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ABSTRACT

Referring video object segmentation (R-VOS) aims to segment the object masks1

in a video given a referring linguistic expression to the object. R-VOS introduces2

human language in the traditional VOS loop to extend flexibility, while all current3

studies are based on a strict assumption: the object depicted by the expression4

must exist in the video, namely, the expression and video must have an object-level5

semantic consensus. This is often violated in real-world applications where an6

expression can be queried to false videos, and existing methods always fail due7

to abusing the assumption. In this work, we emphasize that studying semantic8

consensus is necessary to improve the robustness of R-VOS. Accordingly, we9

pose an extended task from R-VOS without the semantic consensus assumption,10

named Robust R-VOS (R2-VOS). The new task essentially corresponds to the joint11

modeling of the primary R-VOS problem and its dual (text reconstruction). We12

embrace the observation that, the textual embedding spaces have relational structure13

consistency in the text-video-text transformation cycle that links the primary and14

dual problems. We leverage the cycle consistency to consolidate and discriminate15

the semantic consensus, thus advancing the primary task. We then propose an16

early grounding module to enable the parallel optimization of the primary and dual17

problems. To measure the robustness of R-VOS models against unpaired videos and18

expressions, we construct a new evaluation dataset, R2-Youtube-VOS. Extensive19

experiments demonstrate that our method not only identifies negative text-video20

pairs but also improves the segmentation accuracy for positive pairs with superior21

disambiguating ability. Our model achieves the state-of-the-art performance on22

Ref-DAVIS17, Ref-Youtube-VOS, and R2-Youtube-VOS dataset.23

1 INTRODUCTION24

Referring video object segmentation (R-VOS) aims to segment a referred object in a video sequence25

given a linguistic expression. R-VOS has witnessed growing interest thanks to its promising potential26

in human-computer interaction applications such as video editing and augmented reality. Unlike27

other video segmentation tasks (Xu et al., 2018; Pont-Tuset et al., 2017) that only rely on visual cues,28

R-VOS (Khoreva et al., 2018) pairs a target video with a linguistic expression referring to an object.29

Previous works (Botach et al., 2021; Wu et al., 2022) tackle the R-VOS problem with a strict30

assumption that the referred object exists in the video, i.e., there is an object-level semantic consensus31

between the expression and the video. However, this assumption does not always hold in practice.32

As shown in the second row of Figure 1, we notice a severe false-alarm problem experienced by33

previous methods when the semantic consensus does not exist, blocking such methods in various34

applications that cannot provide accurate vision-language pairs. We argue that the current R-VOS35

task is not completely defined with the assumption that the referred object always exists in the video.36

Even when semantic consensus exists in the video-language pairs, it is still challenging to locate the37

correct object due to the multimodal nature of the R-VOS task. Recently, MTTR (Botach et al., 2021)38

employs a multimodal transformer encoder to learn a joint representation of the linguistic expression39

and video, and then obtains the referred object by ranking all objects in the video. ReferFormer40

(Wu et al., 2022) follows the image-level method, ReTR (Li & Sigal, 2021), to adopt the linguistic41

expression as a query to the transformer decoder to avoid redundant ranking of all objects. However,42

these latest methods suffer from semantic misalignment of the segmented object and the linguistic43

expression, even with sophisticated components employed. As shown in the first row of Figure 1, the44

segmented objects by MTTR and ReferFormer are not the object referred to.45
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Figure 1: Illustration of the new R2-VOS task. A linguistic expression is given to query a set of
videos without the semantic consensus assumption. Videos containing the referred object by the
expression are positive, otherwise negative. Unlike the previous R-VOS setting that assumes all target
videos are positive to the query expression, the new R2-VOS task is required to discriminate positive
and negative text-video pairs, and further segment object masks in positive videos or treat entire
negative videos as backgrounds. Compared to the previous R-VOS methods, MTTR (Botach et al.,
2021) and ReferFormer (Wu et al., 2022), our method not only discriminates negative videos better
but also shows a superior disambiguating ability between visually similar objects in positive videos.

In this paper, we seek to investigate the semantic alignment problem between visual and linguistic46

modalities in referring video segmentation. We extend the current task definition of R-VOS (Khoreva47

et al., 2018) to accept both paired and unpaired video-language inputs. This new task, which we term48

Robust R-VOS (R2-VOS), overcomes the limitation of the R-VOS task by additionally considering49

the semantic alignment of input videos and referring expressions. We reveal that this task is essentially50

related to two problems that are interrelated (Mao et al., 2016): the R-VOS problem as the primary51

problem of segmenting mask sequences from videos with referring texts, and its dual problem of52

reconstructing text expressions from videos with object masks. By linking the primary and dual53

problems, we introduce a text-video-text cycle and a corresponding relational consistency constraint.54

This cycle constraint can 1) improve the segmentation accuracy by enforcing the semantic consensus55

between paired text query and segmented mask, and 2) discriminate semantic misalignment by56

assessing an explicit cycle consistency criteria to alleviate the false alarm problem. Although there57

are previous works (Shi et al., 2020; Chen et al., 2019) on referring image segmentation utilizing58

cyclic training, the primary segmentation task could be degraded due to the improper dual problem,59

because they try to reconstruct deterministic text expressions while the pretrained linguistic model60

has dataset bias for expressions. Differently, our cycle constraint is applied to the textual embedding61

space, which circumvents the raw dataset bias problem. Specifically, we equip the cycle with an62

early grounding module, which can handle the primary-dual tasks in a parallel manner and also can63

manipulate a relational cyclic constraint to preserve the structures between the input and reconstructed64

textural embedding spaces. In addition, the early grounding module benefits to locate the correct65

object by suppressing irrelevant features in an early stage. Our contributions can be summarized as:66

• We are the first to address the severe false-alarm problem faced by previous R-VOS methods67

with unpaired video-text inputs. To investigate the robustness of R-VOS models, we68

introduce the new R2-VOS task accepting unpaired inputs, as well as an evaluation dataset69

and corresponding metrics.70

• We introduce a relational cycle consistency constraint to consolidate the semantic alignment71

between visual and textual modalities, and also discriminate false-positive by assessing the72

cycle consistency criteria.73

• We propose a novel early grounding module to locate the referred object in an early stage,74

serving as a proxy, to bridge the primary referring segmentation and dual expression75

reconstruction task for joint optimization.76

• Our method outperforms previous state-of-the-art methods on Ref-Youtube-VOS, Ref-77

DAVIS, and R2-Youtube-VOS dataset.78

2 RELATED WORKS79

Vision and language representation learning. There have been a long line of studies on how to80

learn vision-language representation, e.g., multimodal attention (Luo et al., 2020; Gao et al., 2019),81

fusion scheme (Fukui et al., 2016; Kim et al., 2018), multi-step reasoning (Yang et al., 2016; Hudson82

& Manning, 2018) and pretraining (Radford et al., 2021). KAC Net (Chen et al., 2018) leverages83
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knowledge-aided consistency constraints to enhance semantic alignment for weakly supervised84

phrase grounding. A structure-preserving constraint (Wang et al., 2016) is proposed to preserve some85

intra-modal properties when learning vision-language representation for image-text retrieval.86

Referring video object segmentation. URVOS (Seo et al., 2020) is the first unified R-VOS87

framework with a cross-modal attention and a memory attention module, which largely improves R-88

VOS performance. ClawCraneNet (Liang et al., 2021a) leverages cross-modal attention to bridge the89

semantic correlation between textual and visual modalities. ReferFormer (Wu et al., 2022) and MTTR90

(Botach et al., 2021) are two latest works that utilize transformers to decode or fuse multimodal91

features. ReferFormer (Wu et al., 2022) employs a linguistic prior to the transformer decoder to92

focus on the referred object. MTTR (Botach et al., 2021) leverages a multimodal transformer encoder93

to fuse linguistic and visual features. Different from other vision-language tasks, e.g., image-text94

retrieval (Lin et al., 2014; Liu et al., 2019a; Miech et al., 2018) and video question answering (Lei95

et al., 2018; Song et al., 2018), R-VOS needs to construct object-level multimodal semantic consensus96

in a dense visual representation.97

3 R2-VOS98

Task definition. We introduce a new task, robust referring video segmentation (R2-VOS), which99

aims to predict mask sequences {Mo} for an unconstrained video set {V } given an expression Eo of100

an object o. Different from the previous R-VOS setup, the queried videos are not required to contain101

the referred object by expression Eo. A video V and an expression Eo have semantic consensus102

if the object o appears in V , and the video is positive with respect to Eo, otherwise it is negative.103

The R2-VOS task is extended to discriminate positive and negative videos, and predict masks Mo of104

object o for positive videos and treat all frames in the negative videos as background.105
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Figure 2: Problem analysis. (a) R2-VOS introduces the Primary problem of referring segmentation
and the Dual problem of text reconstruction for positive videos. The P/D problems are connected in a
cycle path from original expression Eo to reconstructed expression E′

o. (b) The cycle consistency
between the original and reconstructed embeddings (eo and e′o) can benefit to optimize the P problem.
We enable the joint optimization for cycle consistency with a cross-modal proxy fm defined between
all single-modal operations (i.e., Πenc

v , Πenc
e , Πdec

v and Πdec
e ). (c) Point-wise consistency is not

suitable in R2-VOS because the mapping between E and E ′ are not necessarily bijective. An object
can be referred by various textual expressions. (d) Instead, we apply a relational consistency to
preserve distances and angles.

Primary and dual problems for R2-VOS. The referring segmentation can be formulated as the106

maximum a posteriori estimation problem of p(Mo|V,Eo). By applying the Bayes rule, we obtain:107

p(Mo|V,Eo) ∼ p(Eo|V,Mo)p(Mo|V ) (1)

As the prior p(Mo|V ) is not affected by the expression Eo, we consider maximizing p(Eo|V,Mo)108

as a dual problem of the referring segmentation (primary problem), which is to reconstruct the text109

expression given the video and object masks. We note that for negative videos, p(Eo|V,Mo) is110

undefined because the mask Mo is empty. Thus, we only investigate the dual problem for positive111

videos. The primary problem and the dual problem can be connected in a cycle path, i.e., from the112

original expression Eo to the reconstructed expression E′
o through positive video queries, as shown113

in Figure 2 (a). We believe that the cycle constraint benefits to optimize the primary problem by114

enhancing the semantic consensus.115

In practice, we study the cycle consistency between the original textual embedding space E and the116

transformed textual embedding space E ′ induced by positive videos. By definition, the path from the117

original text embedding eo to the reconstructed text embedding e′o is modulated with cross-modal118

interactions between video and text. Thus, to link the primary and dual problem and enable the joint119
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Figure 3: Overview of the proposed model. Given a video clip V = {It}Tt=1 and a textual expression
Eo referring object o, we first extract video feature and text feature separately, then fuse them in the
early grounding module to obtain the visual representation fearly of the referred object o. Then we
project fearly to a textual space to be e′ and add the relational cycle constraint with the original text
embedding e. The final segmentation is obtained by dynamic convolutions with video features from
the visual decoder and dynamic weights from the fused text embeddings. The semantic consensus of
input pairs is discriminated to be positive or negative by assessing the consistency between e and e′.

optimization, we introduce a cross-modal intermediate feature fm to convey information of both the120

input of the primary problem (V,Eo) and the dual problem (V,Mo), as shown in Figure 2 (b). fm is121

defined between the encoder and decoder stages of single-modal operations, i.e., Πenc
v , Πenc

e , Πdec
v ,122

Πdec
e , to only focus on the multi-modal interaction.123

Relational cycle consistency. A key observation for cycle consistency between E and E ′ is that the124

mapping between them is not necessarily bijective, as there could be multiple textual descriptions125

for the same object. Thus, naively adding point-wise consistency, i.e., eo = e′o,∀eo ∈ E will126

collapse the feature space to a sub-optimal solution. Instead, we take inspiration from relational127

knowledge distillation (Park et al., 2019), and introduce relational cycle consistency for E and E ′.128

The relational cycle consistency is to preserve the structure of the feature space rather than exact129

point-wise consistency, as illustrated in Figure 2 (c) and (d). Mathematically, the structure-preserving130

property is defined as isometric and conformal constraints to preserve pair-wise distance and angles131

for e ∈ E and e′ ∈ E ′:132

|e1 − e2| = |e′1 − e′2| (2)
∠(e1, e2, e3) = ∠(e′1, e

′
2, e

′
3), (3)

where | · | and ∠(·) denote distance and angle metrics.133

4 METHOD134

In this section, we elaborate our R2-VOS framework with the relational consistency, which mainly135

consists of four parts: feature extraction, early grounding as a proxy, video-text (V-T) projection136

for text reconstruction, and mask decoding for final segmentation, as shown in Figure 3. We first137

extract the video feature f , word-level text feature g, and sentence-level text embedding e. On the138

one hand, to model the primary segmentation problem of maximizing p(Mo|V,Eo), we enable the139

multimodal interaction in the early grounding module to generate the grounded feature fearly. fearly140

coarsely locates the referred object o and filters out irrelevant features, which serves as a proxy linking141

the primary segmentation and dual text reconstruction problem. The final mask Mo is obtained by142

dynamic convolution (Chen et al., 2020) on the decoded visual feature maps, with kernels learned143

from instance embedding {zt}Tt=1. On the other hand, to model the dual text reconstruction problem144

of maximizing p(Eo|V,Mo), we utilize the grounded video feature fearly as the alternative of V145

and Mo, since fearly conveys contextual video clues of object o. In this way, we enable the parallel146

optimization of the primary and dual problem by relating them to fearly. Specifically, we employ a147

V-T projection module to project fearly onto a reconstructed text embedding e′. We add a relational148

constraint between e′ and e to enforce the semantic alignment between the segmented mask and149

expression for positive videos. In addition, we introduce a semantic consensus discrimination head150

H(e, e′) to assess the consistency between original and reconstructed text embeddings, discriminating151

the alignment of multimodal semantics and identifying negative videos.152
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4.1 SINGLE-MODAL FEATURE EXTRACTION153

Visual encoder. Following previous methods (Botach et al., 2021; Wu et al., 2022; Wang et al.,154

2021), we build the visual encoder with a visual backbone and a deformable transformer encoder155

(Zhu et al., 2020) on top of it. The extracted features from the backbone are flattened, projected to a156

lower dimension, added with positional encoding (Ke et al., 2020), and then fed into a deformable157

transformer encoder (Zhu et al., 2020) similar to the previous method (Wu et al., 2022). We denote158

the multi-scale output of the transformer encoder as F and the low-resolution visual feature map from159

the backbone as f , where f ∈ RT×Cv× H
32×

W
32 , Cv is the feature channel, T is the video length and H160

and W are the original image size.161

Textual encoder. We leverage a pre-trained linguistic model RoBERTa (Liu et al., 2019b) to map the162

input textual expression Eo to a textual embedding space. The textual encoder extracts a sequence of163

word-level text feature g ∈ RCe×L and a sentence-level text embedding e ∈ RCe×1, where Ce and164

L are the dimension of linguistic embedding space and the expression length respectively.165

4.2 EARLY GROUNDING166

Frame CAM of 𝐟𝐞𝐚𝐫𝐥𝐲

a black bear standing on a rock in a stream

Figure 4: Visualization of channel activa-
tion map (CAM) of fearly.

We propose an early grounding module to coarsely167

locate the referred object o and filter out irrelevant fea-168

tures. Then the grounded feature fearly encoding in-169

formation of o can not only be utilized for the primary170

segmentation problem, but also for the dual expression171

reconstruction task, which serves as a proxy connecting172

the two problems. Figure 4 shows a visualization of173

fearly. Specifically, we utilize the power of dynamic174

convolution (Chen et al., 2020) to discriminate visual175

features in the early stage. As shown in the blue part of Figure 3, we first enable the multimodal176

interaction between video and text features, then apply the dynamic convolution with kernels learned177

from text feature to discriminate the object-level semantics. In particular, multi-head cross-attention178

(MCA) (Vaswani et al., 2017) is leveraged to conduct the multimodal interaction:179

hf = LN(MCA(f ,g) + f) f ′ = LN(FFN(hf ) + hf ) (4)
180

hg = LN(MCA(g, f) + g) g′ = LN(FFN(hg) + hg), (5)

where MCA(X,Y) = Attention(WQX,WKY,WVY). W represents learnable weight. LN181

and FFN denote layer normalization and feed-forward network respectively. The text feature g′ is182

further pooled to a fixed length, and followed by a fully-connected layer to form the dynamic kernels183

Θ = {θi}Ki=1. K is the kernel number and θi ∈ RC×1. The dynamic kernels are applied separately184

to video feature f ′ ∈ RC×THW to form the fearly ∈ RC×THW185

fearly = BN(φ(θ1f
′ ⊕ · · · ⊕ θKf ′) + f ′), (6)

where ⊕ is the concatenation in channel dimension and φ(·) is a convolution to reduce the feature186

dimension. BN denotes batch normalization.187

4.3 TEXT RECONSTRUCTION188

V-T projection. We leverage a transformer decoder DE as textual decoder to transform the visual189

representation of the referred object into the textual space. As shown in Figure 3, a learnable text190

query e0 ∈ RCe×1 is employed to query the fearly. The output of the transformer decoder is the191

reconstructed text embedding e′ = DE(fearly, e0) ∈ RCe×1.192

4.4 REFERRING SEGMENTATION193

Mask segmentation. Similar to previous methods (Wu et al., 2022; Botach et al., 2021; Kamath194

et al., 2021), we leverage deformable transformer decoders with dynamic convolution to segment195

the object masks. Since the reconstructed text embedding is generated with visual features injected,196

we consider it can encode some visual information, thus augmenting the original text embedding.197

As shown in Figure 3, we first fuse the reconstructed text embedding e′ to text embedding e. The198
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fused text embedding e is then repeated N times to form the instance query (Wang et al., 2021)199

z0 ∈ RCq×N , where Cq is the dimension of instance query and N is the instance query number.200

We then use T× deformable transformer decoders DV with shared weights to decode the instance201

embeddings zt ∈ RCq×N for each frame, i.e., zt = DV (Ft, z0). Ft is the multiscale visual feature202

from visual encoder at time t. A dynamic kernel wt is further learned from the instance embedding203

zt. The final feature map fout,t ∈ RC×H×W is obtained by fusing low-level features from the feature204

pyramid network (Lin et al., 2017a) in the visual decoder. The mask prediction Mt ∈ RN×H×W can205

be computed by Mt = wT
t fout,t.206

Auxiliary heads. We build a set of auxiliary heads to obtain the final object masks across frames. In207

particular, a box head, a scoring head and a semantic consensus discrimination head are leveraged to208

predict the bounding boxes Bt ∈ RN×4, confidence scores St ∈ RN×1 and the alignment degree of209

multimodal semantics A ∈ R. The box and scoring head are two fully-connected layers upon the210

instance embedding et. The semantic consensus discrimination head H(e, e′) consists of two fully-211

connected layers upon the text embeddings e⊕ e′. Note that A represents the semantic alignment in212

the entire video rather a single frame, since the expression is a video-level description.213

4.5 LOSS FUNCTION214

The loss function of our method can be boiled down to three parts:215

L = λtextLtext + λsegmLsegm + λalignLalign, (7)
where Ltext, Lsegm, and Lalign are losses for text reconstruction, referring segmentation and semantic216

consensus discrimination respectively. A ground-truth semantic alignment Â = {0, 1} is utilized217

to discriminate positive and negative pairs. The Lalign is simply a cross-entropy loss between the218

predicted alignment A and ground-truth Â. The other two terms are computed as follows:219

Loss for text reconstruction. Given the text embedding e and reconstructed embedding e′, we use a220

relational constraint to impose the cycle consistency between e and e′. We calculate the loss by221

Ltext = 1(Â) · (Ldist + λangleLangle), (8)

where the indicator function 1(Â) = 1 if the alignment indicates the referred object exists in the222

video, otherwise 0, λangle is a hyperparameter balancing the distance loss Ldist and angle loss223

Langle. We elaborate these two losses according to the relational cycle consistency Equation 2.224

Let Xn = {(x1, ..., xn)|xi ∈ X} denote a set of n-tuples, Φn = {(x,x′)|x ∈ Xn,x′ ∈ X ′n}225

denote a set of pairs consisting of two n-tuples of distinct elements from two different sets X and226

X ′. Specifically, the distance-based and angle-based relations relate text embeddings of 2-tuple and227

3-tuple respectively, i.e., Φ2 = {(x,x′)|x = (ei, ej),x
′ = (e′i, e

′
j), i ̸= j} and Φ3 = {(x,x′)|x =228

(ei, ej , ek),x
′ = (e′i, e

′
j , e

′
k), i ̸= j ̸= k}. Then the losses are given by:229

Ldist =
∑

(x,x′)∈Φ2

lδ(ϕD(x), ϕD(x′)), ϕD(x) = 1
µ(x)∥ei − ej∥2, (9)

Langle =
∑

(x,x′)∈Φ3

lδ(ϕ∠(x), ϕ∠(x
′)), ϕ∠(x) = cos∠(ei, ej , ek), (10)

where µ(x) =
∑

x=(x1,x2)∈X 2
||x1−x2||2

|X 2| is the average distance function, and the Huber loss230

lδ(x, x
′) = 1

2 (x− x′)2 if |x− x′| ≤ 1, otherwise |x− x′| − 1
2 .231

Loss for referring segmentation. Given a set of predictions y = {yi}Ni=1 and ground-truth ŷ,232

where yi = {Bi,t,Si,t,Mi,t}Tt=1 and ŷ = {B̂t, Ŝt, M̂t}Tt=1, we search for an assignment σ ∈ PN233

with the highest similarity where PN is a set of permutations of N elements (ŷ is padded with ∅).234

The similarity can be computed as235

Lmatch(yi, ŷ) = λboxLbox + λconfLconf + λmaskLmask, (11)
where λbox, λconf , and λmask are weights to balance losses. Following previous works (Ding236

et al., 2021; Wang et al., 2021), we leverage a combination of Dice (Li et al., 2019) and BCE237

loss as Lmask, focal loss (Lin et al., 2017b) as Lconf , and GIoU (Rezatofighi et al., 2019) and238

L1 loss as Lbox. The best assignment σ̂ is solved by Hungarian algorithm (Kuhn, 1955). Given239

the best assignment σ̂, the segmentation loss between ground-truth and predictions is defined as240

Lsegm = 1(Â) · Lmatch(y, ŷσ̂(i)).241
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4.6 INFERENCE242

During inference, we select the candidate with the highest confidence to predict the final masks:243

{M̄t}Tt=1 = {1(A > 0.5) ·Ms̄,t}Tt=1, s̄ = argmax
i

{Si,1 + · · ·+ Si,T }Ni=1, (12)

where {M̄t}Tt=1 is the masks of referred object. Si,t and Mi,t represent the i-th candidate in St and244

Mt respectively. s̄ is the slot with the highest confidence to be the target object. We use 1(A) to filter245

out predictions in negative videos to mitigate false alarm. 1(A > 0.5) = 1 if A > 0.5, else 0.246

5 EXPERIMENT247

5.1 DATASET AND METRICS248

Dataset. We conduct experiments on three datasets: Ref-Youtube-VOS, Ref-DAVIS and R2-Youtube-249

VOS. Ref-Youtube-VOS (Seo et al., 2020) is a large-scale benchmark that has 3,978 videos with250

about 15k language descriptions. There are 3,471 videos with 12,913 expressions in the training set251

and 507 videos with 2,096 expressions in the validation set. Ref-DAVIS-17 (Khoreva et al., 2018)252

contains 90 videos with 1,544 expressions, including 60 and 30 videos for training and validation253

respectively. We construct a new evaluation dataset, R2-Youtube-VOS, which extends the Ref-254

Youtube-VOS validation set with each expression querying two videos, a positive video (the same in255

Ref-Youtube-VOS) and a negative video. The negative text-video pairs are constructed by shuffling256

the original ordered videos and constraining all expressions and videos unmatched. The segmentation257

accuracy is evaluated on the positive text-video pairs, thus the same as on Ref-Youtube-VOS. In258

the training, we use the original Ref-Youtube-VOS training set, but we randomly pick unmatched259

text-video pairs as negative samples as augmentation.260

Metrics. We employ commonly-used region similarity J and contour accuracy F (Pont-Tuset261

et al., 2017) for conventional Ref-Youtube-VOS and Ref-DAVIS-17 benchmarks. For the proposed262

R2-Youtube-VOS task, we additionally introduce a new metric R = 1−
∑

M∈Mneg
|M |∑

M∈Mpos
|M | to evaluate263

the degree of object false alarm in negative videos, where Mneg and Mpos are the sets containing264

segmented masks in negative and positive videos respectively. |M | denotes the foreground area of265

mask M . The total foreground area of positive videos
∑

M∈Mpos
|M | serves as a normalization term.266

Ideally, a model should treat all the negative videos as backgrounds with R = 1.267

5.2 IMPLEMENTATION DETAILS268

Following previous methods (Ding et al., 2021; Wu et al., 2022), our model is first pre-trained on269

Ref-COCO/+/g dataset (Yu et al., 2016; Mao et al., 2016) and then finetuned on Ref-Youtube-VOS.270

The model is trained for 6 epochs with a learning rate multiplier of 0.1 at the 3rd and the 5th epoch.271

The initial learning rate is 1e-4 and a learning rate multiplier of 0.5 is applied to the backbone. We272

adopt a batchsize of 8 and an AdamW (Loshchilov & Hutter, 2017) optimizer with weight decay273

1× 10−4. Following convention (Botach et al., 2021), the evaluation on Ref-DAVIS directly uses274

models trained on Ref-Youtube-VOS without re-training. All images are cropped to have the longest275

side of 640 pixels and the shortest side of 360 pixels during evaluation. The window size is set to 5276

for all backbones. We create negative pairs by shuffling positive pairs in each batch. Our method is277

implemented with PyTorch (Paszke et al., 2019). More details can be found in Appendix.C.278

5.3 MAIN RESULTS279

We compare our method with state-of-the-art R-VOS methods on Ref-Youtube-VOS and Ref-DAVIS-280

17, and R2-VOS task in Table 1. Comparison on Ref-Youtube-VOS. In Table 1, we first compare281

our method on Ref-Youtube-VOS. For results of ResNet (He et al., 2016) backbone, our method282

achieves 57.3 J&F which outperforms the latest method ReferFormer (Wu et al., 2022) by 1.7283

J&F . In addition, our method runs at 30 FPS compared to 22 FPS of state-of-the-art ReferFormer284

(FPS is measured using single NVIDIA P40 with batchsize = 1). For results of Swin-Transformer285

(Liu et al., 2021) backbones, our method achieves 60.2 J&F and 61.3 J&F with Swin-Tiny and286

Video-Swin-Tiny backbones respectively, which outperforms ReferFormer (Wu et al., 2022) and287

MTTR (Botach et al., 2021) by a clear margin. More analysis is available in the Appendix B.1.288
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Method Backbone Ref-Youtube-VOS R2-Youtube-VOS Ref-DAVIS-17
J&F J F R J&F J F
Spatial Visual Backbone

CMSA (Ye et al., 2019) ResNet-50 34.9 33.3 36.5 - 34.7 32.2 37.2
CMSA + RNN (Ye et al., 2019) ResNet-50 36.4 34.8 38.1 - 40.2 36.9 43.5
URVOS (Seo et al., 2020) ResNet-50 47.2 45.3 49.2 - 51.5 47.3 56.0
PMINet (Ding et al., 2021) ResNet-101 53.0 51.5 54.5 - - - -
CITD (Liang et al., 2021b) ResNet-101 56.4 54.8 58.1 - - - -
ReferFormer (Wu et al., 2022) ResNet-50 55.6 54.8 56.5 30.6 58.5 55.8 61.3
Ours ResNet-50 57.3 56.1 58.4 94.1 59.7 57.2 62.4
ReferFormer (Wu et al., 2022) Swin-T 58.7 57.6 59.9 28.2 - - -
Ours Swin-T 60.2 58.9 61.5 94.4 - - -

Spatio-temporal Visual Backbone
MTTR (Botach et al., 2021) Video-Swin-T 55.3 54.0 56.6 5.9 - - -
ReferFormer (Wu et al., 2022) Video-Swin-T 59.4 58.0 60.9 28.5 - - -
Ours Video-Swin-T 61.3 59.6 63.1 95.7 - - -

Table 1: Comparison to state-of-the-art R-VOS methods.
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Expression: the mirror in the bathroom is to the right of the wood cabinet

Negative VideoPositive Video

Figure 6: Qualitative comparison to the state-of-the-art R-VOS method on the R2-VOS task.

Comparison on Ref-DAVIS-17. Our method achieves 59.7 J&F on Ref-DAVIS-17 dataset, which289

outperforms ReferFormer by 1.2 J&F . Comparison on R2-VOS. As shown in Table 1, the state-290

of-the-art R-VOS methods, ReferFormer and MTTR suffer from a low R metric which measures291

the false-alarm problem when the semantic consensus of the input text-video pair does not hold.292

Compared to the severe false alarm of previous R-VOS methods, our model successfully mitigates293

the false alarm of the model, thanks to the proposed multimodal cycle consistency constraint and294

semantic consensus discrimination.295

ℰ ! for Pos. Videosℰ ℰ ! for Neg. Videos

Figure 5: Visualization of text embedding spaces.
Dots represent original text embeddings in E , and tri-
angles represent reconstructed ones in E ′ induced by
positive and negative videos respectively. Elements
in the same color belong to the same object. Note that
an object can have multiple text descriptions. The
structure of E ′ is well preserved from E for positive
videos (ellipses bound embeddings of same objects),
while it is not preserved for negative videos.

Qualitative results. We compare the qual-296

itative results of our method against state-297

of-the-art methods in Figure 6 on R2-VOS.298

For positive videos: The result indicates that299

our method predicts accurate and temporally-300

consistent results, while ReferFormer (Wu301

et al., 2022) and MTTR (Botach et al., 2021)302

fail to locate the correct object. For nega-303

tive videos: Both ReferFormer and MTTR304

suffer from a severe false-alarm problem305

when the referred object does not exist in306

the video. In contrast, with multi-modal cy-307

cle constraint and consensus discrimination,308

our method successfully filters out negative309

videos and mitigates the false alarm. To fur-310

ther explore how the consensus discrimina-311

tion works, we visualize the text embedding312

and reconstructed text embedding spaces for both positive and negative videos. As shown in Figure 5,313

we notice that, for embeddings of positive videos, they preserve relative relations well, while for314

negative videos, the reconstructed embeddings have a random pattern in the space.315

5.4 ABLATION STUDY316

Module effectiveness. To investigate the effectiveness of different components in our method,317

we conduct experiments with the ResNet-50 backbone on R2-Youtube-VOS dataset. We build a318

transformer-based baseline model and equip our proposed components step-by-step. As shown in319
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Components J&F J F R
Baseline 52.4 51.9 52.8 34.9
+EG 55.5+3.1 54.4 56.5 32.9−2.0

+EG+FT 55.5+3.1 54.5 56.5 33.4−1.5

+EG+CC 56.9+4.5 55.7 58.1 94.0+59.1

+EG+CC+FT 57.3+4.9 56.1 58.4 94.1+59.2

Table 2: Impact of different components in
our method. EG: Early grounding, CC: Consis-
tency constraint, FT: Fusing text embeddings.

Constraint J&F J F R
None 55.6 54.6 56.5 66.3
PW 54.4−1.2 53.3 55.5 88.7+22.4

RA 56.7+1.1 55.5 57.9 93.6+27.3

RD 56.4+0.8 55.2 57.6 90.4+24.1

RD+RA 56.9+1.3 55.7 58.1 94.0+27.7

Table 3: Impact of the cycle consistency con-
straint. PW: Point-wise. RA: Relational angle.
RD: Relational distance.

Method NS J&F J F R
ReferFormer % 55.6 54.8 56.5 30.6
ReferFormer∗ ! 42.2 41.2 43.2 63.3

Ours % 57.2 56.1 58.3 46.8
Ours ! 57.3 56.1 58.4 94.1

Table 4: Impact of the negative samples.

Query Number J&F J F R
1 54.9 54.2 55.6 94.7
5 57.3 56.1 58.4 94.1
9 57.0 56.8 57.2 93.5

Table 5: Impact of the query number.

Table 2, the baseline model achieves 52.4 J&F . After employing the early grounding module, the320

performance boosts to 55.5 J&F and the cycle-consistency constraint with negative training samples321

brings another 1.4 J&F gain. By using the fused text embedding as instance query, we achieve our322

best performance of 57.3 J&F .323

Consistency constraint. We conduct experiments to ablate the influence of cycle-consistency324

constraints. As shown in Table 3, utilizing point-wise consistency constraint will lead to a performance325

drop compared to the setting without cycle constraint. We consider the point-wise constraint may326

force an injective mapping from the textual domain to the visual domain. However, the mapping can327

be a many-to-one function for R-VOS, i.e., each object corresponds to multiple textual descriptions.328

In addition, since the early grounding leverages the text feature to locate the referred object, if we use329

the direct point-wise constraint to form reconstructed text embedding, it will encourage the network330

to memorize the text feature in the fearly and result in a collapse for text reconstruction. Table 3331

shows that sole relational angle constraint can bring 1.2 J&F gain, and it can be slightly improved332

with 1.4 J&F gain by jointly using relational angle and distance constraint.333

Negative training samples for discrimination head. To study the effects of introducing negative334

samples in the training on different pipelines, we augment the original ReferFormer as ReferFormer∗335

with an additional classification head after the text query and visual FPN (the same head for predicting336

reference score in Section 3.4 of the paper (Wu et al., 2022)) to discriminate negative videos. Training337

with the same data (containing positive and negative samples), we notice that ReferFormer∗ does338

not achieve comparable results as ours, and is even worse than its original version with only positive339

training samples, as shown in Table 4. Negative training samples may degrade the segmentation340

quality since they only predict blank masks. Naively adding a classification head does not work341

well. The reasons that our method can fully utilize negative samples to improve model robustness342

could be that 1) our discrimination head H is based on the cycle consistency, which straightforwardly343

expresses the degree of alignment between visual and textual modalities, 2) H affect the visual344

decoder less in our pipeline as shown in Figure 3. More analysis is available in Appendix.B.345

Instance query number. Although only one referral is involved for each frame in R-VOS task,346

to help the network optimization, we employ more than one instance query to each video. Table 5347

indicates that a query number of 5 brings the best result.348

6 CONCLUSION349

In this paper, we investigate the semantic misalignment problem in R-VOS task. A pipeline jointly350

models the referring segmentation and text reconstruction problem, equipped with a relational cycle351

consistency constraint, is introduced to discriminate and enhance the semantic consensus between352

visual and textual modalities. To evaluate the model robustness, we extend the R-VOS task to353

accept unpaired inputs and collect a corresponding R2-Youtube-VOS dataset. We observe a severe354

false-alarm problem suffered from previous methods on R2-Youtube-VOS while ours accurately355

discriminates unpaired inputs and segments high-quality masks for paired inputs. Our method356

achieves state-of-the-art performance on Ref-DAVIS17, Ref-Youtube-VOS, and R2-VOS dataset. We357

believe that, with unpaired inputs, R2-VOS is a more general setting of referring video segmentation,358

which can shed light on a new direction to investigate the robustness of referring segmentation.359
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Appendix494

A ADDITIONAL EXPERIMENTS495

A.1 FRAME NUMBER496

Window Size J&F J F R
1 53.5 53.0 54.0 89.2
3 56.8 56.5 57.1 92.1
5 57.3 56.1 58.4 94.1

Table A: Impact of the window size.

Since R-VOS gives a text that describes an object over a period of time, temporal information is vital497

to segment accurate and temporally-consistent results. We ablate on the best window size of input498

videos during training. As shown in Table A, we notice that the performance improves as the window499

size increases and a window size of 5 brings the best result of 57.3 J&F .500

A.2 NEGATIVE VIDEOS WITHOUT POSITIVE TEXT501

Negative Video Source R
ReferFormer Ours

Ref-Youtube-VOS 30.6 94.1
Ref-Youtube-VOS & Ref-DAVIS 33.1 92.2

Table B: Impact of different negative video sources.

As shown in Table B, we test the robustness of our model on two settings. We generate negative502

videos from Ref-Youtube-VOS and a combination of Ref-Youtube-VOS and Ref-DAVIS dataset.503

In both settings, all videos in the validation set are leveraged. The results indicates that source of504

negative videos has minor impact on the robustness of our model.505

A.3 DYNAMIC KERNEL NUMBER IN EARLY GROUNDING MODULE506

Lθ J&F J F
1 56.4 55.1 57.7
2 57.0 55.3 58.0
3 57.3 56.1 58.4
4 57.1 55.9 58.2

Table C: Impact of the dynamic filter number.

As shown in Table C, we conduct experiments to investigate the impact of the dynamic filter number507

in the early grounding module. The dynamic convolution is extensively used to decode dense features508

in video instance segmentation (Hwang et al., 2021; Li et al., 2021) and object detection (Carion509

et al., 2020) because of its strong ability to generate instance-specific filters to modify the feature510

maps. In our method, we use a text-guided dynamic convolution to ground referred object in the511

feature level. We notice that using a dynamic kernel number of 3 brings the best performance.512

A.4 SEMANTIC ALIGNMENT DISCRIMINATION513

As shown in Table D, we conduct experiments without using the semantic alignment 1(A) to filter514

out negative videos during inference. We notice that, even if 1(A) is not applied to the final output,515

our model has a much higher R score compared to previous methods on R2-Youtube-VOS. This516

indicates the consistency constraint can boost the model robustness to negative videos even without517

explicitly filtering out videos with semantic alignment discrimination.518
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Method Backbone J&F & R J F R
ReferFormer (Wu et al., 2022) ResNet-50 47.3 54.8 56.5 30.6
Ours ResNet-50 59.2 56.1 58.4 63.2
MTTR (Botach et al., 2021) Video-Swin-T 40.0 55.9 58.1 5.9
ReferFormer (Wu et al., 2022) Video-Swin-T 49.1 58.0 60.9 28.5
Ours Video-Swin-T 62.7 59.6 63.1 65.5

Table D: Comparison to state-of-the-art R-VOS methods on R2-Youtube-VOS without applying
1(A) to filter out videos during inference.

B MORE QUANTITATIVE RESULT ANALYSIS519

B.1 PERFORMANCE GAIN ANALYSIS520

Under the same ResNet-50 backbone, our method achieves 57.3 J&F , 94.1 R and 30 FPS compared521

to the 55.6 J&F , 30.6 R and 22 FPS of ReferFormer. We will then point-to-point analyze reasons of522

improvements on J&F (for positive video), R (for negative videos) and FPS (for inference speed).523

• J&F : (1) We introduce the early-grounding module which employs both pixel-wise and524

channel-wise attention to enable multimodal interaction. Different from the CM-FPN used in525

ReferFormer that solely fuses features from text to video in pixel-level, our early-grounding526

module first enables pixel-level bi-directional fusion and then generates dynamic kernels527

using the fused text feature g′ to modulate the video feature f ′. The dynamic convolution528

(channel-wise attention) is commonly used to decode dense masks from visual features and529

is suitable to suppress irrelevant features. By equipping text-guided dynamic convolution in530

early-stage, the pixel decoder can be more focused on the target object (as shown in Figure 4).531

(2) Our method leverages relational cycle consistency to constraint the intermediate feature532

fearly to contain correct object-level information to recover some properties of original text533

embedding. By applying this constraint, our method can better avoid interference and easier534

locate the correct object. (3) Our instance query is composed of both original sentence535

embedding and the reconstructed one. Different from ReferFormer that only utilizes original536

sentence embedding as queries, the reconstructed embedding can encode visual information537

to facilitate the instance query decode the objects from visual features.538

• R: The newly introduced metric R aims to measure the robustness of the model against539

unpaired inputs. Text-video pairs with (object-level) semantic consensus can be assumed540

as in-distribution for RVOS problem where semantic consensus can be kind of easily541

modeled. In contrast, unpaired text-video is much more difficult to tackle because there can542

be unlimited out-of-distribution (OOD) scenarios for the text-video pairs. In our method,543

instead of directly detect the OOD of input pairs, we convert the problem to find semantic544

alignment between the input text embedding and reconstructed embedding and constraint545

the property of reconstructed space by introducing the cycle consistency. In this way,546

the comparison is conducted in the constraint original and reconstructed text spaces. For547

ReferFormer, it models the alignment of text to video by querying the visual features by text548

in the transformer decoder. In this way, the comparison is conducted in unconstrained text549

and video spaces thus results in a inferior performance.550

• FPS: The speed improvement of our method mainly comes from our efficient multimodal551

fusion. Compared to the multi-scale CM-FPN, our early-grounding module is only conduct552

at the high-level. In addition, our bi-direction multimodal fusion (Equ 4 & 5) only leverages553

cross-attention to avoid computational expensive video-to-video operations.554

B.2 FAILURE OF REFERFORMER WITH NEGATIVE TRAINING SAMPLES555

Adding a background class to ReferFormer and training with negative samples cannot benefit556

ReferFormer. The principal difference between that and our method is that between implicit and557

explicit classes. In the absence of negative samples, a "none of the above" (background class) is558

effectively an implicit class. Being implicit, there are no training data provided for it, we end up559

handling it as a problem of trying to identify OOD through thresholding criteria. There is a key560
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feature here. In OOD determination, there is no discriminative component of the model assigned561

to the class – the rejection is effectively performed based entirely on low likelihood as computed562

from the distributions of the known classes, and as a consequence heuristics must be imposed. When563

we convert "none of the above" to an explicit class, as we have, it converts this to a discriminative564

modeling problem. The challenge is that, given the vast scope of the "none of the above" class, it565

is generally infeasible to obtain sufficient training data to model all possibilities. This is a known566

problem.567

This has also been noticed in the ReferFormer and MTTR, where, when we introduce the none-of-the-568

above as an explicit class through a classification head, it provides limited benefit – the ReferFormer569

is unable to model it well.570

Our cyclic consistency approach provides us a way to capture this class using just a limited number571

of training samples from this now-explicit class, and we are able to do this because of the specific572

nature of the R-VOS problem. This, in fact, is a novelty of our approach – we are exploiting the573

nature of the problem to be able to model this very diverse class effectively using a limited number of574

training samples. This also clearly shows up in the performance numbers.575

B.3 DIFFERENCE BETWEEN OUR METHOD AND REFERFORMER576

We summarize the difference between our method and ReferFormer as follows.577

• Different from all the existing R-VOS methods, including ReferFormer, using all positive578

text-video pairs for training, we use both positive and negative pairs, which help the learning579

of differentiating semantic consensus between different pairs.580

• We leverage the relational text-video-text cycle consistency to better correspond the text581

embedding space to the video embedding space. Positive pairs are constrained with the582

cycle consistency for better embedding learning, while negative pairs unconstrained with583

the cycle constraint could be identified.584

• We utilize the early-grounding module, which modulates the video feature with the video-585

aware text embedding. Thus, irrelevant video features are suppressed in an early stage,586

while ReferFormer only uses dynamic convolution in the final mask decoding stage, easier587

to involve irrelevant objects, as shown in the results of positive pairs Figure 6.588

• Our instance query is composed of both the original sentence embedding and the recon-589

structed one. Different from ReferFormer that only utilizes original sentence embedding as590

queries, the reconstructed embedding can encode visual information to facilitate the instance591

query to decode the objects from visual features.592

• Our method achieves superior performance than Referformer. Under the same ResNet-50593

backbone, our method achieves 57.3 J&F , 94.1 R and 30 FPS compared to the 55.6 J&F594

30.6 R and 22 FPS of ReferFormer.595

B.4 DIFFERENCE BETWEEN OUR RELATIONAL CYCLE CONSISTENCY AND PREVIOUS596

METHODS (SHI ET AL., 2020; CHEN ET AL., 2019)597

We summarize the difference between our relational cycle consistency and previous related methods598

(Shi et al., 2020; Chen et al., 2019) as follows.599

• We use relational cycle consistency instead of the previous point-wise counterpart, which600

makes the cycle constraint feasible between two feature spaces that do not have strict601

bijective mapping, as illustrated in Figure 2 (d). In particular, the mapping from visual602

objects to textual expressions is not necessarily bijective, as there could be multiple textual603

descriptions for the same object (about 5 for Ref-Youtube-VOS). Thus, naively adding604

point-wise consistency may make the feature space collapse. Our ablation study in Table 3605

demonstrates the effectiveness of our relational cycle consistency. The point-wise cycle606

consistency even decreases the accuracy.607

• We apply the cycle consistency in the text embedding space instead of the original text608

expression space (Shi et al., 2020; Chen et al., 2019), which avoids the dataset bias of the609

pretrained linguistic model from other datasets. Also, we enable the joint optimization of610
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the primary and dual problem efficiently without decoding text embeddings into expressions,611

as illustrated in Figure 2 (b).612

• We enable a joint optimization of the primary referring segmentation and dual text re-613

construction task by introducing a intermediate proxy from early grounding module, thus614

avoiding redundant two-stage training, to save cost.615

C MORE IMPLEMENTATION DETAILS616

We pretrain our model on a combination of three image-level datasets, i.e., Ref-COCO, Ref-COCO+,617

and Ref-COCOg (Yu et al., 2016). To be compatible with the image-level dataset, we set the window618

size to 1. We pretrain our model for 12 epochs, which takes about 1-2 days on 8 NVIDIA V100 32G619

GPUs depending on the backbones. We select the checkpoint with the best results on Ref-COCO val620

set as our pretrained weight for our main training.621

We set the λtext = 0.1, λcls = 2, λmask = 2, λalign = 1, λangle = 10, λL1 = 5, λgiou = 2,622

λdice = 2 and λfocal = 5 during all training process. Cv = Ce = Cq = 256 is utilized. The623

positional embedding added in the transformers is the standard triangle positional embedding used in624

(Vaswani et al., 2017). We set the layer number to three for transformers decoders De and Dv. The625

dynamic filter number K is set to 3. The data point to calculate the relational loss is selected within626

each batch for simplicity. The text encoder is frozen during the main training.627

D DETAILED STRUCTURE OF MASK DECODING628
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𝐅# 𝐅$

P

P Positional Encoding

Figure A: Illustration of mask decoding.

As is shown in Fig. A, given the fused text embedding, we generate the instance query z0 by repeating629

the fused text embedding N times where N is the query number. After that, we generate instance630

embedding {zt}Tt=1 for each time step separately using a shared transformer decoder Dv with encoded631

memory {Ft}Tt=1 from visual encoder. The mask prediction Mt for each time step t is derived by632

a linear combination of Ft where weights are learned from instance embedding zt by two fully633

connected layers. Note that, as positional embedding is added to the instance query z0 ∈ RCq×N ,634

each slot in the instance query is different.635

Why use N instance queries for only one referred object in the video? Empirical, each slot636

in the instance query tends to focus on different visual features in the transformer decode Dv thus637

the N slots in the instance embedding are highly specialized. Each slot tends to represent an object638

with some specific properties. For example, slot 1 can always tend to predict an object located in the639

left of the frame. Slot 2 tends to predict objects belonging to "cat", "dog", etc., categories. By using640
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more than one slot for the instance query, we can generate more specialized and accurate instance641

embedding, which is vital for mask decoding and confidence score, and box prediction.642

E LIMITATIONS643

An important challenge for video segmentation is that target object disappearance due to occlusion,644

which can results in false positives on a per-frame level. In our method, we predict the video-level645

semantic alignment to handle the false positive in video-level resulted from unpaired text-video pairs.646

However, since only video-level object expression is available in RVOS task, our method can not647

address the frame-level false positives resulted from occlusion.648

F BROADER IMPACT AND FUTURE WORKS649

The false alarm problem in the RVOS task also exists in other referring prediction tasks, e.g., visual650

grounding (Deng et al., 2021) and referring image segmentation (Ye et al., 2019). We consider our651

problem formulation that defines the negative and positive vision-language pairs can be extended to652

other tasks that require multi-modal semantic consensus.653

G MORE VISUALIZATION654

G.1 VISUALIZATION OF ATTENTIONS IN THE EARLY GROUNDING MODULE655

We visualize the cross-attention attentions and fearly in the Early Grounding Module as shown in656

Figure B.

A mouse moves around vessels in the table

T-
V

V
-T

Channel Activation Map of 𝐟𝐞𝐚𝐫𝐥𝐲Frame Segmentation

Figure B: Visualization of cross-attention attentions and fearly in the Early Grounding Module.
657

G.2 VISUALIZATION OF SEGMENTATION IN POSITIVE PAIRS658

We visualize more segmented masks of positive pairs as shown in Figure C. More visualization for659

both positive and negative pairs are available in the demo video.660
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Query: a ball is behind the elephant which is walking away from it

Query: a horse running to the left of another horse towards the water

Query: the adult monkey is to the left of another sitting on the grass holding a baby
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Figure C: Visualization of Segmentation in Positive Videos. More visualization are available in the
demo video.
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