for disease diagnosis and characterization by allowing experts to work at different scales and
resolutions. In addition, its adoption has triggered the field of computational histopathology,
which explores the application of machine learning algorithms, among others, for computer-
aided diagnosis from pathology slides.

Convolutional neural networks (CNN) have been successfully employed at all ranges of
applications, from entity detection and classification (i.e. cell detection) to WSI classifica-
tion (Srinidhi et al., 2021). WSI processing is usually carried out by splitting the slide into
smaller image patches that are independently processed by a CNN and finally aggregated if
the application requires it. Recently, graph representations of histology images have been
proposed in order to model the relationships between biological entities of the slide, such
as cell graphs (CG) (Zhou et al., 2019), (Jaume et al., 2021b) and tissue graphs (TG) (Pati
et al., 2022), (Anklin et al., 2021), as well as to leverage patch positional and contextual
information with patch graphs (PG) (Levy et al., 2021). The nodes of a CG are the cells of
an image, and its connectivity usually is defined by connecting those cells that are close to
each other (i.e. kNN graph, radius graph), assuming that nearby cells are likely to interact.
However, a WSI can contain thousands or millions of cells, which presents computational
challenges, so this approach is commonly addressed with smaller image tiles. Alternatively,
PGs are intended to represent larger images, such as WSIs, by creating a graph whose
nodes are patch representations obtained with a CNN in a previous step, and connecting
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those patches that are adjacent or overlap, so that the patch representations can be ex-
tended to include neighborhood information. The analysis is addressed with Graph Neural
Networks (GNN) (Hamilton, 2021), a framework for the application of neural networks to
graph structured data. Additionally, there is an increasing literature on the interpretability
of this family of models, which encourages their usage in medical applications (Jaume et al.,
2021b).

We propose a GNN framework for the processing of WSIs at cell-level and apply it to the
automatic detection of regions of interest (ROI), which is crucial towards developing reliable
computer-aided diagnoses methods that can contribute to pathologists’ practice. (Anklin
et al., 2021), (Ozen et al., 2021). In general, ROIs can be of any size and any shape,
which adds an extra level of difficulty to the task. We define a graph level GNN encoder
to embed local CGs created with subsets of cells to a vector space. Afterwards, a graph
is created from a WSI employing the previous representations as initial node attributes,
in order to perform a graph clustering into different ROIs. The models are trained in a
self-supervised manner, firstly by maximizing the mutual information (MI) between local
and global representations and subsequently by optimizing the spectral modularity of the
cluster assignments. The representations are firstly evaluated at cell level to detect tumor
cells with a dataset of lung WSIs and patches with cell annotations and at region level to
predict tumor regions in breast cancer WSIs, which is also addressed as a clustering task.

2. Methodology

In this section we describe the steps of the proposed method. In Section 2.1 we introduce
the preprocessing steps needed, namely background removal and cell detection. Then, we
explain how these cells are spatially clustered to create subgraphs of cells that represent im-
age regions in Section 2.2 and how these subgraphs are embedded to vector representations
with a GNN encoder in Section 2.3. In Section 2.4 we describe how the vector representa-
tions of these subgraphs (or regions) are employed to define a graph that represents a WSI
and finally, in Section 2.5, this graph is leveraged to carry out a cluster analysis for ROI
detection.

2.1. Preprocessing

Given an input WSI, the preprocessing step consists of the nuclei detection and character-
ization. The positions of the N cells nuclei P = {pi}Ni=1 are extracted with a HoVerNet
(Graham et al., 2019) trained on the PanNuke (Gamper et al., 2020) dataset provided by
Histocartography package (Jaume et al., 2021a). In this initial project, the input cell fea-
tures X = {xi}Ni=1 are their morphological features such as of the nuclei and the convex
hull, eccentricity, diameter, extent, major and minor axis, perimeter and solidity.

Prior to feeding the HoVerNet for nuclei detection, we must split the image into smaller
patches and remove those that correspond to background and contain no information. In
order to optimize this process, we first run a tissue detection algorithm on a downsampled
version of the WSI to shortlist the set of candidate patches. Afterwards, the amount of
tissue of the remaining patches is estimated and those with less than 20% of tissue are
discarded as well.
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2.2. Local subgraph representation

The WSI is represented as a set of overlapping subgraphs of cells. To define the subgraphs,
we cluster the cells following the implementation proposed in (Lu et al., 2020), but perform-
ing a soft cluster assignment that yields to overlapped clusters. The motivation roots in
the fact that it allows different samples, or subgraphs, to share information, which is more
convenient in next steps. Formally, given the set of centroid positions of all cells in the WSI,
P = {pi}Ni=1, we randomly subsample them by a factor of rs, which is a hyperparameter, so
that it results in a subset of P ′ = {pj}rsNj=1 . Afterwards, agglomerative clustering is applied

to cluster the cells of P ′ into K clusters based on their spatial proximity, C ′ = {cj}rsNj=1 ,
cj ∈ {1, ...,K}. The number of clusters K is fixed as a small ratio rc of the amount of sub-
sampled cells K = rc|P ′|, bein rc another hyperparameter. Finally, for every cell i, pi ∈ P ,
we get the set of labels of its koverlap nearest neighbors, which leads to an overlapping clus-
tering when the nearest neighbors in P ′ of a cell in P are allocated to distinct clusters. The
connectivity of every subset of cells is generated with the Delaunay triangulation algorithm.
The final result is a set of K overlapped subgraphs G = {Gk = (Xk, Pk, Ak)}Kk=1.

2.3. Local subgraph encoder

The objective is to learn a function fΘ : (X,P,A) ∈ R|VG|×d × R|VG|×2 × VG × VG → RD
with a neural network parametrized by Θ that embeds a subgraph G = (X,P,A) to one
single vector representation zG ∈ RD.

2.3.1. Encoder architecture

The mapping fΘ is a composition of a permutation equivariant message passing encoder
hϕ and a permutation invariant global pooling gψ, fΘ = gψ ◦ hϕ. The message passing hϕ
has been implemented with a L-layer GIN (Xu et al., 2019), whose node-update equation is

x
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i = h

(l)
ϕ

(
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)
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LSTM-based jumping knowledge (Xu et al., 2018) layer that obtains the final representation
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LSTM so that the network is able to attend at different hops of the node’s neighborhood.

Finally, the graph-level representation zG is obtained with the permutation invariant
global pooling gψ, which has been implemented as a concatenation of mean, variance, max
and min poolings followed by a fully connected neural network (FCNN) that projects the
aggregations to a lower dimensional space:

zG = gψ

 1

|VG|
∑
i∈VG

zi ||
1

|VG|
∑
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(zi − µ)2 || max
i∈VG

zi || min
i∈VG

zi
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2.3.2. Encoder self-supervised training

The lack of fine-grained annotations motivates the usage of self-supervised methods to
train fΘ. We have employed InfoGraph (Sun et al., 2019) scheme, which is proposed as an
extension of Deep Graph Infomax (Veličković et al., 2019) to learn graph-level embeddings
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by maximizing the MI between global and local representations. Concretely, given a dataset
of graphs G = {Gk ∈ G}Kk=1, the parameters θ are optimized by maximizing:

θ̂, ϑ̂ = arg max
∑
G∈G

1

|VG|
∑
i∈VG

Iθ,ϑ(zi; zG) (2)

where Iθ,ϑ is the neural MI estimation function, which is calculated by a neural network
discriminator Tϑ parametrized by ϑ.

2.4. WSI graph representation

The embeddings of the local subgraphs of a WSI, Z = {zk}Kk=1 and their positions P =
{pk}Kk=1, where every pk is computed as the centroid of the convex hull created by the
cells belonging to subgraph k, are employed to construct a graph that represents the WSI
G = (Z,P,A). The nodes of the graph are the subgraphs of cells previously defined, their
initial node attributes are the embeddings obtained after the encoder fΘ of Section 2.3
and its connectivity is defined as the Delaunay triangulation of the convex hull centroids
P, following the method of (Lu et al., 2020). Moreover, we apply a threshold to every
connection to remove those links connecting distant nodes.

2.5. WSI graph clustering

The representation of the WSI is leveraged to carry out an automatic ROI detection process
addressed as a self-supervised task with a clustering algorithm. On the one hand, classic
clustering methods such as k-Means on the embeddings Z would ignore the global positional
information P of these convex hulls. On the other hand, graph clustering methods use the
graph topologyA but may fail at efficiently including the representations Z, which in general
can be high dimensional.

In order to consider both the node embeddings and their local context, we propose to
employ a GNN-based clustering method. Concretely, Deep Modularity Network (DMoN)
(Anton Tsitsulin and Müller, 2020), which given the graph G groups the nodes into M
clusters by obtaining a soft assignment matrix S ∈ R|VG|×M with a message passing encoder
fφ followed by a FCNN fτ and a softmax activation function,

S = softmax(fτ (fφ(Z,A))) (3)

We have followed DMoN authors’ instructions (Anton Tsitsulin and Müller, 2020) and
the encoder fφ has been implemented with a T -layer Graph Convolutional Network (GCN).
The cost function of the model is

LDMoN = − 1

2|EG|
tr(STBS) +

√
M

|VG|

∥∥∥∥∥∑
i

STi

∥∥∥∥∥− 1 (4)

where B is the modularity matrix B = A− ddT

2|EG| . The first term of the equation is derived
from a spectral relaxation of the modularity maximization problem and the second one is
intended to avoid the cluster assignments collapsing to one single cluster (Anton Tsitsulin
and Müller, 2020). Finally, cluster-level representations and adjacency can be obtained with
HM = STH and AM = STAS, where H is the matrix of node embeddings after fφ.
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Figure 1: Overview of the proposed method.
(i) The cells are clustered with overlapped cluster assignments and a graph is created for every
cluster with the Delaunay triangulation algorithm G = {Gk}. (ii) These are fed into an encoder
which outputs a vector representation for every graph Z = {zk} that can be seen as regions of the
image (iii). (iv) Delaunay triangulation between regions centroids creates a graph representing the
WSI. (v) The WSI graph is input to a GNN that performs soft cluster assignments, (vi) S = {sk}.
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3. Experiments and Evaluation

3.1. Data

The data consists of a set of 20 H&E breast cancer and lung cancer WSIs of average size
200.000×100.000 pixels provided by Institut Català de la Salut (ICS). Breast slides include
partially annotated regions as tumor or normal. Concretely, we have extracted a total of
8728 image cell clusters from breast slides, from which 5948 have no annotations and are
employed to train the encoder and 2780 are labelled as tumor or normal. On the other
hand, lung slides have no annotatios, instead, we have a set of patches extracted from these
images with cell level annotations, also classified as tumor or normal.

3.2. Self-supervised local embedding

In this section we evaluate the quality of the self-supervised embeddings. When defining
the architecture of fΘ = gψ ◦ hϕ, we have set L = 5 message passing layers and 1 layer
LSTM for hϕ, and the global pooling projection gψ is obtained with a 2-layer FCNN. We
have trained two encoders separetely, one with the breast WSIs with no annotations and
another one employing the lung slides. The set of cells P of every WSI is subsampled by
a ratio of rs = 1 × 10−2 to settle P ′ and carry out the hierarchical clustering to a set of
K = rc|P ′| clusters, rc = 2×10−1. For training, have employed Adam optimizer, a learning
rate of 1× 10−3 and a batch size of 128. We perform independent evaluations at cell level
and region level by taking the representations, fitting a logistic regressor with 20% of the
annotated data and predicting on the remaining 80%, as it is usually done in self-supervised
learning literature.

Lung slides, cell level evaluation. The evaluation is performed at cell level employing
the annotated patches of lung slides and the encoder trained on lung WSIs. A cell graph is
created for every patch with the Delaunay triangulation and they are fed into the trained
encoder. The process is shown in Figure 2. The node level embeddings zi output by hϕ are
taken and used to predict whether the corresponding cell (node) is tumoral or not with a
linear classifier. The results are contrasted with using the raw cell morphological features
xi in Table 1.

(a) Image patch (b) Cell annotations (c) Cell graph (d) Cell embeddings

Figure 2: Lung cell graph.
(a) Lung 1024 × 1024 pixels patch. (b) Cell level annotations as tumor (yellow) or normal (blue).
(c) Cell graph connectivity. (d) Cells colored according to their embedding zi.
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Breast slides, region level evaluation. Given the available region annotations of 8
WSIs, we label every subgraph Gk = (Xk, Pk, Ak) as tumor or normal. We evaluate the
subgraph embeddings zk by predicting these labels with a linear classifier given zk. Ad-
ditionally, in Table 2 we compare the performance with two other input spaces: (i) the
number of cells |Vk| and (ii) the concatenation of mean, variance, max and min of the cell
raw input features Xk, xk.

Table 1: Linear model prediction performance for tumor cells.

Input Accuracy Precision Recall F1

Random 50.0± 1.0 34.3± 1.4 49.5± 1.6 40.5± 1.4

xi 78.6± 0.6 76.2± 3.1 54.7± 1.9 63.7± 1.2
zi 87.5± 0.7 83.3± 1.2 79.5± 1.5 81.3± 0.9

Table 2: Linear model prediction performance for tumor regions.

Method Accuracy Precision Recall F1

Random 50.4± 0.6 79.8± 0.5 50.5± 0.9 61.9± 0.7

|Vk| 72.0± 0.6 72.2± 0.6 100.0± 0.0 83.7± 0.4
xk 78.6± 0.6 79.8± 1.3 94.6± 2.0 86.4± 0.2
zk 86.5± 0.6 88.7± 0.9 92.7± 1.2 90.6± 0.4

3.3. Clustering for ROI detection

We have trained an independent model for every WSI forwarding the entire graph at once,
which is computationally tractable, in order to avoid graph-based batching strategies for
node-level tasks that could influence clustering performance. The encoder fφ consists of
1 message passing layer. The model has been trained with Adam optimizer, a learning
rate of 1 × 10−4 and a weight decay of 2 × 10−1. The clustering performance is evaluated
qualitatively by visual inspection of the assignments, shown in Figure 3 and quantitatively
in terms of normalized mutual information (NMI), adjusted rand score (ARI) and F score
with the binary ground truth labels, exposed in Table 3.

Table 3: Clustering performance.

Clustering ARI NMI F

Random 0.0± 0.0 0.0± 0.0 11.6± 0.4

k-Means 18.3± 6.3 19.5± 6.5 30.3± 3.6
DMoN 19.8± 20.2 21.2± 15.7 60.9± 10.3
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(a) WSI annotations (b) WSI ground truth

(c) k-Means clusters (d) DMoN clusters

Figure 3: WSI clustering

4. Discussion

Cell clustering strategy Aiming to reduce the size of the WSIs that can contain millions
of cells, these are split into small spatial clusters. An alternative method could be to split
the WSI into small image patches and define a cell graph for every one of them. Indeed,
patches are more frequent in the literature to encourage the usage of CNNs. However, the
grid structure of patches does not align with the cell distribution, so the process can lead
to graphs corresponding to stroma regions with almost no cells. Spatial clustering of the
cells, instead, ensures the presence of cells at every sample.

Hyperparameters At the time of subsampling the cells to cluster them and create the
subgraphs, the hyperparameters rs and rc must be chosen in a balance between computation
and space. Being n the number of data points, the time and space complexity of the
hierarchical clustering are O(n3) and O(n2), respectively. Taking into account the large
number of cells contained by a WSI, the ratio rs must be low enough to make the clustering
feasible. Once the subsampling ratio is fixed, the number of clusters ratio rc plays the role
of determining how many cell clusters will the process output, and therefore, how big are
they going to be. The value rc = 2e− 1 is the minimum we could set to obtain meaningful
clusters, otherwise the process could lead to many one-cell clusters.

Cell features In our experiments, we have employed simple cell morphological features as
initial cell attributes rather than more sophisticated representations, such as visual features
over a small patch centered on the cell-nuclei (Jaume et al., 2021a). The reason is that these
morphological features actually align with pathologists’ methods and we are interested in
demonstrating the usefulness of the contextualization effect of GNNs in this domain.
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Self-supervision The GNN encoder has been trained in a self-supervised manner due to
the lack of annotations, which results in a task agnostic encoder that is able to characterize
distinct, any-shape regions of a WSI based on their cell distribution. The evaluation of the
method at both cell level and region level demonstrates that that the model captures cell en-
vironmental information and successfully aggregates it to obtain coarse region embeddings,
yielding to multi level, hierarchical representations. We have implemented the most simple
version of InfoGraph (Sun et al., 2019), but this could be extended with, for instance, prior
matching and feature disentanglement. Alternatively, non-contrastive approaches could also
be explored.

Linear evaluation As it is common in the self-supervised learning literature, we have
followed the linear evaluation protocol to evaluate our method, which basically consists
of freezing the encoder weights, getting the representations and fitting a linear classifier
with a small part of the available annotations. The complexity of the tasks addressed, how
the input data is processed (i.e. cell clusters that lead to any-shape regions rather than
squared patches), the cell features employed, the self-supervision training scheme and the
scarce annotations available for the evaluation difficult the settlement of a baseline. For
this reason, we evaluate the model with respect to the raw input features.

Graph clustering Clustering is addressed with GNNs to leverage both node feature and
topological information. Intuitively, the cluster assignments shown in Figure 3 suggest that
DMoN clustering returns well defined regions, which makes the algorithm more suitable
for ROI detection, whereas the output of k-Means is a noisy cluster assignment that is not
coherent with the graph topology. Quantitatively, DMoN also outperform k-Means in terms
of NMI, ARI and F scores. The high standard deviation in the metrics of DMoN is caused
by a low performance in a subset of the slides that are almost completely annotated as
tumor whereas the network is trained to avoid cluster collapse.

Architectures The cell graph encoder hϕ has been implemented with a L = 5 layer
GIN model. The GIN message passing scheme has been chosen since it is well known
to be powerful for graph-level tasks. Additionally, we have not noticed any improvement
when increasing the number of layers whereas it limits other parameters such as the hidden
dimensionality or the batch size due to memory constraints. Nonetheless, we have seen that
the number of layers is important for the clustering model fφ, which, the deeper it is, the
more prone to collapse.

5. Conclusions

We present a self-supervised learning based framework for the analysis of WSIs that learns
representations for overlapped small regions of the slide based on the cells that belong to
them and, in a second stage, creates a graph of regions to represent the WSI. The model is
trained with no annotations and the scarce annotations available for unseen images during
training are employed to evaluate the representations at both cell level and region level and
it has been shown that they outperform the raw input features. In future work, we will
extend the framework by exploring other self-supervised training strategies, including more
sophisticated cell level attributes and developing an end-to-end version of the method.
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