
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOCALITY-AWARE PARALLEL DECODING FOR
EFFICIENT AUTOREGRESSIVE IMAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive
image generation. Traditional autoregressive image generation relies on next-
patch prediction, a memory-bound process that leads to high latency. Existing
works have tried to parallelize next-patch prediction by shifting to multi-patch
prediction to accelerate the process, but only achieved limited parallelization. To
achieve high parallelization while maintaining generation quality, we introduce
two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel
architecture that enables arbitrary generation ordering and degrees of parallelization.
It uses learnable position query tokens to guide generation at target positions while
ensuring mutual visibility among concurrently generated tokens for consistent
parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule
that forms groups to minimize intra-group dependencies and maximize contextual
support, enhancing generation quality. With these designs, we reduce the generation
steps from 256 to 20 (256×256 res.) and 1024 to 48 (512×512 res.) without
compromising quality on the ImageNet class-conditional generation, and achieving
at least 3.4× lower latency than previous parallelized autoregressive models.

1 INTRODUCTION

Autoregressive modeling has achieved state-of-the-art results in large language models in terms
of scalability and generalizability (Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023a;b;
Grattafiori et al., 2024; Jiang et al., 2024; Yang et al., 2024; 2025; Liu et al., 2024a). Natu-
rally, many works have applied this powerful paradigm to visual generation (Esser et al., 2021;
Lee et al., 2022; Ramesh et al., 2021; Yu et al., 2022; Sun et al., 2024; Tian et al., 2024).

LPD
(32 steps)

LPD
(20 steps)

ARPG
RandAR

PAR

350M 700M 1.4B

NAR

Fr
ec

he
t I

nc
ep

tio
n

Di
st

an
ce

 (F
ID

)

1.5

2

2.5

3

3.5

4

Latency(s, batch size=1)
0.1 1 10

NAR

1.5

2

2.5

3

3.5

4

0.1 1 10

4.2x faster

3.4x faster

Figure 1: Performance comparison among par-
allelized autoregressive models on ImageNet
256×256. We significantly reduce the generation
steps and achieve at least 3.4x lower latency com-
pared with previous models.

Moreover, this autoregressive formulation of vi-
sual generation has become increasingly cru-
cial for unified multimodal generation (OpenAI,
2025; Wang et al., 2024a; Wu et al., 2024c;a;
Chen et al., 2025a; Ma et al., 2025; Jiao et al.,
2025; Song et al., 2025; Chen et al., 2025b; Zhao
et al., 2025; Lin et al., 2025; Deng et al., 2025;
Liao et al., 2025; Xie et al., 2025) since it is
highly compatible with language modeling.

Prevailing autoregressive visual generation
methods typically follow two paradigms: (1)
next-patch prediction by flattening the image
into a sequence of patches (Esser et al., 2021)
and (2) next-scale prediction via coarse-to-fine
multi-scale representations (Tian et al., 2024).
In the first formulation, generating one token per
step creates a memory-bound workload1, caus-
ing latency to scale with the number of steps.
The second formulation substantially reduces

1A memory-bound workload refers to the scenario where the efficiency is limited by memory access speed
rather than computation speed. In this context, each generation step requires loading the entire model parameters
into GPU registers, making the process bottlenecked by memory bandwidth rather than computational power.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Locality

Locality

Figure 2: Visualization of attention maps in the LLAMAGEN-1.4B model. There is strong spatial
locality, as the attention of a decoding token is concentrated on nearby spatial tokens. LLAMAGEN
encodes images into 24 × 24 tokens, where a token that is 24 positions earlier in the attention map
corresponds to the token directly above it in the 2D grid.

generation steps and thus latency. However, its multi-scale token representation fundamentally differs
from the universal flat token representation, making it incompatible with widely used flat vision
perception foundation models (e.g., CLIP (Radford et al., 2021; Zhai et al., 2023), DINO (Caron
et al., 2021; Oquab et al., 2023)) and thereby limiting interoperability with perception backbones
that have been proven critical for unified multimodal systems (Wu et al., 2024c; Ma et al., 2025; Jiao
et al., 2025; Song et al., 2025; Chen et al., 2025b; Zhao et al., 2025; Lin et al., 2025; Tong et al.,
2024; Wu et al., 2025; 2024b).

Thus, autoregressive visual generation should be (1) highly efficient: minimizing latency and maxi-
mizing throughput; (2) remain flat token representations for universality and compatibility with vision
backbones and, by extension, unified multimodal models. Recent works (Wang et al., 2024b; Pang
et al., 2024; Li et al., 2025a) have tried to parallelize next-patch prediction by shifting to multi-patch
prediction to accelerate the process, but only achieved limited parallelization. Non-autoregressive
mask-prediction models like MASKGIT (Chang et al., 2022) enable multi-patch prediction but require
full attention for bidirectional context, making them less efficient than autoregressive methods.

To address the challenges, we introduce Locality-aware Parallel Decoding (LPD), a framework that
consists of a novel flexible parallelized autoregressive modeling architecture and a novel locality-
aware generation order schedule. We design a new modeling architecture as conventional decoder-only
autoregressive models struggle with flexible generation order and parallelization, limiting efficiency.
In contrast, ours enables arbitrary generation order and degrees of parallelization. This is achieved
by using learnable position query tokens to guide the model in generating tokens at target positions.
Moreover, the generation is parallel-aware, as we leverage specialized attention mechanism to ensure
mutual visibility among tokens generated concurrently. Notably, our design also inherits the KV
caching mechanism, avoiding redundant computation.

Furthermore, we observe strong spatial locality in image generation attention where tokens predomi-
nantly attend to nearby regions as shown in Figure 2. This indicates a high dependency among nearby
tokens, meaning that spatially closer tokens provide stronger conditioning. Recent works (Wang et al.,
2024b; Besnier et al., 2025) also identify that minimizing mutual dependency among simultaneously
generated tokens is essential to maintain sample consistency. With these insights, we introduce a
locality-aware generation order schedule that selects parallel decoding groups to maximize contextual
support while minimizing intra-group dependencies, enabling higher degrees of parallelization.

We examine the effectiveness of our proposed method on ImageNet class-conditional image genera-
tion. Our results reveal that we reduce the generation steps of traditional raster-order autoregressive
generation from 256 to 20 (256×256 res.) and 1024 to 48 (512×512 res.) without compromising
quality, and achieving at least 3.4× lower latency (Figure 1) than previous parallelized autoregressive
models. Thanks to the design of flexible autoregressive modeling, our models are also capable of
zero-shot image editing including class-conditional editing, inpainting and outpainting.

2 METHOD

2.1 RETHINKING AUTOREGRESSIVE MODELING

In next-patch autoregressive modeling, images are split into patches and usually discretized via a
tokenizer into image tokens. While the joint distribution of the N tokens x1, · · · , xN and condition c

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1<C>

1 2 3

2

4 5

3 4

Autoregressive Transformer

6

5

0 Steps1 2 3 4

….

5

….

(a) Raster Order Autoregressive Modeling (b) Flexible Parallelized Autoregressive Modeling

1 2 3

4 5 6

7 8 9

1 Image Token

<C> Condition

No Prediction

<C>

23

Autoregressive Transformer

P1 P2P3 P5 P6

5 6

P4

4

4 3 5

1

0 Steps1 2

….

….

P1
Position

Query Token

Figure 3: Raster Order vs. Flexible Parallelized Autoregressive Modeling. (a) In raster order,
each token simultaneously provides context and predicts the next token, restricting flexibility and
efficiency. (b) Our approach decouples these roles: previously generated tokens supply context, while
position query tokens drive parallel generation at arbitrary target positions. This separation enables
both flexible order and efficient parallelization.

is extremely high dimensional and therefore hard to model directly, the autoregressive framework
makes this amenable by factorizing the total joint distribution as

p(x1, x2, . . . , xN ; c) =

N∏
n=1

p(xn|x<n; c) (1)

The training objective of the autoregressive model is therefore to optimize parametric approximations
pθ(xn|x<n; c) for those one-step conditionals. This factorization needs a predefined order, typically
raster order, as shown in Figure 3 (a). However, during sampling, this leads to N sequential steps,
creating a major efficiency bottleneck.

To reduce the number of sequential generation steps, we can partition tokens into G disjoint groups
{X1, · · · , XG}, where each group Xg = {xg1 , · · · , xgm} is predicted jointly, resulting in the
following:

p(x1, x2, . . . , xN ; c) =

G∏
g=1

p(Xg | X<g; c) (2)

The training objective becomes optimizing pθ(Xg | X<g; c). Previous work has shown that directly
grouping tokens in raster order causes significant performance degradation (Wang et al., 2024b;
Pang et al., 2024). This is because spatially adjacent tokens exhibit strong mutual dependencies,
and independent sampling usually leads to generation inconsistencies inside a group. It is essential
to break the raster order when grouping. In addition, the size of the prediction group |Xg| should
gradually increase. As the context size |X<g| grows, it offers stronger conditioning, allowing more
tokens to be predicted in parallel. Previous work using masked transformers (Chang et al., 2022)
also mirrors this intuition by predicting fewer tokens early when context is sparse and predicting
more tokens over time. Therefore, an effective parallelized autoregressive model should support: (1)
Flexible generation order to alleviate the issue caused by mutual interdependency of concurrently
predicted tokens and (2) Dynamic group sizes increasing the number of tokens predicted per step
with available context.

However, it is difficult to achieve these within the standard decoder-only autoregressive models,
which are inherently designed with a fixed input-output structure, e.g. next-token prediction. In this
modeling, each token simultaneously serves two roles: it provides context via its hidden state and
enables generation via its output logits. This coupling limits flexibility in the the generation order
and output size. To address these challenges, we propose a novel flexible parallelized autoregressive
modeling which is able to support arbitrary generation order and degrees of parallelization.

2.2 FLEXIBLE PARALLELIZED AUTOREGRESSIVE MODELING

Our core idea is to decouple the context representation and token generation by leveraging separate
tokens. We illustrate this in Figure 3 (b). In this formulation, previously generated tokens are encoded
to provide context and the generation is driven by learnable position query tokens corresponding to
the desired target positions. These position query tokens are constructed by adding the positional
embedding of the target location to a shared learnable embedding. By directly inputting these position-
specific queries, the model can generate tokens at arbitrary target positions in parallel. This design
allows the model to leverage positional information in both the context and generation pathways,
enabling arbitrary generation order.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<C>

<C>

P4

P5

P4

P2

P6

2

P1

P3

P1

Q
ue

ry

Key

6

4

4

3

P3 P5 3 5

5

P2 P6 1

2

6

1

Context
Attention

Query
Attention

Figure 4: Illustration of the training attention
mask. Context Attention allows subsequent tokens
to attend to the context tokens causally. Query
Attention ensures mutual visibility among the po-
sition query tokens within the same step, and pre-
vents any subsequent tokens from attending to the
query tokens. For example, image token 4 can be
attended to by all subsequent tokens, including im-
age tokens and position query tokens, to provide
context information. The two position query to-
kens P3 and P5 in the same generation step attend
to the condition, to the image token 4, and to each
other, while ignoring the earlier query P4.

P1

<C> 4

3

5

3 5 P1

P2

P6P2

P6

Q
ue

ry

KeyCache

Figure 5: Illustration of the inference attention mask. Encoding
with image tokens and Decoding with position query tokens can
be fused into a single step. Taking step 2 in Figure 3 (b) as the
example, it simultaneously encodes the previously generated image
tokens 3, 5 to update the KV-cache and decodes the desired image
tokens 1, 2 and 6 in parallel.

Training formulation. We train the model to transform each position query token into the cor-
responding ground-truth image token, conditioned on all ground-truth tokens that precede it. To
preserve teacher-forcing while allowing parallel prediction, we interleave position query tokens with
ground-truth tokens and apply a specialized training attention mask as shown in Figure 4 that contains
two attention patterns:

1. Context Attention allows subsequent tokens to attend to context tokens causally.
2. Query Attention ensures mutual visibility among the position query tokens within the same step,

and prevents any subsequent tokens from attending to the query tokens.

Inference formulation. At test time we alternate between encoding the generated image tokens
and decoding with position query tokens.

1. Encoding. Sampled image tokens go through a forward pass to store the KV cache, providing
context for future decoding steps.

2. Decoding. Learnable position query tokens attend to all previously generated tokens in the KV
cache, and the forward pass outputs logits for each target position in parallel. KV cache for query
tokens is not stored.

However, sequentially execute these two operations double the generation steps. As shown in Figure 3
(b), these two operations can be fused into a single step via a specialized inference attention mask as
shown in Figure 5.

Comparison with other methods. Recent efforts have also pursued parallel generation in autore-
gressive modeling, yet each carries inherent limitations. One line of work, exemplified by SAR (Liu
et al., 2024b) and ARPG (Li et al., 2025a), adopts an encoder-decoder architecture where target-aware
query tokens attend to the encoder’s key-value cache via cross-attention. However, as illustrated in
Figure 6 (a), the target positions themselves do not contribute any key-value pairs, resulting in the
tokens generated within the same parallel step being produced independently of one another.

Another approach, represented by RANDAR (Pang et al., 2024), adheres to the prevailing decoder-
only architecture. It achieves arbitrary order by inserting positional instruction tokens to designate
target positions. However, it still leverages a standard causal mask during training. This strategy, as
depicted in Figure 6 (b), leads to two notable issues: (1) the parallel generation degenerates into a
batched next-token prediction instead of joint prediction and (2) the positional instruction tokens
must be stored in the KV cache during inference, doubling the memory consumption. Compared
with these two methods, our method as shown in Figure 6 (c) guarantees the visibility among all
concurrently predicted target positions and only stores the generated tokens in the KV cache.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

<C>

P1

P1 P2 P6

P2

P6

Q1

Q2

Q6

I1

I2

I6

Encoder KV Cache

I4 I3 I5 I1 I2 I6

KV CacheKV Cache (Include Positional Instruction Token)

(a) SAR, APRG (b) RandAR (c) LPD

4 3 5 4 3 5 <C> 4 3 5<C>

Figure 6: Comparison with other methods. (a) Encoder–decoder approaches such as SAR and
ARPG generate tokens independently, since query tokens contribute no key–value pairs. (b) Decoder-
only methods like RANDAR rely on positional instruction tokens, but the causal mask reduces parallel
generation to batched next-token prediction and forces instruction tokens to be cached, doubling
memory. (c) In contrast, our method employs a specialized training mask that ensures mutual visibility
among concurrently predicted tokens while caching only the generated tokens.

PAR (Wang et al., 2024b), NAR (He et al., 2025), and ZipAR (He et al., 2024) preserve the
standard decoder-only architecture and increase the number of tokens generated per step. Although
they guarantee mutual visibility among concurrently generated tokens, they rely on a fixed parallel
generation order, which prevents them from supporting arbitrary generation orders. This limits the
generation flexibility thus achieved limited parallelization and generation quality. ACDIT (Hu et al.,
2024) shares similar attention scheme with us, yet it was used for evenly interpolating between
autoregressive and diffusion modeling.

2.3 LOCALITY-AWARE GENERATION ORDER SCHEDULE

To fully leverage our flexible parallelized autoregressive modeling architecture, we introduce a
locality-aware generation order schedule. This schedule is guided by two key principles (1) High
proximity to previously generated tokens: target positions should be spatially close to existing
context to ensure strong conditioning and (2) Low proximity among concurrently generated tokens:
tokens predicted in the same parallel step should be spatially distant to reduce mutual dependency.

These principles are derived from a systematic analysis of the attention patterns in autoregressive
image generation by the widely adopted LLAMAGEN (Sun et al., 2024) model. Using LLAMAGEN,
we generate 50,000 images and collect attention scores at each decoding step. Qualitative attention
patterns are shown in Figure 2, and quantitative results are presented in Figure 7. To quantify locality,
we define the Per-Token Attention (PTA) to a neighborhood of radius s 2 as:

PTAs =
1

N

N∑
i=1

∑
j Attention(Ti, Tj) · I[d(Ti, Tj) = s]∑

j I[d(Ti, Tj) = s]
(3)

where Attention(Ti, Tj) denotes the attention weight from token Ti to token Tj , and d(Ti, Tj) is their
Euclidean distance on the 2D image grid.

Pe
r-T

ok
en

 A
tte

nt
io

n
(%

)

0

2

4

6

8

10

Relative Distance
0 5 10 15 20 25 30

LlamaGen-L
LlamaGen-XL
LlamaGen-XXL

 A
tte

nt
io

n
Su

m
 (

%
)

25

35

45

55

65

75

Head ID
0 4 8 12 16 20 24

LlamaGen-L
LlamaGen-XL
LlamaGen-XXL

(a) (b)

Figure 7: Attention Analysis of LLAMAGEN.
(a) Attention diminishes with distance (b) Spatial
locality is consistently observed in all heads.

As shown in Figure 7 (a), PTA decreases sharply
with increasing distance, indicating a strong spa-
tial locality in the attention mechanism. This
suggests that nearby tokens carry significantly
more useful information during decoding, and
that spatially adjacent tokens are highly depen-
dent on one another for accurate prediction. This
locality pattern is consistently observed across
all attention heads. In Figure 7 (b), we visualize
the Attention Sum, defined as the total attention
score a decoding token assigns to tokens within a
relative distance s. The plot uses s = 3 and con-
firms that most attention is concentrated within
local neighborhoods, reinforcing the importance
of spatial locality. This analysis supports our

2The neighborhood is defined as the set of tokens whose centers are exactly a euclidean distance of s away.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Locality-aware Generation Order Schedule

Input: decoding steps K, group sizes O = [o1, o2, . . . , oK], grids G = {(i, j)}Ni,j=1, proximity
threshold τ , repulsion threshold ρ;

schedule S = [];
for k = 1, . . . ,K do

s = [];
p = 1/ euclidean(G \ S, S) ; ▶ proximity measurement
c = sorted(G \ S, key = p, reverse = True);
c1, c2 = cutoff(c, τ);
while len(s) < ok and len(c1) > 0 do

s = queue_push(s, queue_pop(c1, 1)) ; ▶ high-proximity selection
c1, f = filter(c1, s, ρ);
c2 = queue_push(c2, f);

if len(s) < ok then
s = queue_push(s, farthest_point_sampling(c2, s, ok − len(s)));

▶ low-dependency selection

S = queue_push(S, s);
return S

two principles: decoding tokens should remain close to previously generated tokens to maximize con-
textual support, and distant from concurrently generated tokens to minimize intra-group dependency.

Based on these principles, we implement a locality-aware generation order schedule described in
Algorithm 1. Suppose we use K decoding steps to generate N2 tokens, with group sizes O =
[o1, o2, . . . , oK], where ok is the number of tokens generated in step k, typically increasing via a
cosine schedule. At each step k, we compute the euclidean distance between unselected and already
selected tokens to measure spatial proximity, where closer distance leads to higher proximity. We sort
unselected tokens by proximity and split them into two sets: c1 are tokens with sufficient proximity
larger than the threshold τ which are eligible for the following high-proximity selection, and c2 are
the rest. We sequentially select tokens from c1, adding each to the selected set while filtering out
nearby tokens that the relative distance is smaller than the repulsion threshold ρ, which are added
to c2. If all the grids in c1 are considered and the number of selected grids is less than ok, we use
farthest point sampling (Qi et al., 2017) to select the remaining grids from c2 to ensure spatial low
dependency. It is worth noting that the generation order can be precomputed and stored for direct
use during inference, incurring no additional latency. We provide the PyTorch implementation in
Appendix C.

The key distinction and primary advantage of our ordering mechanism is that we turn both principles
into a single, explicit proximity objective. While previous works have observed each principle
separately, none provide a way to quantify and jointly optimize them. In our method, we define a
proximity metric that simultaneously (i) measures proximity to already generated context tokens
and (ii) measures proximity among concurrently generated tokens, and we design an algorithm that
optimizes generation orders with respect to both. For example, (Wang et al., 2024b) aim to reduce
dependencies among concurrently generated tokens, but rely on a fixed region-wise parallel scheme,
which inherently cannot both maximize proximity to previously generated tokens and minimize
proximity within each concurrent group. Similarly, (Besnier et al., 2025) use a Halton-based ordering
to decorrelate concurrent tokens; however, without a proximity metric their method cannot incorporate
our first principle of staying close to existing context.

For intuitive understanding, we illustrate an example of our generation order schedule in Figure 8.
We also plot the schedule for raster order, random order and Halton order (Besnier et al., 2025)
for comparison. The raster order generates tokens in a raster-scan manner and the random order
generates tokens in a random manner. The Halton order is a low-discrepancy sequence to arrange the
generation positions which spreads out the tokens to achieve uniform image coverage step by step.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Step1 Step2 Step4 Step6 Step9 Step12 Step15 Step18

(a) Raster

(b) Random

(c) Halton

(d) LPD

Figure 8: Illustration of different generation order schedules. All schedules leverage 20 decoding
steps for 162 tokens. Dark green marks newly selected grids and light green marks those already
selected. Compared to others, our schedule selects grids close to previous ones and far from concurrent
ones, maximizing the contextual support and minimizing the mutual dependency.

3 EXPERIMENT

3.1 SETUP

Models. For fair comparisons with existing autoregressive image generation methods, we use the
LLAMAGEN tokenizer (Sun et al., 2024) with codebook size 16384 and downsample factor 16.
We train three models of different sizes: 337M, 752M, and 1.4B parameters. We use a standard
decoder-only transformer architecture, and refer to them as LPD-L, LPD-XL, and LPD-XXL,
respectively. Please refer to the Appendix A.1 for more details.

Training and Evaluation. We train and evaluate our models on the class-conditional ImageNet (Rus-
sakovsky et al., 2015) 256×256 and ImageNet 512×512 datasets. We first train all models on
ImageNet 256×256 for 450 epochs, with 50 epochs of learning rate warmup followed by constant
learning rate and finally 50 epochs of cosine decay. For 512-resolution models, we load the pre-trained
256-resolution models and interpolate the positional embeddings and continue training on ImageNet
512×512 for another 50 epochs. During training, the image tokens are randomly shuffled while the
class token is kept at the beginning. We train on a range of predefined decoding steps where the tokens
per step follows a cosine schedule. We reportuse Fréchet Inception Distance (FID) (Heusel et al.,
2017) as the primary metric computed on 50k,000 generated samples as the primary metric as well
asnd also report Inception Score (IS) (Salimans et al., 2016), Precision, and Recall (Kynkäänniemi
et al., 2019). Please refer to the Appendix A.2 for more details.

Efficiency Profiling. We profile all the efficiency results on a single NVIDIA A100 GPU with
BFloat16 precision. We measure the latency with a batch size of 1 and throughput with a batch size
of 64. We report the average latency over 500 inference steps, with a 100-step warm-up period.

3.2 MAIN RESULTS

We compare our models against a broad set of generative baselines on ImageNet 256×256 (Table 1).
For a fair comparison, we also create a raster order counterpart following the same setup. As shown in
the table, we reduce the generation steps from 256 to 20, achieving 12.8× generation steps reduction,
without sacrificing the generation quality. Compared with other parallelized autoregressive models,
we achieve significantly better image generation quality and efficiency. Taking LPD-XL model as an
example, it achieves a FID of 2.10 with only 20 steps, reducing the number of generation steps by
3.2× compared to ARPG and achieving 4.2× lower latency. Increasing the steps slightly to 32 yields
a FID of 1.92, even matching ARPG-XXL, while reducing latency by 3.4×. We further report our
results on ImageNet 512×512 (Table 2). As shown in the table, we reduce the generation steps from
1024 to 48, achieving 21.3× generation steps reduction, without sacrificing the generation quality.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: System-level comparison on ImageNet 256×256 class-conditional generation. We
evaluate the generation quality by metrics including Fréchet inception distance (FID), inception score
(IS), precision and recall. #Steps is the number of model runs needed to generate an image. We
measure latency with a batch size of 1 and throughput with a batch size of 64 on a single NVIDIA
A100 GPU under BFloat16 precision, with classifier-free guidance (CFG) for both.

Type Model #Para. FID↓ IS↑ Precision↑ Recall↑ #Steps Latency(s)↓ Throughput(img/s)↑

Diffusion

ADM-G [16] 554M 4.59 186.7 0.82 0.52 250 – –
CDM [27] – 4.88 158.7 – – 8100 – –
LDM-4 [54] 400M 3.60 247.7 – – 250 – –
DiT-XL/2 [48] 675M 2.27 278.2 0.83 0.57 250 4.34 0.58
SiT-XL/2 [42] 675M 2.06 270.3 0.82 0.59 250 – –

Mask

MaskGIT [7] 227M 6.18 182.1 0.80 0.51 8 – –
MAGVIT-v2 [80] 307M 1.78 319.4 – – 64 – –
MaskBit [69] 305M 1.62 338.7 – – 64 1.03 5.39
MAR-B [35] 208M 2.31 281.7 0.82 0.57 64 18.14 2.93
MAR-L [35] 479M 1.78 296.0 0.81 0.60 64 20.80 2.11
MAR-H [35] 943M 1.55 303.7 0.81 0.62 64 25.96 1.45

VAR

VAR-d16 [61] 310M 3.30 274.4 0.84 0.51 10 0.12 70.58
VAR-d20 [61] 600M 2.57 302.6 0.83 0.56 10 0.15 52.53
VAR-d24 [61] 1.0B 2.09 312.9 0.82 0.59 10 0.17 39.30
VAR-d30 [61] 2.0B 1.92 323.1 0.82 0.59 10 0.26 25.89

AR

VQGAN-re [17] 1.4B 5.20 280.3 – – 256 – –
RQTran.-re [32] 3.8B 3.80 323.7 – – 256 – –
LlamaGen-L [59] 343M 3.07 256.1 0.83 0.52 576 12.22 2.08
LlamaGen-XL [59] 775M 2.62 244.1 0.80 0.57 576 18.51 1.14
LlamaGen-XXL [59] 1.4B 2.34 253.9 0.80 0.59 576 24.40 0.72
LlamaGen-3B [59] 3.1B 2.18 263.3 0.81 0.58 576 12.37 0.58
RAR-B [81] 261M 1.95 290.5 0.82 0.58 256 4.18 13.76
RAR-L [81] 461M 1.70 299.5 0.81 0.60 256 4.04 12.63
RAR-XL [81] 955M 1.50 306.9 0.80 0.62 256 5.47 8.76
RAR-XXL [81] 1.5B 1.48 326.0 0.80 0.63 256 6.59 6.72

Parallelized
AR

PAR-L-4× [68] 343M 3.76 218.9 0.84 0.50 147 3.16 6.83
PAR-XL-4× [68] 775M 2.61 259.2 0.82 0.56 147 4.79 3.69
PAR-XXL-4× [68] 1.4B 2.35 263.2 0.82 0.57 147 6.26 2.33
PAR-3B-4× [68] 3.1B 2.29 255.5 0.82 0.58 147 3.29 2.32
RandAR-L [46] 343M 2.55 288.8 0.81 0.58 88 1.97 28.59
RandAR-XL [46] 775M 2.25 317.8 0.80 0.60 88 2.78 17.06
RandAR-XXL [46] 1.4B 2.15 322.0 0.79 0.62 88 3.58 11.49
ARPG-L [34] 320M 2.44 291.7 0.82 0.55 32 0.58 104.92
ARPG-L [34] 320M 2.44 287.1 0.82 0.55 64 1.15 54.70
ARPG-XL [34] 719M 2.10 331.0 0.79 0.61 64 1.71 36.53
ARPG-XXL [34] 1.3B 1.94 339.7 0.81 0.59 64 2.24 26.23
NAR-L [25] 372M 3.06 263.9 0.81 0.53 31 1.01 41.03
NAR-XL [25] 816M 2.70 277.5 0.81 0.58 31 1.42 23.36
NAR-XXL [25] 1.5B 2.58 293.5 0.82 0.57 31 1.88 15.20

AR
Raster Counterpart-L 337M 2.48 278.0 0.81 0.58 256 3.73 17.53
Raster Counterpart-XL 752M 2.12 307.4 0.81 0.60 256 5.29 12.31
Raster Counterpart-XXL 1.4B 2.01 316.0 0.80 0.59 256 7.10 8.99

Parallelized
AR

LPD-L 337M 2.40 284.5 0.81 0.57 20 0.28 139.11
LPD-XL 752M 2.10 326.7 0.80 0.59 20 0.41 75.20
LPD-XXL 1.4B 2.00 337.6 0.80 0.60 20 0.55 45.07

LPD-L 337M 2.29 282.7 0.81 0.58 32 0.46 110.34
LPD-XL 752M 1.92 319.4 0.79 0.61 32 0.66 61.24

These results validate the effectiveness of our flexible parallelized autoregressive modeling and the
locality-aware generation order schedule. We also provide visualization results in Figure 12.

3.3 ZERO-SHOT GENERALIZATION

Our model can naturally perform zero-shot editing tasks since we support image generation in
arbitrary order. As shown in Figure 12, we can conduct image inpainting, image outpainting, and
class-conditional editing. For image inpainting and outpainting, we prefill the KV cache with all
tokens from the non-repaint regions along with a class token and generate the masked region in a
random order. For class-conditional editing, we substitute the class embedding with a new class
embedding and generate the edited region in a random order.

3.4 EFFICIENCY ANALYSIS

Our method introduces position query tokens to enable flexible generation. These tokens add extra
queries and thereby increase FLOPs. However, the resulting computational overhead has a negligible
impact on wall-clock latency in memory-bound settings such as small-batch inference. In these
scenarios, the reduction in generation steps translates almost linearly into latency reduction. As

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: System-level comparison on ImageNet 512×512 class-conditional generation. Metrics
and evaluation setup are the same as in Table 1.

Type Model #Para. FID↓ IS↑ Precision↑ Recall↑ #Steps Latency(s)↓ Throughput(img/s)↑

Diffusion
ADM-G [16] 554M 7.72 172.71 0.87 0.42 250 - -
DiT-XL/2 [48] 675M 3.04 240.82 0.84 0.54 250 11.32 0.10
SiT-XL/2 [42] 675M 2.62 252.21 0.84 0.57 250 – –

Mask
MaskGIT [7] 227M 7.32 156.0 0.78 0.50 12 – –
MAGVIT-v2 [80] 307M 1.91 324.3 - - 64 – –
MAR-L [35] 481M 1.73 279.9 – – – – –

VAR VAR-d36-s [61] 2.3B 2.63 303.2 – – 10 0.45 OOM

AR VQGAN [17] 227M 26.52 66.8 0.73 0.31 1024 – –

Parallelized AR ARPG-XL [34] 719M 3.38 257.8 – – – – –

AR Raster Counterpart-L 337M 2.54 278.5 0.80 0.58 1024 14.25 3.79
Raster Counterpart-XL 752M 2.09 315.0 0.81 0.57 1024 20.93 2.36

Parallelized AR LPD-L 337M 2.54 292.2 0.81 0.55 48 0.69 35.16
LPD-XL 752M 2.10 326.0 0.80 0.63 48 1.01 18.18

FI
D

1.9

2

2.1

2.2

2.3

2.4

Generation Steps
16 20 24 32 64

Random
Halton
LPD

FI
D

2

2.2

2.4

2.6

2.8

3

Generation Steps
16 20 24 32 64 128 256

RandAR-XL
ARPG-XL
LPD-XL

FI
D

1.8

1.9

2

2.1

2.2

1.92

2.06

2

2.11
Random Principle 1
Principle 2 LPD

LPD-XL 32 Steps
(a) (b) (c)

Figure 9: Ablation Studies. All ablation experiments are conducted with XL size models on 256×256
resolution. (a) Effectiveness of flexible parallelized autoregressive modeling. (b) Effectiveness of
locality-aware generation order schedule. (c) Effectiveness of the locality principles.

the batch size increases, the system progressively shifts toward a compute-bound regime, where
the additional overhead begins to matter and diminish the speedup. We provide a quantitative
analysis in Figure 14 to illustrate this trend. By gradually increasing the batch size until reaching
the memory limit, we observe that the model transitions from memory-bound to compute-bound
when the batch size exceeds 16. Nevertheless, even at the maximum feasible batch size, our method
retains a throughput advantage of approximately 3× over the raster-order baseline. In Table 1, we also
report the throughput of all models using a reasonably large batch size of 64. Our model achieves
substantially higher throughput than the others, demonstrating its efficiency.

4 ABLATION

Effectiveness of Flexible Parallelized Autoregressive Modeling. One key design of our flexible
parallelized autoregressive modeling is the guarantee of the mutual visibility among all concurrently
generated tokens. This is critical to maintain the consistency in the same group when the degree of
the parallelization is high. We show the effectiveness of this design in Figure 9 (a). We compare our
model with RANDAR and ARPG which lack this design. To only ablate the effectiveness of our
flexible parallelized autoregressive modeling, we use random generation order for all models without
our locality-aware parallel generation order schedule. As shown in the figure, with the generation
steps decrease and the parallelization increases, our model exhibits a smaller FID increase compared
with the other two models. For example, with 32 steps, our model almost maintain the performance
with 256 steps but ARPG and RANDAR have a significant FID increase. This design is crucial for us
to achieve fewer generation steps while maintaining the generation performance.

Effectiveness of Locality-aware Generation Order Schedule. We compare our schedule with
another two generation order schedules as shown in Figure 9 (b). Random order just arrange the
generation positions randomly. Halton order leverages the Halton low-discrepancy sequence to
arrange the generation positions which spreads out the tokens to achieve uniform image coverage
step by step. Intuitively it mainly focus on reducing the dependency inside a parallel group which
shares the same insight with our second principle that low proximity is needed among concurrently

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

generated tokens. However, the low-discrepancy sequence omits the importance of the already
generated context which is our first principle that we need to maintain high proximity to previously
generated tokens. As shown in the figure, our locality-aware parallel decoding order consistently
outperforms the other two orders, showing the effectiveness of our method.

Effectiveness of the Locality Principles. As introduced in Section 2.3, our locality-aware generation
order schedule is guided by two principles. We ablate the effectiveness of these two principles in
Figure 9 (c). As shown, the random order baseline yields an FID of 2.11. We first apply Principle
1 only, selecting points close to previously generated tokens without considering their mutual
dependency. This improves the performance to 2.00. We then apply Principle 2 alone, using farthest
point sampling at each step to ensure concurrently generated tokens are well separated, without
considering context from previously generated tokens. This improves the FID to 2.06. Combining
both in our locality-aware generation order achieves 1.92, highlighting the synergy of both principles.

5 RELATED WORKS

5.1 AUTOREGRESSIVE IMAGE GENERATION

Autoregressive models generate the current output conditioned only on previous outputs. Usually
this dependency is captured by causal attention mechanisms, enabling efficient inference via KV
caching. Autoregressive modeling with GPT-style "next-token-prediction" (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023a;b; Chiang et al., 2023; Jiang et al., 2024) has dominated the field
of language generation due to its simplicity and scalability. Inspired by this success, autoregressive
visual generation has shifted from operating on sequences of pixels (Van Den Oord et al., 2016;
Van den Oord et al., 2016; Parmar et al., 2018; Chen et al., 2018; Salimans et al., 2017; Yu et al.,
2021; Li et al., 2025b) to sequences of latent discrete tokens (Esser et al., 2021; Lee et al., 2022;
Ramesh et al., 2021; Razavi et al., 2019; Yu et al., 2021; 2022; Sun et al., 2024; Yu et al., 2024;
Wang et al., 2024a; Teng et al., 2024; Ren et al., 2025; He et al., 2025; 2024). However, the token-by-
token decoding strategy is often bottlenecked by memory bandwidth. This limitation prevents full
utilization of computation and results in high latency. Recently, "next-scale-prediction" (Tian et al.,
2024; Han et al., 2024) has emerged to predict the next scale of the image instead of the next token
thus accelerates the generation process. However, its multi-scale token representation fundamentally
differs from the universal flat token representation, making it incompatible with widely used flat
vision perception foundation models.

5.2 PARALLEL GENERATION IN SEQUENCE MODELING

Parallel generation has been widely studied in the field of language modeling. Prior to the era of
large language models, masked-prediction architectures (Gu et al., 2017; Ghazvininejad et al., 2019;
Gu et al., 2019) were commonly used to do parallel generation and iterative refinement. Recently,
with the rapid success of large language models, speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) and its derivatives (Cai et al., 2024; Ankner et al., 2024) employ a draft model to
generate the next few tokens and then the main model conducts the verification. In visual generation,
masked-prediction models (Chang et al., 2022; Yu et al., 2023a;b; Chang et al., 2023) are widely
used to generate masked tokens step by step leveraging a masked prediction transformer similar to
BERT (Devlin et al., 2019; Bao et al., 2021; He et al., 2022), which are able to generate multiple
tokens in parallel. However, they are non-autoregressive models and need bidirectional attention
which is computationally expensive and KV cache is not applicable to accelerate the inference.
Recent works (Wang et al., 2024b; Pang et al., 2024; Li et al., 2025a; He et al., 2025) have explored
parallel generation in autoregressive models, but with limited parallelization and generation quality.
We systematically analyze its challenges and our proposed method enables greater parallelization
without sacrificing performance.

6 CONCLUSION

Our contributions lie in two key aspects: (1) flexible parallelized autoregressive modeling and (2)
locality-aware generation order schedule. We significantly reduce the generation steps required by
the traditional autoregressive models without compromising the generation quality and achieve at
least 3.4× lower latency than previous parallelized autoregressive models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the efficiency of autoregressive image generation. It does not involve
sensitive personal data, human subjects, or potentially harmful content. The datasets used are publicly
available and widely adopted in the research community. We do not foresee any direct ethical risks.
Nonetheless, as with any generative model, there is a possibility of misuse (e.g., generating misleading
or harmful images). We encourage responsible use of the proposed methods and emphasize that they
should be applied only in appropriate research and application contexts.

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our results. All models, datasets, and experimental
settings are described in detail in the paper and appendix. Hyperparameters, training schedules,
and evaluation protocols are fully specified to allow independent verification. The code, along with
instructions for reproducing all experiments and figures, will be released as open source upon paper
acceptance.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Victor Besnier, Mickael Chen, David Hurych, Eduardo Valle, and Matthieu Cord. Halton scheduler
for masked generative image transformer. arXiv preprint arXiv:2503.17076, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11315–11325, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
via masked generative transformers. arXiv preprint arXiv:2301.00704, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autore-
gressive generative model. In International conference on machine learning, pp. 864–872. PMLR,
2018.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025a.

Zisheng Chen, Chunwei Wang, Xiuwei Chen, Hang Xu, Jianhua Han, and Xiaodan Liang. Semhitok:
A unified image tokenizer via semantic-guided hierarchical codebook for multimodal understanding
and generation. arXiv preprint arXiv:2503.06764, 2025b.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in neural informa-
tion processing systems, 32, 2019.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. arXiv
preprint arXiv:2412.04431, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
Zipar: Accelerating autoregressive image generation through spatial locality. arXiv preprint
arXiv:2412.04062, 2024.

Yefei He, Yuanyu He, Shaoxuan He, Feng Chen, Hong Zhou, Kaipeng Zhang, and Bohan
Zhuang. Neighboring autoregressive modeling for efficient visual generation. arXiv preprint
arXiv:2503.10696, 2025.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022.

Jinyi Hu, Shengding Hu, Yuxuan Song, Yufei Huang, Mingxuan Wang, Hao Zhou, Zhiyuan Liu,
Wei-Ying Ma, and Maosong Sun. Acdit: Interpolating autoregressive conditional modeling and
diffusion transformer. arXiv preprint arXiv:2412.07720, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yang Jiao, Haibo Qiu, Zequn Jie, Shaoxiang Chen, Jingjing Chen, Lin Ma, and Yu-Gang Jiang.
Unitoken: Harmonizing multimodal understanding and generation through unified visual encoding.
arXiv preprint arXiv:2504.04423, 2025.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haopeng Li, Jinyue Yang, Guoqi Li, and Huan Wang. Autoregressive image generation with
randomized parallel decoding. arXiv preprint arXiv:2503.10568, 2025a.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424–56445, 2024.

Tianhong Li, Qinyi Sun, Lijie Fan, and Kaiming He. Fractal generative models. arXiv preprint
arXiv:2502.17437, 2025b.

Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
generation. arXiv preprint arXiv:2505.05472, 2025.

Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun,
and Ying Shan. Toklip: Marry visual tokens to clip for multimodal comprehension and generation.
arXiv preprint arXiv:2505.05422, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Wenze Liu, Le Zhuo, Yi Xin, Sheng Xia, Peng Gao, and Xiangyu Yue. Customize your visual
autoregressive recipe with set autoregressive modeling. arXiv preprint arXiv:2410.10511, 2024b.

Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao-
juan Qi. Unitok: A unified tokenizer for visual generation and understanding. arXiv preprint
arXiv:2502.20321, 2025.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In European Conference on Computer Vision, pp. 23–40. Springer, 2024.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt/, 2023.

OpenAI. Introducing 4o image generation, Mar 2025. URL https://openai.com/index/
introducing-4o-image-generation/. Accessed 2025-06-20.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. arXiv
preprint arXiv:2412.01827, 2024.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055–4064.
PMLR, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

14

https://openai.com/blog/chatgpt/
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-
token: Next-x prediction for autoregressive visual generation. arXiv preprint arXiv:2502.20388,
2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Wei Song, Yuran Wang, Zijia Song, Yadong Li, Haoze Sun, Weipeng Chen, Zenan Zhou, Jianhua Xu,
Jiaqi Wang, and Kaicheng Yu. Dualtoken: Towards unifying visual understanding and generation
with dual visual vocabularies. arXiv preprint arXiv:2503.14324, 2025.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Ac-
celerating auto-regressive text-to-image generation with training-free speculative jacobi decoding.
arXiv preprint arXiv:2410.01699, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2024.

Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
generation via instruction tuning. arXiv preprint arXiv:2412.14164, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747–1756. PMLR, 2016.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024a.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou,
Jiashi Feng, and Xihui Liu. Parallelized autoregressive visual generation. arXiv preprint
arXiv:2412.15119, 2024b.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
Chen. Maskbit: Embedding-free image generation via bit tokens. arXiv preprint arXiv:2409.16211,
2024.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
understanding and generation. arXiv preprint arXiv:2410.13848, 2024a.

Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
and Xiang Bai. Liquid: Language models are scalable multi-modal generators. arXiv preprint
arXiv:2412.04332, 2024b.

Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, and
Chen Change Loy. Harmonizing visual representations for unified multimodal understanding and
generation. arXiv preprint arXiv:2503.21979, 2025.

Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
understanding and generation. arXiv preprint arXiv:2409.04429, 2024c.

Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
models. arXiv preprint arXiv:2506.15564, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10459–10469, 2023a.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023b.

Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregressive
visual generation. arXiv preprint arXiv:2411.00776, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Yue Zhao, Fuzhao Xue, Scott Reed, Linxi Fan, Yuke Zhu, Jan Kautz, Zhiding Yu, Philipp Krähenbühl,
and De-An Huang. Qlip: Text-aligned visual tokenization unifies auto-regressive multimodal
understanding and generation. arXiv preprint arXiv:2502.05178, 2025.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

We provide the model architecture configurations in Table 3. All models use a standard decoder-only
transformer architecture. We vary model scale by adjusting the number of layers, the hidden size, and
the number of attention heads.

Model Parameters Layers Hidden Size Heads
LPD-L 111M 12 1024 12
LPD-XL 775M 36 1280 20
LPD-XXL 1.4B 48 1536 48

Table 3: Model architecture configurations.

A.2 TRAINING AND EVALUATION DETAILS

We train all models on ImageNet 256×256 for 450 epochs, with 50 epochs of learning rate warmup
followed by constant learning rate and finally 50 epochs of cosine decay. For 512-resolution models,
we load the pre-trained 256-resolution models and interpolate the positional embeddings and train on
ImageNet 512×512 for 50 epochs. The continued training is conducted for 50 epochs using a cosine
learning rate decay schedule, preceded by 1 epoch of warm-up. We use batch size 512 for LPD-L
and 256 for LPD-XL.

We take the training of LPD-L model on 256 × 256 resolution as an example and list all the training
hyper-parameters in Table 4. For LPD-XL and LPD-XXL, we use batch size 1024 and the same base
learning rate.

Hyper-parameters for 256×256 training Configuration
optimizer AdamW
β1 0.9
β2 0.95
learning rate3 8× 10−4

batch size 2048 (64 × 32 GPUs)
training precision BFloat16
total epochs 450
warm-up epochs 50
constant LR epochs 350
cosine decay epochs 50
offsets random per-sample

Table 4: Training hyper-parameters for LPD-L on 256 × 256 resolution.

We train on a range of predefined decoding steps where the number of tokens in each step is determined
by a cosine schedule. For the 256 × 256 resolution, the decoding steps are randomly selected from
the set {8, 12, 16, 20, 24, 32, 64, 128, 256}. For the 512 × 512 resolution, the decoding steps are
randomly selected from the set {32, 40, 48, 56, 64, 80, 96, 128, 160, 192, 224, 256, 512, 1024}. Take
20 steps in the 256 × 256 resolution as an example, the number of tokens in each step is [1, 2, 4, 5, 7,
8, 10, 11, 12, 14, 15, 16, 17, 18, 18, 19, 19, 20, 20, 20].

For evaluation, we sweep the optimal classifier-free guidance scale with an interval of 0.1 and follow
the Locality-aware Generation Order Schedule.

B MORE VISUALIZATION OF ATTENTION MAPS

We provide partial visualization of the attention maps in Figure 2 and we provide more here. We
select two layers each consists of 24 attention heads during the decoding and visualize them in
Figure 10 and Figure 11.

3Effective LR computed as base lr × (global batch size/256) with base lr = 1× 10−4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: More visualization of attention maps in the LLAMAGEN-1.4B model.

Figure 11: More visualization of attention maps in the LLAMAGEN-1.4B model.

C PYTORCH IMPLEMENTATION OF LOCALITY-AWARE GENERATION ORDER

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 import numpy as np
2 import random
3

4 from scipy.spatial.distance import cdist
5 from scipy.spatial.distance import euclidean
6

7

8 def lpd_order_schedule(group_sizes=None, grid_size=16,
proximity_threshold=1, repulsion_threshold=1):

9 if group_sizes is None:
10 group_sizes = [1] * (grid_size * grid_size)
11

12 grid_coords = [[i, j] for i in range(grid_size) for j in
range(grid_size)]

13 selected_coords = []
14

15 for step, group_size in enumerate(group_sizes):
16 if step == 0:
17 # For the first step, select a random coord. We always

assume the group size for the first step is 1.
18 selected_coords.append(random.choice(grid_coords))
19 continue
20

21 # Calculate the proximity score for all remaining grid coords
22 candidates = []
23 for coord in grid_coords:
24 if coord in selected_coords:
25 continue
26

27 # Calculate the proximity score based on euclidean distance
to already selected grid coords

28 proximity_score = 0
29 for selected_coord in selected_coords:
30 if abs(coord[0] - selected_coord[0]) <= 1 and

abs(coord[1] - selected_coord[1]) <= 1:
31 distance = euclidean(coord, selected_coord)
32 if distance > 0:
33 proximity_score += 1.0 / distance
34 candidates.append([proximity_score, coord])
35

36 # Shuffle candidates so that grid coords with the same proximity
score are randomly ordered

37 random.shuffle(candidates)
38 candidates.sort(key=lambda x: x[0], reverse=True)
39 candidates1 = [item[1] for item in candidates if item[0] >=

proximity_threshold]
40 candidates2 = [item[1] for item in candidates if item[0] <

proximity_threshold]
41

42 step_selected = []
43 step_filtered = []
44

45 # Proximity-based selection
46 while len(step_selected) < group_size and candidates1:
47 candidate = candidates1.pop(0)
48 too_close = False
49 for selected in step_selected:
50 if abs(candidate[0] - selected[0]) <=

repulsion_threshold and abs(candidate[1] -
selected[1]) <= repulsion_threshold:

51 too_close = True
52 step_filtered.append(candidate)
53 break
54

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

55 if not too_close:
56 step_selected.append(candidate)
57

58 step_filtered.extend(candidates1)
59 candidates2.extend(step_filtered)
60

61 # Low-dependency selection
62 remaining = group_size - len(step_selected)
63 if remaining > 0:
64 step_selected.extend(farthest_point_sampling(step_selected,

candidates2, remaining))
65

66 selected_coords.extend(step_selected)
67

68 return np.ravel_multi_index(np.array(selected_coords).T, (grid_size,
grid_size)).tolist()

69

70

71 def farthest_point_sampling(existing_points, candidate_points,
num_to_select):

72 if len(candidate_points) <= num_to_select:
73 return candidate_points
74

75 # Convert to numpy arrays for efficient computation
76 existing_np = np.array(existing_points)
77 candidates_np = np.array(candidate_points)
78

79 # Initialize with existing points
80 selected_np = existing_np.copy()
81 selected_indices = []
82

83 for _ in range(num_to_select):
84 if len(selected_np) == 0:
85 # If no existing points, select randomly
86 idx = np.random.randint(len(candidates_np))
87 selected_np = candidates_np[idx][np.newaxis, :]
88 else:
89 # Calculate distances from all candidates to selected points
90 distances = cdist(candidates_np, selected_np)
91 min_distances = np.min(distances, axis=1)
92

93 # Set already selected candidates to 0 distance
94 min_distances[selected_indices] = 0
95

96 # Select the candidate with maximum minimum distance
97 idx = np.argmax(min_distances)
98 selected_np = np.vstack([selected_np, candidates_np[idx]])
99

100 selected_indices.append(idx)
101

102 return [candidate_points[i] for i in selected_indices]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D MORE VISUALIZATION OF GENERATION EXAMPLES

Figure 12: Generation Examples of Our Model. We show 512×512 generation samples (top),
256×256 generation samples (middle) and zero-shot image editing results including class-conditional
editing, inpainitng and outpainting (bottom).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A melting apple. Ultra-detailed wildlife photo of a zebra
standing in golden savanna light.

A small cactus with a happy
face in the Sahara desert.

A alpaca made of colorful
building blocks, cyberpunk.

A cute orange kitten sliding down an
aqua slide, happy excited. Vibrant

colors, water splashing on the lens.
An elephant walking in the water.

An astronaut riding a horse on the
moon, oil painting by Van Gogh.

a handsome 24 years old boy in the
middle with sky color background

wearing eye glasses, it's super
detailed with anime style.

Ultra-detailed portrait of an old man
with a long white beard, weathered

skin, deep expressive eyes.

New England fall with leaves, house
and river.

A crystal tree shimmering under a
starry sky.

A realistic landscape shot of the
Northern Lights dancing over a

snowy mountain range in Iceland.

Figure 13: We show 1024×1024 text-to-image generation samples.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E EFFICIENCY ANALYSIS

Th
ro

ug
hp

ut
(im

g/
s)

0.1

1

10

100

Batch Size
1 2 4 8 16 32 64 128 256 512

194.2187.2169.6138.1
90.2

50.1
25.3

12.7
6.3

3.2

65.656.9
32.2

16.4
8.2

4.1
2.0

1.0
0.5

0.3

Raster-L
LPD-L

Th
ro

ug
hp

ut
(im

g/
s)

0.1

1

10

100

Batch Size
1 2 4 8 16 32 64 128 256

93.3586.7874.09
55.31

33.28

17.13

8.66

4.37

2.18

30.92
22.35

11.18

5.51

2.76

1.35

0.70

0.35

0.18

Raster-XL
LPD-XL

Th
ro

ug
hp

ut
(im

g/
s)

0.1

1

10

100

Batch Size
1 2 4 8 16 32 64 128 256

53.8951.0044.98
35.70

23.54

12.95

6.57

3.25

1.66

18.5615.05

8.39

4.23

2.07

1.03

0.52

0.27

0.13

Raster-XXL
LPD-XXL

(a) (b) (c)

Figure 14: Throughput vs. Batch Size on ImageNet 256×256 Class-Conditional Generation. For
LPD, we use 20 generation steps. Raster refers to the traditional fixed-raster-order generation model.
We progressively increase the batch size until the process runs out of memory. The throughput values
on the y-axis are plotted on a logarithmic scale.

As shown in Figure 14, LPD models are memory-bound when the batch size is 16 or smaller, as
indicated by the linear increase in throughput with respect to batch size. When the batch size
exceeds 16, the process gradually transitions from being memory-bound to compute-bound. For the
traditional fixed-raster-order models, this transition occurs at a batch size around 128. Notably, when
both models operate in the memory-bound regime, LPD consistently achieves nearly 12× higher
throughput than the raster-order model—roughly matching the reduction in the number of generation
steps. When at the maximum batch size, LPD still maintains a throughput advantage of approximately
3×.

23

	Introduction
	Method
	Rethinking Autoregressive Modeling
	Flexible Parallelized Autoregressive Modeling
	Locality-aware Generation Order Schedule

	Experiment
	Setup
	Main Results
	Zero-shot Generalization
	Efficiency Analysis

	Ablation
	Related Works
	Autoregressive Image Generation
	Parallel Generation in Sequence Modeling

	Conclusion
	Additional Implementation Details
	Model Architecture
	Training and Evaluation Details

	More Visualization of Attention Maps
	Pytorch Implementation of Locality-aware Generation Order
	More Visualization of Generation Examples
	Efficiency Analysis

