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ABSTRACT

We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive
image generation. Traditional autoregressive image generation relies on next-
patch prediction, a memory-bound process that leads to high latency. Existing
works have tried to parallelize next-patch prediction by shifting to multi-patch
prediction to accelerate the process, but only achieved limited parallelization. To
achieve high parallelization while maintaining generation quality, we introduce
two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel
architecture that enables arbitrary generation ordering and degrees of parallelization.
It uses learnable position query tokens to guide generation at target positions while
ensuring mutual visibility among concurrently generated tokens for consistent
parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule
that forms groups to minimize intra-group dependencies and maximize contextual
support, enhancing generation quality. With these designs, we reduce the generation
steps from 256 to 20 (256×256 res.) and 1024 to 48 (512×512 res.) without
compromising quality on the ImageNet class-conditional generation, and achieving
at least 3.4× lower latency than previous parallelized autoregressive models.

1 INTRODUCTION

Autoregressive modeling has achieved state-of-the-art results in large language models in terms
of scalability and generalizability (Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023a;b;
Grattafiori et al., 2024; Jiang et al., 2024; Yang et al., 2024; 2025; Liu et al., 2024a). Natu-
rally, many works have applied this powerful paradigm to visual generation (Esser et al., 2021;
Lee et al., 2022; Ramesh et al., 2021; Yu et al., 2022; Sun et al., 2024; Tian et al., 2024).
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Figure 1: Performance comparison among par-
allelized autoregressive models on ImageNet
256×256. We significantly reduce the generation
steps and achieve at least 3.4x lower latency com-
pared with previous models.

Moreover, this autoregressive formulation of vi-
sual generation has become increasingly cru-
cial for unified multimodal generation (OpenAI,
2025; Wang et al., 2024a; Wu et al., 2024c;a;
Chen et al., 2025a; Ma et al., 2025; Jiao et al.,
2025; Song et al., 2025; Chen et al., 2025b; Zhao
et al., 2025; Lin et al., 2025; Deng et al., 2025;
Liao et al., 2025; Xie et al., 2025) since it is
highly compatible with language modeling.

Prevailing autoregressive visual generation
methods typically follow two paradigms: (1)
next-patch prediction by flattening the image
into a sequence of patches (Esser et al., 2021)
and (2) next-scale prediction via coarse-to-fine
multi-scale representations (Tian et al., 2024).
In the first formulation, generating one token per
step creates a memory-bound workload1, caus-
ing latency to scale with the number of steps.
The second formulation substantially reduces

1A memory-bound workload refers to the scenario where the efficiency is limited by memory access speed
rather than computation speed. In this context, each generation step requires loading the entire model parameters
into GPU registers, making the process bottlenecked by memory bandwidth rather than computational power.
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Locality

Locality

Figure 2: Visualization of attention maps in the LLAMAGEN-1.4B model. There is strong spatial
locality, as the attention of a decoding token is concentrated on nearby spatial tokens. LLAMAGEN
encodes images into 24 × 24 tokens, where a token that is 24 positions earlier in the attention map
corresponds to the token directly above it in the 2D grid.

generation steps and thus latency. However, its multi-scale token representation fundamentally differs
from the universal flat token representation, making it incompatible with widely used flat vision
perception foundation models (e.g., CLIP (Radford et al., 2021; Zhai et al., 2023), DINO (Caron
et al., 2021; Oquab et al., 2023)) and thereby limiting interoperability with perception backbones
that have been proven critical for unified multimodal systems (Wu et al., 2024c; Ma et al., 2025; Jiao
et al., 2025; Song et al., 2025; Chen et al., 2025b; Zhao et al., 2025; Lin et al., 2025; Tong et al.,
2024; Wu et al., 2025; 2024b).

Thus, autoregressive visual generation should be (1) highly efficient: minimizing latency and maxi-
mizing throughput; (2) remain flat token representations for universality and compatibility with vision
backbones and, by extension, unified multimodal models. Recent works (Wang et al., 2024b; Pang
et al., 2024; Li et al., 2025a) have tried to parallelize next-patch prediction by shifting to multi-patch
prediction to accelerate the process, but only achieved limited parallelization. Non-autoregressive
mask-prediction models like MASKGIT (Chang et al., 2022) enable multi-patch prediction but require
full attention for bidirectional context, making them less efficient than autoregressive methods.

To address the challenges, we introduce Locality-aware Parallel Decoding (LPD), a framework that
consists of a novel flexible parallelized autoregressive modeling architecture and a novel locality-
aware generation order schedule. We design a new modeling architecture as conventional decoder-only
autoregressive models struggle with flexible generation order and parallelization, limiting efficiency.
In contrast, ours enables arbitrary generation order and degrees of parallelization. This is achieved
by using learnable position query tokens to guide the model in generating tokens at target positions.
Moreover, the generation is parallel-aware, as we leverage specialized attention mechanism to ensure
mutual visibility among tokens generated concurrently. Notably, our design also inherits the KV
caching mechanism, avoiding redundant computation.

Furthermore, we observe strong spatial locality in image generation attention where tokens predomi-
nantly attend to nearby regions as shown in Figure 2. This indicates a high dependency among nearby
tokens, meaning that spatially closer tokens provide stronger conditioning. Recent works (Wang et al.,
2024b; Besnier et al., 2025) also identify that minimizing mutual dependency among simultaneously
generated tokens is essential to maintain sample consistency. With these insights, we introduce a
locality-aware generation order schedule that selects parallel decoding groups to maximize contextual
support while minimizing intra-group dependencies, enabling higher degrees of parallelization.

We examine the effectiveness of our proposed method on ImageNet class-conditional image genera-
tion. Our results reveal that we reduce the generation steps of traditional raster-order autoregressive
generation from 256 to 20 (256×256 res.) and 1024 to 48 (512×512 res.) without compromising
quality, and achieving at least 3.4× lower latency (Figure 1) than previous parallelized autoregressive
models. Thanks to the design of flexible autoregressive modeling, our models are also capable of
zero-shot image editing including class-conditional editing, inpainting and outpainting.

2 METHOD

2.1 RETHINKING AUTOREGRESSIVE MODELING

In next-patch autoregressive modeling, images are split into patches and usually discretized via a
tokenizer into image tokens. While the joint distribution of the N tokens x1, · · · , xN and condition c
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Figure 3: Raster Order vs. Flexible Parallelized Autoregressive Modeling. (a) In raster order,
each token simultaneously provides context and predicts the next token, restricting flexibility and
efficiency. (b) Our approach decouples these roles: previously generated tokens supply context, while
position query tokens drive parallel generation at arbitrary target positions. This separation enables
both flexible order and efficient parallelization.

is extremely high dimensional and therefore hard to model directly, the autoregressive framework
makes this amenable by factorizing the total joint distribution as

p(x1, x2, . . . , xN ; c) =

N∏
n=1

p(xn|x<n; c) (1)

The training objective of the autoregressive model is therefore to optimize parametric approximations
pθ(xn|x<n; c) for those one-step conditionals. This factorization needs a predefined order, typically
raster order, as shown in Figure 3 (a). However, during sampling, this leads to N sequential steps,
creating a major efficiency bottleneck.

To reduce the number of sequential generation steps, we can partition tokens into G disjoint groups
{X1, · · · , XG}, where each group Xg = {xg1 , · · · , xgm} is predicted jointly, resulting in the
following:

p(x1, x2, . . . , xN ; c) =

G∏
g=1

p(Xg | X<g; c) (2)

The training objective becomes optimizing pθ(Xg | X<g; c). Previous work has shown that directly
grouping tokens in raster order causes significant performance degradation (Wang et al., 2024b;
Pang et al., 2024). This is because spatially adjacent tokens exhibit strong mutual dependencies,
and independent sampling usually leads to generation inconsistencies inside a group. It is essential
to break the raster order when grouping. In addition, the size of the prediction group |Xg| should
gradually increase. As the context size |X<g| grows, it offers stronger conditioning, allowing more
tokens to be predicted in parallel. Previous work using masked transformers (Chang et al., 2022)
also mirrors this intuition by predicting fewer tokens early when context is sparse and predicting
more tokens over time. Therefore, an effective parallelized autoregressive model should support: (1)
Flexible generation order to alleviate the issue caused by mutual interdependency of concurrently
predicted tokens and (2) Dynamic group sizes increasing the number of tokens predicted per step
with available context.

However, it is difficult to achieve these within the standard decoder-only autoregressive models,
which are inherently designed with a fixed input-output structure, e.g. next-token prediction. In this
modeling, each token simultaneously serves two roles: it provides context via its hidden state and
enables generation via its output logits. This coupling limits flexibility in the the generation order
and output size. To address these challenges, we propose a novel flexible parallelized autoregressive
modeling which is able to support arbitrary generation order and degrees of parallelization.

2.2 FLEXIBLE PARALLELIZED AUTOREGRESSIVE MODELING

Our core idea is to decouple the context representation and token generation by leveraging separate
tokens. We illustrate this in Figure 3 (b). In this formulation, previously generated tokens are encoded
to provide context and the generation is driven by learnable position query tokens corresponding to
the desired target positions. These position query tokens are constructed by adding the positional
embedding of the target location to a shared learnable embedding. By directly inputting these position-
specific queries, the model can generate tokens at arbitrary target positions in parallel. This design
allows the model to leverage positional information in both the context and generation pathways,
enabling arbitrary generation order.

3
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Figure 4: Illustration of the training attention
mask. Context Attention allows subsequent tokens
to attend to the context tokens causally. Query
Attention ensures mutual visibility among the po-
sition query tokens within the same step, and pre-
vents any subsequent tokens from attending to the
query tokens. For example, image token 4 can be
attended to by all subsequent tokens, including im-
age tokens and position query tokens, to provide
context information. The two position query to-
kens P3 and P5 in the same generation step attend
to the condition, to the image token 4, and to each
other, while ignoring the earlier query P4.
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Figure 5: Illustration of the inference attention mask. Encoding
with image tokens and Decoding with position query tokens can
be fused into a single step. Taking step 2 in Figure 3 (b) as the
example, it simultaneously encodes the previously generated image
tokens 3, 5 to update the KV-cache and decodes the desired image
tokens 1, 2 and 6 in parallel.

Training formulation. We train the model to transform each position query token into the cor-
responding ground-truth image token, conditioned on all ground-truth tokens that precede it. To
preserve teacher-forcing while allowing parallel prediction, we interleave position query tokens with
ground-truth tokens and apply a specialized training attention mask as shown in Figure 4 that contains
two attention patterns:

1. Context Attention allows subsequent tokens to attend to context tokens causally.
2. Query Attention ensures mutual visibility among the position query tokens within the same step,

and prevents any subsequent tokens from attending to the query tokens.

Inference formulation. At test time we alternate between encoding the generated image tokens
and decoding with position query tokens.

1. Encoding. Sampled image tokens go through a forward pass to store the KV cache, providing
context for future decoding steps.

2. Decoding. Learnable position query tokens attend to all previously generated tokens in the KV
cache, and the forward pass outputs logits for each target position in parallel. KV cache for query
tokens is not stored.

However, sequentially execute these two operations double the generation steps. As shown in Figure 3
(b), these two operations can be fused into a single step via a specialized inference attention mask as
shown in Figure 5.

Comparison with other methods. Recent efforts have also pursued parallel generation in autore-
gressive modeling, yet each carries inherent limitations. One line of work, exemplified by SAR (Liu
et al., 2024b) and ARPG (Li et al., 2025a), adopts an encoder-decoder architecture where target-aware
query tokens attend to the encoder’s key-value cache via cross-attention. However, as illustrated in
Figure 6 (a), the target positions themselves do not contribute any key-value pairs, resulting in the
tokens generated within the same parallel step being produced independently of one another.

Another approach, represented by RANDAR (Pang et al., 2024), adheres to the prevailing decoder-
only architecture. It achieves arbitrary order by inserting positional instruction tokens to designate
target positions. However, it still leverages a standard causal mask during training. This strategy, as
depicted in Figure 6 (b), leads to two notable issues: (1) the parallel generation degenerates into a
batched next-token prediction instead of joint prediction and (2) the positional instruction tokens
must be stored in the KV cache during inference, doubling the memory consumption. Compared
with these two methods, our method as shown in Figure 6 (c) guarantees the visibility among all
concurrently predicted target positions and only stores the generated tokens in the KV cache.
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Figure 6: Comparison with other methods. (a) Encoder–decoder approaches such as SAR and
ARPG generate tokens independently, since query tokens contribute no key–value pairs. (b) Decoder-
only methods like RANDAR rely on positional instruction tokens, but the causal mask reduces parallel
generation to batched next-token prediction and forces instruction tokens to be cached, doubling
memory. (c) In contrast, our method employs a specialized training mask that ensures mutual visibility
among concurrently predicted tokens while caching only the generated tokens.

PAR (Wang et al., 2024b), NAR (He et al., 2025), and ZipAR (He et al., 2024) preserve the
standard decoder-only architecture and increase the number of tokens generated per step. Although
they guarantee mutual visibility among concurrently generated tokens, they rely on a fixed parallel
generation order, which prevents them from supporting arbitrary generation orders. This limits the
generation flexibility thus achieved limited parallelization and generation quality. ACDIT (Hu et al.,
2024) shares similar attention scheme with us, yet it was used for evenly interpolating between
autoregressive and diffusion modeling.

2.3 LOCALITY-AWARE GENERATION ORDER SCHEDULE

To fully leverage our flexible parallelized autoregressive modeling architecture, we introduce a
locality-aware generation order schedule. This schedule is guided by two key principles (1) High
proximity to previously generated tokens: target positions should be spatially close to existing
context to ensure strong conditioning and (2) Low proximity among concurrently generated tokens:
tokens predicted in the same parallel step should be spatially distant to reduce mutual dependency.

These principles are derived from a systematic analysis of the attention patterns in autoregressive
image generation by the widely adopted LLAMAGEN (Sun et al., 2024) model. Using LLAMAGEN,
we generate 50,000 images and collect attention scores at each decoding step. Qualitative attention
patterns are shown in Figure 2, and quantitative results are presented in Figure 7. To quantify locality,
we define the Per-Token Attention (PTA) to a neighborhood of radius s 2 as:

PTAs =
1

N

N∑
i=1

∑
j Attention(Ti, Tj) · I[d(Ti, Tj) = s]∑

j I[d(Ti, Tj) = s]
(3)

where Attention(Ti, Tj) denotes the attention weight from token Ti to token Tj , and d(Ti, Tj) is their
Euclidean distance on the 2D image grid.
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Figure 7: Attention Analysis of LLAMAGEN.
(a) Attention diminishes with distance (b) Spatial
locality is consistently observed in all heads.

As shown in Figure 7 (a), PTA decreases sharply
with increasing distance, indicating a strong spa-
tial locality in the attention mechanism. This
suggests that nearby tokens carry significantly
more useful information during decoding, and
that spatially adjacent tokens are highly depen-
dent on one another for accurate prediction. This
locality pattern is consistently observed across
all attention heads. In Figure 7 (b), we visualize
the Attention Sum, defined as the total attention
score a decoding token assigns to tokens within a
relative distance s. The plot uses s = 3 and con-
firms that most attention is concentrated within
local neighborhoods, reinforcing the importance
of spatial locality. This analysis supports our

2The neighborhood is defined as the set of tokens whose centers are exactly a euclidean distance of s away.
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Algorithm 1: Locality-aware Generation Order Schedule

Input: decoding steps K, group sizes O = [o1, o2, . . . , oK ], grids G = {(i, j)}Ni,j=1, proximity
threshold τ , repulsion threshold ρ;

schedule S = [ ];
for k = 1, . . . ,K do

s = [ ];
p = 1/ euclidean(G \ S, S) ; ▶ proximity measurement
c = sorted(G \ S, key = p, reverse = True);
c1, c2 = cutoff(c, τ);
while len(s) < ok and len(c1) > 0 do

s = queue_push(s, queue_pop(c1, 1)) ; ▶ high-proximity selection
c1, f = filter(c1, s, ρ);
c2 = queue_push(c2, f);

if len(s) < ok then
s = queue_push(s, farthest_point_sampling(c2, s, ok − len(s)));

▶ low-dependency selection

S = queue_push(S, s);
return S

two principles: decoding tokens should remain close to previously generated tokens to maximize con-
textual support, and distant from concurrently generated tokens to minimize intra-group dependency.

Based on these principles, we implement a locality-aware generation order schedule described in
Algorithm 1. Suppose we use K decoding steps to generate N2 tokens, with group sizes O =
[o1, o2, . . . , oK ], where ok is the number of tokens generated in step k, typically increasing via a
cosine schedule. At each step k, we compute the euclidean distance between unselected and already
selected tokens to measure spatial proximity, where closer distance leads to higher proximity. We sort
unselected tokens by proximity and split them into two sets: c1 are tokens with sufficient proximity
larger than the threshold τ which are eligible for the following high-proximity selection, and c2 are
the rest. We sequentially select tokens from c1, adding each to the selected set while filtering out
nearby tokens that the relative distance is smaller than the repulsion threshold ρ, which are added
to c2. If all the grids in c1 are considered and the number of selected grids is less than ok, we use
farthest point sampling (Qi et al., 2017) to select the remaining grids from c2 to ensure spatial low
dependency. It is worth noting that the generation order can be precomputed and stored for direct
use during inference, incurring no additional latency. We provide the PyTorch implementation in
Appendix C.

The key distinction and primary advantage of our ordering mechanism is that we turn both principles
into a single, explicit proximity objective. While previous works have observed each principle
separately, none provide a way to quantify and jointly optimize them. In our method, we define a
proximity metric that simultaneously (i) measures proximity to already generated context tokens
and (ii) measures proximity among concurrently generated tokens, and we design an algorithm that
optimizes generation orders with respect to both. For example, (Wang et al., 2024b) aim to reduce
dependencies among concurrently generated tokens, but rely on a fixed region-wise parallel scheme,
which inherently cannot both maximize proximity to previously generated tokens and minimize
proximity within each concurrent group. Similarly, (Besnier et al., 2025) use a Halton-based ordering
to decorrelate concurrent tokens; however, without a proximity metric their method cannot incorporate
our first principle of staying close to existing context.

For intuitive understanding, we illustrate an example of our generation order schedule in Figure 8.
We also plot the schedule for raster order, random order and Halton order (Besnier et al., 2025)
for comparison. The raster order generates tokens in a raster-scan manner and the random order
generates tokens in a random manner. The Halton order is a low-discrepancy sequence to arrange the
generation positions which spreads out the tokens to achieve uniform image coverage step by step.
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Figure 8: Illustration of different generation order schedules. All schedules leverage 20 decoding
steps for 162 tokens. Dark green marks newly selected grids and light green marks those already
selected. Compared to others, our schedule selects grids close to previous ones and far from concurrent
ones, maximizing the contextual support and minimizing the mutual dependency.

3 EXPERIMENT

3.1 SETUP

Models. For fair comparisons with existing autoregressive image generation methods, we use the
LLAMAGEN tokenizer (Sun et al., 2024) with codebook size 16384 and downsample factor 16.
We train three models of different sizes: 337M, 752M, and 1.4B parameters. We use a standard
decoder-only transformer architecture, and refer to them as LPD-L, LPD-XL, and LPD-XXL,
respectively. Please refer to the Appendix A.1 for more details.

Training and Evaluation. We train and evaluate our models on the class-conditional ImageNet (Rus-
sakovsky et al., 2015) 256×256 and ImageNet 512×512 datasets. We first train all models on
ImageNet 256×256 for 450 epochs, with 50 epochs of learning rate warmup followed by constant
learning rate and finally 50 epochs of cosine decay. For 512-resolution models, we load the pre-trained
256-resolution models and interpolate the positional embeddings and continue training on ImageNet
512×512 for another 50 epochs. During training, the image tokens are randomly shuffled while the
class token is kept at the beginning. We train on a range of predefined decoding steps where the tokens
per step follows a cosine schedule. We reportuse Fréchet Inception Distance (FID) (Heusel et al.,
2017) as the primary metric computed on 50k,000 generated samples as the primary metric as well
asnd also report Inception Score (IS) (Salimans et al., 2016), Precision, and Recall (Kynkäänniemi
et al., 2019). Please refer to the Appendix A.2 for more details.

Efficiency Profiling. We profile all the efficiency results on a single NVIDIA A100 GPU with
BFloat16 precision. We measure the latency with a batch size of 1 and throughput with a batch size
of 64. We report the average latency over 500 inference steps, with a 100-step warm-up period.

3.2 MAIN RESULTS

We compare our models against a broad set of generative baselines on ImageNet 256×256 (Table 1).
For a fair comparison, we also create a raster order counterpart following the same setup. As shown in
the table, we reduce the generation steps from 256 to 20, achieving 12.8× generation steps reduction,
without sacrificing the generation quality. Compared with other parallelized autoregressive models,
we achieve significantly better image generation quality and efficiency. Taking LPD-XL model as an
example, it achieves a FID of 2.10 with only 20 steps, reducing the number of generation steps by
3.2× compared to ARPG and achieving 4.2× lower latency. Increasing the steps slightly to 32 yields
a FID of 1.92, even matching ARPG-XXL, while reducing latency by 3.4×. We further report our
results on ImageNet 512×512 (Table 2). As shown in the table, we reduce the generation steps from
1024 to 48, achieving 21.3× generation steps reduction, without sacrificing the generation quality.
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Table 1: System-level comparison on ImageNet 256×256 class-conditional generation. We
evaluate the generation quality by metrics including Fréchet inception distance (FID), inception score
(IS), precision and recall. #Steps is the number of model runs needed to generate an image. We
measure latency with a batch size of 1 and throughput with a batch size of 64 on a single NVIDIA
A100 GPU under BFloat16 precision, with classifier-free guidance (CFG) for both.

Type Model #Para. FID↓ IS↑ Precision↑ Recall↑ #Steps Latency(s)↓ Throughput(img/s)↑

Diffusion

ADM-G [16] 554M 4.59 186.7 0.82 0.52 250 – –
CDM [27] – 4.88 158.7 – – 8100 – –
LDM-4 [54] 400M 3.60 247.7 – – 250 – –
DiT-XL/2 [48] 675M 2.27 278.2 0.83 0.57 250 4.34 0.58
SiT-XL/2 [42] 675M 2.06 270.3 0.82 0.59 250 – –

Mask

MaskGIT [7] 227M 6.18 182.1 0.80 0.51 8 – –
MAGVIT-v2 [80] 307M 1.78 319.4 – – 64 – –
MaskBit [69] 305M 1.62 338.7 – – 64 1.03 5.39
MAR-B [35] 208M 2.31 281.7 0.82 0.57 64 18.14 2.93
MAR-L [35] 479M 1.78 296.0 0.81 0.60 64 20.80 2.11
MAR-H [35] 943M 1.55 303.7 0.81 0.62 64 25.96 1.45

VAR

VAR-d16 [61] 310M 3.30 274.4 0.84 0.51 10 0.12 70.58
VAR-d20 [61] 600M 2.57 302.6 0.83 0.56 10 0.15 52.53
VAR-d24 [61] 1.0B 2.09 312.9 0.82 0.59 10 0.17 39.30
VAR-d30 [61] 2.0B 1.92 323.1 0.82 0.59 10 0.26 25.89

AR

VQGAN-re [17] 1.4B 5.20 280.3 – – 256 – –
RQTran.-re [32] 3.8B 3.80 323.7 – – 256 – –
LlamaGen-L [59] 343M 3.07 256.1 0.83 0.52 576 12.22 2.08
LlamaGen-XL [59] 775M 2.62 244.1 0.80 0.57 576 18.51 1.14
LlamaGen-XXL [59] 1.4B 2.34 253.9 0.80 0.59 576 24.40 0.72
LlamaGen-3B [59] 3.1B 2.18 263.3 0.81 0.58 576 12.37 0.58
RAR-B [81] 261M 1.95 290.5 0.82 0.58 256 4.18 13.76
RAR-L [81] 461M 1.70 299.5 0.81 0.60 256 4.04 12.63
RAR-XL [81] 955M 1.50 306.9 0.80 0.62 256 5.47 8.76
RAR-XXL [81] 1.5B 1.48 326.0 0.80 0.63 256 6.59 6.72

Parallelized
AR

PAR-L-4× [68] 343M 3.76 218.9 0.84 0.50 147 3.16 6.83
PAR-XL-4× [68] 775M 2.61 259.2 0.82 0.56 147 4.79 3.69
PAR-XXL-4× [68] 1.4B 2.35 263.2 0.82 0.57 147 6.26 2.33
PAR-3B-4× [68] 3.1B 2.29 255.5 0.82 0.58 147 3.29 2.32
RandAR-L [46] 343M 2.55 288.8 0.81 0.58 88 1.97 28.59
RandAR-XL [46] 775M 2.25 317.8 0.80 0.60 88 2.78 17.06
RandAR-XXL [46] 1.4B 2.15 322.0 0.79 0.62 88 3.58 11.49
ARPG-L [34] 320M 2.44 291.7 0.82 0.55 32 0.58 104.92
ARPG-L [34] 320M 2.44 287.1 0.82 0.55 64 1.15 54.70
ARPG-XL [34] 719M 2.10 331.0 0.79 0.61 64 1.71 36.53
ARPG-XXL [34] 1.3B 1.94 339.7 0.81 0.59 64 2.24 26.23
NAR-L [25] 372M 3.06 263.9 0.81 0.53 31 1.01 41.03
NAR-XL [25] 816M 2.70 277.5 0.81 0.58 31 1.42 23.36
NAR-XXL [25] 1.5B 2.58 293.5 0.82 0.57 31 1.88 15.20

AR
Raster Counterpart-L 337M 2.48 278.0 0.81 0.58 256 3.73 17.53
Raster Counterpart-XL 752M 2.12 307.4 0.81 0.60 256 5.29 12.31
Raster Counterpart-XXL 1.4B 2.01 316.0 0.80 0.59 256 7.10 8.99

Parallelized
AR

LPD-L 337M 2.40 284.5 0.81 0.57 20 0.28 139.11
LPD-XL 752M 2.10 326.7 0.80 0.59 20 0.41 75.20
LPD-XXL 1.4B 2.00 337.6 0.80 0.60 20 0.55 45.07

LPD-L 337M 2.29 282.7 0.81 0.58 32 0.46 110.34
LPD-XL 752M 1.92 319.4 0.79 0.61 32 0.66 61.24

These results validate the effectiveness of our flexible parallelized autoregressive modeling and the
locality-aware generation order schedule. We also provide visualization results in Figure 12.

3.3 ZERO-SHOT GENERALIZATION

Our model can naturally perform zero-shot editing tasks since we support image generation in
arbitrary order. As shown in Figure 12, we can conduct image inpainting, image outpainting, and
class-conditional editing. For image inpainting and outpainting, we prefill the KV cache with all
tokens from the non-repaint regions along with a class token and generate the masked region in a
random order. For class-conditional editing, we substitute the class embedding with a new class
embedding and generate the edited region in a random order.

3.4 EFFICIENCY ANALYSIS

Our method introduces position query tokens to enable flexible generation. These tokens add extra
queries and thereby increase FLOPs. However, the resulting computational overhead has a negligible
impact on wall-clock latency in memory-bound settings such as small-batch inference. In these
scenarios, the reduction in generation steps translates almost linearly into latency reduction. As
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Table 2: System-level comparison on ImageNet 512×512 class-conditional generation. Metrics
and evaluation setup are the same as in Table 1.

Type Model #Para. FID↓ IS↑ Precision↑ Recall↑ #Steps Latency(s)↓ Throughput(img/s)↑

Diffusion
ADM-G [16] 554M 7.72 172.71 0.87 0.42 250 - -
DiT-XL/2 [48] 675M 3.04 240.82 0.84 0.54 250 11.32 0.10
SiT-XL/2 [42] 675M 2.62 252.21 0.84 0.57 250 – –

Mask
MaskGIT [7] 227M 7.32 156.0 0.78 0.50 12 – –
MAGVIT-v2 [80] 307M 1.91 324.3 - - 64 – –
MAR-L [35] 481M 1.73 279.9 – – – – –

VAR VAR-d36-s [61] 2.3B 2.63 303.2 – – 10 0.45 OOM

AR VQGAN [17] 227M 26.52 66.8 0.73 0.31 1024 – –

Parallelized AR ARPG-XL [34] 719M 3.38 257.8 – – – – –

AR Raster Counterpart-L 337M 2.54 278.5 0.80 0.58 1024 14.25 3.79
Raster Counterpart-XL 752M 2.09 315.0 0.81 0.57 1024 20.93 2.36

Parallelized AR LPD-L 337M 2.54 292.2 0.81 0.55 48 0.69 35.16
LPD-XL 752M 2.10 326.0 0.80 0.63 48 1.01 18.18
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Figure 9: Ablation Studies. All ablation experiments are conducted with XL size models on 256×256
resolution. (a) Effectiveness of flexible parallelized autoregressive modeling. (b) Effectiveness of
locality-aware generation order schedule. (c) Effectiveness of the locality principles.

the batch size increases, the system progressively shifts toward a compute-bound regime, where
the additional overhead begins to matter and diminish the speedup. We provide a quantitative
analysis in Figure 14 to illustrate this trend. By gradually increasing the batch size until reaching
the memory limit, we observe that the model transitions from memory-bound to compute-bound
when the batch size exceeds 16. Nevertheless, even at the maximum feasible batch size, our method
retains a throughput advantage of approximately 3× over the raster-order baseline. In Table 1, we also
report the throughput of all models using a reasonably large batch size of 64. Our model achieves
substantially higher throughput than the others, demonstrating its efficiency.

4 ABLATION

Effectiveness of Flexible Parallelized Autoregressive Modeling. One key design of our flexible
parallelized autoregressive modeling is the guarantee of the mutual visibility among all concurrently
generated tokens. This is critical to maintain the consistency in the same group when the degree of
the parallelization is high. We show the effectiveness of this design in Figure 9 (a). We compare our
model with RANDAR and ARPG which lack this design. To only ablate the effectiveness of our
flexible parallelized autoregressive modeling, we use random generation order for all models without
our locality-aware parallel generation order schedule. As shown in the figure, with the generation
steps decrease and the parallelization increases, our model exhibits a smaller FID increase compared
with the other two models. For example, with 32 steps, our model almost maintain the performance
with 256 steps but ARPG and RANDAR have a significant FID increase. This design is crucial for us
to achieve fewer generation steps while maintaining the generation performance.

Effectiveness of Locality-aware Generation Order Schedule. We compare our schedule with
another two generation order schedules as shown in Figure 9 (b). Random order just arrange the
generation positions randomly. Halton order leverages the Halton low-discrepancy sequence to
arrange the generation positions which spreads out the tokens to achieve uniform image coverage
step by step. Intuitively it mainly focus on reducing the dependency inside a parallel group which
shares the same insight with our second principle that low proximity is needed among concurrently
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generated tokens. However, the low-discrepancy sequence omits the importance of the already
generated context which is our first principle that we need to maintain high proximity to previously
generated tokens. As shown in the figure, our locality-aware parallel decoding order consistently
outperforms the other two orders, showing the effectiveness of our method.

Effectiveness of the Locality Principles. As introduced in Section 2.3, our locality-aware generation
order schedule is guided by two principles. We ablate the effectiveness of these two principles in
Figure 9 (c). As shown, the random order baseline yields an FID of 2.11. We first apply Principle
1 only, selecting points close to previously generated tokens without considering their mutual
dependency. This improves the performance to 2.00. We then apply Principle 2 alone, using farthest
point sampling at each step to ensure concurrently generated tokens are well separated, without
considering context from previously generated tokens. This improves the FID to 2.06. Combining
both in our locality-aware generation order achieves 1.92, highlighting the synergy of both principles.

5 RELATED WORKS

5.1 AUTOREGRESSIVE IMAGE GENERATION

Autoregressive models generate the current output conditioned only on previous outputs. Usually
this dependency is captured by causal attention mechanisms, enabling efficient inference via KV
caching. Autoregressive modeling with GPT-style "next-token-prediction" (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023a;b; Chiang et al., 2023; Jiang et al., 2024) has dominated the field
of language generation due to its simplicity and scalability. Inspired by this success, autoregressive
visual generation has shifted from operating on sequences of pixels (Van Den Oord et al., 2016;
Van den Oord et al., 2016; Parmar et al., 2018; Chen et al., 2018; Salimans et al., 2017; Yu et al.,
2021; Li et al., 2025b) to sequences of latent discrete tokens (Esser et al., 2021; Lee et al., 2022;
Ramesh et al., 2021; Razavi et al., 2019; Yu et al., 2021; 2022; Sun et al., 2024; Yu et al., 2024;
Wang et al., 2024a; Teng et al., 2024; Ren et al., 2025; He et al., 2025; 2024). However, the token-by-
token decoding strategy is often bottlenecked by memory bandwidth. This limitation prevents full
utilization of computation and results in high latency. Recently, "next-scale-prediction" (Tian et al.,
2024; Han et al., 2024) has emerged to predict the next scale of the image instead of the next token
thus accelerates the generation process. However, its multi-scale token representation fundamentally
differs from the universal flat token representation, making it incompatible with widely used flat
vision perception foundation models.

5.2 PARALLEL GENERATION IN SEQUENCE MODELING

Parallel generation has been widely studied in the field of language modeling. Prior to the era of
large language models, masked-prediction architectures (Gu et al., 2017; Ghazvininejad et al., 2019;
Gu et al., 2019) were commonly used to do parallel generation and iterative refinement. Recently,
with the rapid success of large language models, speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) and its derivatives (Cai et al., 2024; Ankner et al., 2024) employ a draft model to
generate the next few tokens and then the main model conducts the verification. In visual generation,
masked-prediction models (Chang et al., 2022; Yu et al., 2023a;b; Chang et al., 2023) are widely
used to generate masked tokens step by step leveraging a masked prediction transformer similar to
BERT (Devlin et al., 2019; Bao et al., 2021; He et al., 2022), which are able to generate multiple
tokens in parallel. However, they are non-autoregressive models and need bidirectional attention
which is computationally expensive and KV cache is not applicable to accelerate the inference.
Recent works (Wang et al., 2024b; Pang et al., 2024; Li et al., 2025a; He et al., 2025) have explored
parallel generation in autoregressive models, but with limited parallelization and generation quality.
We systematically analyze its challenges and our proposed method enables greater parallelization
without sacrificing performance.

6 CONCLUSION

Our contributions lie in two key aspects: (1) flexible parallelized autoregressive modeling and (2)
locality-aware generation order schedule. We significantly reduce the generation steps required by
the traditional autoregressive models without compromising the generation quality and achieve at
least 3.4× lower latency than previous parallelized autoregressive models.
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ETHICS STATEMENT

This work focuses on improving the efficiency of autoregressive image generation. It does not involve
sensitive personal data, human subjects, or potentially harmful content. The datasets used are publicly
available and widely adopted in the research community. We do not foresee any direct ethical risks.
Nonetheless, as with any generative model, there is a possibility of misuse (e.g., generating misleading
or harmful images). We encourage responsible use of the proposed methods and emphasize that they
should be applied only in appropriate research and application contexts.

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our results. All models, datasets, and experimental
settings are described in detail in the paper and appendix. Hyperparameters, training schedules,
and evaluation protocols are fully specified to allow independent verification. The code, along with
instructions for reproducing all experiments and figures, will be released as open source upon paper
acceptance.
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APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

We provide the model architecture configurations in Table 3. All models use a standard decoder-only
transformer architecture. We vary model scale by adjusting the number of layers, the hidden size, and
the number of attention heads.

Model Parameters Layers Hidden Size Heads
LPD-L 111M 12 1024 12
LPD-XL 775M 36 1280 20
LPD-XXL 1.4B 48 1536 48

Table 3: Model architecture configurations.

A.2 TRAINING AND EVALUATION DETAILS

We train all models on ImageNet 256×256 for 450 epochs, with 50 epochs of learning rate warmup
followed by constant learning rate and finally 50 epochs of cosine decay. For 512-resolution models,
we load the pre-trained 256-resolution models and interpolate the positional embeddings and train on
ImageNet 512×512 for 50 epochs. The continued training is conducted for 50 epochs using a cosine
learning rate decay schedule, preceded by 1 epoch of warm-up. We use batch size 512 for LPD-L
and 256 for LPD-XL.

We take the training of LPD-L model on 256 × 256 resolution as an example and list all the training
hyper-parameters in Table 4. For LPD-XL and LPD-XXL, we use batch size 1024 and the same base
learning rate.

Hyper-parameters for 256×256 training Configuration
optimizer AdamW
β1 0.9
β2 0.95
learning rate3 8× 10−4

batch size 2048 (64 × 32 GPUs)
training precision BFloat16
total epochs 450
warm-up epochs 50
constant LR epochs 350
cosine decay epochs 50
offsets random per-sample

Table 4: Training hyper-parameters for LPD-L on 256 × 256 resolution.

We train on a range of predefined decoding steps where the number of tokens in each step is determined
by a cosine schedule. For the 256 × 256 resolution, the decoding steps are randomly selected from
the set {8, 12, 16, 20, 24, 32, 64, 128, 256}. For the 512 × 512 resolution, the decoding steps are
randomly selected from the set {32, 40, 48, 56, 64, 80, 96, 128, 160, 192, 224, 256, 512, 1024}. Take
20 steps in the 256 × 256 resolution as an example, the number of tokens in each step is [1, 2, 4, 5, 7,
8, 10, 11, 12, 14, 15, 16, 17, 18, 18, 19, 19, 20, 20, 20].

For evaluation, we sweep the optimal classifier-free guidance scale with an interval of 0.1 and follow
the Locality-aware Generation Order Schedule.

B MORE VISUALIZATION OF ATTENTION MAPS

We provide partial visualization of the attention maps in Figure 2 and we provide more here. We
select two layers each consists of 24 attention heads during the decoding and visualize them in
Figure 10 and Figure 11.

3Effective LR computed as base lr × (global batch size/256) with base lr = 1× 10−4.
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Figure 10: More visualization of attention maps in the LLAMAGEN-1.4B model.

Figure 11: More visualization of attention maps in the LLAMAGEN-1.4B model.

C PYTORCH IMPLEMENTATION OF LOCALITY-AWARE GENERATION ORDER
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1 import numpy as np
2 import random
3

4 from scipy.spatial.distance import cdist
5 from scipy.spatial.distance import euclidean
6

7

8 def lpd_order_schedule(group_sizes=None, grid_size=16,
proximity_threshold=1, repulsion_threshold=1):

9 if group_sizes is None:
10 group_sizes = [1] * (grid_size * grid_size)
11

12 grid_coords = [[i, j] for i in range(grid_size) for j in
range(grid_size)]

13 selected_coords = []
14

15 for step, group_size in enumerate(group_sizes):
16 if step == 0:
17 # For the first step, select a random coord. We always

assume the group size for the first step is 1.
18 selected_coords.append(random.choice(grid_coords))
19 continue
20

21 # Calculate the proximity score for all remaining grid coords
22 candidates = []
23 for coord in grid_coords:
24 if coord in selected_coords:
25 continue
26

27 # Calculate the proximity score based on euclidean distance
to already selected grid coords

28 proximity_score = 0
29 for selected_coord in selected_coords:
30 if abs(coord[0] - selected_coord[0]) <= 1 and

abs(coord[1] - selected_coord[1]) <= 1:
31 distance = euclidean(coord, selected_coord)
32 if distance > 0:
33 proximity_score += 1.0 / distance
34 candidates.append([proximity_score, coord])
35

36 # Shuffle candidates so that grid coords with the same proximity
score are randomly ordered

37 random.shuffle(candidates)
38 candidates.sort(key=lambda x: x[0], reverse=True)
39 candidates1 = [item[1] for item in candidates if item[0] >=

proximity_threshold]
40 candidates2 = [item[1] for item in candidates if item[0] <

proximity_threshold]
41

42 step_selected = []
43 step_filtered = []
44

45 # Proximity-based selection
46 while len(step_selected) < group_size and candidates1:
47 candidate = candidates1.pop(0)
48 too_close = False
49 for selected in step_selected:
50 if abs(candidate[0] - selected[0]) <=

repulsion_threshold and abs(candidate[1] -
selected[1]) <= repulsion_threshold:

51 too_close = True
52 step_filtered.append(candidate)
53 break
54
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55 if not too_close:
56 step_selected.append(candidate)
57

58 step_filtered.extend(candidates1)
59 candidates2.extend(step_filtered)
60

61 # Low-dependency selection
62 remaining = group_size - len(step_selected)
63 if remaining > 0:
64 step_selected.extend(farthest_point_sampling(step_selected,

candidates2, remaining))
65

66 selected_coords.extend(step_selected)
67

68 return np.ravel_multi_index(np.array(selected_coords).T, (grid_size,
grid_size)).tolist()

69

70

71 def farthest_point_sampling(existing_points, candidate_points,
num_to_select):

72 if len(candidate_points) <= num_to_select:
73 return candidate_points
74

75 # Convert to numpy arrays for efficient computation
76 existing_np = np.array(existing_points)
77 candidates_np = np.array(candidate_points)
78

79 # Initialize with existing points
80 selected_np = existing_np.copy()
81 selected_indices = []
82

83 for _ in range(num_to_select):
84 if len(selected_np) == 0:
85 # If no existing points, select randomly
86 idx = np.random.randint(len(candidates_np))
87 selected_np = candidates_np[idx][np.newaxis, :]
88 else:
89 # Calculate distances from all candidates to selected points
90 distances = cdist(candidates_np, selected_np)
91 min_distances = np.min(distances, axis=1)
92

93 # Set already selected candidates to 0 distance
94 min_distances[selected_indices] = 0
95

96 # Select the candidate with maximum minimum distance
97 idx = np.argmax(min_distances)
98 selected_np = np.vstack([selected_np, candidates_np[idx]])
99

100 selected_indices.append(idx)
101

102 return [candidate_points[i] for i in selected_indices]
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D MORE VISUALIZATION OF GENERATION EXAMPLES

Figure 12: Generation Examples of Our Model. We show 512×512 generation samples (top),
256×256 generation samples (middle) and zero-shot image editing results including class-conditional
editing, inpainitng and outpainting (bottom).
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A melting apple. Ultra-detailed wildlife photo of a zebra 
standing in golden savanna light.

A small cactus with a happy 
face in the Sahara desert.

A alpaca made of colorful 
building blocks, cyberpunk.

A cute orange kitten sliding down an 
aqua slide, happy excited. Vibrant 

colors, water splashing on the lens.
An elephant walking in the water.

An astronaut riding a horse on the 
moon, oil painting by Van Gogh.

a handsome 24 years old boy in the 
middle with sky color background 

wearing eye glasses, it's super 
detailed with anime style.

Ultra-detailed portrait of an old man 
with a long white beard, weathered 

skin, deep expressive eyes.

New England fall with leaves, house 
and river.

A crystal tree shimmering under a 
starry sky.

A realistic landscape shot of the 
Northern Lights dancing over a 

snowy mountain range in Iceland.

Figure 13: We show 1024×1024 text-to-image generation samples.
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E EFFICIENCY ANALYSIS
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Figure 14: Throughput vs. Batch Size on ImageNet 256×256 Class-Conditional Generation. For
LPD, we use 20 generation steps. Raster refers to the traditional fixed-raster-order generation model.
We progressively increase the batch size until the process runs out of memory. The throughput values
on the y-axis are plotted on a logarithmic scale.

As shown in Figure 14, LPD models are memory-bound when the batch size is 16 or smaller, as
indicated by the linear increase in throughput with respect to batch size. When the batch size
exceeds 16, the process gradually transitions from being memory-bound to compute-bound. For the
traditional fixed-raster-order models, this transition occurs at a batch size around 128. Notably, when
both models operate in the memory-bound regime, LPD consistently achieves nearly 12× higher
throughput than the raster-order model—roughly matching the reduction in the number of generation
steps. When at the maximum batch size, LPD still maintains a throughput advantage of approximately
3×.
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