Under review as a conference paper at ICLR 2026

LOCALITY-AWARE PARALLEL DECODING FOR
EFFICIENT AUTOREGRESSIVE IMAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive
image generation. Traditional autoregressive image generation relies on next-
patch prediction, a memory-bound process that leads to high latency. Existing
works have tried to parallelize next-patch prediction by shifting to multi-patch
prediction to accelerate the process, but only achieved limited parallelization. To
achieve high parallelization while maintaining generation quality, we introduce
two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel
architecture that enables arbitrary generation ordering and degrees of parallelization.
It uses learnable position query tokens to guide generation at target positions while
ensuring mutual visibility among concurrently generated tokens for consistent
parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule
that forms groups to minimize intra-group dependencies and maximize contextual
support, enhancing generation quality. With these designs, we reduce the generation
steps from 256 to 20 (256x256 res.) and 1024 to 48 (512x512 res.) without
compromising quality on the ImageNet class-conditional generation, and achieving

at least 3.4 x lower latency than previous parallelized autoregressive models.

1 INTRODUCTION

Autoregressive modeling has achieved state-of-the-art results in large language models in terms
of scalability and generalizability (Brown et al., 2020; OpenAl, 2023; Touvron et al., 2023a;b;
Grattafiori et al., 2024; Jiang et al., 2024; Yang et al., 2024; 2025; Liu et al., 2024a). Natu-
rally, many works have applied this powerful paradigm to visual generation (Esser et al., 2021;
Lee et al., 2022; Ramesh et al., 2021; Yu et al., 2022; Sun et al., 2024; Tian et al., 2024).

Moreover, this autoregressive formulation of vi-
sual generation has become increasingly cru-
cial for unified multimodal generation (OpenAl,
2025; Wang et al., 2024a; Wu et al., 2024c;a;
Chen et al., 2025a; Ma et al., 2025; Jiao et al.,
2025; Song et al., 2025; Chen et al., 2025b; Zhao
et al., 2025; Lin et al., 2025; Deng et al., 2025;
Liao et al., 2025; Xie et al., 2025) since it is
highly compatible with language modeling.

Prevailing autoregressive visual generation
methods typically follow two paradigms: (1)
next-patch prediction by flattening the image
into a sequence of patches (Esser et al., 2021)
and (2) next-scale prediction via coarse-to-fine
multi-scale representations (Tian et al., 2024).
In the first formulation, generating one token per
step creates a memory-bound workload', caus-
ing latency to scale with the number of steps.
The second formulation substantially reduces

4

35
350M 700M 1.4B

25
LPD PAR

4.2x faster
AL R
(20 steps)
2 3ax faster RandAR
N ARPG

LPD
(32 steps)

Frechet Inception Distance (FID)

0.1 1 10
Latency(s, batch size=1)
Figure 1: Performance comparison among par-
allelized autoregressive models on ImageNet
256<256. We significantly reduce the generation
steps and achieve at least 3.4x lower latency com-
pared with previous models.

' A memory-bound workload refers to the scenario where the efficiency is limited by memory access speed
rather than computation speed. In this context, each generation step requires loading the entire model parameters
into GPU registers, making the process bottlenecked by memory bandwidth rather than computational power.

Under review as a conference paper at ICLR 2026

Head 8 Head 18
Head 1 B Head 2 . . Head17 e e '
o o X
™,
o 08 08 08 ™
s 4N\
20 20 2 \\\
., 06 06 06 >
™, " w et
-, Localit 'H._H _ Head23 . Head 24
"5, ocality 04 04 -, 04
m . / w , - ., N
0 02 ® 02 @ Locality) 02 . N .
5 . @ . .

00

Figure 2: Visualization of attention maps in the LLAMAGEN-1.4B model. There is strong spatial
locality, as the attention of a decoding token is concentrated on nearby spatial tokens. LLAMAGEN
encodes images into 24 x 24 tokens, where a token that is 24 positions earlier in the attention map
corresponds to the token directly above it in the 2D grid.

generation steps and thus latency. However, its multi-scale token representation fundamentally differs
from the universal flat token representation, making it incompatible with widely used flat vision
perception foundation models (e.g., CLIP (Radford et al., 2021; Zhai et al., 2023), DINO (Caron
et al., 2021; Oquab et al., 2023)) and thereby limiting interoperability with perception backbones
that have been proven critical for unified multimodal systems (Wu et al., 2024¢; Ma et al., 2025; Jiao
et al., 2025; Song et al., 2025; Chen et al., 2025b; Zhao et al., 2025; Lin et al., 2025; Tong et al.,
2024; Wu et al., 2025; 2024b).

Thus, autoregressive visual generation should be (1) highly efficient: minimizing latency and maxi-
mizing throughput; (2) remain flat token representations for universality and compatibility with vision
backbones and, by extension, unified multimodal models. Recent works (Wang et al., 2024b; Pang
et al.,, 2024; Li et al., 2025a) have tried to parallelize next-patch prediction by shifting to multi-patch
prediction to accelerate the process, but only achieved limited parallelization. Non-autoregressive
mask-prediction models like MASKGIT (Chang et al., 2022) enable multi-patch prediction but require
full attention for bidirectional context, making them less efficient than autoregressive methods.

To address the challenges, we introduce Locality-aware Parallel Decoding (LPD), a framework that
consists of a novel flexible parallelized autoregressive modeling architecture and a novel locality-
aware generation order schedule. We design a new modeling architecture as conventional decoder-only
autoregressive models struggle with flexible generation order and parallelization, limiting efficiency.
In contrast, ours enables arbitrary generation order and degrees of parallelization. This is achieved
by using learnable position query tokens to guide the model in generating tokens at target positions.
Moreover, the generation is parallel-aware, as we leverage specialized attention mechanism to ensure
mutual visibility among tokens generated concurrently. Notably, our design also inherits the KV
caching mechanism, avoiding redundant computation.

Furthermore, we observe strong spatial locality in image generation attention where tokens predomi-
nantly attend to nearby regions as shown in Figure 2. This indicates a high dependency among nearby
tokens, meaning that spatially closer tokens provide stronger conditioning. Recent works (Wang et al.,
2024b; Besnier et al., 2025) also identify that minimizing mutual dependency among simultaneously
generated tokens is essential to maintain sample consistency. With these insights, we introduce a
locality-aware generation order schedule that selects parallel decoding groups to maximize contextual
support while minimizing intra-group dependencies, enabling higher degrees of parallelization.

We examine the effectiveness of our proposed method on ImageNet class-conditional image genera-
tion. Our results reveal that we reduce the generation steps of traditional raster-order autoregressive
generation from 256 to 20 (256256 res.) and 1024 to 48 (512512 res.) without compromising
quality, and achieving at least 3.4 x lower latency (Figure 1) than previous parallelized autoregressive
models. Thanks to the design of flexible autoregressive modeling, our models are also capable of
zero-shot image editing including class-conditional editing, inpainting and outpainting.

2 METHOD

2.1 RETHINKING AUTOREGRESSIVE MODELING

In next-patch autoregressive modeling, images are split into patches and usually discretized via a
tokenizer into image tokens. While the joint distribution of the N tokens z1, - - - , xy and condition ¢

Under review as a conference paper at ICLR 2026

mEEEE Y W EEET EETET e

4 4 4 4 Y ey Sl Sl 4156
Autoregressive Transformer ’ ‘ Autoregressive Transformer 7l8lo
4 .
T T T T T T PR B —————— I [———— | P —— C> Condii
rom - - i \ i ~ - < ondition
<C> N % , 4 5 - 1<C> Ps :: 4 Ps Ps “:, 5 P P2 Pe : s} Image Token
e O P N L e e - o T L D e e e e m - o 7
0 1 2 3 4 5 Steps 0 1 2 Steps B[o Prediction
. Position
(a) Raster Order Autoregressive Modeling (b) Flexible Parallelized Autoregressive Modeling P1 " Query Token

Figure 3: Raster Order vs. Flexible Parallelized Autoregressive Modeling. (a) In raster order,
each token simultaneously provides context and predicts the next token, restricting flexibility and
efficiency. (b) Our approach decouples these roles: previously generated tokens supply context, while
position query tokens drive parallel generation at arbitrary target positions. This separation enables
both flexible order and efficient parallelization.

is extremely high dimensional and therefore hard to model directly, the autoregressive framework
makes this amenable by factorizing the total joint distribution as

N
p@r, @2, anie) = [planlzen; o))

n=1

The training objective of the autoregressive model is therefore to optimize parametric approximations
Po(Tn|T<n;c) for those one-step conditionals. This factorization needs a predefined order, typically
raster order, as shown in Figure 3 (a). However, during sampling, this leads to IV sequential steps,
creating a major efficiency bottleneck.

To reduce the number of sequential generation steps, we can partition tokens into G disjoint groups
{X1,---,X¢}, where each group X, = {z,,, -+ ,2,, } is predicted jointly, resulting in the
following:

G
plan, 2, anie) = [[p(Xg | Xegic) 2
g=1

The training objective becomes optimizing pg(X, | X<g4;). Previous work has shown that directly
grouping tokens in raster order causes significant performance degradation (Wang et al., 2024b;
Pang et al., 2024). This is because spatially adjacent tokens exhibit strong mutual dependencies,
and independent sampling usually leads to generation inconsistencies inside a group. It is essential
to break the raster order when grouping. In addition, the size of the prediction group |X| should
gradually increase. As the context size | X 4| grows, it offers stronger conditioning, allowing more
tokens to be predicted in parallel. Previous work using masked transformers (Chang et al., 2022)
also mirrors this intuition by predicting fewer tokens early when context is sparse and predicting
more tokens over time. Therefore, an effective parallelized autoregressive model should support: (1)
Flexible generation order to alleviate the issue caused by mutual interdependency of concurrently
predicted tokens and (2) Dynamic group sizes increasing the number of tokens predicted per step
with available context.

However, it is difficult to achieve these within the standard decoder-only autoregressive models,
which are inherently designed with a fixed input-output structure, e.g. next-token prediction. In this
modeling, each token simultaneously serves two roles: it provides context via its hidden state and
enables generation via its output logits. This coupling limits flexibility in the the generation order
and output size. To address these challenges, we propose a novel flexible parallelized autoregressive
modeling which is able to support arbitrary generation order and degrees of parallelization.

2.2 FLEXIBLE PARALLELIZED AUTOREGRESSIVE MODELING

Our core idea is to decouple the context representation and token generation by leveraging separate
tokens. We illustrate this in Figure 3 (b). In this formulation, previously generated tokens are encoded
to provide context and the generation is driven by learnable position query tokens corresponding to
the desired target positions. These position query tokens are constructed by adding the positional
embedding of the target location to a shared learnable embedding. By directly inputting these position-
specific queries, the model can generate tokens at arbitrary target positions in parallel. This design
allows the model to leverage positional information in both the context and generation pathways,
enabling arbitrary generation order.

Under review as a conference paper at ICLR 2026

Key
<cs p 4| lrs rs TS [P [p p MNOG

- Figure 4: Illustration of the training attention

o onext mask. Context Attention allows subsequent tokens

r by to attend to the context tokens causally. Query

o Attention Attention ensures mutual visibility among the po-

o sition query tokens within the same step, and pre-

, - vents any subsequent tokens from attending to the
S query tokens. For example, image token 4 can be
P attended to by all subsequent tokens, including im-
age tokens and position query tokens, to provide

context information. The two position query to-

to the condition, to the image token 4, and to each

P2

Ps

) kens Ps and P in the same generation step attend
B

6 other, while ignoring the earlier query P;.

Figure 5: Illustration of the inference attention mask. Encoding
| with image tokens and Decoding with position query tokens can
be fused into a single step. Taking step 2 in Figure 3 (b) as the
example, it simultaneously encodes the previously generated image
tokens 3, 5 to update the KV-cache and decodes the desired image
tokens 1, 2 and 6 in parallel.

Training formulation. We train the model to transform each position query token into the cor-
responding ground-truth image token, conditioned on all ground-truth tokens that precede it. To
preserve teacher-forcing while allowing parallel prediction, we interleave position query tokens with
ground-truth tokens and apply a specialized training attention mask as shown in Figure 4 that contains
two attention patterns:

1. Context Attention allows subsequent tokens to attend to context tokens causally.

2. Query Attention ensures mutual visibility among the position query tokens within the same step,
and prevents any subsequent tokens from attending to the query tokens.

Inference formulation. At test time we alternate between encoding the generated image tokens
and decoding with position query tokens.

1. Encoding. Sampled image tokens go through a forward pass to store the KV cache, providing
context for future decoding steps.

2. Decoding. Learnable position query tokens attend to all previously generated tokens in the KV
cache, and the forward pass outputs logits for each target position in parallel. KV cache for query
tokens is not stored.

However, sequentially execute these two operations double the generation steps. As shown in Figure 3
(b), these two operations can be fused into a single step via a specialized inference attention mask as
shown in Figure 5.

Comparison with other methods. Recent efforts have also pursued parallel generation in autore-
gressive modeling, yet each carries inherent limitations. One line of work, exemplified by SAR (Liu
etal., 2024b) and ARPG (Li et al., 2025a), adopts an encoder-decoder architecture where target-aware
query tokens attend to the encoder’s key-value cache via cross-attention. However, as illustrated in
Figure 6 (a), the target positions themselves do not contribute any key-value pairs, resulting in the
tokens generated within the same parallel step being produced independently of one another.

Another approach, represented by RANDAR (Pang et al., 2024), adheres to the prevailing decoder-
only architecture. It achieves arbitrary order by inserting positional instruction tokens to designate
target positions. However, it still leverages a standard causal mask during training. This strategy, as
depicted in Figure 6 (b), leads to two notable issues: (1) the parallel generation degenerates into a
batched next-token prediction instead of joint prediction and (2) the positional instruction tokens
must be stored in the KV cache during inference, doubling the memory consumption. Compared
with these two methods, our method as shown in Figure 6 (c) guarantees the visibility among all
concurrently predicted target positions and only stores the generated tokens in the KV cache.

Under review as a conference paper at ICLR 2026

Encoder KV Cache KV Cache (Include Positional Instruction Token) KV Cache

(a) SAR, APRG (b) RandAR (¢) LPD

Figure 6: Comparison with other methods. (a) Encoder—decoder approaches such as SAR and
ARPG generate tokens independently, since query tokens contribute no key—value pairs. (b) Decoder-
only methods like RANDAR rely on positional instruction tokens, but the causal mask reduces parallel
generation to batched next-token prediction and forces instruction tokens to be cached, doubling
memory. (c) In contrast, our method employs a specialized training mask that ensures mutual visibility
among concurrently predicted tokens while caching only the generated tokens.

PAR (Wang et al., 2024b), NAR (He et al., 2025), and ZipAR (He et al., 2024) preserve the
standard decoder-only architecture and increase the number of tokens generated per step. Although
they guarantee mutual visibility among concurrently generated tokens, they rely on a fixed parallel
generation order, which prevents them from supporting arbitrary generation orders. This limits the
generation flexibility thus achieved limited parallelization and generation quality. ACDIT (Hu et al.,
2024) shares similar attention scheme with us, yet it was used for evenly interpolating between
autoregressive and diffusion modeling.

2.3 LOCALITY-AWARE GENERATION ORDER SCHEDULE

To fully leverage our flexible parallelized autoregressive modeling architecture, we introduce a
locality-aware generation order schedule. This schedule is guided by two key principles (1) High
proximity to previously generated tokens: target positions should be spatially close to existing
context to ensure strong conditioning and (2) Low proximity among concurrently generated tokens:
tokens predicted in the same parallel step should be spatially distant to reduce mutual dependency.

These principles are derived from a systematic analysis of the attention patterns in autoregressive
image generation by the widely adopted LLAMAGEN (Sun et al., 2024) model. Using LLAMAGEN,
we generate 50,000 images and collect attention scores at each decoding step. Qualitative attention
patterns are shown in Figure 2, and quantitative results are presented in Figure 7. To quantify locality,
we define the Per-Token Attention (PTA) to a neighborhood of radius s 2 as:

N >_; Attention(T;, T}) - I[d(T3, Tj) = s]

1
PTAs = + ; >, 1d(T;, Ty) = 5]

3

where Attention(7;, T;) denotes the attention weight from token T to token T7, and d(T;, T) is their
Euclidean distance on the 2D image grid.

As shown in Figure 7 (a), PTA decreases sharply

with increasing distance, indicating a strong spa- ! 4 LlamaGen-L " 2 LlamaGen-L
tial locality in the attention mechanism. This 8 o LiamaGenoit 65 o Lamagem i
suggests that nearby tokens carry significantly

more useful information during decoding, and
that spatially adjacent tokens are highly depen-
dent on one another for accurate prediction. This
locality pattern is consistently observed across
all attention heads. In Figure 7 (b), we visualize 25
the Attention Sum, defined as the total attention 0 5 10 15 20 25 30 0 4 8 12 16 20 24

score a decoding token assigns to tokens within a -Gk i

relative distance s. The plot uses s = 3 and con- Figure 7: Attention Analysis of LLAMAGEN.
firms that most attention is concentrated within (a) Attention diminishes with distance (b) Spatial

local neighborhoods, reinforcing the importance 1ocqlity is consistently observed in all heads.
of spatial locality. This analysis supports our

55

45

Per-Token Attention (%)
Attention Sum (%)

35

2The neighborhood is defined as the set of tokens whose centers are exactly a euclidean distance of s away.

Under review as a conference paper at ICLR 2026

Algorithm 1: Locality-aware Generation Order Schedule

Input: decoding steps K, group sizes O = [01, 0y, .. ., 0k], grids G = {(i, j)}}Y;_, . proximity
threshold 7, repulsion threshold p;

schedule S = [];
fork=1,...,Kdo
s=[1;
p = 1/euclidean(G\ S, 5) ; > proximity measurement

¢ = sorted(G \ S, key = p, reverse = True);
1, ca = cutoff (e, 7);
while len(s) < o andlen(c;) > 0do
s = queue_push(s, queue_pop(c1, 1)) ; » high-proximity selection
C1, f = ﬁlter(ch S, p)’
¢o = queue_push(ca, f);
if len(s) < oy, then
s = queue_push(s, farthest_point_sampling(ca, s, 0, — len(s)));
» low-dependency selection

| S = queue_push(S, s);
return S

two principles: decoding tokens should remain close to previously generated tokens to maximize con-
textual support, and distant from concurrently generated tokens to minimize intra-group dependency.

Based on these principles, we implement a locality-aware generation order schedule described in
Algorithm 1. Suppose we use K decoding steps to generate N2 tokens, with group sizes O =
[01,09,...,0K], where o is the number of tokens generated in step k, typically increasing via a
cosine schedule. At each step k, we compute the euclidean distance between unselected and already
selected tokens to measure spatial proximity, where closer distance leads to higher proximity. We sort
unselected tokens by proximity and split them into two sets: ¢y are tokens with sufficient proximity
larger than the threshold 7 which are eligible for the following high-proximity selection, and ¢ are
the rest. We sequentially select tokens from c;, adding each to the selected set while filtering out
nearby tokens that the relative distance is smaller than the repulsion threshold p, which are added
to co. If all the grids in ¢; are considered and the number of selected grids is less than o, we use
farthest point sampling (Qi et al., 2017) to select the remaining grids from ¢, to ensure spatial low
dependency. It is worth noting that the generation order can be precomputed and stored for direct
use during inference, incurring no additional latency. We provide the PyTorch implementation in
Appendix C.

The key distinction and primary advantage of our ordering mechanism is that we turn both principles
into a single, explicit proximity objective. While previous works have observed each principle
separately, none provide a way to quantify and jointly optimize them. In our method, we define a
proximity metric that simultaneously (i) measures proximity to already generated context tokens
and (ii) measures proximity among concurrently generated tokens, and we design an algorithm that
optimizes generation orders with respect to both. For example, (Wang et al., 2024b) aim to reduce
dependencies among concurrently generated tokens, but rely on a fixed region-wise parallel scheme,
which inherently cannot both maximize proximity to previously generated tokens and minimize
proximity within each concurrent group. Similarly, (Besnier et al., 2025) use a Halton-based ordering
to decorrelate concurrent tokens; however, without a proximity metric their method cannot incorporate
our first principle of staying close to existing context.

For intuitive understanding, we illustrate an example of our generation order schedule in Figure 8.
We also plot the schedule for raster order, random order and Halton order (Besnier et al., 2025)
for comparison. The raster order generates tokens in a raster-scan manner and the random order
generates tokens in a random manner. The Halton order is a low-discrepancy sequence to arrange the
generation positions which spreads out the tokens to achieve uniform image coverage step by step.

Under review as a conference paper at ICLR 2026

- - T —
——
(a) Raster ————
i
- n - : n .. " L} l
n n L | L] -
™ | B L .I i ™ n = = I a !
L] =
(b) Random . L L I = ... L " - " -
LI L B [- .
. . " o n T e -
L] L] n .- & - - - L] » ' L]) am
n - = L] . L m - s L}
" L] " m , F . . L -I I " ..
(c) Halton . - . - o L] o I ™ o I al | m = "a
L L] [
L] L] [|]
= " n - - : | . || = L - .
[L] Ll L}
n - (] ‘ LI LI | " - " sl
- " H - | | - ™ - - L - Ea= = -
n L] |] L]
(@) LPD L i n . aa " B - ‘ [i - ™ = . E .. :
- n - . - n L]
L] | L] L] |
n | a | a by] g -
Step1 Step2 Step4 Step6 Step9 Step12 Step15 Step18

Figure 8: Illustration of different generation order schedules. All schedules leverage 20 decoding
steps for 162 tokens. Dark green marks newly selected grids and light green marks those already
selected. Compared to others, our schedule selects grids close to previous ones and far from concurrent
ones, maximizing the contextual support and minimizing the mutual dependency.

3 EXPERIMENT

3.1 SETUP

Models. For fair comparisons with existing autoregressive image generation methods, we use the
LLAMAGEN tokenizer (Sun et al., 2024) with codebook size 16384 and downsample factor 16.
We train three models of different sizes: 337M, 752M, and 1.4B parameters. We use a standard
decoder-only transformer architecture, and refer to them as LPD-L, LPD-XL, and LPD-XXL,
respectively. Please refer to the Appendix A.1 for more details.

Training and Evaluation. We train and evaluate our models on the class-conditional ImageNet (Rus-
sakovsky et al., 2015) 256x256 and ImageNet 512x512 datasets. We first train all models on
ImageNet 256 %256 for 450 epochs, with 50 epochs of learning rate warmup followed by constant
learning rate and finally 50 epochs of cosine decay. For 512-resolution models, we load the pre-trained
256-resolution models and interpolate the positional embeddings and continue training on ImageNet
512 %512 for another 50 epochs. During training, the image tokens are randomly shuffled while the
class token is kept at the beginning. We train on a range of predefined decoding steps where the tokens
per step follows a cosine schedule. We reportuse Fréchet Inception Distance (FID) (Heusel et al.,
2017) as the primary metric computed on 50k,000 generated samples as the primary metric as well
asnd also report Inception Score (IS) (Salimans et al., 2016), Precision, and Recall (Kynkidnniemi
et al., 2019). Please refer to the Appendix A.2 for more details.

Efficiency Profiling. We profile all the efficiency results on a single NVIDIA A100 GPU with
BFloat16 precision. We measure the latency with a batch size of 1 and throughput with a batch size
of 64. We report the average latency over 500 inference steps, with a 100-step warm-up period.

3.2 MAIN RESULTS

We compare our models against a broad set of generative baselines on ImageNet 256 x256 (Table 1).
For a fair comparison, we also create a raster order counterpart following the same setup. As shown in
the table, we reduce the generation steps from 256 to 20, achieving 12.8x generation steps reduction,
without sacrificing the generation quality. Compared with other parallelized autoregressive models,
we achieve significantly better image generation quality and efficiency. Taking LPD-XL model as an
example, it achieves a FID of 2.10 with only 20 steps, reducing the number of generation steps by
3.2x compared to ARPG and achieving 4.2 x lower latency. Increasing the steps slightly to 32 yields
a FID of 1.92, even matching ARPG-XXL, while reducing latency by 3.4 x. We further report our
results on ImageNet 512x512 (Table 2). As shown in the table, we reduce the generation steps from
1024 to 48, achieving 21.3 x generation steps reduction, without sacrificing the generation quality.

Under review as a conference paper at ICLR 2026

Table 1: System-level comparison on ImageNet 256 <256 class-conditional generation. We
evaluate the generation quality by metrics including Fréchet inception distance (FID), inception score
(IS), precision and recall. #Steps is the number of model runs needed to generate an image. We
measure latency with a batch size of 1 and throughput with a batch size of 64 on a single NVIDIA
A100 GPU under BFloat16 precision, with classifier-free guidance (CFG) for both.

Type Model #Para. | FID| IST Precisiont Recallf | #Steps Latency(s)! Throughput(img/s)
ADM-G [16] 554M | 4.59 186.7 0.82 0.52 250 - -
CDM [27] - 488 1587 - - 8100 - -
Diffusion LDM-4 [54] 400M | 3.60 247.7 - - 250 - -
DiT-XL/2 [48] 675M | 2.27 2782 0.83 0.57 250 4.34 0.58
SiT-XL/2 [42] 675M | 2.06 2703 0.82 0.59 250 - -
MaskGIT [7] 227M | 6.18 182.1 0.80 0.51 8 - -
MAGVIT-v2 [80] 307M | 1.78 3194 - - 64 - -
Mask MaskBit [69] 305M | 1.62 338.7 - - 64 1.03 5.39
MAR-B [35] 208M | 231 281.7 0.82 0.57 64 18.14 2.93
MAR-L [35] 479M | 1.78 296.0 0.81 0.60 64 20.80 2.11
MAR-H [35] 943M | 1.55 303.7 0.81 0.62 64 25.96 1.45
VAR-d16 [61] 310M | 330 2744 0.84 0.51 10 0.12 70.58
VAR VAR-d20 [61] 600M | 2.57 302.6 0.83 0.56 10 0.15 52.53
VAR-d24 [61] 1.0B | 2.09 3129 0.82 0.59 10 0.17 39.30
VAR-d30 [61] 2.0B 1.92 323.1 0.82 0.59 10 0.26 25.89
VQGAN-re [17] 1.4B 520 280.3 - - 256 - -
RQTran.-re [32] 3.8B 3.80 3237 - - 256 - -
LlamaGen-L [59] 343M | 3.07 256.1 0.83 0.52 576 12.22 2.08
LlamaGen-XL [59] 7I5M | 2.62 244.1 0.80 0.57 576 18.51 1.14
AR LlamaGen-XXL [59] 1.4B | 234 2539 0.80 0.59 576 24.40 0.72
LlamaGen-3B [59] 31B | 2.18 2633 0.81 0.58 576 12.37 0.58
RAR-B [81] 26IM | 1.95 290.5 0.82 0.58 256 4.18 13.76
RAR-L [81] 461IM | 1.70 299.5 0.81 0.60 256 4.04 12.63
RAR-XL [81] 955M | 1.50 306.9 0.80 0.62 256 5.47 8.76
RAR-XXL [81] 15B | 148 326.0 0.80 0.63 256 6.59 6.72
PAR-L-4x [68] 343M | 376 2189 0.84 0.50 147 3.16 6.83
PAR-XL-4x [68] 775M | 2.61 259.2 0.82 0.56 147 4.79 3.69
PAR-XXL-4x [68] 1.4B | 235 2632 0.82 0.57 147 6.26 2.33
PAR-3B-4 x [68] 31B | 229 2555 0.82 0.58 147 3.29 2.32
RandAR-L [46] 343M | 2.55 288.8 0.81 0.58 88 1.97 28.59
RandAR-XL [46] 715M | 225 3178 0.80 0.60 88 2.78 17.06
Parallelized RandAR-XXL [46] 1.4B | 2.15 3220 0.79 0.62 88 3.58 11.49
AR ARPG-L [34] 320M | 2.44 291.7 0.82 0.55 32 0.58 104.92
ARPG-L [34] 320M | 2.44 287.1 0.82 0.55 64 1.15 54.70
ARPG-XL [34] 719M | 2.10 331.0 0.79 0.61 64 1.71 36.53
ARPG-XXL [34] 1.3B 1.94 3397 0.81 0.59 64 2.24 26.23
NAR-L [25] 372M | 3.06 263.9 0.81 0.53 31 1.01 41.03
NAR-XL [25] 816M | 2.70 2775 0.81 0.58 31 1.42 23.36
NAR-XXL [25] 1.5B 2.58 2935 0.82 0.57 31 1.88 15.20
Raster Counterpart-L 337M | 248 278.0 0.81 0.58 256 3.73 17.53
AR Raster Counterpart-XL 752M | 2.12 3074 0.81 0.60 256 5.29 12.31
Raster Counterpart-XXL 14B | 2.01 316.0 0.80 0.59 256 7.10 8.99
LPD-L 337M | 240 2845 0.81 0.57 20 0.28 139.11
LPD-XL 752M | 2.10 326.7 0.80 0.59 20 0.41 75.20
Parallelized LPD-XXL 14B | 2.00 337.6 0.80 0.60 20 0.55 45.07
AR LPD-L 337M | 2.29 2827 0.81 0.58 32 0.46 110.34
LPD-XL 752M | 1.92 3194 0.79 0.61 32 0.66 61.24

These results validate the effectiveness of our flexible parallelized autoregressive modeling and the
locality-aware generation order schedule. We also provide visualization results in Figure 12.

3.3 ZERO-SHOT GENERALIZATION

Our model can naturally perform zero-shot editing tasks since we support image generation in
arbitrary order. As shown in Figure 12, we can conduct image inpainting, image outpainting, and
class-conditional editing. For image inpainting and outpainting, we prefill the KV cache with all
tokens from the non-repaint regions along with a class token and generate the masked region in a
random order. For class-conditional editing, we substitute the class embedding with a new class
embedding and generate the edited region in a random order.

3.4 EFFICIENCY ANALYSIS

Our method introduces position query tokens to enable flexible generation. These tokens add extra
queries and thereby increase FLOPs. However, the resulting computational overhead has a negligible
impact on wall-clock latency in memory-bound settings such as small-batch inference. In these
scenarios, the reduction in generation steps translates almost linearly into latency reduction. As

Under review as a conference paper at ICLR 2026

Table 2: System-level comparison on ImageNet 512x512 class-conditional generation. Metrics
and evaluation setup are the same as in Table 1.

Type Model #Para. | FID| IST Precision? Recallf | #Steps Latency(s)] Throughput(img/s)?
ADM-G [16] 554M | 7.72 17271 0.87 0.42 250 - -
Diffusion DiT-XL/2 [48] 675M | 3.04 240.82 0.84 0.54 250 11.32 0.10
SiT-XL/2 [42] 675M | 2.62 25221 0.84 0.57 250 - -
MaskGIT [7] 227M | 7.32 156.0 0.78 0.50 12 - -
Mask MAGVIT-v2 [80] 307M | 191 3243 - - 64 - -
MAR-L [35] 481M | 1.73 279.9 - - - - -
VAR VAR-d36-s [61] 23B | 263 3032 - -] 10 0.45 OOM
AR VQGAN [17] 227M | 26.52 66.8 0.73 031 | 1024 - -
Parallelized AR ARPG-XL [34] 719M | 338 2578 - -] - - -
AR Raster Counterpart-L 337M | 2.54 2785 0.80 0.58 1024 14.25 3.79
Raster Counterpart-XL ~ 752M | 2.09 315.0 0.81 0.57 1024 20.93 2.36
Parallelized AR LPD-L 337M | 2.54 2922 0.81 0.55 48 0.69 35.16
LPD-XL 752M | 2.10 326.0 0.80 0.63 48 1.01 18.18
3¢ 24 22
‘O RandAR-XL © Random Random M Principle 1
<> ARPG-XL <> Halton M Principle2 M LPD

2.8 £ LPD-XL 4 LPD 211

2.1

2.6

[=] [=] Q 5
w w w
2.4 5 21 ;
1.9
22 2
2 19 1.8
16 20 24 32 64 128 256 16 20 24 32 64
Generation Steps Generation Steps LPD-XL 32 Steps
(a) (b) (©

Figure 9: Ablation Studies. All ablation experiments are conducted with XL size models on 256256
resolution. (a) Effectiveness of flexible parallelized autoregressive modeling. (b) Effectiveness of
locality-aware generation order schedule. (c) Effectiveness of the locality principles.

the batch size increases, the system progressively shifts toward a compute-bound regime, where
the additional overhead begins to matter and diminish the speedup. We provide a quantitative
analysis in Figure 14 to illustrate this trend. By gradually increasing the batch size until reaching
the memory limit, we observe that the model transitions from memory-bound to compute-bound
when the batch size exceeds 16. Nevertheless, even at the maximum feasible batch size, our method
retains a throughput advantage of approximately 3x over the raster-order baseline. In Table 1, we also
report the throughput of all models using a reasonably large batch size of 64. Our model achieves
substantially higher throughput than the others, demonstrating its efficiency.

4 ABLATION

Effectiveness of Flexible Parallelized Autoregressive Modeling. One key design of our flexible
parallelized autoregressive modeling is the guarantee of the mutual visibility among all concurrently
generated tokens. This is critical to maintain the consistency in the same group when the degree of
the parallelization is high. We show the effectiveness of this design in Figure 9 (a). We compare our
model with RANDAR and ARPG which lack this design. To only ablate the effectiveness of our
flexible parallelized autoregressive modeling, we use random generation order for all models without
our locality-aware parallel generation order schedule. As shown in the figure, with the generation
steps decrease and the parallelization increases, our model exhibits a smaller FID increase compared
with the other two models. For example, with 32 steps, our model almost maintain the performance
with 256 steps but ARPG and RANDAR have a significant FID increase. This design is crucial for us
to achieve fewer generation steps while maintaining the generation performance.

Effectiveness of Locality-aware Generation Order Schedule. We compare our schedule with
another two generation order schedules as shown in Figure 9 (b). Random order just arrange the
generation positions randomly. Halton order leverages the Halton low-discrepancy sequence to
arrange the generation positions which spreads out the tokens to achieve uniform image coverage
step by step. Intuitively it mainly focus on reducing the dependency inside a parallel group which
shares the same insight with our second principle that low proximity is needed among concurrently

Under review as a conference paper at ICLR 2026

generated tokens. However, the low-discrepancy sequence omits the importance of the already
generated context which is our first principle that we need to maintain high proximity to previously
generated tokens. As shown in the figure, our locality-aware parallel decoding order consistently
outperforms the other two orders, showing the effectiveness of our method.

Effectiveness of the Locality Principles. As introduced in Section 2.3, our locality-aware generation
order schedule is guided by two principles. We ablate the effectiveness of these two principles in
Figure 9 (c). As shown, the random order baseline yields an FID of 2.11. We first apply Principle
1 only, selecting points close to previously generated tokens without considering their mutual
dependency. This improves the performance to 2.00. We then apply Principle 2 alone, using farthest
point sampling at each step to ensure concurrently generated tokens are well separated, without
considering context from previously generated tokens. This improves the FID to 2.06. Combining
both in our locality-aware generation order achieves 1.92, highlighting the synergy of both principles.

5 RELATED WORKS

5.1 AUTOREGRESSIVE IMAGE GENERATION

Autoregressive models generate the current output conditioned only on previous outputs. Usually
this dependency is captured by causal attention mechanisms, enabling efficient inference via KV
caching. Autoregressive modeling with GPT-style "next-token-prediction" (Brown et al., 2020;
OpenAl, 2023; Touvron et al., 2023a;b; Chiang et al., 2023; Jiang et al., 2024) has dominated the field
of language generation due to its simplicity and scalability. Inspired by this success, autoregressive
visual generation has shifted from operating on sequences of pixels (Van Den Oord et al., 2016;
Van den Oord et al., 2016; Parmar et al., 2018; Chen et al., 2018; Salimans et al., 2017; Yu et al.,
2021; Li et al., 2025b) to sequences of latent discrete tokens (Esser et al., 2021; Lee et al., 2022;
Ramesh et al., 2021; Razavi et al., 2019; Yu et al., 2021; 2022; Sun et al., 2024; Yu et al., 2024;
Wang et al., 2024a; Teng et al., 2024; Ren et al., 2025; He et al., 2025; 2024). However, the token-by-
token decoding strategy is often bottlenecked by memory bandwidth. This limitation prevents full
utilization of computation and results in high latency. Recently, "next-scale-prediction” (Tian et al.,
2024; Han et al., 2024) has emerged to predict the next scale of the image instead of the next token
thus accelerates the generation process. However, its multi-scale token representation fundamentally
differs from the universal flat token representation, making it incompatible with widely used flat
vision perception foundation models.

5.2 PARALLEL GENERATION IN SEQUENCE MODELING

Parallel generation has been widely studied in the field of language modeling. Prior to the era of
large language models, masked-prediction architectures (Gu et al., 2017; Ghazvininejad et al., 2019;
Gu et al., 2019) were commonly used to do parallel generation and iterative refinement. Recently,
with the rapid success of large language models, speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) and its derivatives (Cai et al., 2024; Ankner et al., 2024) employ a draft model to
generate the next few tokens and then the main model conducts the verification. In visual generation,
masked-prediction models (Chang et al., 2022; Yu et al., 2023a;b; Chang et al., 2023) are widely
used to generate masked tokens step by step leveraging a masked prediction transformer similar to
BERT (Devlin et al., 2019; Bao et al., 2021; He et al., 2022), which are able to generate multiple
tokens in parallel. However, they are non-autoregressive models and need bidirectional attention
which is computationally expensive and KV cache is not applicable to accelerate the inference.
Recent works (Wang et al., 2024b; Pang et al., 2024; Li et al., 2025a; He et al., 2025) have explored
parallel generation in autoregressive models, but with limited parallelization and generation quality.
We systematically analyze its challenges and our proposed method enables greater parallelization
without sacrificing performance.

6 CONCLUSION

Our contributions lie in two key aspects: (1) flexible parallelized autoregressive modeling and (2)
locality-aware generation order schedule. We significantly reduce the generation steps required by
the traditional autoregressive models without compromising the generation quality and achieve at
least 3.4 x lower latency than previous parallelized autoregressive models.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the efficiency of autoregressive image generation. It does not involve
sensitive personal data, human subjects, or potentially harmful content. The datasets used are publicly
available and widely adopted in the research community. We do not foresee any direct ethical risks.
Nonetheless, as with any generative model, there is a possibility of misuse (e.g., generating misleading
or harmful images). We encourage responsible use of the proposed methods and emphasize that they
should be applied only in appropriate research and application contexts.

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our results. All models, datasets, and experimental
settings are described in detail in the paper and appendix. Hyperparameters, training schedules,
and evaluation protocols are fully specified to allow independent verification. The code, along with
instructions for reproducing all experiments and figures, will be released as open source upon paper
acceptance.

11

Under review as a conference paper at ICLR 2026

REFERENCES

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Victor Besnier, Mickael Chen, David Hurych, Eduardo Valle, and Matthieu Cord. Halton scheduler
for masked generative image transformer. arXiv preprint arXiv:2503.17076, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11315-11325, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
via masked generative transformers. arXiv preprint arXiv:2301.00704, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autore-
gressive generative model. In International conference on machine learning, pp. 864-872. PMLR,
2018.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025a.

Zisheng Chen, Chunwei Wang, Xiuwei Chen, Hang Xu, Jianhua Han, and Xiaodan Liang. Sembhitok:
A unified image tokenizer via semantic-guided hierarchical codebook for multimodal understanding
and generation. arXiv preprint arXiv:2503.06764, 2025b.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. Imsys. org (accessed 14 April
2023), 2(3):6, 2023.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

12

Under review as a conference paper at ICLR 2026

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873-12883, 2021.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in neural informa-
tion processing systems, 32, 2019.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. arXiv
preprint arXiv:2412.04431, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
Zipar: Accelerating autoregressive image generation through spatial locality. arXiv preprint
arXiv:2412.04062, 2024.

Yefei He, Yuanyu He, Shaoxuan He, Feng Chen, Hong Zhou, Kaipeng Zhang, and Bohan
Zhuang. Neighboring autoregressive modeling for efficient visual generation. arXiv preprint
arXiv:2503.10696, 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1-33, 2022.

Jinyi Hu, Shengding Hu, Yuxuan Song, Yufei Huang, Mingxuan Wang, Hao Zhou, Zhiyuan Liu,
Wei-Ying Ma, and Maosong Sun. Acdit: Interpolating autoregressive conditional modeling and
diffusion transformer. arXiv preprint arXiv:2412.07720, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yang Jiao, Haibo Qiu, Zequn Jie, Shaoxiang Chen, Jingjing Chen, Lin Ma, and Yu-Gang Jiang.
Unitoken: Harmonizing multimodal understanding and generation through unified visual encoding.
arXiv preprint arXiv:2504.04423, 2025.

Tuomas Kynkiddnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Doyup Lee, Chiheon Kim, Saechoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523-11532, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

13

Under review as a conference paper at ICLR 2026

Haopeng Li, Jinyue Yang, Guoqi Li, and Huan Wang. Autoregressive image generation with
randomized parallel decoding. arXiv preprint arXiv:2503.10568, 2025a.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424-56445, 2024.

Tianhong Li, Qinyi Sun, Lijie Fan, and Kaiming He. Fractal generative models. arXiv preprint
arXiv:2502.17437, 2025b.

Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
generation. arXiv preprint arXiv:2505.05472, 2025.

Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun,
and Ying Shan. Toklip: Marry visual tokens to clip for multimodal comprehension and generation.
arXiv preprint arXiv:2505.05422, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Wenze Liu, Le Zhuo, Yi Xin, Sheng Xia, Peng Gao, and Xiangyu Yue. Customize your visual
autoregressive recipe with set autoregressive modeling. arXiv preprint arXiv:2410.10511, 2024b.

Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao-
juan Qi. Unitok: A unified tokenizer for visual generation and understanding. arXiv preprint
arXiv:2502.20321, 2025.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23-40. Springer, 2024.

OpenAl. Chatgpt. https://openai.com/blog/chatgpt/, 2023.

OpenAl. Introducing 40 image generation, Mar 2025. URL https://openai.com/index/
introducing-4o-image—generation/. Accessed 2025-06-20.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. arXiv
preprint arXiv:2412.01827, 2024.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055-4064.
PMLR, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821-8831. Pmlr, 2021.

14

https://openai.com/blog/chatgpt/
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/

Under review as a conference paper at ICLR 2026

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-
token: Next-x prediction for autoregressive visual generation. arXiv preprint arXiv:2502.20388,
2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211-252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelenn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Wei Song, Yuran Wang, Zijia Song, Yadong Li, Haoze Sun, Weipeng Chen, Zenan Zhou, Jianhua Xu,
Jiaqi Wang, and Kaicheng Yu. Dualtoken: Towards unifying visual understanding and generation
with dual visual vocabularies. arXiv preprint arXiv:2503.14324, 2025.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Ac-
celerating auto-regressive text-to-image generation with training-free speculative jacobi decoding.
arXiv preprint arXiv:2410.01699, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839-84865, 2024.

Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
generation via instruction tuning. arXiv preprint arXiv:2412.14164, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

Adron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747-1756. PMLR, 2016.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan

Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024a.

15

Under review as a conference paper at ICLR 2026

Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou,
Jiashi Feng, and Xihui Liu. Parallelized autoregressive visual generation. arXiv preprint
arXiv:2412.15119, 2024b.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
Chen. Maskbit: Embedding-free image generation via bit tokens. arXiv preprint arXiv:2409.16211,
2024.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
understanding and generation. arXiv preprint arXiv:2410.13848, 2024a.

Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
and Xiang Bai. Liquid: Language models are scalable multi-modal generators. arXiv preprint
arXiv:2412.04332, 2024b.

Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, and
Chen Change Loy. Harmonizing visual representations for unified multimodal understanding and
generation. arXiv preprint arXiv:2503.21979, 2025.

Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
understanding and generation. arXiv preprint arXiv:2409.04429, 2024c.

Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-02: Improved native unified multimodal
models. arXiv preprint arXiv:2506.15564, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vggan.
arXiv preprint arXiv:2110.04627, 2021.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10459-10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion—
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b.

Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregressive
visual generation. arXiv preprint arXiv:2411.00776, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975-11986, 2023.

Yue Zhao, Fuzhao Xue, Scott Reed, Linxi Fan, Yuke Zhu, Jan Kautz, Zhiding Yu, Philipp Krihenbiihl,
and De-An Huang. Qlip: Text-aligned visual tokenization unifies auto-regressive multimodal
understanding and generation. arXiv preprint arXiv:2502.05178, 2025.

16

Under review as a conference paper at ICLR 2026

APPENDIX
A ADDITIONAL IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

We provide the model architecture configurations in Table 3. All models use a standard decoder-only
transformer architecture. We vary model scale by adjusting the number of layers, the hidden size, and
the number of attention heads.

Model Parameters Layers Hidden Size Heads
LPD-L 111M 12 1024 12
LPD-XL 775M 36 1280 20
LPD-XXL 1.4B 48 1536 48

Table 3: Model architecture configurations.

A.2 TRAINING AND EVALUATION DETAILS

We train all models on ImageNet 256 x256 for 450 epochs, with 50 epochs of learning rate warmup
followed by constant learning rate and finally 50 epochs of cosine decay. For 512-resolution models,
we load the pre-trained 256-resolution models and interpolate the positional embeddings and train on
ImageNet 512x512 for 50 epochs. The continued training is conducted for 50 epochs using a cosine
learning rate decay schedule, preceded by 1 epoch of warm-up. We use batch size 512 for LPD-L
and 256 for LPD-XL.

We take the training of LPD-L model on 256 x 256 resolution as an example and list all the training
hyper-parameters in Table 4. For LPD-XL and LPD-XXL, we use batch size 1024 and the same base
learning rate.

Hyper-parameters for 256256 training Configuration

optimizer AdamW

B 0.9

B2 0.95

learning rate’ 8 x 1074

batch size 2048 (64 x 32 GPUs)
training precision BFloat16

total epochs 450

warm-up epochs 50

constant LR epochs 350

cosine decay epochs 50

offsets random per-sample

Table 4: Training hyper-parameters for LPD-L on 256 x 256 resolution.

We train on a range of predefined decoding steps where the number of tokens in each step is determined
by a cosine schedule. For the 256 x 256 resolution, the decoding steps are randomly selected from
the set {8, 12,16, 20, 24, 32,64, 128,256 }. For the 512 x 512 resolution, the decoding steps are
randomly selected from the set {32, 40, 48, 56, 64, 80, 96, 128, 160, 192, 224, 256, 512, 1024 }. Take
20 steps in the 256 x 256 resolution as an example, the number of tokens in each step is [1, 2, 4, 5, 7,
8,10, 11, 12, 14, 15, 16, 17, 18, 18, 19, 19, 20, 20, 20].

For evaluation, we sweep the optimal classifier-free guidance scale with an interval of 0.1 and follow
the Locality-aware Generation Order Schedule.

B MORE VISUALIZATION OF ATTENTION MAPS

We provide partial visualization of the attention maps in Figure 2 and we provide more here. We
select two layers each consists of 24 attention heads during the decoding and visualize them in
Figure 10 and Figure 11.

3Effective LR computed as base Ir x (global batch size/256) with base Ir = 1 x 10™%.

17

Under review as a conference paper at ICLR 2026

Head 1 o Head 2 Head 3 Head 4 Head 5 . Head 6

918 & o - o
919 de s o
920 : . . . i,
921 : - B 7Y | N |

922

923

924 Head 7 , Head 8 . Head 9 . Head 10 . Head 11 . Head 12
925 1 oa ! \
926) ~-1
927
928 R T R
929
930

931 ; Head 13 . n\ﬁHead 14 . Head 15
932 [N E

933 . \ . \
934 . -

935
936
937
938 .
939 NN
940 i 3 i i : .)
941 D SN I N N S AT
942

Head 17 » Head 18
- Hea

Head 19 o Head 20 o Head 21 w Head 22 o Head 23 w Head 24

943 Head 1 . Head 2 w‘. Head 3 . Head 4 . Head 5 . Head 6
944 . el e el
945 ’ . SRk
946 . e . e . s "
947 B] e R S0 T e el TR e e e v
948

949

950 Head 7 . Head 8 .. Head9 . Head 10 .. Head1l .. Head12
951 N SN - It |
952 N i 5 NS | N
953 N _ .
954 B e e e i e I B A 3
955

956
Head 13 b Head 14 . Head 15 Head 16 10 . Head 17 o Head 18
957 \) 1
“ 08 %
958 - =l

959 : . SN AN
960 : AN 5 R

I
962

7

963 Head 19 o Head 20 Head 21 N Head 22 . Head 23 . Head 24

964 -l

965
966 : » Zi:\ -
967 B - S N

968

969
970
971 C PYTORCH IMPLEMENTATION OF LOCALITY-AWARE GENERATION ORDER

Figure 11: More visualization of attention maps in the LLAMAGEN-1.4B model.

18

® NN U AW N -

28
29
30

31
32
33
34
35
36

37
38
39

40

41
42
43
44
45
46
47
48
49
50

51
52
53
54

Under review as a conference paper at ICLR 2026

import numpy as np
import random

from scipy.spatial.distance import cdist
from scipy.spatial.distance import euclidean

def lpd_order_schedule (group_sizes=None, grid_size=16,
proximity_threshold=1, repulsion_threshold=1) :
if group_sizes is None:

group_sizes = [1] » (grid_size * grid_size)
grid_coords = [[i, J] for i in range(grid_size) for j in
range (grid_size)]
selected_coords = []

for step, group_size in enumerate (group_sizes) :
if step ==
For the first step, select a random coord. We always
assume the group size for the first step is 1.
selected_coords.append (random.choice (grid_coords))
continue

Calculate the proximity score for all remaining grid coords
candidates = []
for coord in grid_coords:
if coord in selected_coords:
continue

Calculate the proximity score based on euclidean distance
to already selected grid coords

proximity_score = 0
for selected_coord in selected_coords:
if abs(coord[0] - selected_coord[0]) <= 1 and
abs (coord[1l] - selected_coord[1l]) <= 1:

distance = euclidean (coord, selected_coord)
if distance > 0:
proximity_score += 1.0 / distance
candidates.append([proximity_score, coord])

Shuffle candidates so that grid coords with the same proximity
score are randomly ordered

random.shuffle (candidates)

candidates.sort (key=lambda x: x[0], reverse=True)

candidatesl = [item[l] for item in candidates if item[0] >=
proximity_threshold]
candidates2 = [item[1l] for item in candidates if item[0] <

proximity_threshold]

step_selected
step_filtered

[]
[]

Proximity-based selection
while len(step_selected) < group_size and candidatesl:
candidate = candidatesl.pop (0)
too_close = False
for selected in step_selected:
if abs(candidate[0] - selected[0]) <=
repulsion_threshold and abs (candidate[l] -
selected[1l]) <= repulsion_threshold:

too_close = True
step_filtered.append (candidate)
break

19

55
56
57
58
59
60
61
62
63
64

65
66
67
68

69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

Under review as a conference paper at ICLR 2026

def

if not too_close:
step_selected.append (candidate)

step_filtered.extend(candidatesl)
candidates2.extend (step_filtered)

Low—dependency selection
remaining = group_size - len(step_selected)
if remaining > 0:

step_selected.extend (farthest_point_sampling(step_selected,

candidates2, remaining))

selected_coords.extend (step_selected)

return np.ravel_multi_index (np.array (selected_coords).T, (grid_size,

grid_size)) .tolist ()

farthest_point_sampling(existing_points, candidate_points,
num_to_select) :
if len(candidate_points) <= num_to_select:

return candidate_points

Convert to numpy arrays for efficient computation
existing_np = np.array(existing_points)
candidates_np = np.array (candidate_points)

Initialize with existing points
selected_np = existing_np.copy ()
selected_indices = []

for _ in range (num_to_select):
if len(selected_np) ==
If no existing points, select randomly
idx = np.random.randint (len(candidates_np))
selected_np = candidates_np[idx] [np.newaxis, :]
else:

Calculate distances from all candidates to selected points

distances = cdist (candidates_np, selected_np)
min_distances = np.min(distances, axis=1)

Set already selected candidates to 0 distance
min_distances[selected_indices] = 0

Select the candidate with maximum minimum distance

idx = np.argmax (min_distances)

selected_np = np.vstack([selected_np, candidates_np[idx]])

selected_indices.append (idx)

return [candidate_points[i] for i in selected_indices]

20

Under review as a conference paper at ICLR 2026

D MORE VISUALIZATION OF GENERATION EXAMPLES

y

Figure 12: Generation Examples of Our Model. We show 512512 generation samples (top),
256256 generation samples (middle) and zero-shot image editing results including class-conditional
editing, inpainitng and outpainting (bottom).

21

Under review as a conference paper at ICLR 2026

A small cactus with a happy Ultra-detailed wildlife photo of a zebra
face in the Sahara desert. standing in golden savanna light.

A melting apple.

A cute orange kitten sliding down an
A alpaca made of colorful aqua slide, happy excited. Vibrant
building blocks, cyberpunk. colors, water splashing on the lens.

a handsome 24 years old boy in the
middle with sky color background An astronaut riding a horse on the
wearing eye glasses, it's super moon, oil painting by Van Gogh.
detailed with anime style.

Ultra-detailed portrait of an old man
with a long white beard, weathered
skin, deep expressive eyes.

A realistic landscape shot of the
New England fall with leaves, house A crystal tree shimmering under a Northern Lights dancing over a

and river. starry sky. snowy mountain range in Iceland.

Figure 13: We show 1024 x 1024 text-to-image generation samples.

22

Under review as a conference paper at ICLR 2026

E EFFICIENCY ANALYSIS

100
‘O Raster-L ‘O Raster-XL
4 LPD-L # LPD-XL

100

‘O Raster-XXL
£ LPD-XXL

93135
7400 8678

92

s
9

100 e 1696 1872 19

o

&

©
2
£

Throughput(img/s)
5
Throughput(img/s)
Throughput(img/s)

1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Batch Size Batch Size Batch Size
@ (®) ©

Figure 14: Throughput vs. Batch Size on ImageNet 256x256 Class-Conditional Generation. For
LPD, we use 20 generation steps. Raster refers to the traditional fixed-raster-order generation model.
We progressively increase the batch size until the process runs out of memory. The throughput values
on the y-axis are plotted on a logarithmic scale.

As shown in Figure 14, LPD models are memory-bound when the batch size is 16 or smaller, as
indicated by the linear increase in throughput with respect to batch size. When the batch size
exceeds 16, the process gradually transitions from being memory-bound to compute-bound. For the
traditional fixed-raster-order models, this transition occurs at a batch size around 128. Notably, when
both models operate in the memory-bound regime, LPD consistently achieves nearly 12x higher
throughput than the raster-order model—roughly matching the reduction in the number of generation
steps. When at the maximum batch size, LPD still maintains a throughput advantage of approximately
3x.

23

	Introduction
	Method
	Rethinking Autoregressive Modeling
	Flexible Parallelized Autoregressive Modeling
	Locality-aware Generation Order Schedule

	Experiment
	Setup
	Main Results
	Zero-shot Generalization
	Efficiency Analysis

	Ablation
	Related Works
	Autoregressive Image Generation
	Parallel Generation in Sequence Modeling

	Conclusion
	Additional Implementation Details
	Model Architecture
	Training and Evaluation Details

	More Visualization of Attention Maps
	Pytorch Implementation of Locality-aware Generation Order
	More Visualization of Generation Examples
	Efficiency Analysis

