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Abstract
Multi-agent systems (MAS) have become a re-001
search hotspot since the rise of large language002
models (LLMs). However, current review pa-003
pers lack a thorough examination of the di-004
verse applications of LLM-based multi-agent005
systems (LLM-MAS). This paper presents006
a comprehensive survey of applications of007
LLM-MAS. We provide an overview of the var-008
ious applications of LLM-MAS in (i) solving009
complex tasks, (ii) simulating specific scenar-010
ios, and (iii) evaluating generative agents. Also,011
we highlight several challenges and propose012
future directions for research in this field.013

1 Introduction014

Multi-agent systems (MAS) have seen significant015

expansion owing to their adaptability and ability to016

address complex, distributed challenges (Balaji and017

Srinivasan, 2010). Compared to single-agent set-018

tings, MAS provide a more accurate representation019

of the real world, as many real-world applications020

naturally involve multiple decision-makers interact-021

ing simultaneously (Gronauer and Diepold, 2022).022

Previous research on MAS has predominantly fo-023

cused on reinforcement learning (RL)-based agents,024

as illustrated by their application to classic tasks025

ranging from Atari video games (Mnih, 2013)026

to robotic socket-insertion challenges (Brockman,027

2016), trained in specific environments. However,028

due to limitations in their parameterization and a029

lack of general knowledge, these agents struggle to030

take informed agent actions in unconstrained, open-031

domain scenarios requiring general knowledge.032

Compared to RL-based MAS, LLM-based multi-033

agent systems (LLM-MAS) demonstrate the ability034

to handle a wide range of tasks in open-domain en-035

vironments (Shinn et al., 2023). By leveraging the036

generalization capabilities and linguistic modality037

of LLMs, LLM-MAS enable novel applications038

that are not achievable with RL-based MAS, span-039

ning domains from healthcare (Tang et al., 2024a)040

to embodied AI (Patel et al., 2024). In recent years, 041

numerous studies have explored the diverse appli- 042

cations of LLM-MAS. However, a comprehensive 043

review of LLM-MAS applications is still lacking. 044

In this paper, we provide a comprehensive per- 045

spective on the application of LLM-based multi- 046

agent systems (LLM-MAS). Figure 1 presents an 047

overview of applications of LLM-MAS. There are 048

three categories of applications of LLM-MAS: (i) 049

Solving complex tasks. LLM-MAS perform a wide 050

range of tasks, including simple tasks that do not re- 051

quire long trajectory decisions, complex tasks that 052

involve long trajectory decisions, and even some 053

general-purpose tasks. (ii) Simulating for specific 054

scenarios. LLM-MAS simulate diverse scenarios, 055

facilitating the exploration and validation of rel- 056

evant theories. (iii) Evaluating and Training on 057

generative agents. On the one hand, compared 058

with traditional evaluation on agents, LLM-MAS 059

have the capability of dynamic assessment, which 060

is more flexible and harder for data leakage (Chen 061

et al., 2024c). On the other hand, agents can be 062

trained in LLM-MAS, concluding various training 063

methods. 064

Compared to previous surveys (Guo et al., 2024a; 065

Li et al., 2024d; Han et al., 2024; Gronauer and 066

Diepold, 2022) (shown in Table 1), this survey of- 067

fers the following key contributions: (i) A clear 068

taxonomy for LLM-MAS applications. We present 069

a framework to organize and categorize different 070

types of LLM-MAS applications. (ii) A definition 071

of the environment in LLM-MAS applications. We 072

provide a specific definition of the LLM-MAS en- 073

vironment, designed to fit the needs of LLM-MAS 074

applications. (iii) A summary of available re- 075

sources for LLM-MAS research. We compile a list 076

of open-source frameworks and datasets to help 077

researchers study LLM-MAS applications. (iv) 078

Challenges and future directions for LLM-MAS 079

applications. We discuss the current challenges 080

in the field and suggest potential areas for future 081

1



Evaluating  and 
Training on
Generative

Agents

Solving
Complex

Tasks
Simulating Specific

Scenarios

EvaluatingSocial
Physical

Social
Media

Economics

PoliticsTiny
SocietyWireless

Network

Game

Tasks without
long trajectory

Tasks within long
trajectory

General
tasks

Training

Strategy

Emotion

Fine-Tuning on
MGAS

Synthesizing Data
For Training

Reinforcement Learning
 on MGAS

Profile Action

LLM-based Multi-
Agent Systems

Memory

Generative Agent Environment

RulesLLM Intervention
interfacesTools

Generative Agent ...

Knowledge
oriented tasks

Interaction
oriented tasks 

Multi-stage
tasks

Figure 1: Overview of the application and construction of LLM-MAS.

Table 1: Comparison of Related Works

Reference Environment
Definition

Application
Oriented

Survey on Solving Tasks
(Task Application View)

Survey on Training &
Evaluation of Agents

(Guo et al., 2024a) × × × ×
(Li et al., 2024d) × × × ×
(Han et al., 2024) × × × ×
Ours ✓ ✓ ✓ ✓

research.082

2 Core Components of LLM-MAS083

LLM-MAS refer to systems that include a collec-084

tion of generative agents capable of interacting and085

collaborating within a shared environmental set-086

ting (Wang et al., 2024c). We will analyze genera-087

tive agents and the environment in the following.088

2.1 Generative Agents089

Generative agents refer to the components of090

LLM-MAS that have role definitions, can perceive091

the environment, make decisions, and perform com-092

plex actions to interact with the environment (Wang093

et al., 2024a).094

Compared to traditional agents, generative095

agents can be able to perform complex behav-096

iors, such as generating complete personalized blog097

posts based on historical information (Park et al.,098

2022). Therefore, in addition to using LLMs as099

the core, generative agents also require the follow-100

ing characteristics: (i) Profiling refers to agents101

typically assuming distinct roles, each accompa- 102

nied by detailed descriptions that encompass their 103

characteristics, capabilities, and constraints(Guo 104

et al., 2024a). (ii) Memory stores historical trajec- 105

tories and retrieves relevant memories for subse- 106

quent agent actions, enabling the ability to take 107

long-term actions while solving the problem of 108

limited LLM context windows. There usually are 109

three memory layers: long-term, short-term, and 110

sensory memory (Park et al., 2023). (iii) Planning 111

is to formulate general behavior for a longer period 112

in the future (Yao et al., 2023). (iv) Action exe- 113

cutes the interaction between the generative agent 114

and the environment (Wang et al., 2024a). Gener- 115

ative agents are required to choose one of several 116

candidate behaviors to execute, such as voting for 117

whom (Xu et al., 2024a), or generate behaviors 118

without mandatory constraints, such as generating 119

a paragraph of text (Li et al., 2023b). 120

Generative agents can communicate with each 121

other to achieve cooperation within the system. 122

The communication of generative agents can be 123
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Figure 2: Core components of LLM-MAS environment. Using a software company as an example, agents function
within the framework of rules, which guide and govern their operations. Meanwhile, tools provide APIs for
development, such as the “git push” command, which agents can access. Through the intervention interfaces, the
environment can be modified according to user requirements, enabling continuous optimization of the software.

roughly divided into two purposes. (i) The first124

purpose is to achieve collaboration, share the infor-125

mation obtained by themselves with other intelli-126

gent agents, and to some extent, aggregate multiple127

intelligent agents into a complete system, achiev-128

ing performance beyond independent intelligent129

agents (Yuan et al., 2023); (ii) The second purpose130

is to achieve consensus, allowing for greater simi-131

larity in behavior or strategy among some agents,132

thereby enabling faster convergence to the Nash133

equilibrium (Oroojlooy and Hajinezhad, 2023).134

The type of communication content can be135

roughly divided into two types: natural language136

and vector. Natural language forms of commu-137

nication have high interpretability. Still, they are138

difficult to optimize, making them more suitable for139

pursuing consensus, such as in coding (Dong et al.,140

2024) and job fair systems (Li et al., 2023b). Vector141

forms are more efficient in terms of communication142

and easier to optimize using policy gradients, mak-143

ing them commonly used for achieving cooperative144

objectives (Liu et al., 2024b).145

2.2 Environment146

Environmental settings include tools, rules, and in-147

tervention interfaces, which are illustrated in Figure148

2. (i) Rules define the mode of communication be-149

tween generative agents or the interaction with the150

environment, directly defining the behavioral struc-151

ture of the entire system. Figure 2 shows the order152

of agents talking and acting under rules. (ii) Tools153

(optional) create an action space for each genera-154

tive agent to take action. Figure 2 illustrates the155

common tools in a software development scenario,156

including IDEs and Git. Their APIs, including157

git commands, compilation tools, runtime tools,158

and debugging tools such as “git push”, can be159

accessed by agents. (iii) Intervention interfaces 160

(optional) provide an interface for external inter- 161

vention systems, which can come from any exter- 162

nal source, like human (Wang et al., 2024b), or 163

a rule-based model, (Chen et al., 2024c), even a 164

generative agent (Chen et al., 2024e). Figure 2 il- 165

lustrates an example of intervention interfaces in 166

the software development: requirements analysis in 167

agile development. Throughout each development 168

cycle, users from external have the opportunity to 169

communicate with the software company to de- 170

fine and refine their requirements. This ongoing 171

collaboration allows the software company to ad- 172

just the development process based on user needs, 173

ensuring timely intervention and alignment with 174

expectations. 175

3 LLM-MAS for Solving Complex Tasks 176

In this section, we explore the application of 177

LLM-MAS to solving complex tasks. We begin 178

by categorizing LLM-MAS based on the complex- 179

ity of the tasks they address. Next, we provide an 180

overview of the relevant code, datasets, and bench- 181

marks available for these applications. Finally, we 182

discuss the evaluation metrics used to assess per- 183

formance in solving complex tasks. 184

3.1 Categories of LLM-MAS based on task 185

complexity 186

We classify LLM-MAS into three distinct cat- 187

egories based on the complexity of tasks they 188

handle: (i) LLM-MAS designed for specific tasks 189

that do not require long trajectory decisions, (ii) 190

LLM-MAS tailored for specific tasks involving 191

long trajectory decisions, and (iii) LLM-MAS that 192

are not specialized for any specific tasks. 193

Specific tasks that do not require long trajectory 194
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decisions. Single tasks refer to tasks without195

requiring long trajectory decisions. This type of196

task is commonly seen in tasks requiring knowl-197

edge, where techniques from multi-agent systems198

are transferred to existing classic tasks, such as199

Visual Question Answering (VQA) (Jiang et al.,200

2024), tasks in science (Song et al., 2024), etc.201

Usually, this type of task has a short context length.202

It is LLM-MAS technology that optimizes this203

problem. Collective decision-making is commonly204

used in this type of task. Compared with a single205

agent method, such as self-consistency (Wang206

et al., 2023), LLM-MAS with collective decision-207

making can achieve improved performance with208

less prompting for the same task (Du et al., 2024a).209

The performance of collective decision-making210

depends on the capabilities of individual agents. As211

tasks grow more complex and decision trajectories212

lengthen, the capabilities of a single agent become213

insufficient.214

Specific tasks that require long trajectory215

decisions. Complex tasks are defined as those216

that require decisions over long trajectories. They217

are typically encountered in multi-stage scenarios218

where the collaboration of multiple agents is essen-219

tial for finding a solution (Chen et al., 2024f). Soft220

development is a representative scenario requiring221

multi-stage collaboration (Islam et al., 2024). As222

a representative of this domain, ChatDev (Qian223

et al., 2024a) leverages software engineer agents in224

distinct roles to collaboratively develop software.225

Further, the scaling law is explored in this226

scenario (Qian et al., 2024b), but no significant227

pattern was observed. Another typical scenario is228

long-context tasks. LONGAGENT (Zhao et al.,229

2024a) and Chain of Agents (Zhang et al., 2024c)230

apply MAS technology to split the long context,231

enabling smaller models like LLaMA-2 7B to232

possess strong contextual capabilities, even better233

than GPT-4. Similarly, embodied reasoning and234

planning are also a representative scenario requir-235

ing long trajectories of collaboration (Dasgupta236

et al., 2023). Agents solve their respective subtasks237

and merge the results, which introduces higher238

communication costs and challenges related to239

information aggregation.240

241

In LLM-MAS, fully connected communication242

poses significant challenges, including a combina-243

torial explosion and privacy risks. To mitigate these244

issues, researchers have focused on enhancing com-245

munication efficiency. For instance, some studies246

explore methods to accelerate agent interactions 247

through nonverbal communication techniques (Liu 248

et al., 2024b), while others aim to streamline com- 249

munication by reducing the length of generated 250

messages (Chen et al., 2024g). These approaches 251

collectively address the inherent limitations of fully 252

connected communication in LLM-MAS. Among 253

the works, DroidSpeak achieves up to a 2.78× 254

speedup in prefill latency with negligible loss in 255

accuracy. 256

3.2 Resources for solving complex tasks 257

We analyze common LLM-MAS for solving com- 258

plex tasks in Table 2, including code, datasets, and 259

benchmarks. 260

Datasets. Among the datasets, QA-style datasets 261

are the most commonly used, a trend that reflects 262

the legacy of traditional NLP task-specific datasets 263

and benchmarks. ToolBench (Guo et al., 2024b), 264

SRDD, ToolAlpaca (Tang et al., 2023), etc. are 265

specifically designed for agent tools. Overcooked- 266

AI (Carroll et al., 2020) is a benchmark for Human- 267

Computer Interaction (HCI) in the past, which il- 268

lustrates the potential to transform the game envi- 269

ronment originally used for RL based MAS into 270

LLM-MAS. 271

General Frameworks. MetaGPT (Hong et al., 272

2023) assigns different roles to generative agents to 273

form a collaborative entity for complex tasks. Gao 274

et al. (2024) propose AgentScope with message 275

exchange as its core communication mechanism. 276

Open AI proposes Swarm (OpenAI, 2024), an ex- 277

perimental multi-agent orchestration framework 278

that is ergonomic and lightweight. KAOS (Zhuo 279

et al., 2024) addresses the challenges of resource 280

coordination management by proposing a unified 281

user experience across various foundational soft- 282

ware platforms. 283

3.3 Evaluation metric of solving complex task 284

Performance on specific tasks. Table 2 high- 285

lights task-based evaluation as an intuitive and 286

convenient method for assessing the performance 287

of LLM-MAS. Illustrative examples include the 288

AppAgent system (Zhang et al., 2023b), where 289

performance is gauged by the average number of 290

steps taken and tools utilized by an agent to com- 291

plete a task. Similarly, the BOLAA framework 292

(Liu et al., 2023c) employs recall and question- 293

answering (QA) accuracy for applications such 294

as intelligent physical examination retrieval as 295

key evaluation metrics. Furthermore, in scenar- 296
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Table 2: Codes and Benchmarks in LLM-MAS for solving task studies. “No Code” or “No Benchmark or Dataset”
means the code or benchmark is unavailable.

Field Subdomain Paper Code Benchmark and Dataset

Tasks without
long trajectory

decision

Knowledge oriented tasks

(Zhao et al., 2024c) Code Link MCQA
(Wang et al., 2024c) Code Link FOLIO-wiki

(Chen et al., 2024e) Code Link StrategyQA, CSQA, GSM8K, AQuA,
MATH, Date Understanding, ANLI

(Chen et al., 2024a) Code Link TriviaQA
(Wang et al., 2024d) Code Link TriviaQA
(Liang et al., 2024) Code Link MT-Bench
(Lei et al., 2024) Code Link MATH

(Zhang et al., 2024a) Code Link MMLU, MATH, Chess Move Validity
(Cheng et al., 2024) Code Link ESConv dataset, P4G dataset
(Tang et al., 2024b) Code Link Trans-Review, AutoTransform, T5-Review

Interaction oriented tasks (Zhang et al., 2024b) Code Link RoCoBench,Overcooked-AI
(Zhang et al., 2023a) Code Link Overcooked-AI

Tasks within
long trajectory

decision
Multi-stage tasks

(Qian et al., 2024a) Code Link SRDD
(Du et al., 2024b) Code Link SRDD
(Yue et al., 2024) Code Link SMART (self)
(Liu et al., 2023c) Code Link WebShop
(Lin et al., 2024) Code Link FG-C, CG-O

(Islam et al., 2024) Code Link HumanEval, EvalPlus, MBPP,
APPS, xCodeEval, CodeContest

(Shen et al., 2024) Code Link ToolBench, ToolAlpaca

General tasks (Li et al., 2023a) Code Link CAMEL AI Society, CAMEL Code,
CAMEL Math, CAMEL Science

ios involving multi-embodied agents collaborating297

within simulated or real-world environments, the298

success rate on specific tasks offers a direct and ef-299

fective performance measure (Chang et al., 2024).300

Communication cost analysis. The concern lies301

in the operational cost of the system. Given that302

a substantial proportion of contemporary systems303

incorporate LLM-MAS as a pivotal module, the304

additional expenditure incurred during system op-305

eration has emerged as a pivotal area of interest. As306

an illustrative example, in the evaluation of Droid-307

Speak (Liu et al., 2024b), the response time has308

been used as a metric to evaluate the acceleration309

of the method.310

4 LLM-MAS for Simulating Specific311

Scenarios312

This section will illustrate the application for313

LLM-MAS in simulation. LLM-MAS are applied314

by researchers to simulate certain scenarios to study315

their impact on specific subjects such as social sci-316

ences. On the one hand, compared with rule-based317

methods (Chuang and Rogers, 2023), generative318

agents with natural language communication can319

be more intuitive for humans. On the other hand,320

environment determines the properties of the simu-321

lation, which is the core of the entire simulation.322

4.1 Categories of simulation scenarios 323

The typical scenarios for LLM-MAS simulations 324

are described as follows. We will introduce the 325

following work according to the subject. 326

Social domain. Social large-scale experiments 327

in the real world have high costs, and the sheer 328

scale of social participation can sometimes esca- 329

late into violence and destruction, posing potential 330

ramifications (Mou et al., 2024). Therefore, it is 331

necessary to simulate in the virtual environment; 332

simulation can solve the problem of excessive over- 333

head in the real environment and can simulate the 334

process in the real world for a long time at a faster 335

speed (Li et al., 2024a). At the same time, the 336

whole process can be easily repeated, which is con- 337

ducive to further research. Researchers have done 338

a lot of work to simulate social media scenarios. 339

Based on the social media simulation archetype 340

(Park et al., 2022), Park et al. (2023) propose Stan- 341

ford Town, which leads to a one-day simulation of 342

the life of 25 agents with different occupations in 343

a small American town. At the same time, there 344

was work on emotional propagation influence (Gao 345

et al., 2023b), information cocoon room based on 346

recommendation scenario research (Wang et al., 347

2024b), and study of social movements (Mou et al., 348

2024). Pan et al. (2024) propose a huge scale of 349

agent simulation, increasing the number of agents 350

to 106. In social games, like Werewolf (Xu et al., 351
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2024a), Avalon (Lan et al., 2024), and Minecraft352

(Gong et al., 2024) for LLM-MAS simulation are353

attempted.354

Physical domain. For the physical domain, the355

applications for generative agent simulation in-356

clude mobility behaviors, transportation (Gao et al.,357

2023a), wireless networks, etc. However, there is358

limited research in the area of generative agents.359

Zou et al. (2023) explore the application of multiple360

agents in the wireless field, proposing a framework361

where multiple on-device agents can interact with362

the environment to simulate real-world scenarios363

(Yang et al., 2025). This is an area of critical im-364

portance for the future of embodied intelligence.365

4.2 Resources for LLM-MAS simulation366

We analyze common and open-source LLM-MAS367

for simulation with their datasets in Table 3, includ-368

ing code and benchmarks.369

To prove the effectiveness of the simulation, that370

is, to fit reality, researchers usually evaluate the371

simulation system by simulating real data. There-372

fore, a realistic dataset with dense users and records373

is very important for evaluation simulation (Mou374

et al., 2024). An ideal dataset will be dense: that375

is, data with a smaller number of users on the376

same scale can better evaluate the simulation ca-377

pability of the LLM-MAS. Du and Zhang (2024)378

propose WWQA based on werewolf scenarios to379

evaluate the agent’s capability in a werewolf sce-380

nario. Simulator resources specifically designed for381

LLM-MAS are less prevalent in the physical do-382

main, as traditional rule-based simulators are gener-383

ally well-equipped to sufficiently simulate physical384

phenomena and render detailed virtual worlds.385

4.3 Evaluation Metric of LLM-MAS386

simulation387

We will analyze the metrics for the overall evalua-388

tion of LLM-MAS , rather than the capabilities of389

individual agents.390

Consistency. LLM-MAS necessitate a robust con-391

gruence with the real world to ensure the deriva-392

tion of meaningful and insightful experimental out-393

comes. In the context of simulation systems, exem-394

plified by UGI (Xu et al., 2023a), the primary objec-395

tive lies in faithfully replicating specific real-world396

scenarios. When employed for training agents like397

SMART (Yue et al., 2024), only those agents that398

have undergone rigorous training within a virtual399

environment that closely mirrors the real environ-400

ment can be deemed suitable for deployment in401

real-world settings. Similarly, when utilized for 402

evaluation purposes, such as in AgentSims (Lin 403

et al., 2023), the attainment of authentic and reli- 404

able evaluation results is contingent upon the vir- 405

tual environment maintaining a high degree of con- 406

sistency with its real-world counterpart. Finally, in 407

the system for collecting data such as BOLAA (Liu 408

et al., 2023c), consistency also ensures the validity 409

of the data. Therefore, an important performance 410

measure of LLM-MAS is its consistency with the 411

real situation. 412

Information dissemination. Compare the differ- 413

ences between information dissemination behavior 414

in the system and reality using time series analysis 415

methods. Information dissemination can to some 416

extent reflect the nature of media; therefore, a re- 417

alistic multi-agent system should have a similar 418

information dissemination trend to the real world. 419

Abdelzaher et al. (2020) compare the changes in 420

the number of events occurring each day in an on- 421

line social media simulation environment; S3 (Gao 422

et al., 2023b) compare the number of users who 423

are aware of a certain event every day, as well as 424

the changes in emotional density and support rate 425

for that event every day; a similar approach is also 426

used in Stanford Town (Park et al., 2023). 427

5 LLM-MAS for Evaluating and Training 428

Generative Agents 429

With generative agents prevailing in the commu- 430

nity (Wang et al., 2024a), how to evaluate the 431

ability of generative agents is an open question. 432

Existing evaluation methods suffer from the fol- 433

lowing shortcomings: (i) constrained evaluation 434

abilities, (ii) vulnerable benchmarks, and (iii) un- 435

objective metrics. The complexity and diversity 436

of LLM-MAS have indicated that LLM-MAS can 437

evaluate generative agents. However, how to design 438

specific evaluation indicators and evaluation meth- 439

ods has puzzled researchers. Similarly, LLM-MAS 440

can also be used in training generative agents. We 441

summarize three aspects of training: (i) Supervised 442

Fine-Tuning (SFT) (ii) reinforcement learning (RL) 443

(iii) Synthesizing data for training. 444

5.1 Methods of Evaluation and Training on 445

Generative Agents 446

LLM-MAS can provide rewards to agents, and 447

these rewards can be used to evaluate or train gen- 448

erative agents, which will be discussed below. 449

Evaluation of generative agents. Researchers 450
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Table 3: Codes and Benchmarks in LLM-MAS for simulation studies. “No Code” or “No Benchmark or Dataset”
means the code or benchmark is unavailable.

Domain Subdomain Paper Code Benchmark and Dataset

Social

Tiny Society

(Huang et al., 2024b) No Code AdaSociety
(Chen et al., 2024b) Code Link AgentCourt
(Park et al., 2023) Code Link No Benchmark or Dataset
(Piatti et al., 2024) Code Link No Benchmark

(Chuang et al., 2024) Code Link No Benchmark or Dataset

Economics (Li et al., 2024b) Code Link No Benchmark or Dataset

Social Media
(Wang et al., 2024b) Code Link Movielens-1M
(Gao et al., 2023b) No Code Blog Authorship Corpus
(Mou et al., 2024) Code Link SoMoSiMu-Bench(self)

Game (Du and Zhang, 2024) Code Link WWQA
(Pan et al., 2024) Code Link No Benchmark or Dataset

Physical Wireless (Zou et al., 2023) No Code No Benchmark or Dataset

study generative agents by putting them into451

LLM-MAS. In LLM-MAS, researchers can further452

study the LLM’s strategic capabilities in different453

scenes, such as long strategic ability (Chen et al.,454

2024c), corporation strategy (Xu et al., 2023b), and455

competitiveness strategy (Zhao et al., 2024b). In456

the emotional field, MuMA-ToM (Shi et al., 2024)457

is used to evaluate the ability of agents to under-458

stand and reason about human interactions in a real459

home environment through video and text descrip-460

tions.461

Training on generative agents. Li et al. (2024c)462

enhance the data to Supervised Fine-Tuning463

(SFT) generative agents with LLM-MAS. Xu et al.464

(2024b) have created generative agents to over-465

come the intrinsic bias from LLMs by proposing466

a novel framework that powers generative agents467

with multi-agent reinforcement learning. For468

LLM-MAS, Yue et al. (2024) split complex trajec-469

tories in knowledge-intensive tasks into subtasks,470

proposing a co-training paradigm of the multi-471

agent framework, Long- and Short-Trajectory472

Learning, which ensures synergy while keeping the473

fine-grained performance of each agent. RLHF has474

been criticized for its high cost. Liu et al. (2023a)475

propose an alignment scheme based on a multi-476

agent system, effectively addressing instability and477

reward gaming concerns associated with reward-478

based RL optimization. Either way, LLM-MAS479

are essentially viewed as an environment in RL480

with different ways of getting rewards from the481

environment.482

5.2 Resources of LLM-MAS for evaluations 483

Table 4 shows the work with the code, data set 484

and benchmark we summarize, serving as a refer- 485

ence for future researchers. Our findings indicate 486

that LLM-MAS based evaluation has been more 487

and more complicated and more and more ver- 488

tically field-oriented. AGENTBENCH is a uni- 489

versal benchmark for all generative agents, which 490

consists of eight distinct environments. MLA- 491

gentBench is an interesting benchmark for agents’ 492

operation in machine learning. ChatEval evalu- 493

ates generative agents using the multi-agent de- 494

bate method. MAgIC, LLMARENA, and AU- 495

CARENA have built a virtual environment like 496

games or game-theory scenarios to evaluate the 497

strategy of agents during the long process of 498

decision-making. In the emotional field, MuMA- 499

ToM and PsySafe are used to study the theory of 500

mind for agents and prevent potentially dangerous 501

behavior in LLM-MAS. MT-Bench, AlpacaEval, 502

HH, Moral Stories, MIC, ETHICS-Deontology and 503

TruthfulQA are benchmark-oriented language mod- 504

els, which are not the focus of this section. Our 505

findings indicate that the current body of research 506

is predominantly centered on evaluating generative 507

agents, which means training with LLM-MAS will 508

be a great potential for further exploration. 509

6 Challenges and Future Directions 510

While previous work on LLM-MAS has obtained 511

many remarkable successes, this field is still at its 512

initial stage, and there are several significant chal- 513
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Table 4: Codes and Benchmarks in LLM-MAS for evaluation studies. “No Code” or “No Benchmark or Dataset”
means the code or benchmark is unavailable.

Domain Subdomain Paper Code Benchmark and Dataset

Evaluation of
generative agents

Strategy

(Liu et al., 2023b) Code Link AGENTBENCH
(Bandi and Harrasse, 2024) No Code MT-Bench

(Chan et al., 2023) Code Link ChatEval
(Chen et al., 2024d) Code Link LLMARENA
(Xu et al., 2023b) Code Link MAgIC

(Huang et al., 2024a) Code Link MLAgentBench
(Chen et al., 2024c) Code Link AUCARENA

Emotion
(Zhang et al., 2024d) Code Link PsySafe

(Shi et al., 2024) Code Link MuMA-ToM

Training on
generative agents

SFT on LLM-MAS (Li et al., 2024c) Code Link MT-Bench, AlpacaEval

MARL on LLM-MAS (Xu et al., 2024b) No Code No Benchmark or Dataset

Synthesized Data (Liu et al., 2023a) Code Link
HH, Moral Stories, MIC,

ETHICS-Deontology, TruthfulQA

lenges that need to be addressed in its development.514

In the following, we outline several key challenges515

along with potential future directions.516

6.1 Challenges of Communication in517

LLM-MAS518

Challenges. Due to the complexity, autoregres-519

sive, and other characteristics of LLM-MAS, there520

are many problems in the practical application of521

the system. How to solve (i) communication ef-522

ficiency (Liu et al., 2024b; Zhuang et al., 2024),523

(ii) imperfect communication (Zhang et al., 2023a;524

Liu et al., 2024a; Zhuang et al., 2024), and (iii)525

communication security (de Cerqueira et al., 2024)526

is a long-term goal of the researchers.527

Future directions. Establishing a comprehensive528

and standardized benchmark to evaluate the com-529

munication latency of LLM-MAS is an urgent is-530

sue that needs to be addressed in the short term.531

Therefore, optimizing the communication structure532

of LLM-MAS presents an intriguing research prob-533

lem for the near future.534

6.2 Challenges of Evaluation for LLM-MAS535

Lack of Objective metrics for group behavior.536

As shown in Section 4.3, due to the diversity,537

complexity, and unpredictability of multi-agent538

environments, it is difficult to obtain sufficiently539

detailed, specific, and direct system evaluation540

indicators from current work at the system level.541

Automated evaluation and benchmark. Dif-542

ferent LLM-MAS of the same kind cannot be543

compared because of the lack of a benchmark for544

LLM-MAS. Further, there is a lack of a common545

benchmark framework for both individual and 546

total-based evaluation, that can be used to evaluate 547

most LLM-MAS. 548

Future directions. Studying large-scale 549

LLM-MAS will be a new research hotspot, from 550

which researchers will evaluate and discover new 551

scale effects. In the meantime, common test 552

benchmarks and evaluation methods will also 553

emerge in future research. 554

7 Conclusion 555

In this survey, we systematically summarize exist- 556

ing research in the application of LLM-based multi- 557

agent systems (LLM-MAS) field. We present and 558

review these studies from three application aspects: 559

task-solving, simulation, and evaluation of the gen- 560

erative agents. We provide a detailed taxonomy 561

to draw connections among the existing research, 562

summarizing the major techniques and their de- 563

velopment histories for each of these aspects. In 564

addition to reviewing the previous work, we also 565

propose several challenges in this field, which are 566

expected to guide potential future directions. 567
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Limitations568

Due to page limitations, we provide only brief sum-569

maries of each method without delving into exhaus-570

tive technical details. Furthermore, our primary571

collection includes studies from *ACL, NeurIPS,572

ICLR, AAAI, and arXiv, which means some im-573

portant work from other venues might have been574

inadvertently omitted. In the application section,575

we have listed representative LLM-MAS resources576

with open code in Tables 2, 3, and 4. We recognize577

the timeliness of our work and are committed to578

keeping pace with ongoing discussions in the re-579

search community, updating our perspectives and580

supplementing any overlooked contributions in fu-581

ture revisions.582
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1086

A Comparison with other surveys 1087

Our intention was to provide a fresh perspective by 1088

categorizing based on task complexity, which we 1089

believe adds a novel dimension to the discussion 1090

of LLM-MAS applications. We argue that while 1091

similarities exist in certain categories, the overall 1092

structure and insights we present remain distinct 1093

from prior surveys. It’s worth noting that Guo et al. 1094

(2024a) have been peer-reviewed in IJCAI while 1095

others have not. Our paper has a more compre- 1096

hensive view on this field, even in the mentioned 1097

category of Guo et al. (2024a). For example, pa- 1098

per Proagent (Zhang et al., 2023a) does not fit into 1099

any category in the Guo et al. (2024a) , but it can 1100

be accommodated within our framework. This is 1101

because our survey examines task-solving from an 1102

application perspective, whereas their approach is 1103

confined to a specific domain—a limitation that 1104

makes it susceptible to the emergence of new do- 1105

mains. 1106

B Use of AI Assistance 1107

This paper has been edited with the assistance of 1108

an AI-powered writing assistant. The tool was used 1109

to refine the clarity, coherence, and flow of the text, 1110

ensuring that the language was precise and well- 1111

structured while maintaining the integrity of the 1112

original content. 1113

C Ethical Considerations in LLM-MAS 1114

Applications 1115

In contrast to single-agent LLMs, where ethical 1116

concerns primarily focus on issues like bias, mis- 1117
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information, and user privacy, LLM-based multi-1118

agent systems (LLM-MAS) introduce additional1119

complexities. These systems, which involve mul-1120

tiple interacting agents with potentially divergent1121

goals and behaviors, present unique ethical chal-1122

lenges that require careful consideration:1123

Coordination and Alignment of Agents. One1124

of the key ethical concerns in LLM-MAS is the1125

coordination and alignment of the agents’ behav-1126

iors, especially when they interact with humans. In1127

multi-agent settings, different agents may be de-1128

signed to fulfill different roles or possess varying1129

levels of autonomy. If these agents are not properly1130

aligned with human values or ethical guidelines,1131

the system as a whole may take actions that harm1132

users, mislead them, or violate their rights. Unlike1133

single-agent LLMs, where the focus is on ensuring1134

the ethical behavior of one model, LLM-MAS sys-1135

tems require mechanisms to ensure that all agents1136

work toward a common ethical framework, bal-1137

ancing the needs and interests of all stakeholders1138

involved.1139

Privacy and Data Usage in Multi-Agent Settings.1140

LLM-MAS systems often require the sharing of1141

information between agents to function effectively.1142

This sharing of data introduces ethical concerns1143

about privacy and data security, especially if sen-1144

sitive or personal information is involved. In a1145

multi-agent context, it becomes more challenging1146

to ensure that data is handled responsibly across all1147

agents and that user consent is respected. While1148

privacy concerns in single-agent LLMs typically1149

revolve around the agent’s direct interactions with1150

users, in LLM-MAS, there is the added complexity1151

of ensuring that all agents involved are compliant1152

with privacy laws and ethical data usage standards.1153

1154
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