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ABSTRACT

The manifold of symmetric positive definite (SPD) matrices plays a key role in
many domains, from network science to differential geometry to signal and image
processing. However, leveraging the SPD manifold geometry during inference is
challenging, as simple operations, such as mean estimation, do not have a closed-
form or easily computable solution. In this paper, we propose an end-to-end deep
learning framework, which we call a Geometric Neural Network (Geo-NN), to ef-
ficiently compute the geodesic mean of a collection of matrices lying on the SPD
manifold. Geo-NN utilizes a Matrix-Autoencoder (MAE) architecture with inter-
secting fully connected layers as its backbone. We illustrate that the matrix-normal
equation arising from Fréchet mean estimation can be converted into a loss func-
tion for optimizing the Geo-NN, which in turn approximates the geodesic mean
of a collection of SPD matrices. We demonstrate the efficacy of our framework
in both synthetic and real-world scenarios, as compared to commonly used alter-
native methods. Our simulated experiments demonstrate that Geo-NN is robust
to various noise conditions and is scalable to increasing dataset size and dimen-
sionality. Our real-world application of Geo-NN to functional connectomics data
allows us to extract network patterns associated with patient/control differences.

1 INTRODUCTION

Symmetric Positive Definite (SPD) matrices are ubiquitous across many areas of data science. For
example, they arise as covariance matrices in statistical signal processing Fuhrmann & Miller (1988),
elemental computational objects in convex and semidefinite programming Fletcher (1985), adja-
cency matrices in network science, and kernels in machine learning and graph theory Dodero et al.
(2015). Thus, the study of SPD manifolds has immense real-world utility, particularly in medical in-
formatics. Applications include statistical shape analysis Pérez & González-Farias (2013), designing
Brain Computer Interfaces (BCI) Barachant et al. (2010), or the analysis of diffusion tensors Wang &
Vemuri (2005) and functional connectomics D’Souza et al. (2021) data. In all these cases, one of the
key goals is to predict an outcome of interest based on input data lying on an SPD manifold. Methods
in this inferential setting include geometry-aware principal component analysis Horev et al. (2016),
Reimannian machine learning Yger et al. (2012); Banerjee et al. (2015), and deep learning architec-
tures Nguyen et al. (2019); Nguyen (2021) and optimization techniques Brooks et al. (2019) geared
towards the SPD manifold. Such methods rely on accurate and robust geometric mean estimation
on the SPD manifold as an integral intermediate step within their algorithmic implementations.

While the geometric properties underlying the SPD manifold have been studied through multiple
lenses, from matrix analyis to operator theory to differential geometry, efficient mean estimation on
the SPD manifold remains far more challenging than statistical estimation in Euclidean data spaces.
This is because extensions of elementary operations such as addition, subtraction, and distances on
the SPD manifold entail significant computational overhead Moakher (2005); Moakher & Batchelor
(2006). Among different mean definitions, the Fisher Information distance metric and corresponding
geodesic mean Georgiou (2007) are the most sought after due its desirable properties, such as con-
gruence invariance, determinant identity, and self duality Bhatia (2009). Unlike Euclidean spaces,
the geodesic mean on the SPD manifold does not have a closed-form solution and is often computed
via iterative optimization algorithms Jeuris et al. (2012); Poloni (2009).
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1.1 RELATED WORK

The most common approach for estimating the geodesic mean on the SPD manifold is via gradient
descent Pennec et al. (2006). While this method relies on first-order information, and thus, requires
moderate computational overhead, it does not provide guaranteed convergence from arbitrary sta-
tionary points and is highly sensitive to step size selection. To mitigate this issue, Armijo step-size
adaptions or second order optimization techniques such as conjugate gradient descent, trust-region
optimization, and BFGS methods may be employed Afsari et al. (2013). Other alternatives include
the majorization-maximization algorithm Zhang (2013), Riemannian optimization methods Jeuris
(2015), and fixed-point iterations Congedo et al. (2017). While these extensions have desirable con-
vergence properties, they significantly increase the computational complexity per iteration and do
not scale well to higher input dimensionality and larger numbers of samples Congedo et al. (2015).

In contrast to gradient methods, the work of Congedo et al. (2015) leverages the approximate joint
diagonalization Pham (2001) of matrices on the SPD manifold. This representation arises from
the Common Principal Components (CPC) formulation Jolliffe & Cadima (2016). Leveraging the
invariance properties of the geodesic mean and its interplay with the CPC objective, the authors
propose an iterative estimation procedure using the CPC solution as an initialization. While the
approximate joint diagonalization method provides guaranteed convergence to a fixed point, the
accuracy and stability of the optimization is sensitive to the deviation of the generating process from
the CPC model in practice. In the presence of severe deviations, the algorithm often diverges.

1.2 OUR CONTRIBUTIONS

We propose a novel end-to-end framework to estimate the geodesic mean of data on the SPD man-
ifold. Our method, the Geometric Neural Network (Geo-NN), leverages a matrix autoencoder for-
mulation D’Souza et al. (2021) that performs a series of bi-linear transformations on the input SPD
matrices. This strategy ensure that the estimated mean remains on the manifold at each iteration.
Our loss function for training the network is designed to approximate a first order matrix-normal
condition arising from Fréchet mean estimation Moakher (2005). Using conventional backpropaga-
tion via stochastic iterative optimization, the Geo-NN automatically learns to estimate the geodesic
mean of the input data. We demonstrate the robustness of our framework using simulation studies
and show that Geo-NN can handle both input noise and variations in the data generating process
better than current iterative methods. In addition, Geo-NN can be applied to high-dimensional data,
a notable bottleneck for the second-order methods described above. Finally, we examine the ap-
plicability of the Geo-NN to a real-world functional connectomics study and discover consistent
group differences between patients diagnosed with ADHD-Autism comorbidities and healthy con-
trols. Importantly, Geo-NN minimal assumptions about the data and can be easily adapted other
domains, both as a standalone estimation module or as a part of a larger deep learning architecture.

2 GEO-NN: GEOMETRIC MEAN ESTIMATION ON THE SPD MANIFOLD

2.1 PRELIMINARIES

Let matrices {Γn}Nn=1 ∈ M be a collection of N datapoints belong to the manifold M of Symmetric
Positive Definite (SPD) matrices of dimensionality P × P . , i.e. M ∈ P+

P . By definition, each Γn

has P strictly positive eigenvalues and is a point on a convex cone in P (P + 1)/2 dimensions.
Additionally, M is a real and smooth Reimannian manifold that is locally similar in geometry to
Euclidean space. More precisely, M is equipped with an inner product that varies smoothly at each
vector TΓ(M) in the tangent space defined at any point Γ ∈ M. Finally, a geodesic denotes a path
joining any two points on the manifold by following the manifold surface.

2.1.1 ELEMENTARY OPERATIONS ON THE SPD MANIFOLD

Geodesic Mappings: The matrix exponential and the matrix logarithm maps allow us to translate
geodesics on the manifold back and forth to the local tangent space at a reference point.

The matrix exponential mapping translates a vector V ∈ TΦ(M) in the tangent space at Φ ∈ M to a
point on the manifold Γ ∈ M via the geodesic emanating from Φ. Mathematically, the exponential
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Figure 1: The Geo-NN architecture: The input is transformed by a cascade of 2D fully connected
layers Dong et al. (2017); Huang & Van Gool (2017). The matrix logarithm function to obtain the
matrix normal form in Eq. (2.1), which serves as the loss function for Geo-NN during training.

map is parameterized as follows:

Γ = ExpmΦ(V) = Φ1/2expm(Φ−1/2VΦ−1/2)Φ1/2 (1)

Conversely, the matrix logarithm map translates the geodesic between Φ ∈ M to Γ ∈ M back to
the tangent vector V ∈ TΦ(M) and is expressed in closed form as:

V = LogmΦ(Γ) = Φ1/2logm(Φ−1/2ΓΦ−1/2)Φ1/2 (2)

Here, expm(·) and logm(·) refer to the matrix exponential and logarithm respectively. Computa-
tionally, each of these operations require an eigenvalue decomposition of the argument matrix, a
transformation applied point-wise to the eigenvalues, and a matrix reconstruction.

Distance Metric: Given two points on the manifold Γ1,Γ2 ∈ M, the Fisher Information distance
between them is the length of the geodesic connecting the two points, given by:

δR(Γ1,Γ2) = ||logm(Γ−1
1 Γ2)||F = ||logm(Γ−1

2 Γ1)||F , (3)

where ||·||F denotes the Frobenius norm. Similarly, the Reimannian norm of a matrix Γ is defined
as the geodesic distance from the identity matrix I i.e. ||Γ||R = ||logm(Γ)||F

2.2 GEODESIC MEAN ESTIMATION VIA THE GEO-NN

The geodesic mean of a collection of SPD matrices {Γn} ∈ M is defined as the matrix GR ∈ M
whose sum of squared geodesic distances (Eq. (3)) to each element of the collection is minimal Ando
et al. (2004). A pictorial illustration is provided in the green box in Fig 1. Mathematically, this
condition can be expressed as follows:

GR({Γn}) = argmin
GR

L(GR) = argmin
GR

∑
n

δ2R(GR,Γn) = argmin
GR

∑
n

||logm(G−1
R Γn)||

2

F

(4)

Eq. (4) is known to have a closed form solution for N = 2, but not for larger collections. Eq. (4)
is convex and smooth with respect to the unknown quantity GR(·) Moakher (2005). The point at
which the gradient of Eq. (4) vanishes is thus the unique minima for mean estimation. Making use
of this observation, the following theorem from Moakher (2005) can be stated.
Theorem 2.1. The geometric mean GR of a collection of N SPD matrices {Γn} is the unique
symmetric positive-definite solution to the nonlinear matrix equation
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∑
n

logm(G
−1/2
R ΓnG

−1/2
R ) = 0 (5)

where the symbol 0 denotes a P × P matrix of all zeros.

Proof: The proof follows by computing the first order necessary (and here, sufficient) condi-
tion for optimality for Eq. (4). First, we express the derivative of a real-valued function of
the form H(S(t)) = 1

2 ||logm(C−1S(t))||2F with respect to t. In this expression, the argument
S(t) = GR

1/2expm(tA)GR
1/2 is the geodesic arising from GR in the direction of ∆ = Ṡ(0) =

GR
1/2AGR

1/2, and the matrix C ∈ P+
P is a constant SPD matrix of dimension P .

By using the cyclic properties of the trace function and the distributive equivalence of
logm(A−1[B]A) = A−1[logm(B)]A, we obtain the following condition:

H(S(t)) =
1

2
||logm(C−1/2S(t)C−1/2)||

2

F

By the symmetry of the term logm(C−1/2S(t)C−1/2) we have that:

∴
d

dt
H(S(t))

∣∣∣
t=0

=
1

2

d

dt
Tr

(
[logm(C−1/2S(t)C−1/2)]2

)∣∣∣
t=0

∴
d

dt
H(S(t))

∣∣∣
t=0

= Tr
(
[logm(C−1GR)G

−1
R ∆]

)
= Tr[∆logm(C−1GR)G

−1
R ]

∴ ∇H = logm(C−1GR)G
−1
R = G−1

R logm(GRC
−1)

Notice that since ∇H is symmetric, it indeed belongs to the tangent space SP of P+
P . For L(GR)

defined in Eq. (4), we can correspondingly express the gradient as follows:

L(GR) =
∑
n

||logm(G−1
R Γn)||

2

F =⇒ ∇L(GR) = G−1
R

∑
n

logm(GRΓ
−1
n )

Since L(GR) is a sum of convex functions, the first order stationary point is the necessary and
sufficient condition for GR being the unique minima.

∴ argmin
GR

L(GR) =⇒
∑
n

logm(GRΓ
−1
n ) =

∑
n

logm(G
−1/2
R ΓnG

−1/2
R ) = 0

Denoting G
−1/2
R = V ∈ P+

P , the matrix multiplications in the argument of the logm(·) term can be
efficiently expressed within the feed-forward operations of a neural network with unknown param-
eters V. Correspondingly, the Geo-NN architecture uses the form of the matrix normal equation in
Theorem 2.1 to perform the estimation of the geometric mean.

2.3 GEO-NN ARCHITECTURE

The Geo-NN is a matrix autoencoder with tied weights, as illustrated in Fig. 1. The encoder of the
Geo-NN is a 2D fully-connected neural network (FC-NN) Dong et al. (2017); Huang & Van Gool
(2017) layer Ψenc(·) : P+

P → P+
P that projects the input matrices Γn into a latent representation.

This mapping is parameterized by weights W ∈ RP×P and is computed as a cascade of two linear
layers with tied weights, i.e., Ψenc(Γn) = WΓnW

T The decoder Ψdec(·) has the same architecture
as the encoder, but with transposed weights WT . The overall transformation can be written as:

Geo-NN(Γn) = Ψdec(Ψenc(Γn)) = WWT (Γn)WWT = V(Γn)V (6)
where V ∈ RP×P and is symmetric and positive definite by construction.

We would like our loss function to minimize Eq. (4) in order to estimate the first order stationary
point as V = G

−1/2
R . 1 Therefore, we choose to utilize the following loss function:

L(·) = 1

P 2

∣∣∣∣∣∣ 1
N

∑
n

logm
[
WWT (Γn)WWT

]∣∣∣∣∣∣2
F

(7)

1Note that to ensure invertibility of V, W should be full rank. In practice, we add a small bias to the
weights for regularization, i.e., W̃ = W + λIP and stability. Empirically, we verified the rank of W̃ and of
the logm(·) arguments at each iteration during training and did not observe any degenerate behavior.
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Formally, an error of L(·) = 0 implies that the norm argument goes to zero and therefore satisfies
the matrix normal equation exactly under the parameterization V = WWT = G

−1/2
R . Therefore,

Eq. (7) is a suitable candidate for estimation of the geodesic mean on the SPD manifold.

Since the operations in Geo-NN can be implemented as differentiable modules, we utilize standard
backpropagation to optimize Eq. (7). From an efficiency standpoint, the Geo-NN architecture maps
onto a relatively shallow neural network. Therefore, this module can be easily integrated into other
deep learning inference frameworks for example, for batch normalization on the SPD manifold. This
flexibility is the key advantage over classical methods (see Section 1.1), in which integrating the
geometric mean estimation within a larger framework is not straightforward. Finally, the extension
of Eq. (7) to the estimation of a weighted mean (with positive weights {wn}) also follows naturally.

Implementation Details: We train Geo-NN for a maximum of 200 epochs with an initial learning
rate of 0.001 decayed by 0.8 every 50 epochs. The tolerance criteria for the training loss is set at
1e−4. Geo-NN implemented in PyTorch (v1.5.1), Python 3.5 and experiments were run on an 4.9 GB
Nvidia K80 GPU. We utilize the stochastic ADAM Kingma & Ba (2014) optimizer during training
and a default PyTorch initialization for the model weights LeCun et al. (2012). The computational
complexity per iteration of Geo-NN scales as O(N × P 3) with an extra matrix multiplication and
square root operation to estimate the final geodesic mean GR.

3 EVALUATION AND RESULTS

3.1 EXPERIMENTS ON SYNTHETIC DATA

We evaluate the scalability, robustness, and adaptability of Geo-NN using simulated data. Here, we
choose the data generating process to be the Common Principal Components (CPC) framework Jol-
liffe & Cadima (2016). We compare the Geo-NN against two popular mean estimation algorithms
introduced in Section 1.1. The first algorithm is Riemannian gradient descent Pennec et al. (2006)
on the objective in Eq. (4). The second algorithm is the recently proposed Approximate Joint Diago-
nalization Log Euclidean (ALE) mean estimation Congedo et al. (2015), which leverages properties
of the approximate joint diagonalization objective Pham (2001).

Using the CPC formulation, each input SPD matrix Γn ∈ RP×P is derived from a set of components
B ∈ RP×P common to the collection and a set of example specific (and strictly positive) weights
across the components cn ∈ R(+)P×1. Let the diagonal matrix Cn be defined as Cn = diag(cn) ∈
R(+)P×P . Each Γn is expressed as an outer-product Γn = BCnB

T .

In the absence of corrupting noise, the theoretically optimal geodesic mean of the examples
{Γn}Nn=1 can be computed in closed form as follows Congedo et al. (2015) (Proof in Appendix A.1):

G∗
R = B expm

[
1

N

N∑
n=1

logm(B−1ΓnB
−T )

]
BT (8)

3.1.1 SCALABILITY OF GEO-NN

We first use the noiseless CPC setup to evaluate the scalability of the Geo-NN when varying the
dataset dimensionality P and the number of examples N . In this case, we compare the solution of
each algorithm to the theoretically optimal geodesic mean in Eq. (8).

We randomly sample columns of the component matrix B from a standard normal, i.e., B[:, j] ∼
N (0, IP ) ∀ j ∈ {1, . . . , P}, where IP is an identity matrix of dimension P . In parallel, we sample
the component weights cnk according to c

1/2
nk ∼ N (0, 1) ∀ k ∈ {1, . . . , P}. To avoid degenerate

behavior when the inputs are not full-rank, we clip cnk to a minimum value of 0.001.

We consider two experimental scenarios. In Experiment 1, we fix the data dimensionality at P = 30
and sweep the dataset size as N ∈ {5, 10, 20, 50, 100, 200}. In Experiment 2, we fix the dataset
size at N = 20 and sweep the dimensionality as P ∈ {5, 10, 20, 50, 100, 200}. For each setting, we
run all estimation algorithms ten times using different random initializations.

Metrics: We score the performance of each algorithm based on the correctness of the solution and
the execution time in seconds. The first metric of correctness is he final condition fit L(Gest

R ) from
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Figure 2: First-order condition fit (Eq. 7) for estimates for Geo-NN, gradient descent and ALE for
varying (a) Dataset size N in Experiment 1 and (b) Data Dimension P in Experiment 2.

Figure 3: Deviation from the theoretical solution Eq. 8 for Geo-NN, gradient descent and ALE for
varying (a) Dataset size N in Experiment 1 and (b) Data Dimension P in Experiment 2.

Eq. (7). It denotes the deviation of each estimate from the theoretical first order stationary point. The
second metric of correctness is the scaled squared Riemannian distance from the theoretically opti-
mal mean in Eq. (8). Mathematically, this distance is computed as dmean = d2R(G

est
R ,G∗

R)/||G∗
R||

2
R.

Lower values of the condition fit L(GR) and deviation dmean imply a better quality solution.

Results: Fig. 2 illustrates the performance of Geo-NN, gradient descent and ALE mean estimation
with respect to the first-order condition fit L(Gest

R ). Fig. 2(a) plots the results when varying the
dataset size N for a fixed matrix dimensionality P (Experiment 1), while Fig. 2(b) considers the
opposite scenario (Experiment 2). Likewise, Fig. 3(a)-(b) plot dmean for Experiment 1 and Experi-
ment 2, respectively. We observe that the first order condition fit for the Geo-NN is better than the
ALE for all settings, and better than the gradient descent for a majority of the settings. From Fig. 3,
we note that the recovery performance of Geo-NN is better than the baselines in most cases while
being a close approximation in the remaining ones.

Finally, Fig. 4(a)-(b) illustrate the time to convergence for each algorithm in Experiment 1 and
Experiment 2, respectively. As seen, the performance of Geo-NN scales with dataset size but not
matrix dimensionality. In all cases, it either beats or is competitive with ALE. We additionally
compare the concordance of the recovered Geo-NN solutions in the Appendix (Fig. 7), and observe
that the framework converges reliably.

Going one step further, we evaluate the efficacy of the Geo-NN framework when there is deviation
from the ideal CPC generating process. We observe that the Geo-NN is robust to increasing levels
of additive structured noise when compared with the baselines (Refer to the Appendix A.2.1).

3.1.2 ADAPTABILITY BEYOND THE CPC GENERATING PROCESS

Finally, we consider a low-rank data generating process. Namely, SPD matrices in many real-world
settings are assumed to be generated from a mixed effect setup, where K components (K < P ) are
common to the dataset (e.g., group mean), with the remaining (P − K) components being unique
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Figure 4: Execution time in seconds for Geo-NN, gradient descent and ALE for varying (a) Dataset
size N in Experiment 1 and (b) Data Dimension P in Experiment 2.

to each data sample, or alternatively, treated as random noise. Thus, the input data {Γn} is endowed
with intrinsic low-rank structure despite individual matrices being full rank. This assumption is
encountered in many application domains, such as spatio-temporal data modeling Schiratti et al.
(2015), functional connectomics D’Souza et al. (2020), neural population analysis Keeley et al.
(2020), and longitudinal data analysis McNeish & Bauer (2022).

Formally, we generate the SPD input matrices Γn via the following mixture model:

Γn = BCnB
T +Qndiag(dn)Q

T
n/P

B[:, j] ∼ N (0, IP ) ; c
1/2
nj ∼ N (0, 1) ∀j ∈ {1, . . . ,K}K < P

Qn ∈ Null(B) ;d
1/2
nk ∼ N (0, σ2) ∀k ∈ {1, . . . , P −K}

The columns of Qn are scaled to unit norm and to lie in the null space of B. We consider two
scenarios of interest. In Experiment 1:, we fix the dimensionality K of the common generating
process and increase the noise level parameterized by σ2. Specifically, the low-rank dimension is

Figure 5: Performance of Geo-NN, gradient descent, and ALE under a low rank generating process.
First order condition fit (Eq. 7) for (a) varying noise and (b) varying CPC dimensionality. Pairwise
distance between recovered solutions for (c) varying noise and (d) varying CPC dimensionality.
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held constant at K = 20, and the noise is varied in increments of 0.1 in the range σ ∈ [0.2, 1]. In
Experiment 2, we vary the dimensionality K while keeping the noise level fixed. Here, we hold
the noise constant at σ = 0.3, and vary the rank as K ∈ {5, 10, 15, 20, 25}. The dataset size and
matrix dimension are fixed at {P = 30, N = 50} in both experimental settings. Since there is
no closed-form solution for the theoretical mean in the mixed effects case, we use the first order
condition fit L(Gest

R ) to compare performance across algorithms. We also evaluate the consistency
of the Geo-NN solution across random initializations to quantify reliability.

Results: Fig. 5(a-b) report the first-order condition fit achieved by Geo-NN, gradient descent and
ALE for Experiment 1 and Experiment 2, respectively. Likewise, Fig. 5(c-d) illustrates the con-
sistency of the Geo-NN estimate for each experimental scenario. Once again, we observe that the
solution recovered by the Geo-NN satisfies the first order condition more closely than both baselines
algorithms. Empirically, we also encounter convergence issues using the ALE mean estimation in
the low-rank setting. This can be seen for K = 5 in Fig. 5(b), where we have not plotted any values
for the ALE algorithm because it does not converge to any finite estimate.

Taken together, the experimental results in Sections 3.1.1,A.2.1, and 3.1.2 demonstrate that Geo-NN
is a robust and generalizable mean estimation algorithm across a variety of data generation scenarios.
Encouraged by these results, we adopt Geo-NN to study a clinical neuroscience application below.

3.2 EXPERIMENTS ON REAL-WORLD CONNECTOMICS DATA

Dataset: We adopt the Geo-NN for a groupwise discrimination task on the publicly available
CNI 2019 Challenge dataset Schirmer et al. (2021). Mean regional time series are provided for
158 subjects diagnosed with Attention Deficit Hyperactivity Disorder (ADHD), 92 subjects with
Autism Spectrum Disorder (ASD) with an ADHD comorbidity Leitner (2014), and 257 healthy
controls. Functional connectomes (FC) are estimated via the Pearson’s correlation matrix, regular-
ized to be full-rank. We experiment on two different parcellations, the Automated Anatomical Atlas
(AAL) Tzourio-Mazoyer et al. (2002) (P = 116) and the Craddocks 200 atlas Craddock et al. (2012)
(P = 200). Further details about the data and pre-processing steps are provided in Appendix A.3.

Groupwise Discrimination: Given the comorbidity Leitner (2014), we expect that FC differences
between the ASD and ADHD cohorts are harder to tease apart than differences between ADHD
and controls Schirmer et al. (2021). We test this hypothesis by comparing the geodesic means
estimated via Geo-NN for the three cohorts. For robustness, we perform bootstrapped trials for
mean estimation by sampling 25 random subjects from a given group (ADHD/ASD/Controls). We
then compute the Riemannian distance d(GR({Γg1}),GR({Γg2})) between the Geo-NN means
associated with groups g1 and g2. We run a Wilcoxon signed rank test to qualify differences in the
distribution of d(·). A higher value of d(·) implies a better separation between the groups.

Fig. 6 illustrates the pairwise distances between cohorts g1−g2 across bootstrapped trials. As a san-
ity check, we note that the mean estimates across samples within the same cohort (ADHD-ADHD)
are closer than those across cohorts (ADHD-controls, ASD-controls, ADHD-ASD). More interest-

Figure 6: Groupwise discrimination between the FC matrices estimated via the (a) AAL (b) Crad-
dock’s 200 atlas, for the ADHD/ASD/Controls cohorts from the CNI 2019 Challenge Dataset. Pair-
wise distances are calculated between the Geo-NN mean estimates. Results of pairwise connectivity
comparisons between Geo-NN group means for (c) ADHD-Controls (d) ADHD-ASD groups for
the AAL parcellation. The red connections differ significantly (p < 0.001) across groups.
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ingly, we observe that ADHD-controls separation is consistently larger than that of the ADHD-ASD
groups for both parcellations. This result confirms the hypothesis that the overlapping diagnosis for
the two classes translates to a reduced separability in the space of FC matrices and indicates that
Geo-NN is able to robustly uncover population level differences in FC.

Classification: Building on the observation that Geo-NN provides reliable group-separability, we
adopt this framework for classification. Using the AAL parcellation, we randomly sample 25 sub-
jects from each class for training, and set aside the rest for evaluation with a 10%/90% validation/test
split. We estimate the geodesic mean for each group across the training samples via 10 bootstrapped
trials, in which we sub-sample 80% of the training subjects from the respective group. Permutation
testing is performed on the mean estimates Zalesky et al. (2010), and functional connections (i.e.,
entries of Γn) that differ with an FDR-corrected threshold of p < 0.001 are retained for classifi-
cation. Finally, a Random Forest classifier is trained on the selected features to classify ADHD vs
Controls. The train-validation-test splits are repeated 10 times to compute confidence intervals.

We use classification accuracy and area under the receiver operating curve (AU-ROC) as metrics
for evaluation. The Geo-NN feature selection plus Random Forest approach provides an accuracy
of 0.62 ± 0.031 and an AU-ROC of 0.60 ± 0.04 for ADHD-Control classification on the test
samples. We note that this approach outperforms all but one method on the CNI challenge leader-
board Schirmer et al. (2021). Moreover, one focus of the challenge is to observe how models trained
on the ADHD vs Control discrimination task translate to ASD (with ADHD comorbidity) vs Control
discrimination in a transfer learning setup. Accordingly, we apply the learned classifiers in each
split to ASD vs Control classification and obtain an accuracy of 0.54 ± 0.044 and an AU-ROC of
0.53 ± 0.03. This result is on par with the best performing algorithm in the CNI-TL challenge.
The drop in accuracy and AU-ROC is consistent with the performance profile of all the challenge
submissions. These results suggest that despite the comorbidity, connectivity differences between
the cohorts are subtle and hard to reliably capture. Nonetheless, the Geo-NN+RF framework is a first
step to underscoring stable, yet interpretable (see below) connectivity patterns that can discriminate
between diseased and healthy populations.

Qualitative Analysis: To better understand the group-level connectivity differences, we plot the
most consistently selected features (top 10 percent) from the previous experiment (ADHD-control
feature selection) in Fig. 6(c). We utilize the BrainNetViewer Software for visualization. The blue
circles are the AAL nodes, while the solid lines denote edges between nodes. We observe that the
highlighted connections appear to cluster in the sensorimotor and visual areas of the brain, along
with a few temporal lobe contributions. Altered sensorimotor and visual functioning has been pre-
viously reported among children and young adults diagnosed with ADHD Duerden et al. (2012);
Ahrendts et al. (2011). Adopting a similar procedure, we additionally highlight differences among
the ASD and ADHD cohorts in Fig. 6(d). The selected connections concentrate around the pre-
frontal areas of the brain, which is believed to be associated with altered social-emotional regulation
in Autism Pouw et al. (2013). We additionally provide an extended version of the group connectivity
difference results across trials in Fig. 9 (ADHD vs Controls) and Fig. 10 (ADHD vs ASD) in the
Appendix. Across train-test-val splits, we observe that the connectivity differences are fairly consis-
tent. Overall, the patterns highlighted via statistical comparisons on the Geo-NN estimates are both
robust as well as in line with the physiopathology of ADHD and ASD reported in the literature.

4 CONCLUSION

We have proposed a novel geometric neural network framework, i.e. the Geo-NN, designed to re-
liably estimate the geodesic mean of SPD matrices. We devise a loss function that can optimize
the first-order matrix normal condition for mean estimation via conventional stochastic optimiza-
tion. Through extensive simulation studies, we demonstrate that the Geo-NN scales well to high-
dimensional data, can handle input noise, and is more robust to variations in the data generating
process when compared with current iterative methods. We also demonstrate the applicability of
the Geo-NN to a real-world functional connectomics study for discovering consistent group differ-
ences between patients diagnosed with ADHD-Autism comorbidities and healthy controls. We also
demonstrate the applicability of the framework for feature selection and classification in the func-
tional connectomics setting. Given that the Geo-NN makes few assumptions, we envision it to be a
valuable tool for research in geometric deep learning and beyond.
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Raúl Alberto Pérez and Graciela González-Farias. Partial least squares regression on symmetric
positive-definite matrices. Revista Colombiana de Estadı́stica, 36(1):177–192, 2013.

Dinh Tuan Pham. Joint approximate diagonalization of positive definite hermitian matrices. SIAM
Journal on Matrix Analysis and Applications, 22(4):1136–1152, 2001.

Federico Poloni. Constructing matrix geometric means. arXiv preprint arXiv:0906.3132, 2009.

Lucinda BC Pouw, Carolien Rieffe, Lex Stockmann, and Kenneth D Gadow. The link between
emotion regulation, social functioning, and depression in boys with asd. Research in Autism
Spectrum Disorders, 7(4):549–556, 2013.
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A APPENDIX

A.1 PROOF OF THE RESULT IN EQ. 8

Let B be an invertible matrix. Writing out the geodesic mean of the collection {Γn} ∈ P+
P , we can

use the congruence invariance property to establish the following:

GR({Γn}) = B[GR(B
−1ΓnB

−T )]BT (9)

If the matrices B−1ΓnB
−T are exactly diagonal (i.e. solutions to the CPC objective Jolliffe &

Cadima (2016)), then they commute in multiplication. The geodesic mean has a closed form, that
can be computed by first averaging their matrix logarithms, and then applying a matrix exponential
on the average. We can use this property to compute the geodesic mean of {Γn}

G∗
R(B

−1ΓnB
−T ) = expm

[ 1

N

∑
n

[logm(B−1ΓnB
−T )]

]
∴ G∗

R({Γn}) = Bexpm
[ 1

N

N∑
n=1

[logm(B−1ΓnB
−T )]

]
B
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Figure 7: Pairwise distances between the recovered Geo-NN weights across initialization for varying
(a) Dataset size (b) Data Dimensionality. Lower values indicate better stability

A.2 SYNTHETIC EXPERIMENTS: QUANTIFYING RELIABILITY OF GEO-NN OPTIMIZATION

For the experiment in Section 3.1.1, we additionally quantify the stability of the Geo-NN solution.
To this end, we calculate the pairwise concordance of the final Geo-NN weights West across different
initializations via the element-wise average of the Frobenius distance between solutions. Since the
geodesic mean is computed as WWT = G

−1/2
R , lower values of dweights indicate better agreement

between recovered solutions. Fig. 7 plots dweights against (a) varying number of examples, (b) for
varying matrix dimensionality. From the scale of the error on the y-axis Fig. 7, we observe that the
Geo-NN final solutions are in close agreement. In turn, this indicates that the optimization is robust
to initialization and that the Geo-NN reliably converges to the same final solution. Combined with
the results in Section 3.1.1, we conclude that the recovered estimates deviate only slightly from the
optimal solution and consistently converge to the theoretical mean in almost all simulation settings.

A.2.1 ROBUSTNESS TO NOISE

Figure 8: Performance of the Geo-NN, gradient descent and ALE estimation under increasing addi-
tive noise: (a) First order condition fit (Eq. 7) (b) Pairwise distance between the recovered Geo-NN
solutions across random initializations. Lower values indicate better performance in each case.

In this experiment, we evaluate the performance when our simulated data deviates from the
ideal CPC process. In this case, we add rank-one structured noise to obtain the input data:
Γn = BCnB

T + 1
P xnx

T
n . As before, the bases and coefficients are randomly sampled as

B[:, j] ∼ N (0, IP ) and c
1/2
nj ∼ N (0, 1) ∀ j ∈ {1, . . . , P}. In a similar vein, the structured

noise is generated as xn ∼ N (0, σ2IP ) ∈ RP×1, with σ2 controlling the extent of the deviation.
For this experiment, we set P = 30, N = 20 and vary the noise over the range [0.2−1] in increments
of 0.1.

One caveat in this setup is that Eq. (8) is no longer the theoretically optimal mean and cannot be
used to evaluate performance. Hence, we report only the first-order condition fit {L(GR) We also
calculate the pairwise concordance dweights of the final Geo-NN weights for different initializations.
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Results: Fig. 8(a) illustrates the first-order condition fit L(Gest
R ) across all three methods for increas-

ing noise σ. As seen, L(Gest
R ) for the Geo-NN is consistently lower than the corresponding value

for the gradient descent and ALE algorithm, suggesting improved performance despite increasing
corruption to the CPC process. We note that the ALE algorithm also optimizes the first-order condi-
tion fit, and its poor performance suggests that it is particularly susceptible to noise. Fig. 8(b) plots
the pairwise distances between the geodesic means estimated by Geo-NN across the 10 random
initializations. As seen, Geo-NN produces a consistent solution, thus underscoring its robustness.

A.3 RS-FMRI DATA PRE-PROCESSING

The CNI 2019 challenge data consists of preprocessed time resting-state fMRI (rs-fMRI) time series
and demographic information Schirmer et al. (2021). The rs-fMRI data was acquired on a Phillips 3T
Achieva scanner using a single shot, partially parallel, gradient-recalled EPI sequence with TR/TE =
2500/30ms, flip angle 70, voxel resolution = 3.05× 3.15× 3mm, with a scan duration of either 128
or 156 time samples (TR). Subjects were instructed to focus on a central cross-hair while remaining
still and relax with their eyes open for the duration of the scan.

Rs-fMRI pre-processing consisted of slice time correction, rigid body realignment, and normal-
ization to the EPI version of the MNI template. Temporal detrending was performed on the time
courses, and spatially coherent noise was removed from the white matter and ventricles, along with
the linearly detrended versions of the six rigid body realignment parameters and their first derivatives
by using CompCorr Behzadi et al. (2007). The data were spatially smoothed with a 6mm FWHM
Gaussian kernel and bandpass filtered between 0.01−0.1Hz. Finally, the AFNI package Cox (1996)
was used to perform spike correction in lieu of motion scrubbing.

A.4 UNCOVERING GROUP-LEVEL CONNECTIVITY DIFFERENCES VIA THE GEO-NN

We plot the selected features from the experiments in Section 3.2 for ADHD-control feature selec-
tion) in Fig. 9 for all train-test-val splits. Similarly, we plot the selected features for ADHD vs ASD
differences in Fig. 10. We employ the BrainNetViewer Software Xia et al. (2013) for visualization.
The blue circles are the AAL nodes, while the solid lines denote edges between nodes. We observe
that across trials, i.e. random sub-samples across the cohort, several connectivity patterns show up
fairly consistently. Bolstered by this observation, we utilize the group comparison approach as a
viable feature selection framework to inform a downstream ADHD vs controls classification and for
transfer learning (i.e. ASD vs controls classification).

Figure 9: Results of pairwise connectivity comparisons between Geo-NN group means for ADHD-
Controls groups (for training subjects) across train-test-validation aplits. The red connections differ
significantly (p < 0.001) across groups
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Figure 10: Results of pairwise connectivity comparisons between Geo-NN group means for ADHD
vs ASD groups (for training subjects) across train-test-validation aplits. The ASD subjects have
ADHD comorbidities. The red connections differ significantly (p < 0.001) across groups

15


	Introduction 
	Related Work
	Our Contributions

	Geo-NN: Geometric Mean Estimation on the SPD Manifold
	Preliminaries
	Elementary Operations on the SPD Manifold

	Geodesic Mean Estimation via the Geo-NN
	Geo-NN Architecture

	Evaluation and Results
	Experiments on Synthetic Data
	Scalability of Geo-NN
	Adaptability Beyond the CPC Generating Process

	Experiments on Real-World Connectomics Data

	Conclusion
	Appendix
	Proof of the result in Eq. 8
	Synthetic Experiments: Quantifying Reliability of Geo-NN Optimization
	Robustness to Noise

	RS-fMRI Data Pre-processing
	Uncovering Group-Level Connectivity Differences via the Geo-NN


