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Abstract

Fourier phase retrieval is the problem of reconstructing images from magnitude-
only measurements. It is relevant in many areas of science, e.g., in X-ray crystal-
lography, astronomy, microscopy, array imaging and optics. When training data is
available, generative models can be used to constrain the solution set. However,
not all possible solutions are within the range of the generator. Instead, they are
represented with some error. To reduce this representation error in the context
of phase retrieval, we first leverage a novel variation of intermediate layer opti-
mization (ILO) to extend the range of the generator while still producing images
consistent with the training data. Second, we introduce new initialization schemes
that further improve the quality of the reconstruction. With extensive experiments,
we can show the benefits of our modified ILO and the new initialization schemes.

1 Introduction and Related Work

Recently, generative models have shown impressive performance to regularize inverse problems.
However, the solutions is required to lay in the range of the generator. To decrease the representation
error and thereby boost the expressiveness of these generative models, the idea of optimizing
intermediate representations has been applied to various linear inverse problems [1; 2].

In our paper, we show that this idea can be extended to solve the more difficult non-linear inverse
problem of phase retrieval. In particular, we tackle the challenging problem of non-oversampled
Fourier phase retrieval. For brevity, we define the problem for one dimension.

Fourier Phase Retrieval: In many imaging applications in physics, we are only able to measure
the magnitude of the Fourier transform of an image, e.g., in X-ray crystallography [3], astronomy [4],
microscopy [5], array imaging [6] or optics [7]. The magnitude measurements are given as

y = |Fx|, (1)

where F is the discrete Fourier transform and x ∈ Rn is the original image (here represented as a
vector). As the problem is highly underdetermined we require additional information about x, which,
in this paper, will be learned from example images to constrain the solution space. We assume that
the Fourier measurements are not oversampled, i.e., we consider the case, where the image x has
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not been zero-padded which corresponds to a practical more relevant setup. A related problem is the
Gaussian phase retrieval problem, where F in Equation 1 is replaced by a (not necessarily square)
matrix A that has normally-distributed entries.

Note, that the problem of phase retrieval are more difficult than linear inverse problems due to the
non-linearity (the absolute value) in the forward model. In the following, we give a short overview of
the various approaches distinguishing between optimization-based and learning-based methods.

1.1 Methods without Learning for Phase Retrieval

One of the first (Fourier) phase retrieval algorithms is the Gerchberg-Saxton (GS) method [8]
that is based on alternating projections. Fienup [9] later introduced the hybrid-input-output (HIO)
algorithm which improved the Gerchberg-Saxton algorithm. The Gaussian phase retrieval problem
was approached by Candes et al. [10] who used methods based on Wirtinger derivatives to minimize
a least-squares loss. Wang et al. [11] considered a similar idea but used a different loss function
and so-called truncated generalized gradient iterations. Holographic phase retrieval is a related
problem, which aims to reconstruct images from magnitude measurements where a known reference
is assumed to be added onto the image. Lawrence et al. [12] approached this problem using untrained
neural-network priors.

1.2 Learning-based Methods for Phase Retrieval

Recently, learning-based methods for solving phase retrieval problems gained a lot of momentum.
They can be classified into two groups: supervised methods and unsupervised methods.

Supervised methods: These methods directly learn a mapping that reconstructs images from the
measurements. Learning feed-forward networks for solving Fourier phase retrieval was done by
Nishizaki et al. [13]. This approach was later extended to a neural network cascade by Uelwer et al.
[14], who also used conditional generative adversarial networks to solve various phase retrieval
problems [15]. Supervised learning of reference images for holographic phase retrieval was done by
Hyder et al. [16] and Uelwer et al. [17] gave further insights.

Unsupervised methods: Unsupervised methods are agnostic with respect to the measurement
operator, because they are trained on a dataset of images without the corresponding measurements.
Generative priors for compressive phase retrieval have been analyzed by Hand et al. [18] and Liu et al.
[19]. Alternating updates for compressive phase retrieval with generative models was proposed by
Hyder et al. [20]. Manekar et al. [21] used a passive loss formulation to tackle the non-oversampled
Fourier phase retrieval problem.

In the context of these related works, the method that we propose in this paper can be seen as an
unsupervised learning-based approach that can optionally be extended with a supervised component,
as we detail in Section 2.2.

1.3 Optimizing Representations of Generators for Inverse Problems

Generative models have been used to solve linear inverse problems, e.g., compressed sensing [22],
image inpainting [23]. To decrease the representation error and thereby boost the expressiveness of
these generative models, the idea of optimizing intermediate representations was successfully applied
in the context of compressed sensing [1], image inpainting and super-resolution [2]. The former
paper called this approach generator surgery, the latter intermediate layer optimization (ILO).

1.4 Our Contributions

The contributions of this paper are the following:

1. We reformulate and extend the idea of optimizing intermediate representations in generative
models for solving different phase retrieval problems. In particular, we propose a subsequent
optimization that further improves the reconstruction.

2. We introduce new learned and non-learned initialization schemes for generator-based ap-
proaches to solve inverse problems, reducing the need for multiple runs with random restarts.
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Figure 1: Structure of the generator network and, in blue, the parts relevant for steps A, B and C.

3. In extensive experiments, we consider the underdetermined Fourier phase retrieval and show
that our method provides state-of-the-art results.

4. By analyzing various combinations of methods and generator networks, we show the
influence of the choice of the generator. In further ablation studies, we show the importance
of each component of our method.

2 Phase Retrieval with Generative Models

The basic idea of applying a trained generative model G : Rk → Rn to the phase retrieval problem is
to plug G(z) into the least-squares data fitting term and to optimize over the latent variable z, i.e.,

min
z

∥∥|FG(z)| − y
∥∥2
2
. (2)

This method has been used for Gaussian phase retrieval by Hand et al. [18]. While this approach
yields good results, the reconstruction quality is limited by the range of the generator network G.
This issue is, for example, also discussed in the work of Asim et al. [24]. In the following, we explain
how the range of G can be extended by optimizing intermediate representations of G instead of only
solving Equation (2) with respect to the latent variable z.

Notation: For the exposition of the method we use the following notation: The generator network
G = Gk ◦ · · · ◦ G1 can be written as the concatenation of k layers G1, . . . , Gk. The subnetwork
consisting of layers i through j is denoted by Gj

i = Gj ◦ · · · ◦Gi. Note, that G = Gk
1 = Gi

1 ◦Gk
i+1

for 1 ≤ i ≤ k. The output of layer Gi is written as zi, i.e., zi = Gi(zi−1). The input of G is z0.

Furthermore, we define the ℓ1-ball with radius r around z as Br(z) =
{
x
∣∣ ∥x− z∥1 ≤ r

}
.

2.1 Phase Retrieval with Intermediate Layer Optimization (PRILO)

The key idea of ILO is to vary the intermediate representations learned by a sub-network of the
generator G while ensuring an overall consistency of the solution. The latter is particularly challenging
for non-linear problems like phase retrieval. As we will show in the experiments, additional steps
and special initialization schemes are essential to obtain useful results. All of these steps will be
explained next.

The generator network captures the prior knowledge and restricts the solutions of the (underdeter-
mined) phase retrieval problem. In this work, we use two important ideas:

Range extension: Hidden representations zi for i > 0 are allowed to vary outside the range of Gi
1.

This will reduce the representation error of the generator.

Image consistency: Solutions must be realistic, non-degenerate and similar to the the training
dataset. This is achieved by back-projection ensuring that zi is not too far away from the
image of some z0.
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Note that one has to strive for a trade-off between range extension and image consistency, where
range extension facilitates the optimization, while image consistency regularizes the solution.

Concretely, we repeatedly split the generator G into sub-networks Gi
1 and Gk

i+1 and iteratively
optimize the intermediate representations zi resulting from Gi

1 (instead of simply optimizing the
initial latent variable z0). In this way, we go outside the range of the sub-network Gi

1 to reduce the
mean-squared magnitude error. To make the resulting image more consistent we back-project zi
closer to the range of Gi

1. We will show that z0 from the back-projection is not only a good candidate
for the overall optimization, but also serves as a good initialization for further optimization leading to
a significant refinement of the overall solution.

To get started, we initially optimize the input variable z0 (minimize Equation (2)). This provides
starting points for all intermediate representations zi for i > 0. The overall procedure then iteratively
applies the following three steps to different intermediate layers:

A. Forward optimization: vary the intermediate representation zi to minimize the magnitude
error while staying in the ball with radius ri around the current value of zi, i.e.,

z∗i = argmin
z∈Bri

(zi)

∥∥|FGk
i+1(z)| − y

∥∥2
2
. (3)

Note, that this step possibly leaves the range of Gi
1 (range extension). By introducing

ball-constraints on the optimized variable we avoid overfitting the measurements.

B. Back-projection: find an intermediate representation Gi
1(z0) that is close to the optimal z∗i

from step A, i.e.,
z̄0 = argmin

z∈Bsi
(0)

∥∥Gi
1(z)− z∗i

∥∥2
2
, (4)

where 0 ∈ Rl denotes the vector of all zeros. By doing so we ensure that there exists a latent
z0 that yields the reconstruction. Thereby, we regularize the solution from step A to obtain
image consistency.

While these two steps have been shown to improve the overall performance of linear inverse prob-
lems, we found that for phase retrieval the following refinement step significantly improves the
reconstructions.

C. Refinement: Our intuition here is that the back-projected latent z̄0 serves as a good initial-
ization for further optimization. Starting from the z̄0 found in step B, we again optimize the
measurement error

z∗0 = argmin
z∈Br0

(z̄0)

∥∥|FG(z)| − y
∥∥2
2
. (5)

Note, that as we only optimize the latent variable of G, we do not have to apply the
back-projection again for this refinement step.

These steps can be repeated for multiple intermediate representations. After that we obtain the final
reconstruction as x∗ = G(z∗0). Steps A, B and C are visualized in Figure 1.

The three optimization problems stated in Equations (3)-(5) are solved using projected gradient
descent. This means that after each gradient descent step the iterate is projected back onto the
appropriate ℓ1-ball. In our implementation this projection is implemented using the method described
by Duchi et al. [25].

2.2 Initialization Schemes

Due to the difficulty of the phase retrieval problem, many methods are sensitive to the initialization.
Candes et al. [10] proposed a spectral initialization technique that is often used for compressive
Gaussian phase retrieval. Since it requires one to solve a large eigenvalue problem, this method
can be quite costly. A common approach to improve reconstruction performance is to use random
restarts and to select the solution with the lowest magnitude error after the optimization. However,
this requires running the method multiple times. Instead, we propose two fast initialization schemes
that use the generative model and the available magnitude information before the optimization.

4



Magnitude-Informed Initialization (MII): Deep generative models can generate a lot of images
at relatively low cost: instead of optimizing Equation (2) with random restarts, we sample a set of
starting points Z = {z(0)0 , . . . , z

(p)
0 } and select the one with the lowest magnitude mean-squared

error (MSE),
zinit
0 = argmin

z∈Z

∥∥|FG(z)| − y
∥∥2
2
, (6)

before the optimization. The empirical reason for this choice is that the MSE between the unknown
target image and the initial reconstructions G(z) for z ∈ Z strongly correlates with the MSE of their
magnitudes (correlation ρ = 0.91). This initialization scheme is applicable to other reconstruction
algorithms that search in the latent space of a generative model as well.

Learned Initialization (LI): The generator is trained on a dataset of images that are character-
istic for the problem. We use the generator to train an encoder network Eθ that maps magnitude
measurements y to latent representations z0. Once the encoder is trained, we can use it to predict an
initialization for the optimization discussed in Section 2.1.

A naive way to train the encoder network is to create input/output pairs by starting with random latent
vectors z0 and combining them with the magnitudes |FG(z0)| of the corresponding image. The
disadvantage is that the original training images are only implicitly used in this approach (because
those were used to train the generator). To leverage the generator and also the training images, we
estimate the weights θ of the encoder Eθ, such that encoded magnitudes Eθ(y) generate an image
G(Eθ(y)) that is close to the original image x. This idea originates from GAN inversion [26].

More precisely, we minimize a combination of three loss functions to train the encoder Eθ,

LMSE(G(Eθ(y)), x) + λpercLperc(G(Eθ(y), x)) + λadvLadv(Dϕ(G(Eθ(y)), Dϕ(x))), (7)

where LMSE is the image MSE, Lperc the LPIPS loss [27], and Ladv is a Wasserstein adversarial
loss [28] with gradient penalty [29] (using the discriminator network Dϕ). In our experiments, we set
λperc = 5 · 10−5 and λadv = 0.1. Note, that the generator network is fixed and we only optimize the
encoder weights θ and the discriminator weights ϕ to solve a learning objective.

Additionally, we also found it helpful to apply a small normally-distributed perturbation with mean
0 and standard deviation σ = 0.05 to the predicted latent representation. We do so because using
a fixed initialization leads to a deterministic optimization trajectory when running the optimization
multiple times.

For better exploration of the optimization landscape we also apply gradient noise during optimization.
In combination with the projection onto the feasible set the update reads as

z(k+1) = P
(
z(k) − α

(
∇zf

(
z(k)

)
+ u(k)

))
, (8)

where f is the objective function corresponding to the current step, u(k) ∼ N (0, σ2
kI) with σ2

k =
η

(1+k)γ and P is the projection onto Br(x
(0)). In our experiments we set η = 0.02 and γ = 0.55. This

noise decay schedule was proposed by Welling and Teh [30] and is also discussed by Neelakantan
et al. [31] in the context of neural network training.

One drawback of the learned initialization is that it requires one to retrain the encoder network when
the measurement matrix changes. In the following, we only evaluate this approach for the Fourier
phase retrieval problem.

3 Experimental Evaluation

We evaluate our method on the following datasets: MNIST [32], EMNIST [33], FMNIST [34], and
CelebA [35]. The first three datasets consist of 28× 28 grayscale images, whereas the latter dataset
is a collection of 200, 000 color images that we cropped and rescaled to a resolution of 64× 64.

Similar to Hand et al. [18], we use a fully-connected variational autoencoder (VAE) for the MNIST-
like datasets and a DCGAN [36] for the CelebA dataset. Both architectures were also used by Bora
et al. [22] for compressed sensing. Going beyond existing works, we are interested in improving
the performance on the CelebA dataset even further, thus we considered deeper, more expressive
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Table 1: Fourier phase retrieval: Our proposed method (being unsupervised) performs best among
classical, unsupervised and supervised approaches for MNIST and EMNIST, and second best for
FMNIST (in terms of PSNR). Best values are printed bold and second-best are underlined.

MNIST FMNIST EMNIST
Learning PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

GS [8] − 15.1826 0.5504 12.7002 0.3971 13.1157 0.5056
HIO [9] − 23.4627 0.5274 12.9530 0.4019 14.2230 0.4942
DPR [18] unsup. 23.9871 0.9005 18.8657 0.6846 20.9448 0.8568
PRILO (ours) unsup. 42.7584 0.9843 20.2087 0.7133 33.8263 0.9367
PRILO-MII (ours) unsup. 43.9541 0.9949 21.4836 0.7560 37.1807 0.9719

ResNet [13] sup. 17.0886 0.7292 17.4787 0.6070 14.4627 0.5616
E2E [15] sup. 18.5041 0.8191 20.2827 0.7400 17.4049 0.7598
CPR [14] sup. 19.6216 0.8529 20.9064 0.7768 19.3163 0.8537
PRCGAN* [15] sup. 41.3767 0.9890 25.5513 0.8376 27.1948 0.9416

Table 2: Fourier phase retrieval on CelebA: Our proposed PRILO combined with LI and StyleGAN
achieves the best results in terms of PSNR and SSIM, also against enhanced version of DPR, which
uses LI and StyleGAN. Best values are printed bold and second-best are underlined.

CelebA
Base model Learning PSNR (↑) SSIM (↑)

GS [8] − − 10.4036 0.0637
HIO [9] − − 10.4443 0.0510
DPR [18] DCGAN unsup. 16.9384 0.4457
DPR-MII DCGAN unsup. 17.8651 0.4898
PRILO DCGAN unsup. 18.3597 0.5159
PRILO-MII DCGAN unsup. 18.5656 0.5264
DPR Progressive GAN unsup. 18.4384 0.5276
DPR-MII Progressive GAN unsup. 19.5213 0.5738
PRILO Progressive GAN unsup. 19.2779 0.5665
PRILO-MII Progressive GAN unsup. 19.9057 0.5910
DPR StyleGAN unsup. 18.2606 0.4859
DPR-MII StyleGAN unsup. 20.3889 0.5972
PRILO StyleGAN unsup. 18.5542 0.5143
PRILO-MII StyleGAN unsup. 21.4223 0.6358

E2E [15] − sup. 20.1266 0.6367
PRCGAN* [15] − sup. 22.1951 0.6846
DPR-LI StyleGAN sup. 22.6223 0.7021
PRILO-LI StyleGAN sup. 23.3378 0.7247

generators, like the Progressive GAN [37] and the StyleGAN [38]. Since the optimization of the
initial latent space for deeper generators is more difficult, we expect significantly better results by
adaptively optimizing the successive layers of these models.

3.1 Phase Retrieval with Fourier Measurements

For the problem of Fourier phase retrieval, we compare our method first with the HIO algorithm [9]
and the GS algorithm [8] (both having no learning component) and then with the following supervised
learning methods: an end-to-end (E2E) learned multi-layer-perceptron [15], a residual network [13],
a cascaded multilayer-perceptron [14] and a conditional GAN approach [15]. Additionally, we apply
DPR which was originally only tested on Gaussian phase retrieval [18].

Table 1 and Table 2 show the mean peak-signal-to-noise-ratio (PSNR) and the mean structural
similarity index measure (SSIM) [39]. Each reported number was calculated on the reconstructions
of 1024 test samples. We allow four random restarts and select the generated sample resulting in the
lowest measurement error. As one can see, more expressive models result in better reconstructions.
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HIO [9]
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PRCGAN* [15]
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PRILO-MII (ours)

PRILO-LI (ours)

Target

Figure 2: Fourier measurements on CelebA: only PRILO-LI (based on StyleGAN) is able to recon-
struct finer details of the faces and produces realistic images with few artifacts.

Furthermore, we note that our proposed initialization schemes, i.e., the LI and MII, lead to improved
performance. Figure 2 shows typical reconstructions from the CelebA dataset.

Surprisingly, our unsupervised PRILO-MII approach often quantitatively outperforms the supervised
competitors (MNIST and EMNIST). Only for FMNIST we get slightly worse results which we
attribute to the performance of the underlying generator of the VAE. Notably, we outperform DPR
that uses the same generator network, which shows that the modifications explained in this paper are
beneficial. Summarizing, among classical and unsupervised methods our new approach performs
best, often even better than the supervised methods.

The CelebA dataset is more challenging and the influence of the choice of the generator networks
is substantial. We consider the DCGAN [36], the Progressive GAN [37] and the StyleGAN [38]
as base models for our approach (second column in Table 2). Furthermore, the new initialization
schemes have a strong impact. For fairness, we also combined the existing DPR approach [18] with
the various generator models and the initialization schemes. Thus we are able to study the influence
of the different components. Among the generators, StyleGAN performs best. MII improves the
results, while LI achieves even better reconstructions. For all previously mentioned combinations,
our new method PRILO is better than DPR.

3.2 Ablation Studies

In our experiments, we observed that the performance can be improved by re-running the optimization
procedure with a different initialization and selecting the result with the lowest magnitude error
which is a common practice in image reconstruction. However, this approach is quite costly. Our
initialization schemes described in Section 2.2 can be used to achieve a similar effect without the
need of re-running the whole optimization procedure multiple times. In Figure 3, we compare the
single randomly initialized latent variable, 5000 initialization using the MII approach and slightly
perturbed learned initialization (LI). Again, we consider a test set of 1024 samples. Although, we are
still using restarts in combination with our initialization, we observe that already for a single run our
initialization outperforms the results of 5 runs.

In order to assess the impact of each step on the reconstruction performance, we perform an ablation
study. We compare our complete PRILO-MII and PRILO-LI models with different modified versions
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Figure 3: Effect of the number of initializa-
tions and number of restarts onto the recon-
struction performance. Shaded areas indicate
the 95%-confidence interval.

Table 3: Ablation experiments using StyleGAN on
CelebA for Fourier measurements.

PSNR (↑) SSIM (↑)
PRILO-LI 23.3378 0.7247

only initialization 16.9070 0.4777
only step A 23.0097 0.7108
only step A and B 22.9109 0.7063
no ball constraint 22.8192 0.6974

PRILO-MII 21.4223 0.6358
only initialization 15.0566 0.3565
only step A 20.1736 0.5861
only step A and B 19.9409 0.5719
no ball constraint 19.8461 0.5540

of the model: for one, we consider omitting every optimization, i.e., we only compare with the
initialization. Next, we omit the back-projection step (B) and the refinement step (C). We also
compare with the variant of our model which we only omit step C. Finally, we analyze the impact of
the ball-constraints. Table 3 shows that each of the components is important to reach the results.

4 Conclusion

Generative models play an important role in solving inverse problem. In the context of phase retrieval,
we observe that optimizing intermediate representations is essential to obtain excellent reconstructions.
Our method PRILO, used in combination with our new initialization schemes, produces better
reconstruction results for Fourier phase retrieval than existing (supervised and unsupervised) methods.
Notably, in some cases our unsupervised variant PRILO-MII even outperforms existing supervised
methods. We also show that the initialization schemes we introduced can easily be adapted to different
methods for inverse problems that are based on generative models, e.g., DPR. Our ablation study
justifies that each of our used components is essential to achieve the reported results.

Limitations: During our experiments, we observed that some hyperparameter tuning is necessary
to achieve good results: the selected intermediate layer highly influences the results and also the radii
for the constraints play an important role. Furthermore, our approach is in some cases not able to
reconstruct the finer details and is still (to some extend) limited by the generative model.
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A Appendix

A.1 CelebA Reconstructions using the Progressive GAN

PRILO

PRILO-MII

Figure 4: Reconstructions from Fourier measurements on CelebA by PRILO and PRILO-MII based
on the Progressive GAN [37].

A.2 CelebA Reconstructions using the DCGAN

PRILO

PRILO-MII

PRILO-LI

Figure 5: Reconstructions from Fourier measurements on CelebA by PRILO and PRILO-MII based
on the DCGAN [36].

A.3 Ablation Experiments: PSNR Throughout the Optimization
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Figure 6: Ablation experiments for PRILO-LI based on StyleGAN on CelebA data: We omit different
steps of our method and report the PSNR on a validation set consisting of 64 images. PSNR
corresponding to the lowest magnitude error are highlighted.
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