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Abstract

Despite the recent success of artificial neural networks, more biologically plausible learn-
ing methods may be needed to resolve the weaknesses of backpropagation trained models
such as catastrophic forgetting and adversarial attacks. Although these weaknesses are not
specifically addressed, a novel local learning rule is presented that performs online clustering
with an upper limit on the number of clusters to be found rather than a fixed cluster count.
Instead of using orthogonal weight or output activation constraints, activation sparsity is
achieved by mutual repulsion of lateral Gaussian neurons ensuring that multiple neuron
centers cannot occupy the same location in the input domain. An update method is also
presented for adjusting the widths of the Gaussian neurons in cases where the data samples
can be represented by means and variances. The algorithms were applied on the MNIST and
CIFAR-10 datasets to create filters capturing the input patterns of pixel patches of various
sizes. The experimental results1 demonstrate stability in the learned parameters across a
large number of training samples.

1 Introduction

Machine learning models trained through backpropagation have become widely popular in the last decade
since AlexNet (Krizhevsky et al., 2012). Backpropagation, however, is not considered biologically plausible
(Bengio et al., 2016), and the trained models are among other things susceptible to catastrophic forgetting
(McCloskey & Cohen, 1989; Ratcliff, 1990) and adversarial attacks (Szegedy et al., 2014).

More biologically plausible methods would need to incorporate not only local learning rules and unsupervised
learning, but also have properties such as sparser activations, capacity for distribution changes of the input,
not prone to catastrophic forgetting, and work in an online setting, where samples are processed sequentially
during learning one at a time.

One way to address distribution shifts in online clustering is to utilize overparameterized models that have
additional parameters available to model input from subsequent unknown distributions. This will require
that the parameters used to capture previous data be less likely to be adjusted, but model susceptibility to
catastrophic forgetting would consequently be alleviated.

In this article, a novel learning rule is presented that utilizes neurons expressed with Gaussian functions. For
a given neuron, the online method has an attraction term toward the current sample, and an inhibition term
that ensures reduced overlap between the Gaussian neurons in the same layer to achieve activation sparsity.
This makes it possible to have an overparameterized model with more neurons in a layer than is needed to
represent the input. Some neurons will model previous input samples, while other neurons can adapt to new
input from a possibly different distribution. While the inhibition term does not fully resolve the possibility
of catastrophic forgetting, specialized rules may be added since the neurons representing already sampled
data can be identified.

1The source code to reproduce the figures in this article is available at https://gitlab.com/anonymous/
gaussian-neurons-for-online-clustering
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Additionally, an update method for the neuron widths is presented, where the sample variances are measured
from the data samples, and used to perform a constrained update of the neuron widths toward the sample
variances. This can in certain conditions lead to a more robust learning rule whose results are less affected
by the choice of initial neuron widths.

A limitation of the presented method is the use of isotropic Gaussian functions, employing scalar variances
instead of covariance matrices. Moreover, Gaussian functions require additional computational resources
and can be more numerically unstable compared to linear functions. Gaussian functions can, however, be
approximated while retaining desired properties, for instance by using piecewise linear functions.

Finally, no claims are made that the proposed learning rule achieves better clustering results compared to
previous work. On the other hand, the presented methods have a few interesting properties, as demonstrated
in Section 4 such as examples of robustness to model disruption and distribution shift, which merit further
studies toward more biologically plausible artificial neural networks that may be less susceptible to the
weaknesses of current trained models.

2 Related Work

Clustering in an online setting has previously been studied extensively (Du, 2010), including for instance
MacQueen’s k-means (MacQueen et al., 1967), self-organizing maps (Kohonen, 1982), adaptive resonance
theory (Carpenter & Grossberg, 1987), and neural gas (Fritzke et al., 1995). These algorithms typically
implement a winner-take-all scheme, where only the winning neuron is adjusted with respect to a given
sample.

Other methods extends Oja’s learning rule (Oja, 1982) to achieve online clustering, such as White’s compet-
itive Hebbian learning rule (White, 1992) that adds a lateral inhibition term to the Oja’s learning rule, and
Decorrelated Hebbian Learning (Deco & Obradovic, 1995) where softmax normalized Gaussian functions
are used for neuron activations. More recently, Pehlevan & Chklovskii (2014) presented an online cluster-
ing algorithm using symmetric non-negative matrix factorization based on the works of Ding et al. (2005);
Kuang et al. (2012), and Krotov & Hopfield (2019) extended the Oja’s learning rule with, moreover, a lateral
inhibition term. The latter method was parallelized on GPUs in Grinberg et al. (2019) and Talloen et al.
(2021). All of these methods, however, use a fixed number of clusters that the algorithms are predetermined
to find.

Current artificial neuron models are overly simplified compared to cortical neurons (Beniaguev et al., 2021).
In artificial neural networks, an activation function is usually used with a linear combination of input
variables. On the other hand, clustering algorithms such as k-means and Gaussian mixture models use
distance and multivariate Gaussian functions, respectively. The centroids or means of Gaussian functions
capture more significantly both the angle and magnitude of the input vector, than that of linear combinations
of input variables. Furthermore, variance and especially covariance provide additional flexibility for modeling
the input. To model a convex region, for example, an artificial neural network using linear combination of
the input variables will need two fully-connected layers each with a non-linear activation function, typically
Rectified Linear Units since Glorot et al. (2011). The first layer will then represent hyperplanes in the input
domain, and the second layer may combine these hyperplanes to convex regions. Gaussian functions, on the
other hand, innately capture convex regions, potentially reducing the number of layers required for a given
task. In terms of number of layers, a biological cortex cannot process signals sequentially as many times
as the deeper artificial feedforward networks do, due to the relatively low firing rate in biological neurons
(Wang et al., 2016). As a consequence, more biologically plausible models must perhaps be more shallow
than is common in today’s deep artificial networks.

Sparse representations can be an effective way to reduce the dimensionality of the input space, in addition
to having the potential for more efficient use of resources. Methods relying on linear combinations of the
input variables, such as sparse coding (Olshausen & Field, 1997), typically add a regularization term on
the output activations. These algorithms, however, depend on reconstruction errors and are therefore not
viable in certain unsupervised settings such as clustering. Another possibility is to regularize the linear
coefficients directly as in competitive Hebbian learning (White, 1992) or independent component analysis
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Figure 1: The cost function F with K = 2 Gaussian neurons parameterized by the first neuron µ1, where
x =

(
0.3 0.7

)
, µ2 =

(
0.7 0.3

)
, σ1 = σ2 = 0.2, and λ = 1

2 . Minimizing F with respect to µ1 can be
achieved by moving µ1 closer to x and farther from µ2. The minimum of F is here at µ1 ≈

(
0.24 0.76

)
,

although the presented learning rule will only make small changes to the cluster centers µ1:K for each x.
Furthermore, setting µ2 = x would lead to a flat surface where F = −1, and in this case there would be no
attraction or repulsion on µ1.

(Comon, 1994), but these methods rely on orthogonal constraints, which limits the clustering method, i.e.
the number of clusters found is generally less than or equal to the input dimensions, and two or more clusters
cannot exist along a given vector from the origin. On the other hand, Deco & Obradovic (1995) made use of
softmax normalized Gaussian neurons and regularization was achieved by penalizing overlapping Gaussian
functions in the same layer. The neuron and cost function of this method, however, can result in learned
cluster centers that are outside of the input domain, and these centers would then poorly represent the true
cluster centers. Moreover, the proposed learning rule does not require a softmax function to produce the
neuron outputs.

3 Learning Rule

Let x ∈ RD be an input vector, and µi ∈ RD and σi ∈ R>0 be center and width, respectively, of the i-th
Gaussian neuron in a layer, where i ∈ {1, . . . , K}. The output of the i-th neuron is then defined as:

fi(x) = e−∥x−µi∥2
2/σi

where ∥·∥2 denotes the l2-norm. The objective of the learning rule is to minimize the cost function E with
respect to the centers µ1:K :

E(X; µ1, . . . , µK , σ1, . . . , σK) =
∑
x∈X

K∑
i=1

−fi(x) + λ
∑
j ̸=i

fj(µi)


where X ∈ RN×D is a potentially very large set of N training examples that x is sampled from, K is the
number of Gaussian neurons, and λ ∈ R>0 controls the level of inhibition.

The first term of E attracts the cluster centers µ1:K toward the input x, while the second term repels the
different cluster centers away from each other depending on the Gaussian locations and widths. Interestingly,
setting λ ≥ 1

2 would nullify all attraction toward the given input if a cluster center already has the same
position as the input and the Gaussian widths are equal. Lowering λ and σ1:K has the same effect, that is
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more input patterns can be learned, but smaller widths σ1:K may lead to insufficient attraction of the cluster
centers toward the input.

In order to minimize E in an online setting, the learning rule will update µ1:K by small steps in the opposite
direction, and proportionally to the magnitude, of the gradient of the second sum of E:

F (x; µ1, . . . , µK , σ1, . . . , σK) =
K∑

i=1

−fi(x) + λ
∑
j ̸=i

fj(µi)


at input x. See Figure 1 for an example surface of F with two neurons. For each input x, the cluster centers
will be updated as follows:

µi = µi + ∆µi = µi − 1
2ηµ

∂F

∂µi

where ηµ ∈ R>0 is the learning rate. The learning rule then becomes:

∆µi = ηµ

fi(x)
σi

(x − µi) − λ
∑
j ̸=i

(
fi(µj)

σi
+ fj(µi)

σj

)
(µj − µi)

 (1)

If σi = σ ∀i ∈ {1, . . . , K}, the learning rule can be simplified to:

∆µi = ηµ

σ

fi(x)(x − µi) − 2λ
∑
j ̸=i

fi(µj)(µj − µi)


When applying the learning rule in Equation 1, some cluster centers may be repelled outside of the input
domain. However, this is a beneficial property that can be utilized to identify learned cluster centers that
correspond to patterns found from the input, as these centers will lie within or relatively close to the input
domain.

The maximum distance a cluster center can be pushed outside of the input domain is constrained by the
input domain itself, the parameters of Equation 1, and the number of clusters K. The maximum distance
goes toward ∞ as the number of clusters approaches ∞, but considering D = 1, K = 2, λ = 1

2 , µ2 = 0,
σ1 = σ2 = σ, and fi(x) → 0 ∀i ∈ {1, 2} ∀x ∈ R, the maximum distance between µ1 and µ2 converges to the
solution of the ordinary differential equation at µ1(t) as t → ∞:

∂µ1

∂t
= − ∂F

∂µ1
= 2µ1

σ
e−µ2

1/σ, µ1(0) > 0

Although in practice, the learning rate, the number of iterations, and the precision of the data types will
limit the above distance.

3.1 Update Method for Neuron Widths

Having sparsity constraints given by Gaussian functions enables adjustments of the activation sparsity based
on sample measures. The Gaussian widths σ1:K can be derived from the data X if a data sample is instead
represented by a mean vector x = µx and a width scalar σx. This addition to the learning rule alters a
neuron width σi toward the given data sample width σx depending on constraints such as how well the i-th
Gaussian matches the data sample. Furthermore, care must be taken to avoid neuron functions collapsing
into each other, i.e. resulting in several tight clusters near similar input patterns that have a relatively high
probability of being sampled.
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Let the measure of a sample be:

fx(µi) = e−∥µi−µx∥2
2/σx

and the update of the neuron widths be defined as:

∆σi = ησ max

fx(µi) − 2λ
∑
j ̸=i

fj(µi), 0

 fi(µx)(σx − σi) (2)

where ησ ∈ R>0 controls the rate of change, and λ is the inhibition level used in Equation 1. The change
of a neuron width σi is thus relying on the neuron mean with respect to the sample measure inhibited by
the other lateral neurons, and the sample mean with respect to the neuron function. The max{·} function
ensures that the change of σi is always 0 or toward σx.

Equations 1 and 2 can be applied independently, but adjusting means and widths interchangeably can be
advantageous. For example, by enabling additional clusters to be found after the already identified clusters
have had their widths reduced. Experiments employing both Equations 1 and 2 are presented in Subsection
4.3.

4 Results and Discussion

The presented learning rule was tested on image patches from the MNIST (Lecun et al., 1998) and CIFAR-
10 (Krizhevsky, 2009) datasets. The D pixel patch intensities were scaled to be from 0 to 1. No other
preprocessing was applied to the images or image patches.

4.1 MNIST

N uniformly random D = 5 × 5 pixel patches were sampled from the training set containing 6 × 106 images
of handwritten digits. Figure 2 shows the resulting centers, typically named filters in this context, of K = 16
clusters with Gaussian widths σi = σ ∀i ∈ {1, . . . , K}, inhibition level λ, and learning rate ηµ = 10−1.

Some cluster centers have not changed significantly from training, while other filters represent learned filters
that for instance can act as edge detection filters. The unchanged filters have typically been pushed outside
of the input domain, and have a high cosine similarity to the initial randomized filters, as shown in Table 1
for the filters depicted in Subfigure 2a.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11 µ12 µ13 µ14 µ15 µ16
di 1.5 1.5 1.0 1.0 0.8 0.9 1.4 1.4 1.5 1.4 1.5 0.9 1.6 1.5 0.8 0.9
cos θi 0.9 0.8 0.4 −0.1 0.8 0.7 0.9 0.9 0.9 0.9 0.9 0.7 0.9 0.9 0.8 0.6

Table 1: Scalar descriptors of the filters shown in Subfigure 2a, where di = ∥µi − 1
2 ∥2/

√
D
4 ,

√
D
4

is the maximum distance from a point in the input domain to the input domain centroid, cos θi =
µi · µ

(init)
i /(∥µi∥2∥µ

(init)
i ∥2), and µ

(init)
i is the i-th initial randomized filter before training. The learned

filters, which for instance can act as edge detectors, are marked in bold.

The difference between the results shown in Subfigures 2a and 2b is that the latter experiment was run on 10
times as many data samples. Regardless, the filters shown in Subfigure 2b are similar to those in Subfigure
2a, demonstrating that the filters can be stable throughout a high number of iterations. Both experiments
used the same random generator seed.

Additional patterns were found in the results shown in Subfigures 2c and 2d by lowering either the Gaussian
width σ or the inhibition level λ, respectively. 11 and 12 learned filters are present in Subfigures 2c and 2d
compared to 8 filters in Subfigure 2b, with the same number of samples processed. Reducing the Gaussian
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(a) σ = 1,
λ = 1

2 ,
N = 106

(b) σ = 1,
λ = 1

2 ,
N = 107

(c) σ = 1
2 ,

λ = 1
2 ,

N = 107

(d) σ = 1,
λ = 1

9 ,
N = 107

0.00
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0.50

0.75

1.00

(e) σ = 1,
λ = 1

2 ,
N = 3 × 106

Trained after 2a, but µ5
was first removed.

(f) σ = 1
2 ,

λ = 1
2 ,

N = 106

Trained on 1’s only.

(g) σ = 1
2 ,

λ = 1
2 ,

N = 106

Trained after 2f, but on
2’s only.

(h) N = 106

Result of k-means
(Lloyd, 1982) for com-
parison.

Figure 2: The resulting centers or filters from applying the presented learning rule (2a to 2g) with K = 16
neurons, N 5 × 5 pixel patches uniformly sampled from the MNIST training dataset, Gaussian widths
σi = σ ∀i ∈ {1, . . . , K}, inhibition level λ, and learning rate ηµ = 10−1. The learned filters can for instance
act as edge detectors, while the remaining filters were pushed outside of the input domain and had a high
cosine similarity to the initial filter values prior to training. The filters are enumerated left to right, top to
bottom.

widths can, however, lead to fewer identified patterns since the pull toward some data samples may be
insufficient. In addition, if the inhibition level is too low, filters can collapse into each other, forming several
identical Gaussian centers. For example, 2 equal Gaussian centers µ4 = µ13 ≈

(
0, . . . , 0

)
were found when

the experiment shown in Subfigure 2d was run with the inhibition level lowered to λ = 10−1.

In the result shown in Subfigure 2e, the learned filters remain approximately the same as in Subfigure 2a,
despite the fact that the learned filter µ5 was removed prior to training on additional N = 3 × 106 data
samples. The pattern learned by filter µ5 in Subfigure 2a was then relearned by filter µ8 in Subfigure 2e.
This result demonstrates potential stability of the learning rule as a pattern can be relearned after disruption
while the other learned filters can remain largely unaltered.

Subfigure 2f shows the result of training solely on images depicting the number 1, and this model was
subsequently used as a starting point to produce the result shown in Subfigure 2g, where only images
corresponding to the number 2 were used during training. Even though there was a distribution change of
the inputs, the three filters found in Subfigure 2f are largely similar to the corresponding filters in Subfigure
2g, while additional filters were learned as well. The additional filters mainly represents patterns found
exclusively in the latter dataset.

For comparison, Subfigure 2h shows the resulting filters from the k-means algorithm (Lloyd, 1982) with the
cluster count set to 16. The proposed learning rule will most likely not learn as many filters from the MNIST
dataset given the relatively small pixel patch size without setting the Gaussian width σ or inhibition level λ
too low.
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σ = 4.14,
λ = 3

2 × 10−2

(b) D = 13 × 13,
σ = 9.91,
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Figure 3: The results of employing the learning rule on larger image patches. In both experiments, the
number of samples was N = 107, the Gaussian widths set to σi = σ ∀i ∈ {1, . . . , K}, and the learning rate
equal to ηµ = 10−1. More rounded filters were learned compared to those in Figure 2, but the Gaussian
widths had to be increased in order to better capture the patterns in the larger input domain.

4.1.1 Larger Pixel Patches

Experiment results with N = 107 samples of D = 9 × 9 and D = 13 × 13 pixel patches are shown in Figure
3. Similar to Figure 2, the Gaussian widths were set to σi = σ ∀i ∈ {1, . . . , K}. More rounded filters
were learned, especially those shown in Subfigure 3b, which can be used to detect parts of particularly the
handwritten digits 0, 2, 3, 5, 6, 8, and 9.

As the number of input dimensions was increased, leading to a larger input domain, the inhibition level was
decreased and the Gaussian widths were increased to better capture the patterns of the input samples. To
make the results more comparable with, for instance, the results in Subfigure 2d, the width σ was calculated
such that two neurons placed on opposite positions of the input domains had equal repulsion, measured by
the l2-norm normalized by the number of dimensions, independent of input samples:

1
D

∥∆µ1∥2 = 1
D̃

∥∆µ̃1∥2

1
D

∥∥∥∥λµ1
σ2 e−∥µ1∥2

2/σ

∥∥∥∥
2

= 1
D̃

∥∥∥∥ λ̃µ̃1
σ̃2 e−∥µ̃1∥2

2/σ̃

∥∥∥∥
2

λ√
Dσ2

e−D/σ = λ̃√
D̃σ̃2

e−D̃/σ̃

s.t.
σ > 0

∂

∂σ

λ√
Dσ2

e−D/σ > 0
(3)

where K = 2, µ1 = (1, . . . , 1), µ2 = (0, . . . , 0), µi ∈ RD, f1(x) → 0 ∀x ∈ RD, µ̃1 = (1, . . . , 1), µ̃2 =
(0, . . . , 0), µ̃i ∈ RD̃, and f̃1(x̃) → 0 ∀x̃ ∈ RD̃. The tilde symbol denotes the vectors and scalars used in this
case to produce the result presented in Subfigure 2d, and the learning rate ησ was equal in both ∆µ1 and
∆µ̃1.

From Equation 3 then with D̃ = 5 × 5, σ̃ = 1, λ̃ = 1
9 , the neuron widths for computing the results shown in

the Subfigures 3a and 3b were approximated to be σ = 4.14 and σ = 9.91, respectively. The inhibition level
was made slightly different in order to find roughly the same number of filters, where λ = 3

2 × 10−2 was used
to process D = 9 × 9 pixel patches and λ = 10−2 to process D = 13 × 13 pixel patches.

4.2 CIFAR-10

The learning rule was also applied on the CIFAR-10 dataset (Krizhevsky, 2009), where N uniformly random
D = 5 × 5 × 3 pixel patches were sampled from the training set containing 6 × 106 natural images, evenly
portraying airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Figure 4 shows the
resulting filters of K = 50 clusters with Gaussian widths σi = σ = 1.75 ∀i ∈ {1, . . . , K}, inhibition level
λ = 10−2, and learning rate ηµ = 10−1.
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Figure 4: The resulting filters from training on D = 5 × 5 × 3 pixel patches from the CIFAR-10 dataset
containing natural images, with N = 107 number of samples, Gaussian widths σi = 1.75 ∀i ∈ {1, . . . , K},
inhibition level λ = 10−2, and learning rate ηµ = 10−1. Some of the edge detecting filters are color
independent, while some filters can be used to detect specific color patches such as sky and grass.

Some of the learned filters can be used to detect specific colored regions such as sky and grass, while other
filters can act as edge detectors. Some of the edge detecting filters are gray and thus color independent. All
filters except one learned patterns from the pixel patch samples.

4.3 Neuron Width Update

Both Equations 1 and 2 were employed to produce the results shown in Figure 5, using N = 107 data samples
and learning rate set to ηµ = ησ = 10−1. In Subfigures 5c to 5f, the data sample mean x = µx = 1

9
∑9

i=1 si

and width σx = 2Var[s1:9] = 2
9

∑9
i=1(si − µx)2 were measured from 9 neighboring 5 × 5 image patches

s1:9 after adding normal distributed noise with 0 mean, and 0.1 (Subfigures 5c to 5e) or 0.15 (Subfigure 5f)
standard deviation, to each pixel value. Neighboring image patches can share similar patterns, and noise was
added as a constraint to keep the Gaussian widths from collapsing toward 0, for example, when sampling
homogeneous image regions.

The neuron means µ1:K and widths σ1:K were updated in alternate succession, that is for each data sample,
the neuron means were first updated using Equation 1, and then Equation 2 was used to update the neuron
widths.

Subfigures 5c to 5e show similar K = 9 filters even though the initial Gaussian widths σ
(init)
i = σ(init) ∀i ∈

{1, . . . , K} were set to σ(init) = 6, σ(init) = 10, and σ(init) = 14, respectively. For comparison, Subfigures
5a and 5b show the resulting filters without neuron width updates where the Gaussian widths σi = σ ∀i ∈
{1, . . . , K} were set to, in the same order, σ = 4 and σ = 14. The inhibition level was λ = 1

2 for all Subfigures
5a to 5e.

The final Gaussian widths of the filters shown in Subfigure 5d were:

σ1:K =
(
10, 9.5, 4.6, 0.6, 5, 10, 10, 4.6, 10

)
and the learned filters can in this case be distinguished from the filters that have not learned any patterns
by comparing the final widths to the initial widths of the Gaussians.

Lastly, Subfigure 5f shows the result of applying the learning rule and width update method on data samples
from the CIFAR-10 dataset with initial Gaussian width σ(init) = 10 and inhibition level λ = 10−2. Almost
the same number of filters were learned compared to those learned in Figure 4, although the initial widths
were larger and each data sample was extracted from 9 neighboring 5 × 5 × 3 pixel patches. By using
Equation 2, however, the Gaussian widths of the learned filters were reduced and thus made room for
additional Gaussians within the data domain.
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(a) σ = 6 (b) σ = 14 (c) σ(init) = 6 (d) σ(init) = 10 (e) σ(init) = 14
0.0

0.5

1.0

(f) σ(init) = 10

Figure 5: The results of employing both Equation 1 and 2 on data sample measures from the MNIST and
CIFAR-10 datasets. Subfigures 5c to 5e show similar results even though the initial neuron widths were
different. On the other hand 3 and 2 filters were learned when the neuron widths were fixed to σ = 6
and σ = 14 as shown in Subfigures 5a and 5b, respectively. The result from Figure 4 was reproduced in
Subfigure 5f although with varying Gaussian widths. All results were produced using N = 107 data samples
and learning rates set to ηµ = ησ = 10−1.

5 Conclusion and Future Work

A novel unsupervised learning rule based on Gaussian functions is presented that can perform online cluster-
ing without needing to specify the number of clusters prior to training. The local learning rule is arguably
more biologically plausible compared to model optimization through backpropagation, and the results demon-
strate stability in the learned parameters during training. Furthermore, an update method for the widths of
the Gaussian functions is presented, which can reduce the dependence on finely tuned hyperparameters.

Opportunities for future work include investigations of the presented methods in the following directions:
(1) improve the computation speed through CPU or GPU parallelization, (2) use anisotropic Gaussian
functions, (3) train with input data other than image patches, (4) layer-wise optimization of deeper model
architectures, (5) compare trained model susceptibility to adversarial attacks against models optimized
through backpropagation, (6) sample mean and variance from subsequent video frames instead of neighboring
image patches, and (7) repurposing the Gaussian functions as Gaussian dendrites, and linearly combine
similar dendritic functions into artificial neurons to achieve greater representational power of the artificial
neurons.
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