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ABSTRACT

Machine learning models are often developed in a way that prioritizes task-specific
performance but defers the understanding of how they actually work. This is
especially true nowadays for deep neural networks. In this paper, we step back
and consider the basic problem of understanding a learned model represented as
a smooth scalar-valued function. We introduce HeatFlow, a framework based
upon the heat diffusion process for interpreting the multi-scale behavior of the
model around a test point. At its core, our approach looks into the heat flow
initialized at the function of interest, which generates a family of functions with
increasing smoothness. By applying differential operators to these smoothed
functions, summary statistics (i.e., explanations) characterizing the original model
on different scales can be drawn. We place an emphasis on studying the heat flow
on data manifold, where the model is trained and expected to be well behaved.
Numeric approximation procedures for implementing the proposed method in
practice are discussed and demonstrated on image recognition tasks.

1 INTRODUCTION

In recent years, thanks to the growing availability of computation power and data, together with the
rapid advancement of methodology, the machine learning community is witnessing the success of
creating models with increasingly higher capacity and performance. However, a downside of scaling
the model complexity is that it complicates the understanding of how the learned models work and
why sometimes they fail. Such requirements for interpretability arise from both scientific research
and engineering practices. Carefully interpreting the working mechanism of a predictive model may
help uncover its weakness in robustness, informing further improvements should to be made before
deployment in high-stakes decision-making.

In this paper, we consider the interpretation of scalar-valued smooth functions, a basic hypothesis
class in machine learning. Models of this type arise naturally in regression and binary classification
tasks that deal with continuous input features. Multi-output models, e.g., neural networks for multi-
class classification, can be treated as such functions by investigating each output separately. While
1D and 2D such functions can be understood intuitively through graphical visualization, there is no
straightforward way to visualize or even imagine general higher-dimensional functions. Fortunately,
mathematicians developed the derivative to interpret functions in a pointwise manner. The directional
derivative at a point measures the instantaneous rate of change of the function along a given direction,
and the gradient gives the direction of steepest ascent. This forms the basis of popular gradient-based
explanation methods for neural networks (Simonyan et al., 2014; Selvaraju et al., 2017; Sundararajan
et al., 2017; Smilkov et al., 2017; Ancona et al., 2018; Erion et al., 2021; Xu et al., 2020; Hesse et al.,
2021; Srinivas & Fleuret, 2021; Kapishnikov et al., 2021).

To interpret the outcome of a learned high-dimensional function at a test point, the gradient there
is only part of the story because it just characterizes the first-order behavior of the function in an
infinitesimal range. Such extreme localness is to blame for several known pitfalls of vanilla gradient-
based interpretation. For example, if the point falls into a locally constant region, the gradient will
be zero (Shrikumar et al., 2017). On the other hand, the gradient may change dramatically even for
nearby points, leading to noisy and non-robust explanations in practice (Dombrowski et al., 2019;
Wang et al., 2020). Moreover, the gradient will also be zero at different classes of critical points,
suggesting the need for higher-order derivatives.
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(a) Heat flow and the decomposition of Laplacian in two directions.
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(b) Interaction strength.

Figure 1: A toy example in R2.

To this end, we introduce HeatFlow, an interpretation framework that enables summarizing the
behavior of a learned model at different scales from the point of view of a test input. Our approach
is motivated by a natural question to ask about a function f : How much does the value of f at a
point x deviate from the average value of f in a neighborhood of x? In our opinion, such deviation
from local average is more comprehensible than instantaneous rate of change for non-mathematical
audience. If the neighborhood is taken to be a small open ball centered at x, then the answer is
related to ∆f(x), where ∆ is the Laplace operator, a fundamental second-order differential operator.
To consider increasingly larger neighborhoods in a multi-scale manner, we propose solving a heat
equation, a fundamental partial differential equations (PDE) studied in mathematics and physics.

We show that detailed interpretation for a function of interest may be achieved by extracting a rich set
of principled summary statistics from the solution of the heat equation initialized at it. Furthermore,
because a learned function is expected to be well-behaved only on the data manifold embedded in
Euclidean space, it is possible to restrict the function on the manifold and solve the corresponding
heat equation. In doing so, the interpretation problem is treated in a principled way based on the
theory of differential geometry. Briefly, HeatFlow satisfies the following desiderata: (i) It provides
a multi-scale analysis of feature importance in the formation of model predictions. (ii) It is stable
and informative because, implicitly, the neighborhood of a test point is exhaustively explored by
Brownian motion. (iii) It offers practitioners the flexibility to restrict their analysis on a manifold
chosen from among Euclidean space, (learned) data manifold, and other interested submanifolds.

A Toy Example. A toy example of understanding the sum of two Gaussian functions in a 2D
Euclidean space is illustrated in Figure 1a. First row demonstrates the initial function and its heat
flow. The heat flow generates a sequence of functions that are increasingly smoother than the initial
one. Later we will see one possible representation of these functions as E[f(Xt)|X0 = x], in
which f is the initial function and {Xt}t>0 is a path of Brownian motion. Intuitively, the values of
these smoothed functions at x are local average values of the initial function in increasingly larger
neighborhoods centered at x. The first subplot in the second row shows the deviation between the
initial function and smoothed functions at three points, while the remaining subplots show Laplacian
of smoothed functions along with their gradient fields. The deviation and the Laplacian are further
decomposed into two directions, x1 and x2, presented in the third and forth rows, respectively.
Intuitively, our core idea is to distribute the deviation caused by the heat flow to each input feature by
decomposing the heat flow as the sum of "sub-flows" in corresponding directions. We show that the
proposed method further enables the detection of interaction strength between one variable and other
variables, as demonstrated in Figure 1b.
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2 PRELIMINARIES

In this section, we introduce some basic concepts of explanation methods (Covert et al., 2021; Arrieta
et al.) in the interpretable AI community, along with definitions and key concepts about the Laplacian
and the heat equation (Hsu, 2002; Grigoryan, 2009). The connections between the two fields where
this paper is inspired are also presented. Throughout our discussion, we consider a closed and
connected manifoldM endowed with a Riemannian metric g. A function f :M→ R is assumed to
be bounded and twice continuously differentiable.

2.1 FEATURE IMPORTANCE & ATTRIBUTION

Let f : RD → R be a trained neural network that predicts a label y ∈ R for a given input x =
(x1, ..., xD) ∈ RD. Post hoc interpretation methods aim at generating human-friendly explanations
to explain why y = f(x). One of the most popular types of explanations is feature importance, which
assigns certain score to each feature xi of a particular data point x. For differentiable f , the gradient
∇f : RD → RD is the simplest method that quantifies local importance of each input feature to the
model’s outcome. Attribution methods go a step further to assign each feature a value ψi(f,x) with
the same physical meaning and unit of measurement as the model’s output. It is then enforced that
the values for all input features sum up to the difference between the outcome y and a baseline b,
i.e., f(x)− b = ∑D

i=1 ψi(f,x). Previous work usually chose the baseline as the model prediction
on a baseline input x′, i.e., b := f(x′). However, the choice of baseline input is known to be
non-trivial (Sturmfels et al., 2020). In this work, we directly choose the baseline b instead and design
a corresponding attribution method. An interesting setting of b is the locally averaged outcome of f in
the neighborhood around x, that is, b := EX∼N (x)[f(X)]. To avoid selecting a single neighborhood
distribution N (x), we further suggest, informally, considering a sequence of increasingly larger
neighborhoods {Nt(x)}t≥0, where we expect t to govern the scale of neighborhood. To obtain this
sequence, we turn to Laplacian and heat equations introduced below.

The manifold hypothesis assumes that data in real world concentrates on a low-dimensional submani-
foldM embedded in the ambient space RD of much higher dimension. The function to be explained
is expected to behave consistently only onM despite being learned in RD. For a learned function
f : RD → R, we may be interested in its mechanism in either the open world or a closed world.
Arbitrary input in RD will be allowed in the former setting, while the latter setting only accepts input
on the data manifold. Thus, users should choose the appropriate target and manifold accordingly
depending on the purpose of model interpretation. If the goal is to understand model behavior in the
open world, f and RD should be chosen; while f|M, the restriction of f onM, andM are suggested
if the analysis is restricted to the data manifold.

2.2 THE LAPLACIAN ON A RIEMANNIAN MANIFOLD

Since we are interested in manifolds apart from Euclidean space, we introduce the Laplace-Beltrami
operator, ∆M, which generalizes the ordinary Laplacian to Riemannian manifold. There are multiple
equivalent ways of introducing this operator (Hsu, 2002, Section 3.1).

• Divergence of the gradient field: ∆Mf = div grad f . The gradient grad f is the unique vector
field onM that satisfies ⟨grad f,X⟩g = df(X) for any vector field X , where the differential df
gives the directional derivative of f along X . The divergence divX of a vector field X measures
how much it locally behaves like a sink or source. Laplacian will therefore be positive at minima
and negative at maxima. More generally, it acts as a measure of deviation from local average. The
relevance of Laplacian in our work is then obvious: through a closer look into Laplacian, it is
possible to show, for example, why the model’s output at a local maxima(minima) is larger(less)
than its neighborhood.

• Trace of the Hessian: ∆Mf = tr(∇2f). In Euclidean space Rn, Hessian ∇2f is a matrix of the
second partial derivatives, hence ∆f =

∑
i

∂2

∂x2
i
f . In Riemannian manifold with its Levi-Civita

connection∇, Hessian is the second covariant derivative, such that given local coordinates {xi},
a local expression for the Hessian tensor is∇2f =

(
∂2f

∂xi∂xj − Γk
ij

∂f
∂xk

)
dxi ⊗ dxj , where Γk

ij are
the Christoffel symbols of connection. Therefore the Laplacian contains information about the
second order behavior of a function, which is not available in gradients.
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• Hodge Laplacian: ∆Mf = −d∗df . In exterior calculus, the codifferential d∗ is adjoint to the
differential d and by

∫
fd∗θdVg =

∫
⟨df, θ⟩gdVg, where Vg is the Riemannian volume. When

acting on 1-forms, d∗ can be given by the divergence as d∗(αX) = −div(X) where αX is
the dual of X by αX(Y ) = ⟨X,Y ⟩g and hence ∆Mf = div grad f = −d∗df . The Hodge
Laplacian for differential forms, given by □M = −(d∗d + dd∗), coincides with ∆Mf when
acting on functions, i.e. 0-forms. Generalization of Laplacian to differential forms allows us to
analysis the gradient field of a function in addition to the function itself.

• Infinitesimal generator that generates Brownian motion on M: roughly speaking, it means
1
2∆Mf(x) = limt↓0

1
t (E[f(Xt)|X0 = x] − f(x)), where {Xt}t>0 is a Brownian path. This

connection provides a clue to the definition of a distribution on the neighborhood of x through
Brownian motion.

2.3 HEAT EQUATION

With the above Laplacian defined, we can now introduce the most basic diffusion process governed
by the following PDE, which describes how an initial heat distribution f :M→ R looks after being
diffused for time t > 0:

∂

∂t
u(t,x) = ∆Mu(t,x), (1)

u(0,x) = f(x). (2)

The solution, u(t,x) : (0,∞)×M→ R, can also be given in multiple roughly equivalent ways:

• Convolution: u(t,x)=
∫
M kt(x,y)f(y)dy, in which kt(x,y) is the fundamental solution of this

PDE, known as the heat kernel. In Euclidean space, it is just a Gaussian centered at the point x.

• Expectation: u(t,x)=E[f(Xt)|X0 = x]. As the heat kernel is also the transition density function
of Brownian motion onM, the expectation of function value over ends of Brownian paths yields
the solution on a stochastically complete manifold (Hsu, 2002). Such a stochastic representation
of PDE solutions is known as the Faynman-Kac formula (Karatzas & Shreve, 2012).

• Gradient flow (Santambrogio, 2016): It is well-known that the solution is the gradient flow
for the Dirichlet energy

∫
∥ grad f∥2gdVg in L2(M) space. Consequently, the Dirichlet energy

monotonically decreases in time under the heat flow, meaning that the smoothness of the solution
is always increasing.

It is convenient to define the heat operators {Pt}t>0 to represent the solution: u(t,x) = (Ptf)(x).
The heat equation can be extended to the diffusion of tensor fields and differential forms using
generalized Laplacian. For instance, heat equation on 1-forms may be defined with the Hodge
Laplacian: ∂

∂tθ(t,x) = □Mθ(t,x). Since □M commutes with the differential d, if the initial
condition is set to be a closed 1-form, i.e., the differential of a function: θ(0,x) = df(x), then
the solution will have an interesting connection with the heat equation on functions (Hsu, 2002,
Section 7.2):

θ(t,x) = d(Ptf)(x). (3)

It means that diffusing the differential of a function with Hodge Laplacian is equivalent to applying
the differential operator to the solution of scalar heat equation.

3 MULTI-SCALE INTERPRETATION BASED ON HEAT DIFFUSION

By treating the model to be explained as the initial heat distribution, we analyze the solution of
the heat equation to summarize the model at different scales from the point of view of an input x.
The solution alone has already given local weighted average value of the function centered at x:
(Ptf)(x) = E[f(Xt)|X0 = x]. The time t plays the role of vicinity quantification that defines the
range of neighborhood through a stochastic view as the area reachable by Brownian motion starting
at x. For small value of t, the smoothed value is mainly affected by small neighborhood of x, hence
reflecting only local information of the explained model. While as t increases, the smoothed function
tends to capture more global trends of the model. In this section, we show that it is possible to extract
more detailed information from the solution by applying differential operators to {Ptf}t>0.
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3.1 SUMMARIZING GRADIENTS

By Eq. 3 and the duality of differential and gradient, taking the gradient of Ptf is equivalent to
smoothing the gradient field of f through running a heat equation for vector fields up to time t. In
Euclidean settings, the gradient of Ptf is ∇Ptf(x) = E[∇f(Xt)|X0 = x], which is simply the
locally averaged version of the initial gradient field. On more general manifolds, it does not make
sense to add vectors living in different tangent spaces TXt

M, and we need the parallel transport (Lee,
2018, Chapter 4) term acting as a mechanism to connect nearby tangent spaces. There is a Feynman-
Kac formula for this operation (Hsu, 2002, Theorem 7.2.1):

gradPtf(x) = E[Mtτt grad f(Xt)|X0 = x], (4)

where τt is the stochastic parallel transport map that transfers vectors from the tangent space of Xt

back to that of X0 along the Brownian path, and Mt is related to the Ricci curvature tensor onM.
One can interpret Eq. 4 as collecting derivative information from neighborhood by sending Brownian
particles that travel for a fixed time length, parallel transporting the gradients at the positions of
particles back to the explained point and averaging them.

3.2 ATTRIBUTION

For attribution tasks, a natural baseline to choose in our framework is the local average E[f(Xt)|X0 =
x]. Formally, given a model function f :M⊂ RD → R, the input of interest x, and the solution Ptf
of heat equation initialized at f , we attribute (Ptf)(x)− f(x) to input features {xi}Di=1 at each t.

In order to allocate the difference to the coordinates of ambient space RD, we try to disaggregate
the Laplace-Beltrami operator using the the standard orthonormal basis {ei}Di=1. Let Ei(x) be the
orthogonal projection of the unit vector ei onto the tangent space TxM. Since the gradient field
is tangential toM, we have grad f =

∑
i⟨grad f, ei⟩gei =

∑
i⟨grad f, Ei⟩gEi. The projection of

grad f onto the ith dimension is achieved by gradi f = ⟨grad f, Ei⟩gEi = (Eif)Ei, and we define
the dual form of gradi f as dif to be the “partial differential” operator. Further, we can compute the
contribution of each feature i by taking the divergence of the projected vector field, div((Eif)Ei). In
this representation, the flow of heat along the ith dimension for an input x up to time T is defined as,

HeatFlowM
i (x, T, f) :=

∫ T

t=0

div gradi(Ptf)(x) dt. (5)

A desirable property of HeatFlow is that the attributions add up to the difference between the values
of f and its smoothed version as follows,

(PT f)(x)−f(x) =
∫ T

t=0

∂

∂t
(Ptf)(x)dt =

∫ T

t=0

∆M(Ptf)(x)dt =

D∑
i=1

HeatFlowM
i (x, T, f), (6)

where the last equality is an immediate result of ∆Mf = div gradf =
∑D

i=1 div(
∑

i⟨gradf, Ei⟩gEi).
Instead of computing div with respect to manifold, we can also globally express both div and grad

using the standard basis {ei}, i.e., grad f =
∑D

i=1(Eif)ei and divX =
∑D

i=1 EiXi where Xi is
the i-th component of vector field X expressed in ambient coordinates. This leads to another
decomposition ∆Mf =

∑D
i=1 E2i f . Furthermore, through the trace of the Hessian expression, we

also have ∆Mf=
∑D

i=1∇2f(Ei, Ei) (Hsu, 2002, Corollary 3.1.5). Together, we have the following
three decompositions,

D∑
i=1

∫ T

t=0

div gradi(Ptf)(x) dt =

D∑
i=1

∫ T

t=0

E2i (Ptf)(x) dt =

D∑
i=1

∫ T

t=0

∇2(Ptf)(Ei(x), Ei(x)) dt. (7)

It is worth noticing that while they are the same when summed over D dimensions, the three
summands for each dimension i are not necessarily equal to each other. For simplicity of calculation,
we adopt the last decomposition strategy based on the Hessian tensor in our experiments.

In Euclidean space, all the three decompositions just reduce to sum of the diagonal terms of the
Hessian matrix. Hence, attribution for i-th dimension becomes integral of the second partial derivative:

HeatFlowRD

i (x, T, f) :=

∫ T

t=0

∂2

∂x2i
(Ptf)(x) dt. (8)
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3.3 PROPERTIES IN EUCLIDEAN SPACE

In this section, some nice properties satisfied by our method in Euclidean space are discussed. All
proofs are given in the Appendix. We leave the study of analogous properties on general manifolds
for future work.

HeatFlow obeys attribution axioms. The evolvement of the model interpretation problem brings
several desirable properties that a new attribution method should satisfy (Lundberg & Lee, 2017;
Sundararajan et al., 2017; Friedman, 2004). The following proposition includes four axioms defined
in (Sundararajan & Najmi, 2020).

Proposition 1. HeatFlowRD

satisfies the Dummy, Efficiency, Symmetry, and Linearity axioms.

HeatFlow recovers GAM. Generalized additive models (Hastie & Tibshirani, 2017; Lou et al.,
2012) are a family of inherently interpretable models based on the sum of univariate functions. The
interaction between the features is simply additive in a GAM, therefore a user can interpret the
contribution of each feature independently through looking into the corresponding univariate function.
Ideally, if an attribution method is applied to a GAM, its output is expected to be consistent with the
GAM itself. This is the case for HeatFlow.
Proposition 2. Suppose f : RD → R; x 7→ ∑D

i=1 fi(xi) is a smooth additive function, in
which ∀i ∈ {1, . . . , D}, fi : R → R is a bounded continuous function in L1(R). Then
limt→∞ HeatFlowRD

i (x, f, t) = −fi(xi).

HeatFlow detects additive structure. For a given neural network f , it is usually impossible to
decompose f into sum of univariate functions. How do we know if at least some variable, say,
xi, contributes additively to f? One idea is to look into the its gradient ∇f : RD → RD. Since
Euclidean space is the focus of this section, let us slightly abuse the notations df = grad f = ∇f ,
dif = gradi f = [∇f ]iei, ∂if = [∇f ]i, and d∗X = −divX for simplicity. If xi is truly
contributing to f additively, i.e., ∃fi : R → R such that f(x) = fi(xi) + f−i(x−i), then the
magnitude of the gradient projected onto the i-th direction can be fully characterized by fi via
∂if = dfi. The following lemma shows that the converse is also true.
Lemma 1. Assume that there exists an univariate function fi : R → R such that ∀x ∈ RD :
dfi(xi) = ∂if(x). Then f(x) = fi(xi) + f−i(x−i), in which the function f−i : RD−1 → R does
not depend on xi.

Based on this observation, in order to detect if xi contributes univariately, one can try to find a function
gi : RD → R whose gradient matches dif everywhere. If such a gi exists, it will depend only on
xi because its partial derivatives with respect to {xj}j ̸=i will always be zero. A straightforward
implementation of this idea is to solve the optimization problem:

min
g: RD→R

|dg − dif |2 :=

∫
∥dg(x)− dif(x)∥22 dx (9)

It is well known that the Euler–Lagrange equation for this problem is the Poisson equation ∆g =
d∗dif . Interestingly, we discover that HeatFlow is solving this kind of equation.

Proposition 3. gi,t(·) = HeatFlowRD

i (·, f, t) solves the Poisson equation ∆gi,t = d∗di(Ptf − f).

As a result, for a function f satisfying ∀x : limt→∞ Ptf(x) = 0, e.g., f ∈ L1(RD), the difference
between the gradient of HeatFlow at large enough t and the partial gradient of −f approximately
measures the degree of deviation from being univariate for a considered feature. Specifically, if the
feature i rarely interacts with other features, the following residual should be small everywhere:

ri(x) =
∥∥d(HeatFlowi(x, f, t)

)
− di(Ptf − f)(x)

∥∥2
2
. (10)

When this residual is zero everywhere, according to Lemma 1, the feature i contributes to Ptf − f
additively. In Figure 1b, we visualize the residuals at a large t for the toy example. Interestingly,
similar residuals are also discovered in a different setting where the Shapley value (Shapley, 1953) is
employed for attribution (Kumar et al., 2021).
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4 CONNECTION WITH EXISTING WORK

Close connections can be drawn between our method and many existing attribution approaches. We
discuss in this section how our method generalizes the literature of attributing prediction of a model
f(·) on an input x to its features.

• Vanilla Gradient (Grad) (Simonyan et al., 2014). The Vanilla Gradient is defined as Grad(x) =
∇xf(x). It only characterizes first-order behavior of the model in an infinitesimal range.

• Smooth Gradient (SG) (Smilkov et al., 2017). Given a user-defined variance σ, the Smooth
Gradient is defined as SG(x) = Ez∼N (x,σ2I)∇zf(z). It is a special case of our method in
Euclidean settings: SG(x) = ∇x[(f ∗ N (0, σ2I))(x)] = ∇xu(t = σ2/2,x).

• Integrated Gradients (IG) (Sundararajan et al., 2017). Given a user-defined baseline input x′,
IG of feature i is defined as IGi(x,x

′) = (xi−x′i) ·
∫ 1

0
∂

∂xi
f(x′+α(x−x′))dα, where gradients

are accumulated along the straight-line path in Euclidean space. Our method can also be viewed
as expectation over multiple path integrals: E[f(Xt)|X0 = x] = E[

∫
X[0,t]

df |X0 = x].

• Expected Gradients (EG) (Erion et al., 2019). By introducing a distribution of baselines D, EG
is the expectation of path integrals defined as EGi(x, D) = Ex′∼DIGi(x,x

′). When a Gaussian
baseline is adopted as D = N (x, σ2I), it coinsides with our method in Euclidean settings,
explaining deviation from local average as

∑
i EGi(x, D) = f(x)− Ex′∼N (x,σ2I)f(x

′). When
the training data itself is used, D = Ddata, it coinsides with our method in manifold setting when
t→∞, explaining the difference from global average of all data.

• Blur Integrated Gradients (BlurIG) (Xu et al., 2020). BlurIG extends IG by considering the
path of successively blurring the input image using Gaussian filter. It solves a heat equation in the
2D plane of a single image as contrast to data space in our method.

It is worth noting that the heat equation has also found applications in diffusion-based generative
modeling (Sohl-Dickstein et al., 2015; Song et al., 2021; De Bortoli et al., 2022), in which certain
design of forward diffusion process is equivalent to solving the heat equation (as a special case of the
Fokker–Planck equation) initialized at p(x), the probability density function of data distribution.

5 EXPERIMENTS

To illustrate our multi-scale attribution methods, we demonstrate a sequence of attribution maps at
discretized time steps on three image recognition tasks, including a synthetic image regression task,
MNIST classification and facial age estimation1. We compare our method, HeatFlow, with four other
methods, including Grad, IG, SG and BlurIG. As for SG, increasing levels of Gaussian noises are
applied and resulting gradients are averaged over 100 samples. We denote noise level s as the amount
of noise to add to the input as fraction of the total spread, maxx −minx. As for BlurIG, partial
accumulation of gradients along the path is calculated, where α denotes variance of the 2D Gaussian
kernel. A detailed discussion and pseudo-algorithm of the numerical implementation of HeatFlow
in an end-to-end framework is presented in Appendix A.5. In the following experiments, all data
manifold is learnt by VAEs. Since our method involves many differentiation operations, experiments2

are implemented using the JAX package (Bradbury et al., 2018) with Tesla V100 GPU. Further
information, such as latent dimension of VAEs and image sizes are summarized in Appendix A.7.
For all attribution maps of following figures, red and blue pixels denote positive and negative values,
respectively, and deeper color denotes higher absolute value and stronger contribution.

5.1 SYNTHETIC EXPERIMENTS FOR HIERARCHICAL FEATURE STRUCTURE

To study the ability of HeatFlow in uncovering different features with global or local effect, we
design a synthetic dataset with hierarchical feature structure. A latent code z = [z0, · · · , zd−1] ∈
[Uniform(0, 2π)]d is first sampled, based on which, labels and input images are generated as shown
in Figure 2a. The underlying manifold is known, which is the Cartesian products of six circles. Local
features are those pixels close to the upper-left corner, while global ones are those of larger squares.

1Face images from the UTKFace https://susanqq.github.io/UTKFace/ dataset.
2Source code available at: https://anonymous.4open.science/r/heat-explainer-FFD0
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Figure 2: (a) Top: Generate labels. Bottom: Generate images. (b) Comparison of HeatFlow,
Grad, SG, IG with black baseline and BlurIG on synthetic data. HeatFlow under true manifold,
manifold learnt by VAE with latent dimension d = 12 and d = 6 are presented in the first three rows,
respectively. On the fourth row, gradients on the true manifold is collected at each time step. The
reconstructed inputs are shown below the original input. Vanilla Grad and IG are presented below the
reconstructed inputs. For HeatFlow, SG and BlurIG, different time steps, noise levels of Gaussian
blur, and partial integration up to kernel width α are shown, respectively.

As shown in Figure 2b, vanilla Grad mostly highlights local features that are close to the upper-left
corner. Both Grad and SG misleadingly highlight squares lying on the diagonal which stays constant
among all images. For IG and BlurIG, more global features are concentrated on, however multi-
scaled information is lacking. For HeatFlow, localness is meticulously controlled by heat diffusion
on the manifold and when value of t is small, only small squares which correspond to local features
are highlighted; as value of t grows, more global pixels, i.e. larger squares are gradually shown.
Furthermore, highlighted pixels tend to appear as an organized group in HeatFlow, suggesting its
ability to attribute features with correlated contributions.

Manifold Mismatch. The heat kernel is known to be stable under perturbations of the underlying
manifold (Sun et al., 2009). Intuitively, such stability comes from the Brownian motion interpretation
of heat flow: small perturbations will only affect a subset of the infinitely many Brownian paths.
To study the reliance of alignment between the learned manifold and the true manifold, an ablation
experiment is conducted where HeatFlow is run separately using the true underlying manifold and
manifold learned by VAE with latent dimensionality d = 6 and d = 12, shown in first three rows
of Figure 2b. It is observed that, when the correctness of the manifold increases, more detailed
information is captured. The multi-scale property behaves as expected regardless of degree of
manifold mismatch.

5.2 MNIST AND UTKFACE

The same experiments are conducted on the MNIST classification task, where in Figure 3a, logits of
a neural network with 98% test accuracy is diffused over time. To handle all logits simultaneously,
we use a heuristic extension of HeatFlow described in the Appendix. Saliency maps are particularly
noisy for vanilla Grad. SG and Blur IG also fail to provide succinct information as Gaussian noise
added in Euclidean space introduce unreliable evaluations of gradients over off-the-manifold samples.
For HeatFlow, concise attribution with pixels only on digit area are highlighted. It is also evident
that the attribution changes as heat flows. More interesting findings can be drawn if we study the
logits of digits that are similar. In Figure 3b, we present heat flows and multi-scale attribution maps
for three digits, 3, 6, 9, and compare them with their visually similar digits, {5, 8}, {0, 8}, {7, 4},
respectively. It is observed that, in the last column, only pixels corresponding to the common features
of the compared digits remain. At small t, pixels that separate digits apart are highlighted.
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(a) Multi-scale attributions on MNIST. (b) HeatFlow for different logits.

Figure 3: (a) Heat maps of the logit of label class on MNIST test samples. Original input is shown in
the most upper-left corner. Vanilla Grad and IG are presented below the input. HeatFlow, SG and
BlurIG with increasing level of time, noise and kernel width is shown on each row started from the
second column, respectively. (b) Heat diffusion for MNIST samples comparing logits of different
classes. Left: Change in function value. Right: HeatFlow attribution maps.

As for explaining the facial age estimation task, results are presented in Appendix A.9. Our method
managed to locate structured features such as eye brows, wrinkles, whether smile with teeth shown
as important information for prediction of ages, where other methods failed to discover. We also
emphasize that multi-scale information is summarized in our method, such that attributed features
which remains for large value of t represent more global effects, such as wrinkles.

Figure 4: The change of accuracy for MNIST (upper)
and MAE for UTKFace (lower) as an increasing
percentage of pixels attributed to be important are
included (left) or excluded (right).

Quantitative Evaluation. We also include
a quantitative evaluation to compare HeatFlow
with other methods using a strategy adopted
in (Jethani et al., 2021). This evaluation
strategy utilizes the remove/retain-and-retrain
ideas where an evaluator was trained to predict
the label given an arbitrary subset of features,
and then, performance of the evaluator was
assessed as the features were gradually ex-
cluded/included according to the absolute im-
portance output by each explanation method.
Using a set of 1000 test images for MNIST
and 100 for UTKFace, accuracy and mean
absolute error is assessed respectively as we
include or exclude the most important features
ranging from 0 − 100%, with curves visual-
ized in Figure 4. HeatFlow is very competitive
in terms of AUC, indicating that it is good at
identifying important discriminative features.

6 CONCLUSIONS

We have introduced a novel interpretation
framework, HeatFlow, which generates a sequence of feature attributions for an interested input,
explaining the deviations of model’s outcome from multi-scale local averages. Drawbacks of this
work lie in the difficulties of manifold learning on more complex datasets, high-dimensional PDE
solving, and high-order derivative computation. Our method will benefit from methodological
advancements in these directions. It is also interesting to generalize HeatFlow to the union of
disconnected manifolds, which may be a more appropriate assumption for classification datasets.

9
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A APPENDIX

A.1 AXIOMATIC PROPERTIES IN EUCLIDEAN SPACE

Proof of Proposition 1. Since the derivative of a function with respect to a dummy variable is always
zero, the Dummy axiom is satisfied. By Eq. 6, the attributions always add up to the difference
(Ptf)(x)− f(x) and hence proved the Efficiency axiom. The linearity is a consequence of the fact
that the heat operator is linear. For a function that is symmetric in two variables xi and xj , we prove
below ∂2Ptf/∂x

2
i = ∂2Ptf/∂x

2
j as long as xi = xj .

Let f(x1, ..., xi, ..., xj , ..., xn) be a function of n variables, f : Rn → R. Without loss of generality,
let xi and xj be symmetric variables, i.e. f(..., xi, ..., xj , ...) = f(..., xj , ..., xi, ...) for ∀xi, xj ∈ R.
Then we have
Ptf(..., xi, ..., xj , ...)

=

∫
y

1

(4πt)n/2
exp

(
− 1

4t

n∑
k=1

(xk − yk)2
)
f(..., yi, ..., yj , ...)dy

=

∫
y

1

(4πt)n/2
exp

(
− 1

4t

n∑
k/∈{i,j}

(xk − yk)2 + (xi − yi)2 + (xj − yj)2
)
f(..., yi, ..., yj , ...)dy

=

∫
y

1

(4πt)n/2
exp

(
− 1

4t

n∑
k/∈{i,j}

(xk − y′k)2 + (xi − y′j)2 + (xj − y′i)2
)
f(..., y′j , ..., y

′
i, ...)dy

′

=

∫
y

1

(4πt)n/2
exp

(
− 1

4t

n∑
k/∈{i,j}

(xk − y′k)2 + (xj − y′i)2 + (xi − y′j)2
)
f(..., y′i, ..., y

′
j , ...)dy

′

= Ptf(..., xj , ..., xi, ...),

where y′ is the permutation of y by exchanging the i-th and j-th variables. The third equality follows
from the change of variables formula and the fact that the determinant of a permutation matrix is ±1.
Hence, we draw the conclusion that the heat operator preserves the symmetry in Euclidean space.
Next, further assuming that xi = xj = a and according to the limit for second derivative, we have,

∂2

∂x2i
f(..., a, ..., a, ...)

= lim
h→0

f(..., a+ h, ..., a, ...)− 2f(..., a, ..., a, ...) + f(..., a− h, ..., a, ...)
h2

= lim
h→0

f(..., a, ..., a+ h, ...)− 2f(..., a, ..., a, ...) + f(..., a, ..., a− h, ...)
h2

=
∂2

∂x2j
f(..., a, ..., a, ...).

In other words, we have shown that the second derivatives of the symmetric function with respect
to symmetric variables are equal when the values are equal. As a result, we have proved that
∂2Ptf/∂x

2
i = ∂2Ptf/∂x

2
j as long as xi = xj .

A.2 DEVIATION FROM ADDITIVE CONTRIBUTION AND LINK WITH SHAPLEY VALUE

An interesting link exists between our method and the Hodge decomposition of a coorperative game
(Stern & Tettenhorst, 2019). Given a set of D players and a value function v : 2[D] → R, each
coalition of players S ⊂ 2[D] = V can be considered as a vertex of a D-dimensional hypercube
G = (V,E), where each edge corresponds to addition of a single player i /∈ S to S. The gradient
and divergence of exterior calculus operating on this graph, denoted by (d, d∗), are defined as
dv(S, S ∪ {i}) = v(S ∪ {i}) − v(S) and (d∗f)(a) =

∑
(b,a)∈E f(b, a), respectively. dv ∈ ℓ2(E)

gives the marginal value contributed by a player joining a coalition. To specify marginal contribution
of an individual player i ∈ [D], a partial gradient di : ℓ2(V )→ ℓ2(E) is defined as

div(S, S ∪ {j}) =
{
v(S ∪ {j})− v(S), i = j

0, otherwise
.

13



Under review as a conference paper at ICLR 2023

Notice the corresponding definition of partial differentiation operator in the continuous space adopted
in our method, dif = gradi f . A key result in (Stern & Tettenhorst, 2019) is connecting inessentiality
of games to the defined partial gradient operators in the following proposition, where in an inessential
game, for all S ⊆ V , v(S) =

∑
i∈S v({i}), meaning each player contributes a precise value v({i})

to any coalition it participates in.
Proposition 4. (Stern & Tettenhorst, 2019, Prop 3.3) A game is inessential if and only if div ∈ im d
for all i ∈ [D].

This means a game is inessential if one can find games vi such that div = dvi for each player i. In
our setting, there is no notion of game but we consider in breaking down the given differentiable
model f(·) to additive univariate functions. This ability in separating each feature to contribute
independently is the “inessentiality” of our problem.

In particular, we consider the simplest case where the function to be explained is itself an additive one,
i.e. f : RD → R; x 7→∑D

i=1 fi(xi). We prove Proposition 2 that our method HeatFlowRD

i (·, T, f)
tends to recover each independent component as T tends to infinity.

Proof. The solution of heat equation initialized at an additive function is the sum of 1D solutions, as
follow,

Ptf(x) =

∫
1

(4πt)D/2
exp

(
− 1

4t
∥x− y∥2

)( D∑
i=1

fi(yi)
)
dy

=

D∑
i=1

∫
1

(4πt)1/2
exp

(
− 1

4t
(xi − yi)2

)
fi(yi) dyi =

D∑
i=1

(Ptfi)(xi)

Following this observation, it is easy to derive that,

HeatFlowRD

i (x, T, f)

:=

∫ T

t=0

∂2

∂x2i
(Ptf)(x) dt =

∫ T

t=0

∂2

∂x2i
(Ptfi)(xi) dt =

∫ T

t=0

∂

∂t
(Ptfi)(xi) dt = PT fi(xi)− fi(xi)

For fi ∈ L1(R), limt→∞ Ptfi(xi) = 0. Hence, Proposition 2 is proved.

Next, we consider more general case, where some variables might interact with each other.

Proof of Lemma 1. Assume an arbitrary path over Rn, r(t) = (x1(t), . . . , xn(t))
T , such that the end

points are r(0) = xa and r(1) = xb, particularly, the i-th feature has value (xa)i = a and (xb)i = b.
By the fundamental theorem of calculus for line integrals, and if ∂f

∂xi
= dfi

dxi
for any x, we have,

f(xb)− f(xa) =

∫ 1

0

∂f(r(t))

∂x
· dr(t)
dt

dt

=

∫ 1

0

n∑
i=1

∂f(r(t))

∂xi

dxi(t)

dt
dt

=
∑
j ̸=i

∫ 1

0

∂f(r(t))

∂xj

dxj(t)

dt
dt+

∫ 1

0

∂f(r(t))

∂xi

dxi(t)

dt
dt

=
∑
j ̸=i

∫ 1

0

∂f(r(t))

∂xj

dxj(t)

dt
dt+

∫ 1

0

dfi(xi(t))

dxi

dxi(t)

dt
dt

=
∑
j ̸=i

∫ 1

0

∂f(r(t))

∂xj

dxj(t)

dt
dt+ fi(b)− fi(a).

With xa set to 0 and assuming f(0) = 0, we have f(x) =
∑

j ̸=i

∫ 1

0
∂f(r(t))

∂xj

dxj(t)
dt dt+ fi(xi). Since

path r(t) is arbitrary meaning the equation holds for any path between 0 and x, if the first term
depends on xi, then by differentiating both sides with respect to xi, ∂f

∂xi
= dfi

dxi
would be contradicted

and hence Lemma 1 proved.
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Next, we prove Proposition 3, such that our method HeatFlowRD

i (·, t, f) is solving the Poisson
equation ∆gi,t = d∗dgi,t = d∗di(Ptf − f).

Proof. First we emphasize that operator d∗di and the heat operator Pt commute with each other
since d∗di commute with the Laplacian ∆ as follows:

d∗di∆f = div

(
∂

∂xi

D∑
k=1

∂2

∂x2k
f

)

=
∂2

∂x2i

D∑
k=1

∂2

∂x2k
f

=

D∑
k=1

∂2

∂x2k

∂2

∂x2i
f = ∆d∗dif.

With this fact, we have

d∗d

(
HeatFlowi(x, t, f)

)
= d∗d

∫ t

τ=0

d∗di(Pτf)(x)dτ

= d∗d

∫ t

τ=0

Pτ (d
∗dif)(x)dτ

=

∫ t

τ=0

∆Pτ (d
∗dif)(x)dτ

=

∫ t

τ=0

∂

∂t
Pτ (d

∗dif)(x)dτ

= Pt(d
∗dif)(x)− d∗dif(x) = d∗di(Ptf − f)(x).

A.3 EXAMPLE ON MULTIVARIATE GAUSSIAN

Here, we present a simple example of our method, HeatFlow, on a d-dimensional multivariate
Gaussian with mean µ and diagonal covariance Σ = diag(σ1, . . . , σd). Firstly, the solution of heat
equation is calculated as follow,

Ptf(x) =

∫
kt(x,y)N (y;µ,Σ) dy

=

∫
1

(4πt)d/2
exp

(
− 1

4t
∥x− y∥2

) 1

(2π)d/2|Σ|1/2 exp
(
− 1

2
(y − µ)TΣ−1(y − µ)

)
dy

= N (x;µ,Σ+ 2tI)

Consequently, we have the contribution of the i-th variable as,

HeatFlowRD

i (x, T, f) :=

∫ T

t=0

∂2

∂x2i
(Ptf)(x) dt =

∫ T

t=0

1

(2π)d/2|Σ+ 2tI|1/2
(
− 1

σi + 2t

)
dt

A.4 ADDITIONAL RELATED WORK

A relevant literature from the perspective of generative models is identifying interpretable latent
dimensions (Yang et al., 2021). In (Wang & Ponce, 2020), unsupervised discovery of interpretable
axes is facilitated by exploring the latent space along the eigenvectors of the metric tensor defined by
the decoder. Eigenvectors at different ranks encode qualitatively different type of changes. The main
difference between our work and these prior literature is that our primary goal is to interpret a learned
regression/classification model with the help of a generative model to explore the data manifold,
while their goal is to explain the generative model itself.
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The discussion in the main text assumes that we have access to a parameterized representation of
the manifoldM. In practice, the manifold may be implicitly defined via a projection function that
projects an arbitrary point onto the manifold through identifying its closest on-manifold counterpart
in terms of Euclidean distance (Ruuth & Merriman, 2008; März & Macdonald, 2012). Given such
a closest point function cp(x) : RD → M, it is possible to extend a function f(x) : M → R
to the surrounding space in RD by defining a new function f ◦ cp(x) : RD → R. It has been
shown that the intrinsic operations of grad and ∆M are simplified as grad f(x) = ∇[f ◦ cp](x) and
∆Mf(x) = ∆[f ◦ cp](x). The latter equation provides the fourth possibility to disaggregate the
Laplace-Beltrami operator.

A.5 NUMERICAL IMPLEMENTATION

In this section, we briefly discuss the numerical implementation of our method in an end-to-end
framework from manifold learning to multi-scale explanation. Since there are numerous approaches
for manifold learning and high-dimensional PDE solving, we claim our implementation is only one of
many possible realizations and can be generalized to different manifold settings for various purposes.

Manifold Learning. Deep generative models strive to infer probability distribution from observa-
tional data x∈X =RD, as well as learning the underlying data manifold (Brehmer & Cranmer, 2020;
Arvanitidis et al., 2018). Approaches such as VAEs (Kingma & Welling, 2014; Rezende et al., 2014)
and GANs (Goodfellow et al., 2014) makes the assumption of a d-dimensional data manifold,M,
embedded in the ambient space with d < D, through highly flexible generator, g : Z→M, where
z∈Z=Rd is the latent variable. The local Jacobian of the generator function, Jz=

∂g
∂z |z=z, provides

local basis in the input space and Gz=JT
z Jz is the Riemannian metric.

Heat Equation Solving. To solve the heat equation on manifold, especially a high-dimensional one,
we utilize the Feynman-Kac formula and the framework proposed by (Beck et al., 2021; Berner et al.,
2020) where one can simulate training data in order to learn solution Ptf by means of deep learning.
A supervised learning problem is constructed via the predictor variables (x, t) and the dependent
target variables y=f(Xt)|X0=x. The unique minimizer of the quadratic loss minϕ E[(ϕ(x, t)− y)2]
is the solution of the heat equation. In practice, the following empirical error is minimized over the
function space of suitable neural networksH:

ϕ̂ = argmin
ϕ∈H

1

s

s∑
i=1

(ϕ(xi, ti)− f(Xt)|X0=xi)
2, (11)

where {(xi, ti)}si=1 are realization of i.i.d. samples uniformly drawn fromM× [0, T ]. To simulate
Brownian motion on a Riemannian manifold, we perform random walks over the learned manifold
depending on the Laplacian adopted. In Euclidean setting, random walks are realized by adding
Gaussian noise. While in curved space, one usually resort to geodesic random walks performed
directly on latent variables. Detailed algorithms are presented in the Algorithm 2.

For classification models, to align with training of the original model, we minimize the cross entropy
loss, instead of MSE in Eq. 11.

Gradient and Decomposition of Laplacian To compute the gradient and the attribution after heat
equation solving, we need to explicitly realize the projection Ei. When a local chart g is available,
such as a decoder function, we define J(JTJ)−1JT as the projection matrix. The resulting explicit
forms of gradf and Ei are

grad f = (JTJ)−1JT∂f/∂x = G−1∂f/∂z, Ei = (JTJ)−1JTei = G−1∂gi/∂z.

By the definition of Christoffel symbol which describes the metric connection of manifold, it is easy to
derive Γi

jk =
∑

m
1
2G

−1
im(∂jGkm+∂kGjm−∂mGjk) =

∑
m,b G

−1
imJb

mHb
jk, where Hb

jk = ∂2gb
∂zj∂zk

is the Hessian matrix of the generator and Jb
m = ∂gb

∂zm
the Jacobian matrix. Following the definition

of Hessian tensor, we have

∇2f(Ei, Ei) = ETi
(

∂2f

∂zj∂zk
− Γi

jk

∂f

∂zi

)
jk

Ei =
∂gi
∂z

T

G−1

(
Hf − JfG

−1(
∑
b

JbHb)

)
G−1 ∂gi

∂z
,

(12)

16



Under review as a conference paper at ICLR 2023

where Hf and Jf are the Hessian and Jacobian matrix of the explained model f with respect to latent
variables, respectively. Substitute this implementation into the third decomposition strategies in Eq. 7
for each Ptf and then we obtain multi-scale attribution.

The following pseudo-algorithm shows a reference implementation of HeatFlow. Notice that given
training input data and function to be trained, the steps of manifold learning and heat equation solving
only need to be computed once. The resulting manifold and heat kernel can be reused for explaining
any further test input.

Algorithm 1: A reference implementation of HeatFlow

Require : D: training dataset, f : RD → R: a trained model, x∗: a test input to be explained, T :
total horizon

Output : Ψ = {ψ(t)
i }D,T

i,t=1 feature importance for each feature i and level of localness t
// Manifold Learning

1 learn the underlying manifold using VAE from D
—get—: encoder g, decoder h, Jacobian of the encoder Jg , and metric Gg = JT

g Jg

// Heat Equation Solving
2 initialize model ϕ with similar structure as f and take t as extra input
3 while learning not done do
4 for each batch do
5 sample {x(i), t(i)}si=1 uniformly from D × [0, T ]
6 for each i = 1, ...s do
7 Z(i) ← RW(z0 = g(x(i)), s, t(i),Gg)
8 end
9 update ϕ as to minimize loss L =

∑s
i=1

(
ϕ(x(i), t(i))− f(h(Z(i)[−1, :]))

)2
10 end
11 end

—get—: solution ϕ∗(x, t) ≈ Ptf(x) on the learned manifold
// Decomposition of Laplacian

12 initialize Ψ as a zero array
13 z∗ = g(x∗)
14 for each i = 1, ..., D do
15 for each t = 1, ..., T do
16 calculate δHeatFlowi = ∇2ϕ∗(·, t)

(
Ei(z∗), Ei(z∗)

)
according to Eq. 12

17 accumulate Ψ[i, t] = Ψ[i, t− 1] + δHeatFlowi · δt
18 end
19 end

In order to simulate Brownian motion on a Riemannian manifold as needed in solving a high-
dimensional heat equation, we resort to Algorithm 2, which is also adopted by (Arvanitidis et al.,
2018).

Algorithm 2: Random walk on a Riemannian manifold: RW(z0, s, T,G)

input : Latent starting point z0 ∈ Rd, step size s, number of steps T , metric tensor G
output : Random walk path Z ∈ RT×d

1 z = z0
2 for t = 1 to T do
3 L,U = eig(Gz), (L : eigenvalues, U : eigenvectors)
4 v = UL− 1

2 ϵ, ϵ ∼ N (0, Id),
5 z = z+ s · v,
6 Z(t, :) = z
7 end

17



Under review as a conference paper at ICLR 2023

A.6 DEFINITION OF MATHEMATICAL SYMBOLS

Table 1: Definition of involved math symbols, in local coordinates on a Riemannian manifold and
in Cartesian coordinates in the special case of Euclidean space, along with their intuitive meanings
in natural language (intuitive meaning referenced from Wikipedia). Particularly for Cartesian
coordinates in Euclidean space, a three-dimensional example is also shown. Notice that the Einstein
summation convention is used, implying summation over i and j. ei = ∂x/∂xi and ei = dxi refer
to the unnormalized local covariant and contravariant bases, gij is the inverse metric tensor, αX is
dual of vector field X , and ⟪, ⟫ is square-integrable inner product.

Symbol Local
Coordinates

Cartesian
Coordinates Meaning

metric tensor:
g = {gij} ⟨ei, ej⟩ δij

identity matrix

Allow definition of distances
and angles on manifolds, just
as the inner product on a Eu-
clidean space allows defining
distances and angles there.

gradient:
grad f = ∇f

∂f
∂xi

gijej

∂f
∂xi

ei[
∂f
∂x

∂f
∂y

∂f
∂z

]T Direction and rate of fastest
increase; A tangent vector,
which represents an infinites-
imal change in (vector) in-
put.

(dual of grad)
differential:

df
⟨∇f,X⟩ = df(X)

∂f
∂xi

ei
∂f
∂xi

ei[
∂f
∂x

∂f
∂y

∂f
∂z

] How much the (scalar) out-
put changes for a given in-
finitesimal change in (vector)
input.

divergence:
divF = ∇ · F

1√
det g

∂
√
det gFi

∂xi

∂Fi

∂xi

∂Fx

∂x +
∂Fy

∂y + ∂Fz

∂z

The volume density of the
outward flux of a vector field
from an infinitesimal volume
around a given point.

(adjoint of d)
codifferential:

d∗(αX) = − div(X)
⟪f, d∗θ⟫ = ⟪df, θ⟫

−∂Fi

∂xi

−∂Fx

∂x −
∂Fy

∂y − ∂Fz

∂z

The amount of "stuff" flow-
ing through a surface locally
per unit time, with velocity
moving by the vector field.

Laplacian:
∆f = ∇ · ∇f

1√
g

∂
∂xi

(√
ggij ∂f

∂xj

) ∂2f
∂x2

i

∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2

Local average deviation, how
much the average value of a
function over small balls cen-
tered at a point deviates from
its output.
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A.7 IMPLEMENTATION DETAILS

We summarize hyperparameter settings in our experiments in Table 2.

Table 2: Implementation details for the three experiments, synthetic, MNIST and UTKFace.

Hyperparameter/Dataset Synthetic MNIST UTKFace

Number of generated training samples 60000
Number of random walk steps 5000

Image size 128× 128 28× 28 200× 200× 3
VAE latent dimension d 6/12 10 16
Step size s 0.1 0.02 0.05
Explained model performance MSE< 10−4 ACC> 98% MAE< 3.0
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A.8 MORE RESULTS FOR SYNTHETIC EXPERIMENTS
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Figure 5: Three more examples for synthetic experiments. HeatFlow under true manifold, and learned
manifold by VAE with latent dimension d = 12 and d = 6 are presented in the firt three rows,
respectively. On the fourth row, gradients on the true manifold is collected at each time step. SG and
Blur IG are presented on the last two rows.
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Figure 6: Three examples for another synthetic experiments. HeatFlow with true manifold, VAE with
latent dimension d = 12 are presented in the first and second rows, respectively. On the thir row,
gradients on the true manifold is collected at each time step. SG and Blur IG are presented on the last
two rows.
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A.9 RESULTS FOR FACIAL AGE PREDICTION
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Figure 7: Five test examples for facial age prediction explanation. HeatFlow using VAE with latent
dimension d = 16 are presented in the first row. Vanilla Grad and IG are shown below the original
input. SG and Blur IG are presented on the second and thir rows.
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A.10 ABLATION: COMPARING HEATFLOW ON MANIFOLD AND EUCLIDEAN SPACE

Figure 8: Four examples comparing HeatFlow on the learned manifold and Euclidean space R28×28.
Original input is shown on the most upper-left corner. HeatFlow run on the learned manifold and
Euclidean space is shown on the first and second rows, respectively.

A.11 EXAMPLE OF ATTRIBUTION FOR ERRONEOUS PREDICTION

Figure 9: Example of attribution for an erroneous prediction from the facial age prediction task. The
prediction of age of this example is −5.9, which is negative and wrong. As heat flows, indicated by a
downward arrow, the prediction value of the smoothed model is presented beside each attribution
result.
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