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ABSTRACT

As robustness verification methods are becoming more precise, training certifiably
robust neural networks is becoming ever more relevant. To this end, certified
training methods compute and then optimize an upper bound on the worst-case loss
over a robustness specification. Curiously, training methods based on the imprecise
interval bound propagation (IBP) consistently outperform those leveraging more
precise bounds. Still, we lack a theoretical understanding of the mechanisms mak-
ing IBP so successful. In this work, we investigate these mechanisms by leveraging
a novel metric measuring the tightness of IBP bounds. We first show theoretically
that, for deep linear models (DLNs), tightness decreases with width and depth
at initialization, but improves with IBP training. We, then, derive sufficient and
necessary conditions on weight matrices for IBP bounds to become exact and
demonstrate that these impose strong regularization, providing an explanation for
the observed robustness-accuracy trade-off. Finally, we show how these results on
DLNs transfer to ReLU networks, before conducting an extensive empirical study,
(i) confirming this transferability and yielding state-of-the-art certified accuracy,
(ii) finding that while all IBP-based training methods lead to high tightness, this
increase is dominated by the size of the propagated input regions rather than the
robustness specification, and finally (iii) observing that non-IBP-based methods do
not increase tightness. Together, these results help explain the success of recent
certified training methods and may guide the development of new ones.

1 INTRODUCTION

The increasing deployment of deep-learning-based systems in safety-critical domains has made their
trustworthiness and especially formal robustness guarantees against adversarial examples (Biggio
et al., 2013; Szegedy et al., 2014) an ever more important topic. As significant progress has been
made on neural network certification (Zhang et al., 2022; Ferrari et al., 2022), the focus in the field
is increasingly shifting to the development of specialized training methods that improve certifiable
robustness while minimizing the accompanying reduction in standard accuracy.

Certified Training These certified training methods aim to compute and then optimize approxima-
tions of the network’s worst-case loss over an input region defined by an adversary specification. To
this end, they compute an over-approximation of the network’s reachable set using symbolic bound
propagation methods (Singh et al., 2018; 2019b; Gowal et al., 2018). Surprisingly, training methods
based on the least precise bounds, obtained via interval bound propagation (IBP), empirically yield
the best performance (Shi et al., 2021). Jovanović et al. (2022) investigate this surprising observation
theoretically and find that more precise bounding methods induce harder optimization problems.

As a result, all methods obtaining state-of-the-art performance leverage IBP bounds either directly
(Shi et al., 2021), as regularizer (Palma et al., 2022), or to precisely but unsoundly approximate the
worst-case loss (Müller et al., 2022b; Mao et al., 2023; Palma et al., 2023). However, while IBP is
crucial to their success, none of these works develop a theoretical understanding of what makes IBP
training so effective and how it affects bound tightness and network regularization.

This Work We take a first step towards building a deeper understanding of the mechanisms making
IBP training so successful and thereby pave the way for further advances in certified training. To
this end, we derive necessary and sufficient conditions on a network’s weights under which IBP
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bounds become tight, a property we call propagation invariance, and prove that it implies an extreme
regularization, agreeing well with the empirically observed trade-off between certifiable robustness
and accuracy (Tsipras et al., 2019; Müller et al., 2022b). To investigate how close real networks are
to full propagation invariance, we introduce the metric propagation tightness as the ratio of optimal
and IBP bounds, and show how to efficiently compute it globally for deep linear networks (DLNs)
and locally for ReLU networks.

This novel metric enables us to theoretically investigate the effects of model architecture, weight
initialization, and training methods on IBP bound tightness for deep linear networks (DLNs). We show
that (i) at initialization, tightness decreases with width (polynomially) and depth (exponentially), (ii)
tightness is increased by IBP training, and (iii) sufficient width becomes crucial for trained networks.

Conducting an extensive empirical study, we confirm the predictiveness of our theoretical results
for deep ReLU networks and observe that: (i) increasing network width but not depth improves
state-of-the-art certified accuracy, (ii) IBP training significantly increases tightness, almost to the
point of propagation invariance, (iii) unsound IBP-based training methods increase tightness to a
smaller degree, determined by the size of the propagated input region and the weight of the IBP-loss,
but yield better performance, and (iv) non-IBP-based training methods barely increase tightness,
leading to higher accuracy but worse robustness. These findings suggest that while IBP-based training
methods improve robustness by increasing tightness at the cost of standard accuracy, high tightness
is not generally necessary for robustness. This observation explains the recent success of unsound
IBP-based methods and, in combination with the theoretical and practical insights developed here,
promises to be a key step toward constructing novel and more effective certified training methods.

2 BACKGROUND

Here, we provide a background on adversarial and certified robustness. We consider a classifer
f : Rdin 7→ Rc predicting a numerical score y := f(x) per class given an input x ∈ X ⊆ Rdin .

Adversarial Robustness describes the property of a classifer f to consistently predict the target
class t for all perturbed inputs x′ in an ℓp-norm ball Bϵp

p (x) of radius ϵp. As we focus on ℓ∞
perturbations in this work, we henceforth drop the subscript p for notational clarity. More formally,
we define adversarial robustness as:

argmax
j

f(x′)j = t, ∀x′ ∈ Bϵp
p (x) := {x′ ∈ X | ∥x− x′∥p ≤ ϵp}. (1)

Neural Network Certification can be used to formally prove the robustness of a classifier f for a
given input region Bϵ(x). Interval bound propagation (IBP) (Gowal et al., 2018; Mirman et al., 2018)
is a simple but popular such certification method. It is based on propagating an input region Bϵ(x)
through a neural network by computing BOX over-approximations (each dimension is described
as an interval) of the hidden state after every layer until we reach the output space. There, it is
checked whether all points in the resulting over-approximation of the network’s reachable set yield
the correct classification. As an example, consider an L-layer network f = hL ◦σ ◦hL−2 ◦ . . . ◦h1,
with linear layers hi and ReLU activation functions σ. We first over-approximate the input region
Bϵ(x) as BOX with radius δ0 = ϵ and center ẋ0 = x, such that we have the ith dimension of
the input x0i ∈ [

¯
xi, x̄i] := [ẋ0i − δ0i , ẋ

0
i + δ0i ]. Propagating such a BOX through the linear layer

hi(x
i−1) = Wxi−1 + b =: xi, we obtain the output hyperbox with centre ẋi = Wẋi−1 + b

and radius δi = |W |δi−1, where | · | denotes the element-wise absolute value. To propagate a
BOX through the ReLU activation ReLU(xi−1) := max(0,xi−1), we propagate the lower and
upper bound separately, resulting in an output BOX with ẋi =

x̄i+
¯
xi

2 and δi =
x̄i−

¯
xi

2 where

¯
xi = ReLU(ẋi−1 − δi−1) and x̄i = ReLU(ẋi−1 + δi−1). We proceed this way for all layers
obtaining first lower and upper bounds on the network’s output y and then an upper bound ȳ∆ on
the logit difference y∆i := yi − yt. Showing that ȳ∆i < 0, ∀i ̸= t is then equivalent to proving
adversarial robustness on the considered input region.

We illustrate this propagation process for a two-layer network in Figure 1. There, we show the exact
propagation of the input region in blue, its optimal box approximation in green, and the IBP
approximation as dashed boxes . Note how after the first linear and ReLU layer (third column), the
box approximations (both optimal and IBP ) contain already many points outside the reachable set
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Figure 1: Comparison of exact ( ), optimal box ( ), and IBP ( ) propagation through a one layer
network. We show the concrete points maximizing the logit difference y2 − y1 as a black × and the
corresponding relaxation as a red ×.

, despite it being the smallest hyper-box containing the exact region. These so-called approximation
errors accumulate quickly when using IBP, leading to an increasingly imprecise abstraction, as can
be seen by comparing the optimal box and IBP approximation after an additional linear layer
(rightmost column). To verify that this network classifies all inputs in [−1, 1]2 to class 1, we have to
show the upper bound of the logit difference y2 − y1 to be less than 0. While the concrete maximum
of −0.3 ≥ y2 − y1 (black ×) is indeed less than 0, showing that the network is robust, IBP only
yields 0.6 ≥ y2 − y1 (red ×) and is thus too imprecise to prove it. In contrast, the optimal box
yields a precise approximation of the true reachable set, sufficient to prove robustness.

Training for Robustness is required to obtain (certifiably) robust neural networks. For a data
distribution (x, t) ∼ D, standard training optimizes the network parametrization θ to minimize the
expected cross-entropy loss:

θstd = argmin
θ

ED[LCE(fθ(x), t)], with LCE(y, t) = ln
(
1 +

∑
i ̸=t

exp(yi − yt)
)
. (2)

To train for robustness, we, instead, aim to minimize the expected worst-case loss for a given
robustness specification, leading to a min-max optimization problem:

θrob = argmin
θ

ED

[
max

x′∈Bϵ(x)
LCE(fθ(x

′), t)

]
. (3)

As computing the worst-case loss by solving the inner maximization problem is generally intractable,
it is commonly under- or over-approximated, yielding adversarial and certified training, respectively.

Adversarial Training optimizes a lower bound on the inner optimization objective in Equation (3).
It first computes concrete examples x′ ∈ Bϵ(x) that approximately maximize the loss term LCE
and then optimizes the network parameters θ for these examples. While networks trained this way
typically exhibit good empirical robustness, they remain hard to formally certify and are sometimes
vulnerable to stronger attacks (Tramèr et al., 2020; Croce & Hein, 2020).

Certified Training typically optimizes an upper bound on the inner maximization objective in
Equation (3). The resulting robust cross-entropy loss LCE,rob(Bϵ(x), t) = LCE(y

∆, t) is obtained by
first computing an upper bound y∆ on the logit differences y∆ := y − yt with a bound propagation
method as described above and then plugging it into the standard cross-entropy loss.

Surprisingly, the imprecise IBP bounds (Mirman et al., 2018; Gowal et al., 2018; Shi et al., 2021)
consistently yield better performance than methods based on tighter approximations (Wong et al.,
2018; Zhang et al., 2020; Balunovic & Vechev, 2020). Jovanović et al. (2022) trace this back to the
optimization problems induced by the more precise methods becoming intractable to solve.

However, the heavy regularization that makes IBP trained networks amenable to certification also
severely reduces their standard accuracy. To alleviate the resulting robustness-accuracy trade-off, all
current state-of-the-art certified training methods combine IBP and adversarial training by using IBP
bounds only for regularization (IBP-R (Palma et al., 2022)), by only propagating small, adversarially
selected regions (SABR (Müller et al., 2022b)), using IBP bounds only for the first layers and
PGD bounds for the remainder of the network (TAPS (Mao et al., 2023)), or combining losses over
adversarial samples and IBP bounds (CC-IBP, MTL-IBP (Palma et al., 2023)).

In light of this surprising dominance of IBP-based training methods, understanding the regularization
IBP induces and its effect on tightness promises to be a key step towards developing novel and more
effective certified training methods.
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3 UNDERSTANDING IBP TRAINING

In this section, we theoretically investigate the relationship between the box bounds obtained by layer-
wise propagation, i.e., IBP, and optimal propagation. We illustrate both in Figure 1 and note that the
latter are sufficient for exact robustness certification (see Lemma 3.1). First, we formally define layer-
wise (IBP) and optimal box propagation, before deriving sufficient and necessary conditions under
which the resulting bounds become identical. Then, we show that these conditions induce strong
regularization, motivating us to introduce the propagation tightness τ as a relaxed measure of bound
precision, which can be efficiently computed globally for deep linear (DLN) and locally for ReLU
networks. Based on these results, we first investigate how tightness depends on network architecture
at initialization, before showing that it improves with IBP training. Finally, we demonstrate that
even linear dimensionality reduction is inherently imprecise for both optimal and IBP propagation,
making sufficient network width key for tight box bounds. We defer all proofs to App. B.

Setting We focus our theoretical analysis on deep linear networks (DLNs), i.e., f(x) =
ΠL

i=1W
(i)x, popular for theoretical discussion of neural networks (Saxe et al., 2014; Ji & Tel-

garsky, 2019; Wu et al., 2019). While such a reduction of a ReLU network to an overall linear
function may seem restrictive, it preserves many interesting properties and allows for theoretical
insights, while ReLU networks are theoretically unwieldy. As ReLU networks become linear for fixed
activation patterns, the DLN approximation becomes exact for robustness analysis at infinitesimal
perturbation magnitudes. Further, DLNs retain the layer-wise structure and joint non-convexity in the
weights of different layers of ReLU networks, making them a widely popular analysis tool (Ribeiro
et al., 2016). After proving key results on DLNs, we will show how they transfer to ReLU networks.

3.1 LAYER-WISE AND OPTIMAL BOX PROPAGATION

We define the optimal hyper-box approximation Box∗(f ,Bϵ(x)) as the smallest hyper-box [z, z]
such that it contains the image f(x′) of all points x′ in Bϵ(x), i.e., f(x′) ∈ [z, z],∀x′ ∈
Bϵ(x). Similarly, we define the layer-wise box approximation as the result of sequen-
tially applying the optimal approximation to every layer individually: Box†(f ,Bϵ(x)) :=
Box∗(WL,Box

∗(· · · ,Box∗(W (1),Bϵ(x)))). We write their upper- and lower-bounds as [z∗, z∗]
and [z†, z†], respectively. We note that optimal box bounds on the logit differences y∆ := y − yt
(instead of on the logits y as shown in Figure 1) are sufficient for exact robustness verification:

Lemma 3.1. Any C0 continuous classifier f , computing the logit difference y∆i := yi − yt,∀i ̸= t, is
robustly correct on Bϵ(x) if and only if Box∗(f ,Bϵ(x)) ⊆ Rc−1

<0 , i.e., ȳ∆
∗

i < 0,∀i ̸= t.

For DLNs, we can efficiently compute both optimal Box∗ and layerwise Box† box bounds as follows:

Theorem 3.2 (Box Propagation). For an L-layer DLN f = ΠL
k=1W

(k), we obtain the box centres
ż∗ = ż† = f(x) and the radii

z∗ − z∗

2
=
∣∣∣ΠL

k=1W
(k)
∣∣∣ ϵ, and

z† − z†

2
=
(
ΠL

k=1

∣∣∣W (k)
∣∣∣) ϵ. (4)

Comparing the radius computation of the optimal and layer-wise approximations, we observe that the
main difference lies in where the element-wise absolute value | · | of the weight matrix is taken. For
the optimal box, we first multiply all weight matrices before taking the absolute value |ΠL

k=1W
(k)|,

thus allowing for cancellations of terms of opposite signs. For the layer-wise approximation, in
contrast, we first take the absolute value of each weight matrix before multiplying them together
ΠL

k=1|W (k)|, thereby losing all relational information between variables. Let us now investigate
under which conditions layer-wise and optimal bounds become identical.

3.2 PROPAGATION INVARIANCE AND IBP BOUND TIGHTNESS

Propagation Invariance We call a network (globally) propagation invariant (PI) if the layer-
wise and optimal box over-approximations are identical for every input box. Clearly, non-negative
weight matrices lead to PI networks (Lin et al., 2022), as the absolute value in Theorem 3.2 loses its
effect. However, non-negative weights significantly reduce network expressiveness and performance
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(Chorowski & Zurada, 2014), raising the question of whether they are a necessary condition. We
show that they are not, by deriving a sufficient and necessary condition for a two-layer DLN:

Lemma 3.3 (Propagation Invariance). A two-layer DLN f = W (2)W (1) is propagation invariant
if and only if for every fixed (i, j), we have

∣∣∣∑kW
(2)
i,k ·W (1)

k,j

∣∣∣ = ∑
k |W

(2)
i,k ·W (1)

k,j |, i.e., either

W
(2)
i,k ·W (1)

k,j ≥ 0 for all k or W (2)
i,k ·W (1)

k,j ≤ 0 for all k.

Conditions for Propagation Invariance To see how strict the condition described by Lemma 3.3
is, we observe that propagation invariance requires the sign of the last element in any two-by-two
block in W (2)W (1) to be determined by the signs of the other three elements:

Theorem 3.4 (Non-Propagation Invariance). Assume ∃i, i′, j, j′, such that W (1)
·,j , W (1)

·,j′ , W
(2)
i,· and

W
(2)
i′,· are all non-zero. If (W (2)W (1))i,j ·(W (2)W (1))i,j′ ·(W (2)W (1))i′,j ·(W (2)W (1))i′,j′ < 0,

then f = W (2)W (1) is not propagation invariant.

To obtain a propagation invariant network with weights W (2)W (1) ∈ Rd×d, we can thus only
choose 2d− 1 (e.g., one row and one column) of the d2 signs freely (see Corollary A.1 in App. A).

The statements of Lemma 3.3 and Theorem 3.4 naturally extend to DLNs with more than two layers
L > 2. However, the conditions within Theorem 3.4 become increasingly complex and strict as more
and more terms need to yield the same sign. Thus, we focus our analysis on L = 2 for clarity.

IBP Bound Tightness To analyze the tightness of IBP bounds for networks that do not satisfy the
strict conditions for propagation invariance, we relax it to introduce propagation tightness as the ratio
between the optimal and layer-wise box radii, simply referred to as tightness in this paper.

Definition 3.5. Given a DLN f , we define the global propagation tightness τ as the ratio between
optimal Box∗(f ,Bϵ(x)) and layer-wise Box†(f ,Bϵ(x)) approximation radius, i.e., τ = z∗−z∗

z†−z† .

Intuitively, tightness measures how much smaller the exact dimension-wise Box∗ bounds are, com-
pared to the layer-wise approximation Box†, thus quantifying the gap between IBP certified and true
adversarial robustness. When tightness equals 1, the network is propagation invariant and can be
certified exactly with IBP; when tightness is close to 0, IBP bounds become arbitrarily imprecise.
We highlight that this is orthogonal to the box diameter ∆ = z† − z†, considered by Shi et al. (2021).

ReLU Networks The nonlinearity of ReLU networks leads to locally varying tightness and
makes the computation of optimal box bounds intractable. However, for infinitesimal perturbation
magnitudes ϵ, the activation patterns of ReLU networks remain stable, making them locally linear.
We thus introduce a local version of tightness around concrete inputs.

Definition 3.6. For an L-layer ReLU network with weight matrices W (k) and activation pattern
d(k)(x) = 1x(k−1)>0 ∈ {0, 1}dk (1 for active and 0 for inactive ReLUs), depending on the input x,
we define its local tightness as

τ =
d
dϵ (z

∗ − z∗)
∣∣
ϵ=0

d
dϵ (z

† − z†)
∣∣
ϵ=0

=

∣∣ΠL
k=1 diag(d

(k))W (k)
∣∣1

(ΠL
k=1 diag(d

(k))
∣∣W (k)

∣∣)1 .

0 0.05 0.1
ε

−15

0

15
Mean Relative Error [%]

PGD

IBP

Figure 2: Mean relative error
between local tightness (Def-
inition 3.6) and true tightness
computed with MILP for a
CNN3 trained with PGD or
IBP at ϵ = 0.05 on MNIST.

In Definition 3.6, we calculate tightness as the ratio of box size growth
rates, evaluated for an infinitesimal input box size ϵ. In this setting,
the ReLU network will not have any unstable neurons, making our
analysis exact. Only when considering larger perturbation magnitudes
will neurons become unstable, making our analysis an approximation
of the tightness at that ϵ. However, for the networks and perturbation
magnitudes typically considered in the literature, only a very small
fraction (≈ 1%) of neurons are unstable (Müller et al., 2022b). To
assess the estimation quality of our local tightness, we show its mean
relative error compared to the exact tightness computed with MILP
for a small CNN3 in Figure 2 for MNIST and in Figure 14 for CIFAR-
10. We find that for perturbations smaller than those used during
training (ϵ ≤ 0.05) relative errors are extremely small (< 0.5%), and
only increase slowly after, reaching 2.2% at ϵ = 0.1.
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3.3 TIGHTNESS AT INITIALIZATION

We first investigate the (expected) tightness τ =
EDθ

(z∗−z∗)

EDθ
(z†−z†)

(independent of the dimension due to
symmetry) at initialization, i.e., w.r.t. a weight distribution Dθ. Let us consider a two-layer DLN at
initialization, i.e., with i.i.d. weights following a zero-mean Gaussian distribution N (0, σ2) with an
arbitrary but fixed variance σ2 (Glorot & Bengio, 2010; He et al., 2015).

Lemma 3.7 (Initialization Tightness w.r.t. Width). Given a 2-layer DLN with weight matrices W (1) ∈
Rd1×d0 , W (2) ∈ Rd2×d1 with i.i.d. entries from N (0, σ2

1) and N (0, σ2
2) (together denoted as θ),

we obtain the expected tightness τ(d1) =
Eθ(z

∗−z∗)

Eθ(z†−z†)
=

√
π Γ( 1

2 (d1+1))

d1Γ(
1
2d1)

∈ Θ( 1√
d1
).

Tightness at initialization, thus, decreases quickly with internal width (Θ( 1√
d1
)), e.g., by a factor

of τ(500) ≈ 0.056 for the penultimate layer of the popular CNN7 (Gowal et al., 2018; Zhang et al.,
2020). It, further, follows directly that tightness will decrease exponentially w.r.t. network depth.

Corollary 3.8 (Initialization Tightness w.r.t. Depth). The expected tightness of an L-layer DLN f

with minimum internal dimension dmin is at most τ ≤ τ(dmin)
⌊L

2 ⌋ at initialization.

This result is independent of the variance σ2
1 , σ

2
2 . Thus, tightness at initialization can not be increased

by scaling σ2, as proposed by Shi et al. (2021) to achieve constant box radius over network depth.

ReLU Networks We extend Lemma 3.7 to two-layer ReLU networks (Corollary A.2 in App. A),
obtain an expected tightness of

√
2τ(d1), and empirically validate it in Section 4.1.

3.4 IBP TRAINING INCREASES TIGHTNESS

We now show theoretically that IBP training increases this tightness. To this end, we again consider a
DLN with layer-wise propagation matrix W † = ΠL

i=1|W (i)| and optimal propagation matrix W ∗ =

|ΠL
i=1W

(i)|, yielding the expected risk for IBP training as R(ϵ) = Ex,yL(Box†(f ,Bϵ(x)), y).

Theorem 3.9 (IBP Training Increases Tightness). Assume homogenous tightness, i.e., W ∗ = τW †,

and
∥∇θW

∗
ij∥2

W ∗
ij

≤ 1
2

∥∇θW
†
ij∥2

W †
ij

for all i, j, then, the gradient difference between the IBP and standard

loss is aligned with an increase in tightness, i.e., ⟨∇θ(R(ϵ)−R(0)),∇θτ⟩ ≤ 0 for all ϵ > 0.

3.5 NETWORK WIDTH AND TIGHTNESS AFTER TRAINING

Many high-dimensional computer vision datasets were shown to have low intrinsic data dimensionality
(Pope et al., 2021). Thus, we study the reconstruction loss of a linear embedding into a low-
dimensional subspace as a proxy for performance and find that tightness decreases with the width w
of a bottleneck layer as long as it is smaller than the data-dimensionality d, i.e., w ≪ d. Further, while
reconstruction becomes lossless for points as soon as the width w reaches the intrinsic dimension k
of the data, even optimal box propagation requires a width of at least the original data dimension
d to achieve loss-less reconstruction. For a k-dimensional data distribution, linearly embedded
into a d dimensional space with d ≫ k, the data matrix X has a low-rank eigendecomposition
Var(X) = UΛU⊤ with k non-zero eigenvalues. The optimal reconstruction X̂ = UkU

⊤
k X is exact

by choosing Uk as the k columns of U with non-zero eigenvalues. Yet, box propagation is imprecise:

Theorem 3.10 (Box Reconstruction Error). Consider the linear embedding and reconstruction
x̂ = UkU

⊤
k x of a d dimensional data distribution x ∼ X into a k dimensional space with d ≫ k

and eigenmatrices U drawn uniformly at random from the orthogonal group. Propagating the input
box Bϵ(x) layer-wise and optimally, thus, yields Bδ†

(x̂), and Bδ∗
(x̂), respectively. Then, we have, (i)

E(δi/ϵ) = ck ∈ Θ(k) for a positive constant c depending solely on d and c→ 2
π ≈ 0.64 for large d;

and (ii) E(δ∗i /ϵ) → 2√
π

Γ( 1
2 (k+)

Γ( 1
2k)

∈ Θ(
√
k).

Intuitively, Theorem 3.10 implies that, while input points can be embedded into and reconstructed
from a k dimensional space losslessly, box propagation will yield a box growth of Θ(

√
k) for optimal

and Θ(k) for layer-wise propagation. However, with k = d, we can choose Uk to be an identity
matrix, thus obtaining lossless "reconstruction", highlighting the importance of network width.
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Figure 3: Dependence of tightness at initialization on width (left)
and depth (right) for a CNN7 and CIFAR-10.
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4 EMPIRICAL EVALUATION ANALYSIS

Now, we conduct an empirical study of IBP-based certified training, leveraging our novel tightness
metric and specifically its local variant (see Definition 3.6) to gain a deeper understanding of these
methods and confirm the applicability of our theoretical analysis to ReLU networks. For certification,
we use MN-BAB (Ferrari et al., 2022), a state-of-the-art verifier, and defer further details to App. C.

4.1 NETWORK ARCHITECTURE AND TIGHTNESS
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Figure 5: Effect of network depth (top) and width (bot-
tom) on tightness and training set IBP-certified accuracy.

First, we confirm the predictiveness of
our theoretical results on the effect of net-
work width and depth on tightness at ini-
tialization and after training. In Figure 3,
we visualize tightness at initialization, de-
pending on network width and depth for
DLNs and ReLU networks. As predicted
by Lemma 3.7 and Corollary 3.8, tight-
ness decreases polynomially with width
(see Figure 3 left) and exponentially with
depth (see Figure 3 right), both for DLNs
and ReLU networks. We confirm our results on the inherent hardness of linear reconstruction in
Figure 4, where we plot the ratio of recovered and original box radii, given a bottleneck layer of
width w and synthetic data with intrinsic dimensionality k = w. As predicted by Theorem 3.10, IBP
propagation yields linear and Box∗ sublinear growth.

Table 1: Certified and standard accuracy
depending on network width.

Dataset ϵ Method Width Accuracy Certified

MNIST

0.1

IBP 1× 98.83 98.10
4× 98.86 98.23

SABR 1× 98.99 98.20
4× 98.99 98.32

0.3

IBP 1× 97.44 93.26
4× 97.66 93.35

SABR 1× 98.82 93.38
4× 98.48 93.85

CIFAR-10

2
255

IBP 1× 67.93 55.85
2× 68.06 56.18

IBP-R 1× 78.43 60.87
2× 80.46 62.03

SABR 1× 79.24 62.84
2× 79.89 63.28

8
255

IBP 1× 47.35 34.17
2× 47.83 33.98

SABR 1× 50.78 34.12
2× 51.56 34.95

TinyImageNet 1
255

IBP
0.5× 24.47 18.76
1× 25.33 19.46
2× 25.40 19.92

SABR
0.5× 27.56 20.54
1× 28.63 21.21
2× 28.97 21.36

Next, we study the interaction of network architecture and
IBP training. To this end, we train CNNs with 3 to 13
layers on CIFAR-10 for ϵ = 2/255, visualizing results
in Figure 5 (right). To quantify the regularizing effect of
propagation tightness, we report training set IBP-certified
accuracy as a measure of the goodness of fit. Generally,
we would expect increased depth to increase capacity and
thus decrease the robust training loss and increase training
set accuracy. However, we only observe such an increase
in accuracy until a depth of 7 layers before accuracy starts
to drop. We can explain this by analyzing the correspond-
ing tightness. As expected, tightness is high for shallow
networks but decreases quickly with depth, reaching a
minimum for 7 layers. From there, tightness increases
again, indicating significant regularization, and thereby
decreasing accuracy. This is in line with the popularity
of the 7-layer CNN7 in the certified training literature (Shi
et al., 2021; Müller et al., 2022b).

Continuing our study of architecture effects, we train net-
works with 0.5 to 16 times the width of a standard CNN7 using IBP training and visualize the resulting
IBP certified train set accuracy and tightness in Figure 5 (left). We observe that increasing capacity
via width instead of depth yields a monotone although diminishing increase in accuracy as tightness
decreases gradually. The different trends for width and depth agree well with our theoretical results,
predicting
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Figure 7: Tightness, standard, and certified accuracy for CNN3 on CIFAR-10, depending on training
method and perturbation magnitude ϵ used for training and evaluation.
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Figure 6: Effect of a 4-fold width
increase on certified and standard
accuracy for MNIST at ϵ = 0.3.

that sufficient network width is essential for trained networks (see
Theorem 3.10). It can further be explained by the observation that
increasing depth, at initialization, reduces tightness exponentially,
while increasing width only reduces it polynomially. Intuitively,
this suggests that less regularization is required to offset the
tightness penalty of increasing network width rather than depth.

As these experiments indicate that optimal architectures for IBP-
based training have only moderate depth but large width, we
train wider versions of the popular CNN7 using IBP, SABR, and
IBP-R, showing results in Table 1 and Figure 6. We observe that
this width increase improves certified accuracy in all settings. We
note that, while these improvements might seem marginal, they
are of similar magnitude as multiple years of progress on certified
training methods, see Figure 6 where CROWN-IBP (Zhang et al.,
2020) and MTL-IBP (Palma et al., 2023) (the previous SOTA on
MNIST) are shown for reference.

4.2 CERTIFIED TRAINING INCREASES TIGHTNESS

To assess how different training methods affect tightness, we train a CNN3 on CIFAR-10 for a wide
range of perturbation magnitudes (ϵ ∈ [10−5, 5 · 10−2]) using IBP, PGD, and SABR training and
illustrate the resulting tightness and accuracies in Figure 7. Recall, that while IBP computes and
optimizes a sound over-approximation of the worst-case loss over the whole input region, SABR
propagates only a small subregion with IBP, thus yielding an unsound but generally more precise
approximation of the worst-case loss. PGD, in contrast, does not use IBP at all but rather trains
with samples that approximately maximize the worst-case loss. We observe that training with either
IBP-based method increases tightness with perturbation magnitude until networks become almost
propagation invariant with τ = 0.98 (see Figure 7, right). This confirms our theoretical results,
showing that IBP training increases tightness with ϵ (see Theorem 3.9). In contrast, training with
PGD barely influences tightness. Further, the regularization required for such high tightness comes
at the cost of standard accuracies being severely reduced (see Figure 7, left). However, while this
reduced standard accuracy translates to smaller certified accuracies for very small perturbation
magnitudes (ϵ ≤ 5 · 10−3), the increased tightness improves certifiability sufficiently to yield higher
certified accuracies for larger perturbation magnitudes (ϵ ≥ 10−2).

We further investigate this dependency between (certified) robustness and tightness by varying the
subselection ratio λ when training with SABR. Recall that λ controls the size of the propagated
regions for a fixed perturbation magnitude ϵ, recovering IBP for λ = 1 and PGD for λ = 0.
Plotting results in Figure 8, we observe that while decreasing λ, severely reduces tightness and thus
regularization, it not only leads to increasing natural but also certified accuracies until tightness falls
below τ < 0.5 at λ = 0.4. We observe similar trends when varying the regularization level for other
unsound certified training methods, discussed in App. D.1. In Figure 9, we vary the perturbation size
ϵ for three different λ and show tightness over the size of the propagation region ξ = λϵ for a CNN3
and CIFAR-10. Here, we observe that tightness is dominated by the size of the propagation region
ξ and not the robustness specification ϵ, indicating that while training with IBP-bounds increases
tightness, the resulting high levels of tightness and thus regularization are not generally necessary for
robustness. This helps to explain SABR’s success and highlights the potential for developing novel
certified training methods that reduce tightness while maintaining sufficient certifiability.
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Figure 9: Tightness over propa-
gation region size ξ for SABR.

Table 2: Tightness and accuracies for
various training methods on CIFAR-10.

Method ϵ Accuracy Tightness Certified

PGD 2/255 81.2 0.001 -
8/255 69.3 0.007 -

COLT 2/255 78.4* 0.009 60.7*

8/255 51.7* 0.057 26.7*

IBP-R 2/255 78.2* 0.033 62.0*

8/255 51.4* 0.124 27.9*

SABR 2/255 75.6 0.182 57.7
8/255 48.2 0.950 31.2

IBP 2/255 63.0 0.803 51.3
8/255 42.2 0.977 31.0

* Literature result.

To study how certified training methods that do not use IBP-
bounds at all (COLT) or only as a regularizer with very
small weight (IBP-R) affect tightness, we compare tight-
ness, certified, and standard accuracies on a 4-layer CNN
(used by COLT and IBP-R) in Table 2. We observe that
the orderings of tightness and accuracy are exactly inverted,
highlighting the accuracy penalty of a strong regularization
for tightness. While both COLT and IBP-R affect a much
smaller increase in tightness than SABR or IBP, they still
yield networks an order of magnitude tighter than PGD,
suggesting that slightly increased tightness might be desir-
able for certified robustness. This is further corroborated by
the more heavily regularizing SABR outperforming IBP-R
at larger ϵ while being outperformed at smaller ϵ.

5 RELATED WORK

Baader et al. (2020) show that continuous functions can be approximated by IBP-certifiable ReLU
networks up to arbitrary precision. Wang et al. (2022b) extend this result to more activation functions
and characterize the hardness of such a construction. Wang et al. (2022a) find that IBP-training
converges to a global optimum with high probability for sufficient width. Mirman et al. (2022) show
that functions with points of non-invertibility can not be precisely approximated with IBP. Zhu et al.
(2022) show that width is advantageous while depth is not for approximate average case robustness.

Shi et al. (2021) define tightness as the size of the layerwise Box†, i.e., ∆ = z† − z†, rather than its
ratio τ to the size the optimal box (Definition 3.6). They thus study the size of the approximation
irrespective of the size of the ground truth, while we study the quality of the approximation. This
leads to significantly different insights, e.g., propagation tightness τ remains the same under scaling
of the network weights, while the abstraction size ∆ is scaled proportionally.

Wu et al. (2021) study the relation between empirical adversarial robustness and network width. They
observe that in this setting, increased width actually hurts perturbation stability and thus potentially
empirical robustness while improving natural accuracy. In contrast, we have shown theoretically and
empirically that width is beneficial for certified robustness when training with IBP-based methods.

6 CONCLUSION

Motivated by the recent and surprising dominance of IBP-based certified training methods, we
investigate its underlying mechanisms and trade-offs. By quantifying the relationship between IBP
and optimal BOX bounds with our novel propagation tightness metric, we are able to predict the
influence of architecture choices on deep linear networks at initialization and after training. We
experimentally confirm the applicability of these results to ReLU networks and show that wider
networks improve the performance of state-of-the-art methods, while deeper networks do not. Finally,
we show that IBP-based training methods increase propagation tightness, depending on the size
of the propagated region, at the cost of strong regularization. This observation not only helps
explain the success of recent certified training methods but, in combination with the novel metric
of propagation tightness, might constitute a key step towards developing novel training methods,
balancing certifiability and the (over-)regularization resulting from propagation tightness.
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A ADDITIONAL THEORETICAL RESULTS

Below we present a corollary, formalizing the intutions we provided in Section 3.2.

Corollary A.1. Assume all elements of W (1), W (2) and W (2)W (1) are non-zero and W (2)W (1)

is propagation invariant. Then choosing the signs of one row and one column of W (2)W (1) fixes all
signs of W (2)W (1).

Proof. For notational reasons, we define W :=W (2)W (1). Without loss of generality, assume we
know the signs of the first row and the first column, i.e., W1,· and W·,1. We prove via a construction
of the signs of all elements. The construction is given by the following: whenever ∃i, j, such that we
know the sign of Wi,j , Wi,j+1 and Wi+1,j , we fix the sign of Wi+1,j+1 to be positive if there are an
odd number of positive elements among Wi,j , Wi,j+1 and Wi+1,j , otherwise negative.

By Theorem 3.4, propagation invariance requires us to fix the sign of the last element in the
Wi:i+1,j:j+1 block in this way. We only need to prove that when this process terminates, we
fix the signs of all elements. We show this via recursion.

When i = 1 and j = 1, we have known the signs of Wi,j , Wi,j+1 and Wi+1,j , thus the sign
of Wi+1,j+1 is fixed. Continuing towards the right, we gradually fix the sign of W2,j+1 for j =
1, . . . , d − 1. Continuing downwards, we gradually fix the sign of Wi+1,2 for i = 1, . . . , d − 1.
Therefore, all signs of the elements of the second row and the second column are fixed. By recursion,
we would finally fix all the rows and the columns, thus the whole matrix.

We extend our result in Section 3.3 to two-layer ReLU networks. The intuition is that when the input
data is symmetric around zero, ReLU status (activated or not) is independent to weights and the
probability of activation is exactly 0.5.

Corollary A.2. Assume the input distribution is symmetric around zero, i.e., pX(x) = pX(−x) for
all x > 0, and P (X = 0) = 0. Then for a two-layer ReLU network f = W (2) ReLU(W (1)x)

initialized with i.i.d. Gaussian, the expected local tightness τ ′ ∼
√
2τ , where τ is the expected

tightness of corresponding deep linear network.

Proof. Since the input X is symmetric around 0, the distribution of W (1)x is symmetric around 0
as well, regardless of the initialized weights. By assumption on the input and weight distribution,
P (W (1)x = 0) = 0, thus P (ReLU(W (1)x) = 0) = 0.5. In addition, the status of activation is
independent to the initialized weights. Thus, the effect can be viewed as randomly setting rows of
W (1) to zero with probability 0.5. Following Equation (8) and Equation (9), we get that the size
of Box† is scaled by 0.5, and the size of Box∗ is scaled by E(

√
χ2(d1/2))/E(

√
χ2(d1)) ∼

√
2
2 .

Therefore, τ ′ ∼
√
2τ .

We perform a Monte-Carlo estimation of the ratio τ ′/τ with a two-layer fully connected network and a
two-layer convolutional network on MNIST. The estimation is 1.4167±0.0059 and 1.4228±0.0368,
respectively, which is close to the theoretical value

√
2 ≈ 1.4142. This confirms the correctness of

our theoretical analysis and its generalization even to convolutional networks which do not fully
satisfy the assumption.

B DEFERRED PROOFS

Proof of Lemma 3.1

Here we prove Lemma 3.1, restated below for convenience.

Lemma 3.1. Any C0 continuous classifier f , computing the logit difference y∆i := yi − yt,∀i ̸= t, is
robustly correct on Bϵ(x) if and only if Box∗(f ,Bϵ(x)) ⊆ Rc−1

<0 , i.e., ȳ∆
∗

i < 0,∀i ̸= t.

Proof. On the one hand, assume yi − ytrue < 0 for all i. Then for the ith output dimension, the
optimal bounding box is max yi − ytrue. Since the classifier is continuous, f(B(x, ϵ)) is a closed and
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bounded set. Therefore, by extreme value theorem, ∃η ∈ B(x, ϵ) such that η = argmax yi − ytrue,
thus max yi − ytrue < 0. Since this holds for every i, Box∗(f ,B(x, ϵ)) ⊆ RK−1

<0 .

On the other hand, assume Box∗(f ,B(x, ϵ)) ⊆ RK−1
<0 . Since f(B(x, ϵ)) ⊆ Box∗(f ,B(x, ϵ)) ⊆

RK−1
<0 , we get yi − ytrue < 0 for all i.

Proof of Theorem 3.2

We first prove Theorem 3.2 for a 2-layer DLN as Lemma B.1.

Lemma B.1. For a two-layer DLN f = W (2)W (1), (z∗ − z∗)/2 =
∣∣W (2)W (1)

∣∣ ϵ and (z† −
z†)/2 =

∣∣W (2)
∣∣ ∣∣W (1)

∣∣ ϵ. In addition, Box∗ and Box† have the same center f(x).

Proof. First, assume W (1) ∈ Rd1×d0 , W (2) ∈ Rd2×d1 and Bi = [−1, 1]di for i = 0, 1, 2, where
di ∈ Z+ are some positive integers. The input box can be represented as diag(ϵ0)B0 + b for ϵ0 = ϵ.

For a single linear layer, the box propagation yields

Box(W (1)(diag(ϵ0)B0 + b)) = Box(W (1) diag(ϵ0)B0) +W (1)b

= diag

 d0∑
j=1

|W (1)
i,j |ϵ0[j]

B1 +W (1)b

:= diag(ϵ1)B1 +W (1)b. (5)

Applying Equation (5) iteratively, we get the explicit formula of layer-wise propagation for two-layer
linear network:

Box(W (2) Box(W (1)(diag(ϵ0)B0 + b)))

= Box
(
W (2)(diag(ϵ1)B1 +W (1)b)

)
= diag

(
d1∑
k=1

|W (2)
i,k |ϵ1[k]

)
B2 +W (2)W (1)b

= diag

 d0∑
j=1

ϵ0[j]

(
d1∑
k=1

|W (2)
i,k W

(1)
k,j |
)B2 +W (2)W (1)b. (6)

Applying Equation (5) on W :=W (2)W (1), we get the explicit formula of the tightest box:

Box(W (2)W (1)(diag(ϵ0)B0 + b))

= diag

 d0∑
j=1

|(W (2)W (1))i,j |ϵ0[j]

B2 +W (2)W (1)b

= diag

 d0∑
j=1

ϵ0[j]

∣∣∣∣∣
d1∑
k=1

W
(2)
i,k W

(1)
k,j

∣∣∣∣∣
B2 +W (2)W (1)b. (7)

Now, we use induction and Lemma B.1 to prove Theorem 3.2, restated below for convenience. The
key insight is that a multi-layer DLN is equivalent to a single-layer linear network. Thus, we can
group layers together and view general DLNs as two-layer DLNs.

Theorem 3.2 (Box Propagation). For an L-layer DLN f = ΠL
k=1W

(k), we obtain the box centres
ż∗ = ż† = f(x) and the radii

z∗ − z∗

2
=
∣∣∣ΠL

k=1W
(k)
∣∣∣ ϵ, and

z† − z†

2
=
(
ΠL

k=1

∣∣∣W (k)
∣∣∣) ϵ. (4)
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Proof. For L = 2, by Lemma B.1, the result holds. Assume for L ≤ m, the result holds. Therefore,
for L = m+ 1, we group the first m layers as a single layer, resulting in a “two” layer equivalent
network. Thus, (z∗−z∗)/2 =

∣∣W (m+1)Πm
k=1W

(k)
∣∣ ϵ =

∣∣ΠL
k=1W

(k)
∣∣ ϵ. Similarly, by Equation (5),

we can prove (z∗ − z∗)/2 =
(∣∣W (m+1)

∣∣Πm
k=1

∣∣W (k)
∣∣) ϵ =

(
ΠL

k=1

∣∣W (k)
∣∣) ϵ. The claim about

center follows by induction similarly.

Proof of Lemma 3.3

Here, we prove Lemma 3.3, restated below for convenience.

Lemma 3.3 (Propagation Invariance). A two-layer DLN f = W (2)W (1) is propagation invariant
if and only if for every fixed (i, j), we have

∣∣∣∑kW
(2)
i,k ·W (1)

k,j

∣∣∣ = ∑
k |W

(2)
i,k ·W (1)

k,j |, i.e., either

W
(2)
i,k ·W (1)

k,j ≥ 0 for all k or W (2)
i,k ·W (1)

k,j ≤ 0 for all k.

Proof. We prove the statement via comparing the box bounds. By Lemma B.1, we need∣∣∣∑d1

k=1W
(2)
i,k W

(1)
k,j

∣∣∣ = ∑d1

k=1 |W
(2)
i,k W

(1)
k,j |. The triangle inequality of absolute function says this

holds if and only if W (2)
i,k W

(1)
k,j ≥ 0 for all k or W (2)

i,k W
(1)
k,j ≤ 0 for all k.

Proof of Theorem 3.4

Here, we prove Theorem 3.4, restated below for convenience.

Theorem 3.4 (Non-Propagation Invariance). Assume ∃i, i′, j, j′, such that W (1)
·,j , W (1)

·,j′ , W
(2)
i,· and

W
(2)
i′,· are all non-zero. If (W (2)W (1))i,j ·(W (2)W (1))i,j′ ·(W (2)W (1))i′,j ·(W (2)W (1))i′,j′ < 0,

then f = W (2)W (1) is not propagation invariant.

Proof. The assumption (W (2)W (1))i,j · (W (2)W (1))i,j′ · (W (2)W (1))i′,j · (W (2)W (1))i′,j′ < 0
implies three elements are of the same sign while the other element has a different sign. Without loss
of generality, assume (W (2)W (1))i′,j′ < 0 and the rest three are all positive.

Assume W (2)W (1) is propagation invariant. By Lemma 3.3, this means W (2)
i,· .sign = W

(1)
·,j .sign,

W
(2)
i,· .sign =W

(1)
·,j′ .sign,W (2)

i′,· .sign =W
(1)
·,j .sign andW (2)

i′,· .sign = −W (1)
·,j′ .sign. Therefore, we have

−W (1)
·,j′ .sign =W

(1)
·,j′ .sign, which implies all elements of W (1)

·,j′ must be zero. However, this results in
(W (2)W (1))i,j′ = 0, a contradiction.

Proof of Lemma 3.7

Here, we prove Lemma 3.7, restated below for convenience.

Lemma 3.7 (Initialization Tightness w.r.t. Width). Given a 2-layer DLN with weight matrices W (1) ∈
Rd1×d0 , W (2) ∈ Rd2×d1 with i.i.d. entries from N (0, σ2

1) and N (0, σ2
2) (together denoted as θ),

we obtain the expected tightness τ(d1) =
Eθ(z

∗−z∗)

Eθ(z†−z†)
=

√
π Γ( 1

2 (d1+1))

d1Γ(
1
2d1)

∈ Θ( 1√
d1
).

Proof. We first compute the size of the layer-wisely propagated box. From Equation (6), we get that
for the i-th dimension,

E(ui − li) = E

 d0∑
j=1

ϵ0[j]

(
d1∑
k=1

|W (2)
i,k W

(1)
k,j |
)

=

d0∑
j=1

ϵ0[j]

(
d1∑
k=1

E(|W (2)
i,k |) · E(|W

(1)
k,j |)

)

= σ1σ2

d0∑
j=1

ϵ0[j]

(
d1∑
k=1

E(|N (0, 1)|)2)
)
.
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Since E(|N (0, 1)|) =
√

2
π

1, we have

E(ui − li) =
2

π
σ1σ2d1∥ϵ0∥1. (8)

Now we compute the size of the tightest box. From Equation (7), we get that for the i-th dimension,

E(u∗i − l∗i ) = E

 d0∑
j=1

ϵ0[j]

∣∣∣∣∣
d1∑
k=1

W
(2)
i,k W

(1)
k,j

∣∣∣∣∣
 = σ1σ2

d0∑
j=1

ϵ0[j]E

(∣∣∣∣∣
d1∑
k=1

XkYk

∣∣∣∣∣
)
,

where Xk and Yk are i.i.d. standard Gaussian random variables. Using the law of total expectation,
we have

E

(∣∣∣∣∣
d1∑
k=1

XkYk

∣∣∣∣∣
)

= E

(
E

(∣∣∣∣∣
d1∑
k=1

XkYk

∣∣∣∣∣
∣∣∣∣∣ Yk

))

= E

(
E

(∣∣∣∣∣N (0,

d1∑
k=1

Y 2
k )

∣∣∣∣∣
∣∣∣∣∣ Yk

))

=

√
2

π
E


√√√√ d1∑

k=1

Y 2
k


=

√
2

π
E(
√
χ2(d1)).

Since E(
√
χ2(d1)) =

√
2Γ( 12 (d1 + 1))/Γ( 12d1),

2 we have

E(u∗i − l∗i ) =
2√
π
σ1σ2∥ϵ0∥1Γ(

1

2
(d1 + 1))/Γ(

1

2
d1). (9)

Combining Equation (8) and Equation (9), we have:

E(ui − li)

E(u∗i − l∗i )
=

d1Γ(
1
2d1)√

πΓ( 12 (d1 + 1))
. (10)

To see the asymptotic behavior, use Γ(x+ α)/Γ(x) ∼ xα,3 we have

E(ui − li)

E(u∗i − l∗i )
∼ 1√

π
d

1
2
1 . (11)

To establish the bounds on the minimum expected slackness, we use Lemma B.2.

Lemma B.2. Let g(n) :=
nΓ( 1

2n)√
πΓ( 1

2 (n+1))
. g(n) is monotonically increasing for n ≥ 1. Thus, for

n ≥ 2, g(n) ≥ g(2) > 1.27.

Proof. Using polygamma function ψ(0)(z) = Γ′(z)/Γ(z),4 we have

g′(n) ∝ 1 +
1

2
n

(
ψ(0)

(
1

2
n

)
− ψ(0)

(
1

2
(n+ 1)

))
.

1https://en.wikipedia.org/wiki/Half-normal_distribution
2https://en.wikipedia.org/wiki/Chi_distribution
3https://en.wikipedia.org/wiki/Gamma_function#Stirling’s_formula
4https://en.wikipedia.org/wiki/Polygamma_function
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Figure 10: g(n) and g2(n) visualized.

Using the fact that ψ(0)(z) is monotonically increasing for z > 0 and ψ(0)(z + 1) = ψ(0)(z) + 1
z ,

we have

1 +
1

2
n

(
ψ(0)

(
1

2
n

)
− ψ(0)

(
1

2
(n+ 1)

))
> 1 +

1

2
n

(
ψ(0)

(
1

2
n

)
− ψ(0)

(
1

2
n+ 1

))
= 1 +

1

2
n

(
− 2

n

)
= 0.

Therefore, g′(n) is strictly positive for n ≥ 1, and thus g(n) is monotonically increasing for
n ≥ 1.

As a final comment, we visualize g(n) in Figure 10. As expected, g(n) is monotonically increasing
in the order of O(

√
n).

Proof of Corollary 3.8

Here, we prove Corollary 3.8, restated below for convenience.

Corollary 3.8 (Initialization Tightness w.r.t. Depth). The expected tightness of an L-layer DLN f

with minimum internal dimension dmin is at most τ ≤ τ(dmin)
⌊L

2 ⌋ at initialization.

Proof. This is pretty straightforward and only requires a coarse application of Lemma 3.7. Without
loss of generality, we assume L is even. If L is odd, then we simply discard the slackness introduced
by the last layer, i.e., assume the last layer does not introduce additional slackness.

We group the 2i − 1-th and 2i-th layer as a new layer. By Lemma 3.7, these L/2 subnetworks all
introduce an additional slackness factor of τ . Note that Equation (8) implies that the size of the
output box is proportional to the size of the input box. Therefore, the layer-wisely propagated box of
ΠL

i=1Wi is τL/2 looser than the layer-wisely propagated box of ΠL/2
j=1(W2j−1W2j). In addition, the

size of the tightest box for ΠL
i=1Wi is upper bounded by layer-wisely propagating Π

L/2
j=1(W2j−1W2j).

Therefore, the minimum expected slackness is lower bounded by τL/2.

Proof of Theorem 3.9

Here, we prove Theorem 3.9, restated below for convenience.

Theorem 3.9 (IBP Training Increases Tightness). Assume homogenous tightness, i.e., W ∗ = τW †,

and
∥∇θW

∗
ij∥2

W ∗
ij

≤ 1
2

∥∇θW
†
ij∥2

W †
ij

for all i, j, then, the gradient difference between the IBP and standard

loss is aligned with an increase in tightness, i.e., ⟨∇θ(R(ϵ)−R(0)),∇θτ⟩ ≤ 0 for all ϵ > 0.

Proof. We prove a stronger claim: ⟨∇θ(R(ϵ+∆ϵ)− R(ϵ)),∇θτ⟩ ≤ 0 for all ϵ ≥ 0 and ∆ϵ > 0.
Let ϵ = 0 yields the theorem.
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We prove the claim for ∆ϵ → 0. For large ∆ϵ, we can break it into R(ϵ + ∆ϵ) − R(ϵ) =∑n
i=1R(ϵ + i

n∆ϵ) − R(ϵ + i−1
n ∆ϵ), thus proving the claim since each summand satisfies the

theorem.

Let L1 = R(ϵ) and L2 = R(ϵ+∆ϵ). By Taylor expansion, we have L2 = L1 +∆ϵ⊤W †∇ug =
L1 +

1
τ∆ϵ⊤W ∗∇ug, where ∇ug = ∇ug(u) evaluated at u = W †ϵ. Note that the increase of ϵ

would increase the risk, thus ∇ug ≥ 0.

For the ith parameter θi, ∇θi(L2 − L1)∇θiτ = 1
τ2∆ϵ⊤(τ∇θiW

∗ − W ∗∇θiτ)∇ug∇θiτ . Thus,
⟨∇θ(L2 − L1),∇θτ⟩ = 1

τ2∆ϵ⊤(τ
∑

i ∇θiτ · ∇θiW
∗ − W ∗∥∇θτ∥22)∇ug. Since ∆ϵ > 0 and

∇ug ≥ 0, it sufficies to prove that τ
∑

i ∇θiτ · ∇θiW
∗ − W ∗∥∇θτ∥22 is nonpositive, i.e.,

τ⟨∇θτ,∇θW
∗
ij⟩ −W ∗

ij∥∇θτ∥22 is nonpositive for every i, j.

Since ∥u∥2∥v∥2 ≥ ⟨u,v⟩, we have

∥∇θW
∗
ij∥2

W ∗
ij

≤ 1

2

∥∇θW
†
ij∥2

W †
ij

⇒ ∥∇θ logW
†∥2 ≥ 2∥∇θ logW

∗∥2
⇒ ∥∇θ logW

†∥22 ≥ 2⟨∇θ logW
†,∇θ logW

∗⟩

Therfore, ∥∇θ log τ∥22 = ∥∇θ(logW
∗
ij − logW †

ij)∥22 = ∥∇θ logW
∗
ij∥22 −

2⟨∇θ logW
†,∇θ logW

∗⟩+ ∥∇θ logW
†∥22 ≥ ∥∇θ logW

∗
ij∥22. This means

∥∇θW
∗
ij∥2

W ∗
ij

≤ ∥∇θτ∥2

τ ,

thus W ∗
ij∥∇θτ∥22 ≥ τ∥∇θτ∥2∥∇θW

∗
ij∥2 ≥ τ⟨∇θτ,∇θW

∗
ij⟩, which fulfills our goal.

Proof of Theorem 3.10

Here, we prove Theorem 3.10, restated below for convenience.

Theorem 3.10 (Box Reconstruction Error). Consider the linear embedding and reconstruction
x̂ = UkU

⊤
k x of a d dimensional data distribution x ∼ X into a k dimensional space with d ≫ k

and eigenmatrices U drawn uniformly at random from the orthogonal group. Propagating the input
box Bϵ(x) layer-wise and optimally, thus, yields Bδ†

(x̂), and Bδ∗
(x̂), respectively. Then, we have, (i)

E(δi/ϵ) = ck ∈ Θ(k) for a positive constant c depending solely on d and c→ 2
π ≈ 0.64 for large d;

and (ii) E(δ∗i /ϵ) → 2√
π

Γ( 1
2 (k+)

Γ( 1
2k)

∈ Θ(
√
k).

Proof. Since box propagation for linear functions maps the center of the input box to the center of
the output box, the center of the output box is exactly X̂ . By Lemma B.1, we have δ = |Uk||Uk|⊤ϵ1.
For notational simplicity, let V = |Uk|, thus

δi =

k∑
j=1

Vij(

d∑
p=1

V ⊤
jpϵ) = ϵ

d∑
p=1

k∑
j=1

VijVpj = ϵ

k∑
j=1

Vij∥V:j∥1.

Therefore, Eδi/ϵ =
∑k

j=1 E(Vij∥V:j∥1) = ck, where c = E(Vij∥V:j∥1). Since V:j is the absolute
value of a column of the orthogonal matrix uniformly drawn, V:j itself is the absolute value of a vector
drawn uniformly from the unit hyper-ball. By Cook (1957) and Marsaglia (1972), V:j is equivalent in
distribution to i.i.d. draw samples from the standard Gaussian for each dimension and then normalize
it by its L2 norm. For notational simplicity, let V:j

d
= v = |u|, where u = û/∥û∥2 and all dimensions

of û are i.i.d. drawn from the standard Gaussian distribution, thus c = E(v1∥v∥1).

Expanding ∥v∥1, we have c = E(v21) +
∑d

i=2 E(v1vi) = 1
dE(∥v∥22) + (d − 1)E(v1v2) = 1

d +
(d − 1)E(v1v2). From page 20 of Pinelis & Molzon (2016), we know each entry in u converges
to N (0, 1/d) at O(1/d) speed in Kolmogorov distance. In addition, E(v1v2) = E(E(v2 | v1) ·
v1) = E(v1

√
1− v21)E(v′2), where v′ is the absolute value of a random vector uniformly drawn

from the d − 1 dimensional sphere. Therefore, for large d, c = (d − 1)E(v1
√
1− v21)E(v′2) =

(d− 1)E(v1)E(v′2) = (d− 1)E(|N (0, 1/d)|)E(|N (0, 1/(d− 1))|) = 2
π .
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Figure 11: Monte-Carlo estimations of Theorem 3.10. Result bases on 10000 samples for each d.
Left: c plotted against d in log scale. Right: E(δ∗i ) plotted against k for d = 2000 (blue), together
with the theoretical predictions (orange).

To show how good the asymptotic result is, we run Monte-Carlo to get the estimation of c. As shown
in the left of Figure 11, the Monte-Carlo result is consistent to this theorem. In addition, it converges
very quickly, e.g., stablizing at 0.64 when d ≥ 100.

Now we start proving (2). By Lemma B.1, we have δ∗ = |UkU
⊤
k |ϵ1. Thus,

E(δ∗i /ϵ) =
d∑

j=1

E

∣∣∣∣∣
k∑

p=1

UipUjp

∣∣∣∣∣ =∑
j ̸=i

E

∣∣∣∣∣
k∑

p=1

UipUjp

∣∣∣∣∣+ E(
k∑

p=1

U2
ip) = (d− 1)E

∣∣∣∣∣
k∑

p=1

UipUjp

∣∣∣∣∣+ k

d
.

In addition, we have

(d− 1)E

∣∣∣∣∣
k∑

p=1

UipUjp

∣∣∣∣∣ = (d− 1)EUi

(
EUj

(∣∣∣∣∣
k∑

p=1

UipUjp

∣∣∣∣∣
∣∣∣∣Ui

))

→ (d− 1)EUi

(
E

∣∣∣∣∣N
(
0,

∑k
p=1 U

2
ip

d− 1

)∣∣∣∣∣
)

= (d− 1)

√
2

π(d− 1)
E

√√√√ k∑
p=1

U2
ip

=

√
2(d− 1)

π
E
√

1

d
χ2(k)

→ 2√
π

Γ( 12 (k + 1))

Γ( 12k)
,

where we use again that for large d, the entries of a column tends to Gaussian. This proves (2). The
expected tightness follows by definition, i.e., dividing the result of (1) and (2).

The right of Figure 11 plots the Monte-Carlo estimations against our theoretical results. Clearly, this
confirms our result.

C EXPERIMENTAL DETAILS

C.1 DATASET

We use the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky et al., 2009) datasets for
our experiments. Both are open-source and freely available. For MNIST, we do not apply any
preprocessing or data augmentation. For CIFAR-10, we normalize images with their mean and
standard deviation and, during training, first apply 2-pixel zero padding and then random cropping to
32× 32.

C.2 MODEL ARCHITECTURE

We follow previous works (Shi et al., 2021; Müller et al., 2022b; Mao et al., 2023) and use a 7-layer
convolutional network CNN7 in most experiments. We also use a simplified 3-layer convolutional
network CNN3 in Section 4.2. Details about them can be found in the released code.
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Figure 12: Accuracies and tightness of a CNN7 for CIFAR-10 ϵ = 2
255 depending on regularization

strength with STAPS.

C.3 TRAINING

Following previous works (Müller et al., 2022b; Mao et al., 2023), we use the initialization, warm-up
regularization, and learning schedules introduced by Shi et al. (2021). Specifically, for MNIST, the
first 20 epochs are used for ϵ-scheduling, increasing ϵ smoothly from 0 to the target value. Then, we
train an additional 50 epochs with two learning rate decays of 0.2 at epochs 50 and 60, respectively.
For CIFAR-10, we use 80 epochs for ϵ-annealing, after training models with standard training for 1
epoch. We continue training for 80 further epochs with two learning rate decays of 0.2 at epochs 120
and 140, respectively. The initial learning rate is 5 × 10−3 and the gradients are clipped to an L2

norm of at most 10.0 before every step.

C.4 CERTIFICATION

We apply MN-BAB (Ferrari et al., 2022), a sate-of-the-art (Brix et al., 2023; Müller et al., 2022a)
verifier based on multi-neuron constraints (Müller et al., 2022c; Singh et al., 2019a) and the branch-
and-bound paradigm (Bunel et al., 2020) to certify all models. MN-BAB is a state-of-the-art complete
certification method built on multi-neuron relaxations. For Table 1, we use the same hyperparameters
for MN-BAB as Müller et al. (2022b) and set the timeout to 1000 seconds. For other experiments,
we use the same hyperparameters but reduce timeout to 200 seconds for efficiency reasons.

D EXTENDED EMPIRICAL EVALUATION

D.1 STAPS-TRAINING AND REGULARIZATION LEVEL

To confirm our observations on the interaction of regularization level, accuracies, and propagation
tightness from Section 4.2, we extend our experiments to STAPS (Mao et al., 2023), an additional
state-of-the-art certified training method beyond SABR (Müller et al., 2022b). Recall that STAPS
combines SABR with adversarial training as follows. The model is first (conceptually) split into
a feature extractor and classifier. Then, during training IBP is used to propagate the input region
through the feature extractor yielding box bounds in the model’s latent space. Then, adversarial
training with PGD is conducted over the classifier using these box bounds as input region. As IBP
leads to an over-approximation while PGD leads to an under-approximation, STAPS induces more
regularization as fewer (ReLU) layers are included in the classifier.

We visualize the result of thus varying regularization levels by changing the number of ReLU layers
in the classifier in Figure 12. We observe very similar trends as for SABR in Figure 8, although to a
lesser extent, as 0 ReLU layers in the classifier still recovers SABR and not standard IBP. Again,
decreasing regularization (increasing the number of ReLU layers in the classifier) leads to reducing
tightness and increasing standard and certified accuracies.

D.2 TIGHTNESS AND PROPAGATION REGION SIZE

We repeat the experiment illustrated in Figure 9 for CIFAR-10 on MNIST using a CNN3 in Figure 13.
We again observe the propagation region size ξ dominating the tightness (except for very large
perturbation sizes of ϵ > 0.2), and smaller perturbation magnitudes leading to slightly larger
tightness.
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Figure 13: Tightness over propagation region size ξ for SABR and MNIST.

D.3 TIGHTNESS APPROXIMATION ERROR
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Figure 14: Mean relative error between
local tightness (Definition 3.6) and true
tightness computed with MILP for a
CNN3 trained with PGD or IBP at ϵ =
0.005 on CIFAR-10.

To investigate the approximation quality of our local tight-
ness as defined in Definition 3.6, we compare it against the
true tightness computed using MILP (Tjeng et al., 2019).
We confirm our results from Figure 2 on MNIST on CIFAR-
10 in Figure 14, where we again observe small approxima-
tion errors across a wide range of perturbation magnitudes.
Interestingly, the effect of the chosen perturbation magni-
tude on the approximation error is less pronounced than on
MNIST, remaining low even for large perturbation magni-
tudes (ϵ = 0.01 > 8/255). While the approximation error
remains below 0.3% for a PGD-trained net, our approxima-
tion exhibits a consistent bias for the IBP-trained network,
overestimating tightness by approximately 1.2%.

D.4 COMPARING TIGHTNESS TO (INVERSE) ROBUST
CROSS-ENTROPY LOSS

To investigate to what extent our novel tightness metric is complimentary to the (inverse) robust
cross-entropy loss (see Section 2) computed with IBP, we repeat the key experiments confirming our
theoretical insights with the inverse IBP-loss and observe significantly different, partially opposite
trends.
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Figure 15: Tightness and inverse
IBP loss at initialization depending
on width and depth.

IBP Loss at Initialization We repeat our experiments on
the dependence of tightness at initialization on network depth
and width, illustrated in Figure 5, and additionally report the
inverse IBP loss in Figure 15. For all experiments, we use the
initialization of Shi et al. (2021) which has become the de-facto
standard for IBP-based training methods. While we (theoret-
ically and empirically) observe an exponential reduction in
tightness with increasing depth, the inverse IBP loss increases
slightly. Similarly, while we (theoretically and empirically)
observe a polynomial reduction in tightness with increasing
width, the inverse IBP loss stays almost constant. Note the
logarithmic scale (and orders of magnitude larger changed) for
tightness and the linear scale for the inverse IBP loss. This
difference in trend is unsurprising as the custom initialization of
Shi et al. (2021) is designed to keep IBP bound width constant
over network depth and width. We thus conclude that tightness
and (inverse) IBP loss yield fundamentally different results and
insights when analyzing networks at initialization.

IBP Loss after Training We show the inverse IBP loss (left and center) and tightness (right)
after IBP training depending on training perturbation size ϵ, evaluated at training ϵ (left) or constant
ϵ = 10−3 (center) in Figure 16. We observe that inverse IBP loss, in contrast to tightness, is heavily
dependent on the perturbation magnitude used for evaluation (compare left and center), making it
poorly suited to analyze the effects of changing perturbation magnitude. Further, when using the
most natural perturbation magnitude, the ϵ used during training and certification (left), we observe
completely different trends to tightness. For very small perturbation magnitudes, the inverse IBP
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Figure 16: Tightness (right) and inverse IBP loss (left and center) after IBP training depending on
training perturbation size ϵ, evaluated at training ϵ (left) or constant ϵ = 10−3 (center).

Table 3: Certified and standard accuracy depending on network width.

Dataset ϵ Method Width Accuracy Certified Tightness

MNIST 0.1 IBP
1× 85.70 67.71 0.871
2× 88.42 73.77 0.857
4× 90.31 79.89 0.803

loss is very high, suggesting high (perturbation) robustness, but both inverse IBP loss evaluated
with a larger ϵ and tightness are low, showing that it neither permits precise analysis with IBP nor is
necessarily robust, again highlighting the difference between tightness and (inverse) IBP loss.

D.5 TIGHTNESS AFTER IBP TRAINING

To confirm that wider models improve certified accuracy while slightly reducing tightness across
network architectures, we also consider fully connected networks, which used to be the default in
neural network verification (Singh et al., 2019b; 2018). We increase the width of a fully connected
ReLU network with 6 hidden layers from 100 to 400 neurons and indeed observe a significant increase
in certified accuracy (see Table 3).
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