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ABSTRACT

Masked discrete diffusion models have been gaining popularity recently, and
classifier-free guidance, just like its continuous counterpart, has been proposed
to enable efficacious conditional generation by discrete diffusion. To quantify the
precise effect of discrete guidance, this article considers masked discrete diffu-
sion with arbitrary data distribution in low dimension, so that the distribution that
guided masked discrete diffusion samples from, as well as the sampling dynamics,
can be analytically and exactly quantified and interpreted. When the full data dis-
tribution is a mixture over classes and the goal is to sample from a specific class,
guidance amplifies class-specific regions while suppresses regions shared with
other classes. This effect depends on the guidance strength w and induces distinct
covariance structures in the sampled distribution. Notably, we observe quantita-
tively different behaviors in 1D and 2D. We also show that for large w, the decay
rate of the total variation (T'V) along the reverse dynamics is double-exponential
in w for both 1D and 2D. These findings highlight the role of guidance, not just in
shaping the output distribution, but also in controlling the dynamics of the sam-
pling trajectory. Our theoretical analysis is supported by experiments that illus-
trate the geometric effects of guidance and its impact on convergence.

1 INTRODUCTION

Diffusion models have become an influential tool for generative modeling, offering a flexible frame-
work that performs well across a range of data types including images, audio, and text (Dhariwal &
Nichol, 2021; Kong et al., 2021; Li et al., 2022; Ho et al., 2022). Originally formulated in continuous
state spaces (Ho et al., 2020; Song et al., 2021), these models simulate a stochastic differential equa-
tion that gradually adds Gaussian noise and then learns a reverse process to denoise and reconstruct
the data. More recently, discrete diffusion models have been proposed (Campbell et al., 2022; Lou
et al., 2023), replacing Gaussian corruption with categorical transitions or masking, which makes
them well-suited for language modeling, molecule generation, and protein design (Lou et al., 2023;
Nie et al.; Huang et al., 2023; Gruver et al., 2023).

A key innovation that has enhanced the performance and flexibility of diffusion models is guidance.
In continuous models, classifier guidance (Dhariwal & Nichol, 2021) and classifier-free guidance
(CFG) (Ho & Salimans, 2021; Nichol et al., 2022) steer the reverse process toward desired condi-
tions, such as class labels or text prompts. These methods have been critical to the success of models
such as GLIDE (Nichol et al., 2022) and Imagen (Saharia et al., 2022), and theoretical work has be-
gun to explain their mechanism in simplified continuous settings (Bradley & Nakkiran, 2024; Wu
et al., 2024; Chidambaram et al., 2024). However, the extension of guidance to discrete diffusion
models is much less understood. Recent proposals adapt CFG to discrete domains by modifying
transition rates or reweighting transition kernels (Nisonoff et al., 2024; Schiff et al., 2024), and em-
pirical results show notable gains in sample quality and controllability (Schiff et al., 2024; Xiong
et al., 2025). However, the theoretical understanding of how guidance affects the dynamics of the
diffusion process in discrete state spaces remains limited.

Motivated by this gap, our paper develops a rigorous and quantitative framework for analyzing the
effects of CFG in discrete diffusion models introduced in Nisonoff et al. (2024), with a particular
focus on masked discrete diffusion models (Campbell et al., 2022; Shi et al., 2024; Sahoo et al., 2024;
Ou et al., 2024)—a common subclass of discrete diffusion models. To make the problem tractable
while still capturing essential behaviors, we assume exact scores and exact reverse dynamics, and
we investigate the following two fundamental questions in low-dimensional settings (1D and 2D):



Under review as a conference paper at ICLR 2026

Q1. How does guidance affect the distribution of the generated samples?

For this question, we assume that the data distribution p is a mixture of different class distributions
(Assumption 1.1). We find that guidance amplifies probability mass in class-specific regions while
reducing mass in overlapping regions, which vanish entirely as the guidance strength w grows. The
strength of this amplification and reduction depends explicitly on w, and the covariance structure of
the resulting distribution differs between 1D and 2D.

Q2. How does guidance affect the rate of convergence of the reverse dynamics?

To address this, we analyze the total variation distance between the distribution along the reverse
dynamics and the final sampled distribution. For both 1D and 2D, we show that the decay of this
distance exhibits a double-exponential dependence on the guidance strength w when w > 1.

By characterizing these two aspects—distributional shifts and convergence rates—our work bridges
the gap between practical heuristics and theoretical understanding in discrete diffusion with CFG.

Assumption 1.1. Let {zk},ﬁ/le be the set of M labels, each of which is associated with a class
distribution p(-|zy) supported on Xy, C S. The full data distribution p is a mixture of distributions

{p(~|zk)}£4:1 with weights {ak}ﬂ/le, Le, p(-) = 22/[:1 arp(-|zk)-

Comparison to Existing Work. Our analysis is closely related to recent theoretical studies of guid-
ance in continuous diffusion models (Bradley & Nakkiran, 2024; Wu et al., 2024; Chidambaram
etal., 2024). A key insight from this line of work is that in continuous settings with data distributions
such as 1D Gaussian (Bradley & Nakkiran, 2024) or 1D Gaussian/compact-support mixtures (Chi-
dambaram et al., 2024), CFG reshapes the reverse dynamics in a way that makes the generated
distribution deviate from the tilted distribution, i.e., the distribution defined by the steered score that
emphasizes the conditioning signal. These results, however, rely heavily on Gaussian or compact-
support assumptions and are limited to 1D continuous space. By contrast, our study provides the
first rigorous analysis of CFG in discrete diffusion models under much more general conditions,
where the data distribution can be any finite mixture of arbitrary class distributions. Leveraging the
tractability of masked discrete diffusion, we derive explicit reverse dynamics in both 1D and 2D that
reveal striking similarities and differences to the continuous case. In particular, we find that in 1D
the generated distribution coincides exactly with the tilted distribution—unlike in continuous diffu-
sion—while in 2D deviations do appear, but in a form that we can quantify explicitly rather than only
approximately. Moreover, we show that sample diversity decreases as masses in overlapping regions
vanish under strong guidance, and that convergence rates exhibit a double-exponential dependence
on the guidance parameter, echoing but also amplifying phenomena observed in continuous settings.

Paper Organization. The remainder of the paper is organized as follows. Section 2 introduces
preliminaries on discrete diffusion models relevant to our analysis. Section 3 presents our theoretical
analysis and their implications of the guided diffusion process, and Section 4 provides numerical
examples supporting our findings. Conclusions are discussed in Section 5. Additional related work
and technical details are included in the Appendix.

2 PRELIMINARIES

2.1 NOTATIONS

Forany x € RPand A C {1,2,--- ,D},weuse x4 € RI4l to denote restriction of z to coordinates
in A. \iis used to denote {1,2,--- , D} \ {¢}. For any distribution p, p(z 4) denotes the A-marginal
of p evaluated at 4. For functions f, g, we write f(w) ~ g(w) if limy 00 f(w)/g(w) = 1 and
flw) =0(g(w)) if c1g(w) < f(w) < eag(w) for some ¢y, ¢, wy > 0 and all w > wy. For any set
X c{1,2,--- N}Yand1<d<D,X;:={xy |z € X} is the projection of X on dimension-d.

2.2 DISCRETE DIFFUSION MODELS

We consider the state space S = {1,2,--- , N }D . The data distribution p is represented as a vector
in RV” that sums up to 1. The discrete diffusion forward process is defined as a continuous-time
Markov process (Campbell et al., 2022; Lou et al., 2023), given by the differential equation

dpe

—~, = 9 =D 1

1 Qtpt, po=0p (L
where Q; € RN”*N" is the transition rate matrix for all t > 0s.t. (1) Q(y,z) > 0 forall 2,y € S
andx # y; (2) 3,5 Qt(y,z) = 0 forallz € S. In this paper, we focus on a widely used effective
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forward process, the absorbing forward process (Austin et al., 2021; Lou et al., 2023; Shi et al.,
2024; Sahoo et al., 2024; Ou et al., 2024) , which independently transforms across all dimensions
until arrive at the masked state [M] := (N, N---, N)T. The explicit expression of the masked
transition rate matrix and its properties will be discussed in Appendix B. The reverse process in
discrete diffusion models is defined by

dgg =
— — 2
M Qr—t9:, o = pr) @)

where the {Qt}ogth is a sequence of reverse transition rate matrices given by

Pt (y)

A Qt($7y), Yy 7& Zz,
= ¢ pe(x) _

Qt(yﬂlf) { Zé#x Qt(57x), Y=z,

and {pt}tZO solves equation 1. Equation 2 is the exact reverse of equation 1, i.e., ¢¢ = pp_¢ for

all t € [0,T]. The ratios 5 zggg }yes are the concrete scores (Meng et al., 2022) which generalize

the score function V log p,(x) in continuous diffusion models. In practice, the concrete scores are
learned via denoising entropy matching (Lou et al., 2023) by minimizing the following denoising
score entropy:

3)

Pejo(y|zo)
EDSE = EIONPEINp”O(<|I0) [ Z S? (.’1?, y) - |7 IOg 5? (.f, y)} ) (4)
o Pt|o(ff|$o)
where s¢ (1, y) is the parametrized score to approximate %. Last, samples are generated approx-
imating the following reverse process:
dg¢? ~
T; =Q%_.d!, af =, (5
pe(y)

where QY replaces the exact concrete score e with s?(z,y). Simulation of equation 5 can be
performed with the Gillespie’s Algorithm (Gillespie, 1976), Tau-leaping (Gillespie, 2001; Campbell
et al., 2022) and uniformization (Grassmann, 1977; Chen & Ying, 2024), etc.

In this paper, we assume exact score and exact simulation of equation 5, and focus on the generation
ability along the continuous-time reverse dynamics with CFG. The effects of score approximation
and numerical discretization are left for future work.

2.3 DISCRETE DIFFUSION MODELS WITH CFG

Classifier-free guidance (CFG) is designed to steer the generative process toward samples consistent
with a target condition, such as a specific class label. In our paper, we consider to generate from one
label class 2 from the full label classes {2;}}; defined in Assumption 1.1. In the discrete setting,
Nisonoff et al. (2024) introduced CFG by tilting the reverse dynamics. Formally, the construction
begins with the tilted distribution

p# () o p()p(2|) Y o p(-) T p(|2) T, ©6)
where w > —1 is the guidance parameter. This expression makes the effect of guidance transparent:
setting w = —1 recovers the full data distribution; w = 0 yields the conditional distribution on class

z; larger positive values of w progressively amplify the likelihood p(z|z), biasing the distribution
toward states that are more consistent with class z.

Since diffusion models proceed through dynamics, we can’t sample from p** directly. In con-
tinuous diffusion models, one steers the scores V log p;(z) during the reverse process. In discrete
models, the analogue is to steer the reverse transition rates, thereby embedding the effect of tilting
directly into the evolution of the process.

Concretely, alongside the unguided reverse rates Q; in equation 3, we define class-conditional re-

verse rates Q7 by evolving the conditional distribution p(-|z) under the same forward transition Q:

P Q). po=p(12), g
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leading to the conditional reverse rate matrix

pt(y\z)
= Qi(r,y), y#m,
Z(y, ) = 4 pele[z) L 8
Qi) {Zs#m(s,m, y = 1. ®

By analogy with the tilted distribution equation 6, the guided reverse dynamics interpolate between
Q@+ and Q7 through the CFG rate matrix:

Yy ) = {Qt(y,w)‘fz%z(yw)””? y# ©)
= eta Q1 (5,7, y =z,
with the corresponding evolution
szﬁzm) _ Azw Z,Ww zZ,w
dr T—4t 5 4o —5[M]~ (10)
The choice of guidance strength w can significantly affect the generation:
e when w = —1, Qf = Q. it recovers the unguided reverse process. This generates the

entire mixture p, spreading probability mass across all classes and offering no control over
which class is realized.

e when w = 0, Qf’o = Qf it recovers the class-conditional reverse process. This generates
exactly from p(+|z), isolating the desired component of the mixture.

Empirically, the best generation results are obtained for intermediate values w > 0. In this regime,
the process in equation 10 interpolates between reproducing the full mixture and enforcing strict
conditioning, often yielding sharper and more faithful samples than either extreme. Yet why this
works so well is far from obvious: CFG with w > 0 does not correspond to sampling from any
simple or explicit distribution, but rather modifies the reverse dynamics in a nonlinear way. A
central goal of this paper is to make this phenomenon precise, by rigorously characterizing how
guidance reshapes distributions and convergence rates in discrete diffusion models.

3 ANALYSIS OF MASKED DIFFUSION WITH CFG IN LOwW DIMENSIONS

We now analyze how classifier-free guidance (CFG) reshapes the reverse dynamics in masked dis-
crete diffusion. Our focus is on the low-dimensional settings D = 1 and D = 2, where explicit
formulas for the reverse dynamics can be derived. These tractable cases provide two key insights:

1. Generated distributions: the effect of CFG on the final generated distribution relative to
the tilted distribution in equation 6.

2. Convergence rates: the speed at which the reverse dynamics approach the generated dis-
tribution.

Interestingly, the behavior of differs sharply between 1D and 2D: in 1D the generated distribution
coincides exactly with the tilted distribution, while in 2D discrepancies appear that we can nonethe-
less characterize explicitly.

For clarity, we focus on sampling from class z;, denoted by z when the subscript is not essential.

3.1 D =1: SINGLE-TOKEN GENERATION

For D = 1, the reverse transition rate matrix with CFG simplifies dramatically. It coincide with
the reverse rate matrix associated with the tilted distribution p*", up to a normalization constant
Z5W = Zi\;l p(x)~¥p(x|z)'**. In other words, the guided reverse dynamics in 1D behaves
exactly like an unguided reverse dynamics targeting the tilted distribution. For details, please see
Proposition B.2.

This leads to the following explicit characterization.

Theorem 3.1 (1D revserse dynamics). If D = 1 and ¢;"" satisfies the sampling dynamics equa-
tion 10, we have that for all 0 <t < T,

e (T-t)\ Z
zZ,w (1— (71 1e_e,T ) )pz,w(x)7 Tr = 1,2,--' ,N—L
g (x) =1, oSz (11)
(F==)" =N,
where Z = Z= = SN p(2)~wp(x|2) 1. Moreover, the generated distribution is exactly the

here & = L7 = gy P
tilted distribution, i.e., g7~ = p*".
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The explicit formula in Theorem 3.1 immediately yields properties of the sampled distribution and
convergence rates, whose proofs deferred to Appendix D.

Proposition 3.1 (1D generated distribution). Assume the full distribution satisfies Assumption 1.1,
depending on the supports of class z1 and other classes, the generated distribution q7"" admits the

following different behaviors:
(1) if X1 N Xy, = 0 forall k > 2, g7 = p(-|z1) for all w > 0.

(2) if Sy =X N (UM, X)) #Dand I == {k : X, N Xy # 0},

p(z]21), r €A\ S,
zZ1,w

a x|z w
g7 (@) o { (s Pntimy) “plalz)  w €Sy,

0, otherwise.

Moreover, as w — 00, q7" = pay\s, (-|21) pointwisely, where px,\s, (-|21) is the re-
striction of p(-|z1) to the set Xy \ S1.

Remark 3.1 (Local mean/variance preservation). Proposition 3.1 suggests that the generated dis-
tribution preserves the local mean/ covariance of class-1 distribution within the class-unique region
(X1 \ S1). Intuitively, CFG in 1D transforms mass in the ambiguous region Sy and redistribute it to
class-unique region while preserving the local mean and variance within the unique region. Please
refer to Appendix D for the detailed argument.

Proposition 3.2 (1D convergence rate). Under the conditions in Theorem 3.1, for all 0 < t < T
andw > 0, V(i .p) = (15552,

Remark 3.2 (Double-exponential effect). The decay of TV is exponentially in time, with rate Z.
For all w > 0, alternatively we can represent Z = exp(wD14,(p(:|2)|p)), where Do (1 |p2) =

—Llog (30, %) is the a-divergence from i1 to puo for all o € (0,00)\{1}. According to the
property of a-divergence, we immediately have log(Z*") ~ wsup,, £ Z(;(ES) Jor w > 1. Therefore,
the overall decay rate of TV exhibits a double-exponential dependency on w. This explains the

extremely sharp transitions we observe in practice when w is large.

3.2 D = 2: MULTIPLE-TOKEN GENERATION

In 2D, the story changes. The guided reverse rate matrix no longer coincide with that of the tilted
distribution (denoted as Q;[p>®)), i.e., Q7" # CQ.[p*™] for any constant C. This discrepancy
marks the departure between the discrete diffusion with CFG in 2D and its 1D analogue.

We derive an explicit expression for Q7" in Appendix E. The key takeaway is that Q7" not only
depends on p** Z, but also on new coefficients {c,, dm}leS n that encode the steering effect of
guidance on marginals, which are defined as follows: forall z;, 2, =1,2,--- ,N — 1,

_ Suplen ) plen M S pllae) el -
o pzy)~wp(a|z)tte 7 p(w2)~wp(w2lz)t v
X 4 P 12) T p(l, I 2) T P M/ p(l, 1)~ p(l, l2]2) T
D STy e 1 D S (Y T (B
Theorem 3.2 (2D reverse dynamics). If D = 2 and q;’" satisfies the sampling dynamics equa-
tion 10, forall 0 <t < T,

(13)

at(x)zpz,w(x)7 L1, T2 7& N,
a"(x) = (@) 2p™"(z:), wi=N#w\y, (14)
at(x), 21 =x2 = N.

where Z =3 o p(x)""p(x|z)' " and

. _a\Zw a. I\ Zw
L e VR gt
z Tus caq AN zo AN
TR WaTen T AR 2 7 N,
ar(r) = { ~apgErey (O —r(H)7W), 1 # N =12,
1 dy ALY _
_dw2(>\j\r£\;+dmz) ’l"(t) - T(t) NN)7 T2 7é N = T,
r(t)"ANN, T1 =29 = N,
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with N5 == —Z(1/en + 1/dn) and r(t) = 52

qeT
Although the reverse dynamics looks complicated, its implications are striking.

Z,w

Remark 3.3 (Explicit expression for the generated distribution). By evaluating g, at the final

time, we find the generated distribution differs from the tilted distribution. Instead,

_ 1/6331 + 1/d332 zZ,w
1/CN + ]./dN

Proposition 3.3. Under Assumption 1.1, depending on the projected supports { Xy, 4 }1<k<m1<d<2,
21,W SRS sas

the sampled distribution g~ admits the following different behaviors:
(1) If X1, N Xy g = 0 for d = 1,2 and all k > 2, we have ¢7"" = p(-|z1).

zZ,w

" (z) (x), Vre{l,2,--- N1} (15)

(2) If S1,40 = X1,aN (U{y:2 Xk,d) # 0 for some d = 1, 2.

ATV p(|21), x € Ry,

A5 plalz), 2 € Ryyi=12,
g () o § AFp(alz1), x € Ra,

A plalz), z € Ry,

0, otherwise.

where R1,Ra 1, Ra2, R3, Ra forms a partition of Xy and A7V, AZH"Y, AS", AZVY,
A" are associated weights on the regions. Explicit expression are given below:

AV =2 Ri={z|lx € X1,z1 € X1,1\ S1,1,22 € X1,2\ S1,2},

21, W alp(xi‘zl) w
ALY =1+ N Roa,i = IE.’L'EX,ZCZ'ES,Z',IEZ'EX i S il
S (a0 e e € M € S € M S

2
w aip(wilz1) w
AV = E R3 = X1\ S S S
’ i:l(Zkeh,iakp(xi‘zk)) o Ra={ale € X\ 51,21 € S22 € S12)y

2

o w a1p(x;|21) w a1p(z|z1) w

AT = R4 = 51.
! (izl(ZkeIM arp(xilzr)” N Y oper akp(l‘|2k))

where S1 = X1 N (Ug/IZQ Xk), I = {k/’ XN A #£ (Z)}, Il,d = {k : Xk,d N Xl,d #+ @}

Z1,w

Last, as w — oo, g7’ — ¢*°(:|z1) pointwisely, where q**°(-|z1) satisfies that

Supp(¢™>°(-]21)) C &1\ Si.
Remark 3.4 (Effect of guidance on generated distributions). In Proposition 3.3-(2), the generated
distribution is a weighted version of class-1 distribution. The regions R1,R2,1,R2,2,R3, R4 re-
flect different level of “privacy” of class z1: Ry is the overlapping region with other classes.
R1,Ra,i, Rs are not overlapping with other classes. But Rs has both projections overlapping
with other classes and R, has projections along dimension-i overlapping with other classes.
R1 is the most private set in class z1, with no intersection with other classes even for projec-
tions. For all w > 0, the associated weights (before normalization) on different regions satisfies,
A > A;li’z > AV" > APV, This reflects that the sampled distribution from the discrete dif-
fusion with CFG can leverage the geometric information of the full data distribution: the sampled
distribution puts larger weights on more private regions of class z1.

To make the above discussion more concrete, Figure 1 illustrates a toy example where the full
data distribution is a mixture of two uniform distributions supported on overlapping squares. We
focus on sampling from the bottom-left class. The figure shows how classifier-free guidance (CFG)
reshapes the generated distribution compared with the class-conditional distribution, redistributing
probability mass away from overlapping regions as the guidance strength increases.

Remark 3.5 (Discussion on ¢****°(:|z1)). Under Assumption 1.1, ¢****°(-|z1) has zero mass on
overlapping region between class z1 and other classes. In the non-overlapping region, explicit for-
mula for ¢*+°°(+|z1) can be derived from the expression of ¢*"(+|z1) in Proposition 3.3. However,
it strongly depends on the nullities of the regions in Proposition 3.3-(2). We refer the readers to
Appendix E.1 for a detailed discussion.
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Proposition 3.4 (2D convergence rate). Under the conditions in Theorem 3.2, for all0 < t < T
zZ,w Z,W _e T

andw > 1, —In(TV (g™, ¢7")) = exp(©(w)) In (71718,@,” )

As in 1D setting, the decay of T'V in 2D exhibits a double-exponential dependency in w as well.

Regions (Ry, Rz,1. R2,2, R3, Ra) 016
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(a) Partition of the support into regions (b) Heatmaps: generated distribution g7 for w = 1 (left), and
R17R2,1,R2,2,R3,R4. q;l’w forw = 3(I‘ight).

Figure 1: Illustration of CFG effects in 2D: (a) how guided distributions change with w, (b) how
class support is decomposed into regions reflecting different levels of overlap.

3.3 DIScUSSION: TOWARDS HIGHER DIMENSIONS

The explicit 1D and 2D analyses highlight two general principles of CFG in discrete diffusion. First,
guidance reshapes the generated distribution by reallocating probability mass away from overlapping
regions of class supports and toward class-specific regions. Second, the rate of convergence to
the generated distribution exhibits a double-exponential dependence on the guidance parameter w.
These effects are transparent in 1D and 2D, but the structure they reveal is suggestive of higher-
dimensional behavior.

In higher dimensions (D > 3), we expect the interaction between classes supports to be governed
not only by their full overlaps but also by overlaps of their marginal projections. More precisely:

» Unique regions: states in X; whose projections are disjoint from the corresponding projec-
tions of all other classes should retain largest relative weight under CFG, with local mean/
covariance preserved.

* Partially overlapping regions: states that do not overlap with other classes but share
marginal projections (e.g. along a subset of coordinates) are expected to be downweighted.
The strength of this downweighting should depend on ratios of conditional marginals, gen-
eralizing the coefficients {c,, d, } from the 2D case.

* Fully overlapping regions: states in the intersection X3 N UM, X}, are suppressed as w —
00, with the probability mass redistributed towards the two types of regions above.

The convergence rate is also expected to follow the same pattern: the decay of total variation dis-
tance is exponential in time with an effective rate parameter that grows exponentially in w. In
higher dimensions, although the rate will involve multiple interacting coefficients (generalizations
of {cs,d, }) that encode how strongly the guidance penalizes overlap along different subsets of co-
ordinates, the double-exponential dependency in w is preserved due to the exp(w)-dependency in
the trace of the reverse rate matrix.

Overall, the 1D and 2D cases provide a blueprint: CFG can be understood as leveraging the geom-
etry of overlaps in the support of the data distribution. In practice, this means that CFG tends to
emphasize “private” regions of the target class and suppress ambiguous states, while accelerating
convergence in a way that becomes sharper as w increases. Extending these insights to formal re-
sults in higher dimensions remains an open problem, but our analysis offers a clear starting point for
characterizing how guided discrete diffusion behaves in general settings.

4 NUMERICAL EXAMPLES

We now present numerical experiments that illustrate our theoretical results and probe their validity
in higher dimensions. Unless otherwise stated, we use a small transformer to train the score model,
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Tau-leaping with 50 steps and log-linear schedule as the numerical scheme and 10K samples per
experiment. All experiments are run on an NVIDIA GeForce RTX™ 4070 Laptop GPU.

Experiments in 1D. We examine two scenarios: when class supports are disjoint and when they
overlap. From Figure 2-(a)(b), we can tell that: in the disjoint case, guidance has no effect. In
contrast, when supports overlap, guidance redistributes mass away from the intersection region, in
line with Proposition 3.1. Even with score and discretization errors, the sampled distribution closely
approximates the tilted distribution. We also measure T'V as a function of w at a fixed time ¢ = .5
in Figure 2-(c). For small w, the empirical TV curve matches our theoretical predictions. For large
w, we observe a flat/increasing region in the plot. We conjecture that this is mainly due to the sharp
transition of the reverse sampling dynamics for large w (as shown in Remark 3.2), which makes the
Tau-leaping scheme less efficient and less stable.

Distribution Comparison (n=10000, guidance=3.0) Distribution Comparison (n=10000, guidance=3.0) Total Variation vs Guidance Weight (t=0.50)

on Distance

Total Variat

0 5 10 20 25

15 By w0 5
State Guidance Weight (w)

(a) No effect for disjoint support. (b) Mass-shift when supports overlap. (c) TV as a function of w.

Figure 2: The first two panels compare the generated distribution g7 (blue histograms), the tilted
distribution p** (red), and the true target class distribution p(+|z) (green). In (a), when the supports
are disjoint, all three distributions align closely, indicating that guidance has no effect. In (b), when
supports overlap, ¢7* and p** remain close—consistent with Proposition 3.1—but both deviate
from p(-|z), reflecting how CFG suppresses mass in overlapping regions and amplifies it in class-
unique regions. Panel (c¢) plots the T'V distance as a function of w (blue), showing good agreement
with the theoretical prediction from Proposition 3.2 (red) for small w.

Experiments in 2D. Figure 2 compares theoretical predictions with empirical results in 2D. Each
class consists of two diamond-shaped regions: one at a corner and one centered (see Appendix F.2
for density plots). For the class of interest, the corner diamond lies in the bottom-left, while for the
competing class it lies in the top-right. We consider two setups depending on whether the central
diamonds overlap. In the disjoint case, the classes do not intersect in the full space, but their pro-
jections overlap along coordinate axes, causing guidance to suppress probability mass at the top and
right corners of the central diamond. In the overlapping case, the effect is more pronounced: the
upper-right region of the central diamond, where supports coincide, is strongly suppressed, while
projected overlaps slightly reduce mass in the upper-left and bottom-right regions. In both cases, the
empirical results align closely with our theoretical predictions, validating of our analysis in 2D.
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dicted to class distribution. erated to class distribution. dicted to class distribution. erated to class distribution.

Figure 3: Ratios of the generated distribution ¢ to the class distribution p(-|z) in 2D. Red in-
dicates regions where mass is amplified, blue indicates suppression. (a,c) theoretical predictions
from Proposition 3.3; (b,d) empirical results using Tau-leaping. In the disjoint case (a,b), guidance
suppresses top and right corners of the central diamond due to overlap in projected spaces. In the
overlapping case (c,d), guidance strongly suppresses the upper-right part of the central diamond and
more moderately reduces mass in the upper-left and bottom-right parts, consistent with theory.
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Higher-dimensional Experiments. To investigate whether our findings extend beyond low di-
mensions, we conduct experiments in 5D using mixtures of uniform hypercubes, {0,1,2}5 and
{2,3,4}5, which overlap only at the single state (2,2,2,2,2)". We focus on sampling from the
class supported on {2, 3,4} under guidance strengths w = 1 and w = 2. The geometry naturally
partitions the space by the number of coordinates equal to 2, denoted by k = #{d : =4 = 2}.
The case £k = 0 corresponds to states unique to the target class, k = 5 corresponds to the fully
overlapping state, and intermediate values k € {1, 2, 3,4} represent partially overlapping regions.

Tables 1 and 2 report the number of states in each region along with the mean and standard deviation
of their probabilities from empirical samples. In both cases we see a clear monotone trend: per-state
mass is largest in the unique region (k = 0), smallest in the fully overlapping region (k = 5), and
intermediate for partial overlaps. Importantly, partial-overlap regions are not uniformly suppressed;
depending on k, they may either gain or lose mass relative to p(+|z).

Comparing w = 1 and w = 2, the redistribution becomes more pronounced with stronger guid-
ance. Larger w shifts probability mass away from the fully overlapping and high-overlap regions,
reallocating it toward unique states and those with smaller k. These results mirror the mechanisms
observed in 2D, providing strong evidence that our theoretical insights extend to higher dimensions.

Table 1: Sample statistics in regions defined by #{d : z4 = 2} forw =1

#{d:xq =2} 0 1 2 3 4 5
state frequency 32 80 80 40 10 1
density per state - average (le-3) 4984 4541 4.020 3.386 2.208 0.280
density per state - std (1e-3) 0.282 0.319 0.268 0.273 0.206 0.000

Table 2: Sample statistics in regions defined by #{d : x4 = 2} for w = 2

#{d: x4 =2} 0 1 2 3 4 5
state frequency 32 80 80 40 10 1
density per state - average (le-3) 5.573 4.783 3.867 2.844 1.588 0.200
density per state - std (le-3) 0.346 0.312 0.268 0.204 0.171 0.000

Additional Experiments. We further explore the effect of CFG in masked discrete generation on
MNIST. Full details of it, together with details of previous experiments, are provided in Appendix F.

5 CONCLUSION, LIMITATION AND FUTURE WORK

In this paper, we developed a rigorous framework for understanding classifier-free guidance (CFG)
in masked discrete diffusion models. Through explicit analysis in one and two dimensions, we
showed how guidance reshapes generated distributions: in 1D the guided process exactly recovers
the tilted distribution, while in 2D systematic deviations emerge that can be described in terms of
class overlaps and marginal reweighting. These tractable cases shed light on what to expect in higher
dimensions, where overlaps and geometry are more complex. A key theoretical finding is that the
total variation distance along the reverse dynamics decays double-exponentially with the guidance
strength w. While this implies strong contraction in the continuous-time limit, it also explains why
large w leads to stiff and unstable numerical simulation in practice.

Limitation. Our analysis is limited to low-dimensional settings (1D and 2D). Extending to higher
dimensions is challenging for two reasons: exact formulas are unlikely to exist, as the reverse rate
matrix becomes prohibitively complex, and even approximate descriptions that capture the qualita-
tive role of guidance are difficult to derive due to intricate interactions between overlapping supports
and marginal projections. These challenges restrict the scope of our current theoretical guarantees.

Future Work. A natural next step is to relax the idealized assumptions of exact concrete scores and
perfect numerical integration. Important open questions include how guidance interacts with score
approximation errors and discretization errors, whether it amplifies or mitigates them, and how
such interactions affect convergence and sample quality. Progress on these fronts would deepen the
theoretical foundations of guided discrete diffusion and improve its reliability in practice.
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A ADDITIONAL RELATED WORK

Diffusion Models in Continuous and Discrete Spaces. Diffusion models were first developed in
continuous domains, where Gaussian noise is gradually added and then removed through a learned
reverse process (Ho et al., 2020; Song et al., 2021). They have achieved remarkable success for
images (Dhariwal & Nichol, 2021) and audio (Kong et al., 2021), but are less natural for inherently
discrete data such as text or categorical variables. To address this, discrete diffusion models have
been proposed, including D3PMs (Austin et al., 2021) and masked token diffusion models (Camp-
bell et al., 2022; Shi et al., 2024; Ou et al., 2024), which corrupt data via masking or categorical
transitions. Compared with continuous models, discrete diffusion introduces new challenges: for-
ward marginals are typically non-Gaussian and analytically intractable, while score functions must
be redefined, often as ratios of logits (Campbell et al., 2022; Lou et al., 2023). Masked diffusion al-
leviates some of these issues, since its corruption process admits closed-form marginals and enables
tractable likelihood training (Shi et al., 2024; Ou et al., 2024), making it both practical and amenable
to analysis.

Guidance in Continuous Diffusion Models. Guidance techniques are central to controllable gen-
eration in continuous diffusion. Classifier guidance (Dhariwal & Nichol, 2021) steers the reverse
dynamics using gradients from a pretrained classifier, but requires large and accurate auxiliary mod-
els. Classifier-free guidance (CFG) (Ho & Salimans, 2021) eliminates this dependence by jointly
training unconditional and conditional models, allowing interpolation between guided and unguided
generations through a scaling parameter. Recent theoretical work has begun to analyze these mech-
anisms. Assuming Gaussian structure, Bradley & Nakkiran (2024) showed that the probability
flow ODE under guidance does not recover the tilted distribution, and is equivalent to a predic-
tor—corrector scheme. Wu et al. (2024) studied Gaussian mixtures, proving that increasing guidance
reduces differential entropy and sharpens class confidence. Chidambaram et al. (2024) analyzed
guided ODE dynamics in 1D mixtures, showing that guidance exploits latent geometric informa-
tion even when absent from the classifier. While insightful, these results remain restricted to highly
simplified settings.

Guidance in Discrete Diffusion Models. For discrete data, several approaches apply guidance
indirectly through continuous embeddings (Li et al., 2022; Han et al., 2022; Lovelace et al., 2023;
Stark et al., 2024; Guo et al., 2024). More recently, direct formulations have emerged: Nisonoff
et al. (2024) proposed modifying reverse transition rate matrices, while Schiff et al. (2024) guided
the reverse kernels. These definitions need not coincide, and systematic comparisons remain open.
Our work focuses on the framework of Nisonoff et al. (2024).

To our knowledge, this is the first theoretical study of guidance in discrete diffusion models. Closely
related to Chidambaram et al. (2024) in spirit, we analyze low-dimensional sampling dynamics
where explicit solutions are available. Our results show that in 1D, guided sampling exactly re-
covers the tilted distribution, while in 2D discrepancies arise that can be characterized analytically.
Moreover, we prove that increasing guidance suppresses probability in overlapping regions and am-
plifies unique regions, reducing diversity as guidance grows. The total variation distance along
the reverse process decays double-exponentially in the guidance parameter, highlighting both the
sharp concentration effects and potential numerical instabilities at large guidance values. These
findings parallel—but also extend—observations in continuous settings (Bradley & Nakkiran, 2024;
Wu et al., 2024; Chidambaram et al., 2024), providing new insight into the discrete domain.

B ANALYSIS OF MASKED DISCRETE DIFFUSION MODELS WITHOUT
GUIDANCE

This section analyzes the behavior of masked discrete diffusion in the absence of guidance. By
quantifying the density evolution of the sampling process, we establish a baseline understanding of
the unguided dynamics. These results provide essential groundwork for the theoretical analysis of
discrete diffusion with CFG in the Section 3.

14
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B.1 DENSITY EVOLUTION ALONG THE FORWARD PROCESS

The forward process in the masked discrete diffusion process gradually absorbs all the mass to the
masked state V. In practice (Campbell et al., 2022; Lou et al., 2023), the forward transition rate

matrix is parametrized by Q; = o (¢)( ZdD=1 IN®-+ Q ---®Iy) where
—

dth
1 ... 0 0

Q=1|: " i (16)
0 -~ -1 0
1 1 0

For simplicity, we consider o(t) = 1 in the paper. According equation 16, we express the densities
along the forward process in the following proposition whose proof is deferred to Appendix C.

Proposition B.1. Let u; be the solution to %,ut = Q¢ur with initial distribution pg = p and Qy
given above. Then

et 0 0 o\ ¥
0 et 0 0
=1 ST = AP (17)
0 0 et 0
—t —t —t
1—e 1—e o 1l—e 1 NxN

’

pe(x) = e 1ML — e H)PIUME R =y (y).

Y YuM=TUM

As a consequence, for any x € S with UM = UM(z) :== |{i: z; < N}

B.2 DENSITY EVOLUTION ALONG THE REVERSE PROCESS

For any distribution . on S, the forward process equation 1 initiated at 1 induces a reverse process,
whose transition rate matrix is denoted as @Q;[p]. An explicit expression of Q¢[u] can be derived
from the property in equation 3 and the forward densities in Proposition B.1.

Proposition B.2. The sequence of reverse transition rate matrices associated with p (initialization
of the forward process) satisfies that for all 0 <t < T,

e ! Z”’“UM:?/UM p(u
m(u

)
~ T ZW"UM_=1'UM ¥ Ty 7& N = Yis T\i = Y\is

Qt[:u‘](yax) - _Zue./\f(a:) Qt[,ul](u7x)7 y=ux,
0, otherwise.

With the above expression of the reverse transition rate matrix, in the low-dimensional setting of
D =1, we derive the density formulas along the reverse sampling dynamics in the following theo-
rem, with the proof deferred to Appendix C.

Theorem B.1. In the discrete diffusion models on S, if D = 1 and q; satisfies the sampling dynamics
%qt = Qr—¢[p]g: with initial condition qo = 0, we have that for all 0 <t < T,

1- 2= Now),  z=1,2,---,N—1,
a(w) = {( e ) (18)
TH_e-T z = N.

Remark B.1 (No initialization error). Unlike other diffusion processes, the absorbing discrete dif-
fusion does not induce any initialization error. Even though we approximate the initialization in
equation 2 by the point mass at the masked state, the sampled distribution recovers the data distri-
bution, i.e., qr = p. Same property also holds for masked discrete diffusion with CFG, as shown in
Section 3.
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C PROOFS - PROPERTIES OF MASKED DISCRETE DIFFUSION MODELS
WITHOUT GUIDANCE

Lemma C.1 (Diagonalization of Q). @ = XAX ! with A = Diag(—1,---,—1,0) and
1 -1 - -1 -1 0
1 o --- 0 0 0
0 1 0 0 O
X=X"1= .
0 0 1 0 0
0 0 0 1 1),y

Proof of Proposition B.1. The solution to equation 1 with initial distribution pg = p can be ex-
pressed as

D
p=exptQu=exp(ty Iy®@-- Q - @In)u
d=1 dth

—

exp(tIN®- Q - ®In)p
dth

.
Il
—

[
Mo
D
]
o
=
&

"'®X)(IN®"'\/L"'®IN)(X®"'®X)_1)M
dth

=~y
Il
—

—

dth
X® - 0X)exptA)®P(X @ ® X)

= (Xexp(tA)X 1) ®Du,

Il
—

—~

where the second identity uses the fact that (Iy ® --+ @ -+ ® In)q commute with each other.
~~

dth
Then the statement follows from Lemma C.1. O

Proof of Theorem B.1. With the expression of the distribution along the forward process, we can
write the reverse transition rate matrix based on Proposition B.2. We have

0 0 0 p(1)
) —t ot 0 0 0 p(2)
Q= = = : (19)
1—e 1—e
00 - 0 p(N-1)
00 --- 0 -1 NxN
The eigenvalues and eigenvectors of () are given by
M=X=-=Ay_1=0, Ay=-1,
1 0 0 p(1)
0 1 0 p(2)
711: 7_’2: : ) 712’]\/'—1: ,UN = .
0 0 1 p(N —1)
0 0 0 -1
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The eigenvalue decomposition of @ is given by Q = X DX ~! with D = diag(0,0,---,0,—1) €

RNXN
10 0 p(1)
0 1 0 p(2)
X = X_l = .
00 1 p(N—1)
0 0 0 —1

NxN

A simple computation tells that

T—t T s B B l—eT _
exp( [ Qrds) mew (| 15 545Q) = Xexp (In(7==)D)X !
10 0 (1—1==0)p(1)
01 0 (1-1<0)p2)
0 1 (1-{=%r)p(N = 1)
0 11—_5:; NXxXN

Along the reverse sampling dynamics, we have g, = exp ( fot Q1-5ds)qo, which implies

—(T—1)
)+ (1 - = px)g(N), z=1,2,---,N—1,
Qt(x) — qlo_(pi)(Tit() 1—e—T )p( )QO( ) (20)
1;8—T QO(N)7 x=N.
Last, the theorem follows from plugging in ¢y = d . O

D PROPERTIES OF MASKED DISCRETE DIFFUSION MODELS WITH CFG
WHEN D =1

Proof of Theorem 3.1. Notice that the reverse transition rate matrix Q7" = Z=“Q,[p*"] :== ZQ,.
Following the same computation in the proof of Theorem B.1, we have

=t . T ems A - l—e T _ o
exp (/ ZQT_Sds) = exp (Z/ T efstQ) = X exp (,Z‘,’ln(ﬁ)D)X_1
0 t
.. 0 (1 _ (11:66{7; )Z)pz,w(1>
01 0 (1-(EEEE)
1 (1 (=202 (V- 1)
0 (1==r)? NN

Along the reverse sampling dynamics equation 10, we have ¢;"* = exp ( fot Z QAT,Sds) p7", which
implies

zZ,w —e T-O\Z , w 2, w
qz,w(x) _ 90 (:I’;) +)(12_ ! 1e_€—T ) b (x)qo (N)v = ]-7 27 e 7N - ]-v (21)
t - _—(T—t zZ.w
(55=r) @ (), x = N.
Last, the theorem follows from plugging in g5’ = 0. O

Proof of Proposition 3.1. According to Theorem 3.1, in both cases, the sampled distribution is the
same as the tilted distribution, i.e., g7 = p***.

In case (1), it is obvious that p*** = p(+|21).
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In case (2), we have p™* (z) oc (220 )wp(412). Under Assumption 1.1, we have

p(z)
”_ TuEmE TEX S
p(zlz1) _ p(z]z1)
p(z) ) >, akp(;lzk)’ €51,
0, otherwise.
Then Proposition 3.1-(2) is proved. O

Proof of Proposition 3.2. The result directly follows from Theorem 3.1 and the formula
TV(u1, p2) = 5 32, (@) — pa (). 0

Definition D.1 (Local mean and covariance). For any probability distribution p on S and any subset
A C S, the local mean and local covariance of 1, on A are defined respectively as

= S pa@), Sale) = 3@ - male) e - male) ),
T€EA T

where pa(x) = pu(x)/ >, c 4 1(y) is the restriction of pon A.

Lemma D.1. Under the assumptions in Proposition 3.1, for all w > 0, Yx\g, (g7
Sxns, (p(]21))-

Proof of Lemma D.1. According to Proposition 3.1,
ma\s, (a7 ") = Z zp(x|z1)/ Z (ylz1) = ma\s, (p(:21)),

zEX1\S1 yeX1\S1
and
EXl\Sl( 7 w) = Z (Sﬂ — Mx\s; (q’?’w))(x — Mx\s; (qf? l“Zl / Z y‘zl
zeX1\S1 yeX1\S1
= > (@—mans, (0(]21) (@ = maps, (0(120))Tp(|21)/ D pylz)
r€X1\S1 yEX1\S1

= Zans (p(+]21)):

E PROPERTIES OF MASKED DISCRETE DIFFUSION MODELS WITH CFG
WHEN D = 2

Proposition E.1. When D = 2, denote Z = Z*% = % o p(x)”“p(x|z)'T". Then the guided

.. . . . A —t A
reverse transition rate matrix is given by Q7" = t<—=Q*" s.,,

%a i =y # N,x\y = N # y\
) p(yi)_w€(§i|z)l+wa vi=N#y,r;,=y;,=N
Q™" (y,r) = @)Zi—(mm ri=yi # N,xyy =y =N
= S p(uy) " p(u2) Y,z =y = (N,N)
0, otherwise.

Proof of Proposition E.1. For any z,y € S withx; = y; # N and 2; = N # y;, according to
equation 9, we have

R x) = QF T —w M) T I+w _ pt(y) —w pt(y‘z) 14w
Q" (y,w) = QF (y,2) ' Qu(y, x) N (pt(af)) (pt(x\z))
p(y) )~ e *p(ylz) i
1—e ")p(y:) 1 — e )p(yil2)

672t

=

18



Under review as a conference paper at ICLR 2026

et ply) “pylz)

1 —e" ply))~p(yil2) v
_ e—t Zz,'wpz,w (y)
L— e~ p(y)~plyilz) '+
where the third identity follows from Proposition B.1, and the last identity follows from the def-

inition of p*". Next, following the same approach, for any x,y € S with x; = N # y; and
z; = y; = N, we have

14+w

Qtz,w(y x) — (pt(y))—w(pt(y‘z))l+w

pe() pe(z]2)
_ (eit(l — e )p(yi) )*w(eit(l — e p(yilz) ) I+w
(1—et)2 (1—et)2
_ e_t —w 14w
= T o=tPW) " p(yil2)
Last, the other cases for different (y, x) follows from the definition of the transition rate matrix,0
equation 3 and equation 8. O

Proof of Theorem 3.2. Our proof follows from the following steps.

Step 1: represent the reverse transition rate matrix blockwisely. The matrix Q%" in Proposition E.1
can be represented blockwisely as

R ... 0 L
Qz,w = ”z.w Tz w ’
0 .. RJ\}—l R L]\}—l R
0 - 0 MEvoY,LEv
Forall: =1,2,---N —1,
o p(i,1) \~w/ _p(i,l]z) 14w
0 0 (Zz(l_’(;)vl)) w(zl(p(;l,l\)z))Hw
R 00 --- p(i,2 - p(i,2|z
Rf’w — . . (le(z,l)) (.Elp(ul\z)) 7 (22)
o plig) \~®( plisilz) \1+w
0 0 >, (i) (Shis)
LY = (23)
(5 e () 0 0
: 0
0 (SR T (S ) :
0 0 (1 pG, D)~ (S, p(is 1]2) T

00 (S D) " (Sep1l)
e 0 0 (Xp(1,2)) (.le(l,2|z)) (24)
14w

00 - ,Zj(le(l,j))fw(zlp(l,jIZ))

where we used the definition of Z and marginal distributions.

Step 2: Eigenvalue decomposition for Q*™ Since Q=¥ is upper triangular, its eigenvalues are diag-
onal entries. Foralli,j =1,2,--- | N — 1, define

o w2 PBD PG U T 3 e ) el (25)
C S D) (G (2 p(,9) T (e 1) T
CN = z311,12 p(ll’b)_wp(l1712‘z)l+w _ le,lz p(ll,lz)_wp(l1,l2|z)l+u’ .
Sy (S, pll, 12)) ™ (4, pllslaf2)) Yy (S0, 2l 1)) (3, ol 12]2)
(26)

dn :
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Then the set of eigenvalues for Q**, denoted as {\; ]“’}Z je[v] can be represented as

Ny == AN =0y =—¢, i=1,2,---,N-1,
Mo = —dy A = —Z(1/en +1/dn), j=1,2,--- ,N—1.
The associated eigenvectors to A", denoted as @ = (1, -+ , )T, satisfies

Rf““ +LZ“’EN—/\ a, 1=1,2,,N—1

(M= =" L") iy = Ay
l

The eigenvectors can be studied in two cases:

(1) When1 < ¢ < N — 1, we can pick @y = 0. Then for{ = 1,2,--- ,N — 1, Rlzwa =
/\?)’;’ﬁl. For [ # i, we pick @; = 0. For [ = 14, i, is the eigenvector to RZ associated with
the eigenvalue \;°: for j = 1,2,--- N — 1, we pick @; = i, ; = €. For j = N, we
pick u; = U; v to be

( p(i, 1)_wp(7:v 1|Z)1+w . p(i, N - 1)_wp(i7 N — 1|Z)1+w —1)T 27)
Sup(@ D)7 )T 3 p(a, ) (e Uz)

(2) Wheni = N, @iy # 0. We need to solve (MZ”““ S LY w)uN = A"ty first. For
different j, we pick @y = in,; with 4y ; = €; for j = 1 N —1landforj = N,

?,_L'N’j =
((le(lv1))7“}(211)(1»”2)1“’ (le(l N —1)""(2,p(l, N — 1]2))"*" )
T — ’ AT —dn :
(28)
Next for each j = 1,---, N, we solve (Rlzw - )\f\}f;IN)ﬁlj = —LZ Yy ; forall | =
1,2,--- N — 1. We get
p(lg) " plgla)t L
. - N, - €5, le,"'aNf]-a
i = Sou )= wp(l, jlz)tte ™ (29)
(G, n (1), N (N = 1), n(N)) T j =N
with
1 1 1
7 l/ = Z,W Z,W + Z, W lvl/ v Zal/ 1+u1’
i n (1) /\NN(/\N’N+CZ /\I\}Nerl’)p( )" p(ll2)
N (N) = - (Azw sz 1) ep(l, U2
N.N

Collect all the eigen information above, we diagonalize Qv blockwisely: Qv
Xz,tz,w(XZ,w)—l s.t.

D** =Diag(D{", -+, DY, D5"), D" = Diag(A7y", - A7y _y, ATy for each i

N-1>
Xlz,w AO . o) _}:/12711)
o X;* ... 0O -y
Xov=1 C e ; ,
O O T Xlz\fijl _?]\zf,iul
o) o - o0 X"
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% o 0 XA
o X" SIS i e
(X=)7t=| P : :
0O 0 . XFY KR VEUAG
o o (0] Xy
where foreacht=1,--- N — 1,
Df,w :Dlag(oa aoa Cl)’
. | | .
X" = <€1 s EN_t1 ULN> = (X7")"'with @; y defined in equation 27
| | |
A I y
Y;,Z’w = -0 Uil = Ui N—1 U;N with {ﬁi,j }j=1 defined in equation 29,
and fori = N,
-[)]Z\;w _ Diag(—dl, e _deh _ZZ,w/CN _ Zz’w/d]v),
) I | X
X0 = (é’l <o+ Eén-1 UNN | = (Xf\,’w)_lwith i, defined in equation 28.
I

Step 3: solve the equation equation 10 explicitly The solution to equation 10 can be computed using

the formula ¢; " = exp ( fot Q7" ,ds)qg", where the matrix exp ( fot Q7" ds) is computed using
the eigenvalue decomposition in Step 2. More specifically,

t A w t e—(T—s) R R 1— €_T R R )
> _ zZ,w\ Z,w R Z,w\—
exp (/0 QTisds) = exp (/0 1 o= ds@ ) = X*" exp (ln(i1 —— )D )(X )
XY o o -y
o X7 (o R, fAt
X K . 1-— 67T p=w 1— 67T P
= : : . ) Dlag((l—e—(T—t)) T ’(41_6—(T—t)) N )
o O X]Z\;fl _Y;fﬁﬂl
(@) (0] . (@) Xy
D Y S 8 A e
(@) Y O XUV XY
0O 0 . XY KRR A
(@) (@) O XY
Oz, W —e T HZ W Gz w rz,w
X () X 0 M;
B 6 S X e T DYy 2w M;,w
Nfl(l,ef(qu) N—1 N—1
-2, w —e T HZW &2 w
0 o X3 =) XY
Foreachi=1,2--- /N —1
1—e—(T—1) ; p* " (i,1)
Lo 00 (T= () st
N 1— e_T Azaw A . :
P I L e K .
i\~ i 1—e=T=D\eNp™ ™ (,N=-1) |’
e 0 o 1 (1= (5%=r)") e
_e(T=t) | ..
0O --- 0 (%)Cz
Mz,w o Xz,w( 1—e 7 )ﬁiz*sz,w}}z,sz,w - }}z,w( 1—e T )f)j\;“’f(z,w
i T4\ =m0 i L N i\ o—T-v N
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s (i Zw(;
(1 - (1 e—T)dl) Zpl pzfgu(l,)l) 0 BinZp* (i, 1)
= : . L : N Z:w '
0 e (L= () ) S Biv-a 2P N — 1)
0 0 BiNZ Y, 7" (4,1)
where foreach¢,5 =1,2,--- N — 1,
1 1—e (T—t) 1 1—e T
Bi,j = oW 1- T )Cl) - zZ,Ww (1 - ( -7 %
Ci( NN+CZ) 1—e dﬂ()\NN+d1) 1—e
1 1 1 1—e ™D _sw
- Nz,w Z, W0 + Z, W 1- 7_)\1\”\[7 30
AJ\;N(/\A}N+@ /\N’N+dj>( 1—e T ) ) G0
1 l—e T 1—e Tt ..
BiN =— —x —— ) = (—————) V). 31)
Ay Ta) 1—e l—e
For ¢ = N, we have
Sz, w 1- 67T DV G R
XN (W) NXy
_e—(T—1) R
(ll_ﬁ)dl 0 5N,1ZZzP (1, 1)
_ : . oty :
0 (ﬁ)dz\pl ﬁN,Nflelp%w(laN_ 1)
0 .. 0 (1_167:3(3“;” ) —ANN
where foreach j =1,2,--- N — 1,
1 1 — e (T-1) 1— e (T-1) w
BN]‘ = ERT) ( < T - c T _ANN)~ (32)
- d;( A3y Nn +d;5) 1—e~ 1—e-
Now, we can apply the initial condition ¢;™ = dn to compute g;
g = exp / Q7 ds) g™
X7 () PV X o MY
= i Oz, W 7eT. DY ozaw rz,w
O e XyZ 1(%)131%1)(1\/71 My~
-2, w —e T HZW &2 w
O o Xy (ﬁ)DA’ Xy
M (2, N)
e, RGN,
(XN (2 5=s) PN X" (5 N)
Therefore, for all 4,7 =1,2--- ,N — 1,
QtZ)w(ivj) = Mfﬁw(ja N) = 5i,jzpz’w(i7j)'
Forj=N,i=1,2,--- /N —1,
g (i, N) = M7Y(N,N) = BinZ > p*"(i,1).
l
Fori=N,j=1,2,--- ,N —1,
G (N,j) = Bn ;2 p7" (1,
1
Last, fori = j = N,
sw 1 — ei(Tit) hzw
qt’ (N’N):(ﬁ) ANN,
Last, Theorem 3.2 follows from the following definition of oy := f3;, 4, forallz € {1,2,--- N }2.
O
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E.1 SAMPLED DISTRIBUTIONS FOR D = 2

Proof of Proposition 3.3. According to equation 15 and Assumption 1.1, we have

g7 (@) o< (1/cq, + 1/day )p(a) ™ pla]z1)

a1p(z1]z1) \w a1p(z2]z1) \w arp(zlz) \w "
(Zkakp(xﬂzk) (Zkakp($2|zk)) Zkakp(:c\zk)) (w]21).

Each of the terms I, IT and 11T is within the range [0, 1] and exponentially dependent to w. Therefore,
the values of I, II and III affect the sampled distribution significantly when w is large. By eval-
uating I, II and III in different regions depending on relations between the marginal supports, we
express g7 as presented in Proposition 3.3. The last statement in Proposition 3.3 follows from the
discussion on ¢**°°(+|z1 ) in this section. O

Effect of guidance on sampled distributions. According to Proposition 3.3-(2), ¢7'"* is defined
with different weight-adjustment in 5 different type of regions defined as follows

Ri={zlz e X1,x1 € X411\ S1,1,22 € X12\ S1.2},
Ro,i = {z|r € X1,2; € S14,2\; € X\ \ Si\i)s i=1,2,
= {(E|.T c X \Sl,xl S Sl’l,xz S 51’2}7
R4 = Sl.
The above sets reflect different level of “privacy” of class z;. R4 is the shared region with other
classes. R1,Ra,, R3 are not shared with other classes. But R3 has both marginals shared with
other classes and R ; has one of the marginals shared with other classes. R; is the most private
set in class z;, with no intersection with other classes even for marginals. The associated weights
(before normalization) on different regions are give by:
AP =2
)
Cllp(xi|21) w

A3 =1+ ( )Y, =12,
2 Zke[u arp(zi|2r)

2
Z1,Ww a1p\x;|z w
A = S (e R

Ekeh arp(wi|zk)

A — (3 aip(zilz1) arp(z|21) )
* = pen, wP(@ilz) TN Y oger, anp(xlzr)

we can notice that for all w > 0, A7 > A% 2 > AZY > A", This reflects that the sampled
distribution from the discrete dzﬁ‘uswn with CF G can levemge the geometric information of the full
data distribution: the sampled distribution puts larger weights on more private regions of class z1.
We conjecture that the above fact is also true in high dimension:

Conjecture E.1. For any D > 2, discrete diffusion with CFG leverages the geometric information
from the full data distribution. More specifically, under Assumption 1.1, the sampled distribution
q7"" adapts the class distribution p(-|z1) by putting larger weights on more private regions of
class z1, where those regions with different privacy are defined based on the support sets and their

marginals.

Discussion on ¢*'*°(:|z1). Now we look at the structure of the sampled distribution as w — oo
in further detail. According to the expression of weights A**", since 1 € I;; for ¢ = 1,2 and
1 € I, the rational factors inside the parentheses is in (0, 1]. In particular, if S; # 0, i.e., class z;

| > 2. Hence %@)%) € (0,1). Therefore, as

has intersected domain with other classes,
2ker, akp(z]

w — 00, we have

AP =2, AT e{1,2), A3 e{0,1,2), AP =0
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Then, we have ¢*(:|21)| gz1.0 = 0, i.e., Supp(¢*>°(+]21)) C A1\ S1.

It is worth noting that it is possible that some sets among %1, Rz ;, R3 could be empty. Therefore,
for a general data distribution p satisfying Assumption 1.1, in order to derive ¢**>°°(-|z;) completely,
we need to first identity whether R, R ;, R3 are non-empty or not, and then compute the associated
limiting weights on the non-empty regions. In the following, we will use a simple example to
illustrate this procedure.

An example with D = 2, N = 5. We consider the data distribution p is a mixture of two classes with

equal weights: p(z) = 3p(a]21) + 3p(w]22) forall z € {1,2,3,4,5}2 with 5 being the masked

state. The heat maps for p(+|z1), p(+|22) and p are given in Figure 4. We can distinguish the regions

0200 0.200 010
pl-121) pi-12) P
0175 0175
- 00000 00000 00000 00000  0.0000 - 00000 00000 00000 00000  0.0000 - 00000 00000 00000 00000 00000 008
0150 0150

- 00000 00000 00000 00000  0.0000 < - 0.0000
0125

0.0000 - 005008 00750 01000 [N
0125

0.0000  0.0000 0100 - m- 00000 0.0000 0.100 00500 00750 | 00500 [ENILN
-0.04
-0.075 -0.075
0.0000  0.0000 ~ - 0.0000 0.0000 01000 [SOIGSGON 0.1000 [N
-0.050 -0.050
0.0000  0.0000 ~- 00000 00000 00000 00000 00000 005008 00750  0.1000 0.0000 -0.02
-0.025 " " " " 0 -0025 "
4 5 1 2 3 4 5 5
i
-0.000 -0.000 - 0.00

Figure 4: heat maps for p(-|z1), p(+|22) and p.

with different level of privacy based on our formulas. As shown in Figure 5, we notice that R3 = ()
and R1,Ro,1, Ro,2, R4 are identified with different colors. Based on the information of p, we can

Regions (Ry, Rz, 1, Ra,2, R, Ra)

Ry
59 Ra,1
Ra.2
Rz
Ra
44 x x x P
= X2
~
<
=)
2 34 . - - *
o
£
a
2 L L L X
11 L] * .
T T T T T
1 2 3 4 5
Dimension 1

Figure 5: identification of different regions.

compute the limiting weights as w — co. We have

A?,oo =2, ASHOO =loi=1, Aé,léoo = loy=1, Azl’oo =0.
Therefore, the sampled distribution ¢7'*°°(-|z1) adapts p(-|z1) by putting these weights on the 4
regions respectively, i.e.,

2p(x|z1), xeRy={(1,1)},
qz1,00(x|zl) . p(il?|21), T e RQ,l = {(27 1)7 (3’ 1))}7
’ p(z[z1), z € Ro2=1{(1,2),(1,3))},

0, otherwise,
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which implies that ¢7°°°(1,1]21) = ¢7"(1,3|z1) = ¢33, 1|z1) = 4/17, ¢7°7(1,2|z1) =

(2, 1z) = 3/17 and ¢7°°(x1,22]|21) = 0 otherwise. In Figure 6, we present the
heatmaps for the class distribution of z1, the tilted distributions and the sampled distributions with
w = 1,5,15. We can observe the following facts that match our theory.

(1) the sampled distribution deviates from the tilted distribution for all w > 0.

(2) the effects of guidance differ in different regions: as w increases, the probability mass
decreases in S1 = {(2,2),(2,3),(3,2),(3,3)}; the probability mass increases in regions
Ro1 ={(2,1),(3,1)} and Ra 2 = {(1,2),(1,3)} at the same rate; the probability mass
increases in the region Ry = {1, 1} at the largest rate.

(3) for large guldance (w = 15), the sampled distribution ¢7"* can be approximately under-
stood as g7 °°(+|z1). The last plot in Figure 6 matches our computation for g7 (+|z1).

(4) for small guidance (w = 1), the effect of guidance is also small. The sampled distribution
g7 deviates a little bit from the target distribution p(+|z1) in the way we described in (2).

In practice, people observe that the optimal guidance is usually positive but small (of order ©(1)).
Our theory and numerical observations bring insights in understanding the optimal guidance.
Roughly speaking, if we can show that the effects of guidance presented above actually compen-
sate the effect of score approximation, by quantifying the inductive bias in learning the scores, we
can rigorously analyze the optimal guidance in the CFG setting. This will be left as an interesting
future work to explore.

E.2 CONVERGENCE RATES FOR D = 2

Proof of Proposition 3.4. For simplicity, we denote A := A3"y. According to Theorem 3.2 and
Remark 3.3, the total variation distance can be computed as

TV(qf’“’, q%‘w)

z, w z W
=3 Z| ()]

IGS
1 zZ,w 1
=1 Y @) - ar (@) 207 @) + L (N N) — ar(N, )|
£ (N,N)
]- Z,W 1 1 c 1 - 1 ]. d 1 -
=2z : — (1) + —r(t — (—r(t)%2 4 Zr(t
2 X @ (15 GO + 3O+ 5 (@ + 307
Z,Ww 1 Ccay —A
+32 2 P @l (0™ @)
z1
Zow 1 d Y Y
+ =2 p T r(t)"™2 —r(t + —r(t
T e gy (0% =0 0
=14+ 4+1I+1V,
1—e—(T—1) .
where 7(t) == *5%—=r— € (0, 1). Next, we bound each term respectively.

For I, we bound the two terms inside using the following properties of function h; : y €
[1 o) Jas y~lr(t)v: h’( ) < 0and hY(y) > 0 for all y. Notice that ¢;,d; > 1 and —\ =

Z+ & =2, pl) 7 p(h]) ™ + 3, pll2) " p(la]2) Y = exp(wDiw(pi(2)p1 (1)) +

)
exp(wD1 1w (p2(-|2)|p2(-))) > 2, where we use j; to represent the i** marginal of . Therefore, we
have

1 1 1 CW1 —h(=X)

1 « 1

o o N\ = =—h(c = Coy (— —
o G+ O = |E Ty = ) = o0 (o ()
L (Lot g L fx_w_*,*_l w1
TS GO O = S oy = W) = grl®) (d;Z Inr(t)),

where c; is between c;, and —A, dj, is between d,, and —A.
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Figure 6: distributions under different guidance strengths: w = 1,5, 15. The first column presents
the class distribution of z;. The second column presents the tilted distributions. The third column
presents the sampled distributions which are obtained using exact evaluations of scores and integrals.

For IT and ITI, we bound the two terms using the property of the function hy : y € [1,00) — r(t)¥:
h%(y) < 0 and hi(y) > 0 for all y. Again, due to the fact that ¢;,d; > 1 forall l and —\ > 2, we
have

e 0 =0 = I = ) = o )

o O — ) = P B i) = - ) ),

dgy
/ H ! H
where ¢, is between c;, and —A, d;, is between d,, and —A.

Last, according to the expression of ¢;, d; in equation 25, we have

a=Y @l =ba) i o ey = 1) = exp <wol+w<p<~|x1 — 1, 2)lp(as = m),

pxg =Ulzy =1)

1 =19 = 1,2) w1
=3 (A=) s = o =1) = exp (WD olcoa = 122 = )
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For w > 1, since c}, , ¢, are between between c,, and —\ and Inc,, = O(w),In(-\) = O(w),

we have ¢, = O(w),c,, = O(w) for all z;. For the same reason, d;, = O(w),d,,, = ©(w) for

all xo. Therefore, if we focus on the order of w for w > 1 and preserve the leading order terms in
TV(¢;", q¢7"), we have

V(" 0") = Z exp(~0(w))r(t) ) 4 p(t) (O
= exp((w) exp(—O(w))r(t) O + 7(t)r (O,

where the second identity follows from Remark 3.2. O

F NUMERICAL EXPERIMENTS

F.1 DETAILS ON 1D EXPERIMENT

We consider each cluster to be defined by the following density vector:

(0.1,0.2,0.4,0.2,0.1)
The full distribution contains two classes with equal weights, each class containing two of the clus-
ters above.

Disjoint Example: we plot the class distributions and full probability distribution for the disjoint
example in Figure 7.

Distribution Comparison Distribution Comparison Distribution Comparison

B Class 1 jass B Full Probability

030 030 030

I

025

ity

2020 Zox Z02

Probabi
b:

g £
& o1s &0

010 010 010
005 0.0 005 ‘ ‘ ‘ ‘
0.00 000

o 5 10 15 2 2 o 5 10 15 2 2 0 5 10 15 2 2%
State State State

(a) Histogram for class 1 (b) Histogram for class 2 (c) Histogram for full distribution

Figure 7: Histograms corresponding to the disjoint example.

Overlapping Example: we pull the classes together to create a overlapping region. We plot the
class conditional and full probability distributions for the overlapping example in Figure 8.

N Distribution Comparison Distribution Comparison 4 Distribution Comparison
035 035 035

:?41’1 _?ﬂ?() _%‘02(!
o 0 5 10 15 20 25 0 5 10 15 20 25 o 0 5 10 15 20 25
State State State
(a) Histogram for class 1 (b) Histogram for class 2 (c) Histogram for full distribution

Figure 8: Histograms corresponding to the overlapping example.
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F.2 DETAILS ON 2D EXPERIMENT

Disjoint Example: we plot the class distributions and full probability distribution for the disjoint
example in Figure 9.

Class 1 Class 2 Full probability distribution
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0.00 0.00 0.00
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(a) Heat plot for class 1 (target) (b) Heat plot for class 2 (c) Heat plot for full distribution

Figure 9: Heat plot corresponding to the disjoint example.

Overlapping Example: we pull the classes together to create intersection between the central di-
amond regions. We plot the class distributions and full probability distribution for the overlapping
example in Figure 10.

Class 1 Class 2 Full Probability
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(a) Heat plot for class 1 (target) (b) Heat plot for class 2 (c) Heat plot for full distribution

Figure 10: Heat plot corresponding to the overlapping example.

Total variation as a function of w: in Figure 17, we plot the total variation between intermediate
generated distribution g;* along the reverse dynamics at ¢ = .5 and the final generated distribution
q7" as a function of w. We did not observe an exponential-decay when w is large, which does
not match results in Proposition 3.4. As shown in Theorem 3.2, when w gets larger, the reserve
dynamics admits sharper transitions, making the numerical method less efficient. Therefore, we
conjecture that this mismatch comes from the propagation of the numerical error along the reverse

process, and halfway through the simulation, the numerical error dominates the T'V-dynamics.

F.3 EXPERIMENTS IN 5D

Marginals of distributions: our full distribution is mixtures of uniform hypercubes, {0, 1,2}°
and {2,3,4}°, which overlap only at the single state (2,2,2,2,2)", and the target class is the one
supported on {2,3,4}5. The 2-dimensional marginals of the full distribution, class 0 and class 1
(target class) are plotted in Figures 11, 12 and 13. As introduced in Section 4, the geometry naturally
partitions the space by the number of coordinates equal to 2, denoted by k = #{d : 4 = 2}.
The case K = 0 corresponds to states unique to the target class, k& = 5 corresponds to the fully
overlapping state, and intermediate values k € {1, 2, 3,4} represent partially overlapping regions.

Experiment setting: we generate 10K samples, compute samples statistics (in Tables 1 and 2) and

Z,w

plot target class density ratios from the marginal of the generated distribution g7~ to the marginal
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of the target class distribution p(-|z) with guidance w = 1,2, 4 in Figures 14, 15 and 16 respec-
tively. Our results show the generated 2-dimensional marginals also exhibit a similar structure to the
generated distribution in 2D, that unique region has the largest per-state mass and the fully overlap-
ping region has the smallest per-state mass. As w increases, mass is shifted away from regions that

are more ambiguous (large k) to regions that are more unique to the target class (small k). These
numerical results support our discussion in Section 3.3.

Marginals for full data distribution
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Figure 11: Marginals for the full data distribution
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Figure 12: Marginals for class-0
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Figure 13: Marginals for class-1
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Probability ratios for class 1, w = 1
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Figure 14: Probability ratios from the marginal of the generated distribution ¢7* to the marginal of
the target class distribution p(+|z) with w = 1.

Probability ratios for class 1, w = 2
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Figure 15: Probability ratios from the marginal of the generated distribution ¢7* to the marginal of
the target class distribution p(+|z) with w = 2.
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Figure 16: Probability ratios from the marginal of the generated distribution ¢7* to the marginal of
the target class distribution p(+|z) with w = 4.
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F.4 EXPERIMENTS ON MNIST

We demonstrate that our findings apply in high dimensional problems and practical settings. We
trained a U-ViT network (Bao et al., 2023) for 100K iterations using the Adam optimizer with
le — 4 learning rate. The hyperparameters for the network can be found in Figure 18.

Total Variation vs Guidance Weight (t=0.50)

v o Eopinal Tl oty Parameter Value
. img_size 28
g W in_chans 1
3" patch_size 2
g embed_dim 512
depth 12
S 0.80 num_heads 8
07 mlp_ratio 4
0 gkv_bias False
0 15 20 Gj;;ancez{\ill\;eight:{j(‘;l) 120 45 50 mlp,tim.e,embed False
labels_dim 11
Figure 17: TV(¢;"",q7") as a function of w ) )
witht = .5. Figure 18: Model Configuration

We illustrate how guidance suppresses regions of intersection between classes through two case
studies. In the first, we generate samples of digit 8 under three conditions: without guidance, with
guidance, and with guidance using digit 3 as the conditioning class. As shown in Figure 19, guidance
progressively removes ambiguous samples of 8 that resemble digit 3, with the effect being especially
pronounced when digit 3 is used as the guiding distribution. A similar phenomenon is observed
when generating digit 7 conditioned on digit 1 (Figure 20). Together, these results provide empirical
evidence that the suppression of overlapping regions—predicted by our theoretical analysis in low
dimensions—extends to high-dimensional, practical settings such as image generation.

v I g ¥ RS
£ &8 £ & R
¥ %34 § 5 287X
3¢s FeFYEEFS
FiE& FE F§&ey
g & i g g Fgre
& K $ ¥ £237
g % g% I &g
(a) Generating samples of 8 with (b) Generating samples of 8 us- (c) Generating samples of 8 but
no guidance ing guidance with w =1 using the class of number 3 as the

guiding distribution using w = 1

Figure 19: Applying guidance reduces the are of intersection between classes. Notice how number
8’s that look similar to a 3 disappear.
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(a) Generating samples of 7 with (b) Generating samples of 7 us- (c) Generatmg samples of 7 but

no guidance ing guidance with w = 2 using the class of number 1 as the

guiding distribution using w = 2

Figure 20: Applying guidance reduces the area of intersection between classes. Notice how number
7’s that resemble a 1 disappear.

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

This work made use of large language models to assist with proofreading and improving the clarity
of the writing. All research ideas, theoretical development, and experiments were carried out solely
by the authors. When used for coding, it was solely used for plotting purposes.
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