
CACARA: Cross-Modal Alignment Leveraging a Text-Centric Approach
for Cost-Effective Multimodal and Multilingual Learning

Anonymous ACL submission

Abstract

As deep learning models evolve, new appli-001
cations and challenges are rapidly emerging.002
Tasks that once relied on a single modality –003
such as text, images, or audio – are now en-004
riched by seamless interactions between mul-005
timodal data. These connections bridge in-006
formation gaps: an image can visually ma-007
terialize a text, while audio can add context008
to an image. Researchers have developed009
numerous multimodal models, but most rely010
on resource-intensive training across multiple011
modalities. Similarly, extending these mod-012
els to new languages often follows the same013
resource-heavy training strategy. In this work,014
we propose a multimodal and multilingual ar-015
chitecture, CACARA, trained through emer-016
gent alignment learning, enabling the seamless017
integration of new modalities into an existing018
bimodal/multimodal model without requiring019
full retraining. Likewise, our approach extends020
the model’s linguistic capabilities while pre-021
serving previously learned knowledge. Mul-022
timodal and multilingual properties emerge023
through alignment learning, leveraging prior024
training to enhance and synchronize multi-025
ple modalities and languages. Our strategy026
achieves up to a 14.24 percentage point (pp) im-027
provement in R@1 audio-to-text retrieval, out-028
performing state-of-the-art multimodal models029
– all without the heavy computational cost of030
retraining across every modality and language.031

1 Introduction032

Deep learning has revolutionized multiple do-033

mains by enabling models to learn complex rep-034

resentations across diverse data types. Early035

breakthroughs in computer vision, driven by con-036

volutional neural networks (Krizhevsky et al.,037

2012), were followed by advances in natural lan-038

guage processing, culminating in Transformer net-039

works (Vaswani et al., 2017). Beyond images and040

text, deep learning has achieved state-of-the-art per-041

formance in audio (van den Oord et al., 2016), sen-042

sor data (Wang et al., 2019), and tabular data (Arik 043

and Pfister, 2021), excelling in classification, re- 044

trieval, and generation tasks. 045

Real-world applications, however, often involve 046

complex interactions between multiple data types. 047

For instance, video understanding encompasses the 048

joint processing of visual and auditory informa- 049

tion (Goecke, 2005). These models integrate com- 050

plementary information from different modalities, 051

as exemplified by CLIP (Contrastive Language- 052

Image Pre-training) (Radford et al., 2021), which 053

learns a joint representation space for images and 054

text, enabling cross-modal retrieval and zero-shot 055

classification. The benefits of multimodal learn- 056

ing extend beyond simple fusion, uncovering latent 057

relationships and contextual cues that are not ap- 058

parent in individual modalities (Baltrušaitis et al., 059

2018). However, training such models is challeng- 060

ing due to the need for synchronized data and the 061

high cost of annotated datasets. One promising 062

approach is implicit learning, where the model im- 063

plicitly learns cross-modal relationships, even with- 064

out strict temporal alignment, by leveraging the 065

inherent correlations and statistical dependencies 066

between modalities (Alayrac et al., 2020). 067

Multilingualism adds another layer of complex- 068

ity. Supporting multiple languages not only ex- 069

pands accessibility but also enriches models with 070

diverse linguistic structures (Conneau et al., 2020). 071

Yet, low-resource languages remain underrepre- 072

sented due to data scarcity and limited computa- 073

tional resources (Joshi et al., 2020). Current re- 074

search disproportionately favors high-resource lan- 075

guages such as English, neglecting the needs of 076

under-represented linguistic communities. 077

The intersection of multimodality and multilin- 078

gualism presents both opportunities and challenges. 079

A key concern is the computational cost of train- 080

ing and deploying large-scale models, restricting 081

access to well-resourced institutions (Strubell et al., 082

2019, 2020). Therefore, there is a pressing need for 083
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innovative training methodologies and model archi-084

tectures that can effectively leverage multimodal085

and multilingual data while minimizing computa-086

tional overhead.087

In this work, we introduce a multimodal and088

multilingual model that addresses these challenges089

through two key strategies: emergent alignment090

learning and a modified Locked-image Text Tuning091

(LiT) protocol. These strategies reduce training092

costs while preserving high performance.093

We develop a new modality integration approach094

that eliminates the need to retrain all encoders. By095

optimizing this alignment with English, we demon-096

strate that emergent alignment also benefits other097

languages. This aspect is not addressed in previ-098

ous works. We fine-tune the audio encoder for099

English synchronization only to enable multilin-100

gual capabilities without incurring the high costs101

of multilingual audio pre-training. The text en-102

coder, meanwhile, remains frozen throughout this103

process, capitalizing on its inherent cross-lingual104

capabilities. This enables multilingual audio-text105

alignment in languages beyond English with train-106

ing costs comparable to a monolingual model.107

Our findings show that multimodal models can108

learn language-agnostic concepts, improving R@1109

text retrieval with audio by up to 14.24 percentage110

points (pp) and audio-to-text retrieval by 2.58 pp111

over existing multimodal approaches. Addition-112

ally, our method shows how to extend bilingual or113

multimodal models into a multilingual framework114

with minimal computational overhead while main-115

taining performance across modalities. It achieves116

an average classification accuracy of up to 66.5%117

across multiple languages without requiring retrain-118

ing or explicit alignment. These results demon-119

strate a scalable approach for efficiently integrating120

multiple modalities and languages.121

2 Related Work122

Multimodal learning has expanded machine learn-123

ing’s scope, enabling models to process diverse124

data types. Foundational works like CLIP aligned125

images and text, inspiring extensions to other126

modalities such as audio, depth, and multilingual127

applications. CAPIVARA (Santos et al., 2023),128

a CLIP-based model, incorporates Portuguese in129

contrastive training to optimize performance in130

low-resource languages. Despite progress, chal-131

lenges remain in efficient training and generaliza-132

tion, particularly in low-resource settings. This133

section reviews advances in multimodal and multi- 134

lingual models. 135

ImageBind (Girdhar et al., 2023) extends CLIP’s 136

paradigm by introducing a unified embedding 137

space for six modalities: images, text, audio, depth, 138

thermal, and Inertial Measurement Unit (IMU) data. 139

By leveraging contrastive learning and using im- 140

ages as an anchor modality, ImageBind showed 141

that modalities can be effectively aligned through 142

their natural pairing with images, eliminating the 143

need for exhaustive paired data between all modal- 144

ity combinations. This approach achieves emer- 145

gent cross-modal alignment without explicit su- 146

pervision, demonstrating strong zero-shot transfer, 147

enabling cross-modal retrieval and multimodal em- 148

bedding arithmetic. 149

LanguageBind (Zhu et al., 2023) replaces images 150

with language as the central modality for aligning 151

different data types. Leveraging language’s rich 152

semantic structure, it aligns modalities within a 153

shared embedding space using a frozen language 154

encoder pre-trained on video-language data and 155

contrastive learning for other modalities. Efficient 156

training is achieved through Low-Rank Adaptation 157

(LoRA) (Hu et al., 2022), demonstrating strong per- 158

formance across video, audio, depth, and infrared 159

modalities. LanguageBind outperforms ImageBind 160

in infrared, depth, and audio classification tasks. 161

Vision-Audio-Language Omni-peRception (VA- 162

LOR) (Liu et al., 2024) advances multimodal re- 163

search by integrating vision, audio, and language 164

within a tri-modal framework. It introduces two 165

pretext tasks: Multimodal Grouping Alignment for 166

fine-grained modality alignment and Multimodal 167

Grouping Captioning for text generation based on 168

different modality combinations. VALOR estab- 169

lished robust alignment between modalities and 170

support tasks such as retrieval, captioning, and 171

question-answering. 172

Vision-Audio-Subtitle-Text omni-modality foun- 173

dation model (VAST) (Chen et al., 2023b) expands 174

multimodal learning by integrating vision, audio, 175

subtitles, and text into a unified framework. By in- 176

tegrating subtitles and auxiliary modalities, VAST 177

addressed the limitations of prior works, which of- 178

ten overlooked the role of additional information 179

streams in video understanding, highlighting the 180

importance of datasets and models that utilize mul- 181

tiple complementary sources of information. 182

Multilingual Multimodal Pre-training (MLMM) 183

(Zhang et al., 2023) advances multilingual mul- 184

timodal pre-training by addressing the predomi- 185
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nance of English in existing models. It combines186

pre-training-based and generalization-based ap-187

proaches. For pre-training, MLMM leverages large-188

scale multilingual image-text datasets with texts189

translated into multiple languages. It employs four190

key pre-training objectives: Image-Text Matching191

for coarse-grained alignment, Masked Language192

Modeling for fine-grained cross-modal understand-193

ing, Masked Region Feature Regression, and194

Masked Region Classification for vision-language195

alignment. The model demonstrates strong cross-196

lingual transfer ability, particularly when fine-197

tuning with languages from the same language198

family. MLMM also explores generalization-based199

approaches through multilingual knowledge dis-200

tillation and multilingual acquisition as resource-201

efficient alternatives, achieving state-of-the-art per-202

formance across multilingual vision-language tasks203

while maintaining deployment flexibility.204

As evidenced by the literature, the proliferation205

of both multimodal and multilingual models is un-206

deniable. However, models that truly excel at si-207

multaneously integrating multimodality and multi-208

linguality remain relatively scarce. Moreover, the209

few existing models that attempt this integration210

are often plagued by substantial training costs, long211

training times, and significant computational de-212

mands. CACARA directly addresses these limi-213

tations by introducing a novel, efficient approach214

based on an implicit learning strategy. This strat-215

egy not only facilitates seamless transfer learning216

across diverse modalities but also enables robust217

cross-lingual performance. This approach allows218

CACARA to be trained exclusively on English data219

while still achieving strong performance on tasks in220

all supported languages, thus drastically reducing221

the resource requirements typically associated with222

multilingual multimodal models.223

3 Methodology224

This section presents the CACARA model’s over-225

all framework, covering its architectural design,226

training and evaluation datasets, and selected hy-227

perparameters. We then detail the training work-228

flow, highlighting the emergent alignment strategy229

responsible for its multimodal and multilingual ca-230

pabilities.231

3.1 CACARA Model232

The CACARA model integrates multimodal and233

multilingual learning through three encoders: im-234

age, text, and audio (Figure 1). The image encoder 235

is based on a Vision Transformer (ViT) (Dosovit- 236

skiy et al., 2021), while the text encoder utilizes 237

XLM-RoBERTa (base version) (Conneau et al., 238

2020). The audio encoder, built upon BEATs (Chen 239

et al., 2023a), is incorporated via emergent align- 240

ment learning. The image and text encoders are ini- 241

tialized with pre-trained OpenCLIP (Ilharco et al., 242

2021) encoders. 243

Training is performed using contrastive learn- 244

ing with the InfoNCE (van den Oord et al., 2018) 245

loss function to align the audio and text encoders. 246

We keep the image and text models frozen to pre- 247

serve the high-quality image-text alignment from 248

OpenCLIP pre-training, optimizing only the au- 249

dio encoder’s alignment within the shared feature 250

space. A key aspect of CACARA’s training proce- 251

dure is that, unlike LiT, which adapts a text encoder 252

for downstream tasks while keeping the image en- 253

coder fixed, CACARA maintains the pre-trained 254

image-text representation and aligns the new audio 255

encoder to this existing joint space. 256

3.2 Multimodal and Multilingual Emergent 257

Aligment 258

CACARA training leverages the emergent learning 259

capacity of pre-trained models. Since the image 260

and text encoders are pre-aligned in a shared fea- 261

ture space due to their pre-training, training the 262

newly incorporated audio model against the text 263

encoder implicitly aligns it with the shared space of 264

all three. This emergent alignment enables the new 265

audio model to describe untrained image modality 266

features without training. 267

The text modality is the primary anchor for emer- 268

gent learning within this architecture. As depicted 269

in Figure 1, solid lines indicate direct training pair- 270

ings (audio-text data presented to the model), while 271

dotted lines indicate emergent learning, the emer- 272

gent relationship between audio and image. 273

Due to the text encoder’s role as anchor and the 274

freezing of pre-trained text and image encoders, it 275

remains fixed, synchronizing text with additional 276

modalities. This eliminates the need for explicit 277

multilingual training, as XLM-RoBERTa’s inher- 278

ent multilingual capabilities extend to additional 279

modalities through emergent alignment. Integrat- 280

ing a new modality synchronizes it with the multi- 281

lingual features of the textual model. 282

This strategy enables non-multilingual models, 283

such as BEATs, to acquire linguistic capabilities 284

from the text model. As illustrated in Figure 1, 285
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Figure 1: Flow of adding a new modality (Audio) to the text-image bimodal model. Linguistic expansion and
alignment of these languages for the new modality. During audio model training, alignment is performed only with
the anchor encoder (textual), and at this stage, no image information is processed by the model. In addition to the
highlighted 12 languages selected for translation and evaluation, the model supports 88 more languages.

multiple languages align with other modalities via286

this emergent synchronization, significantly reduc-287

ing training costs and time. Unlike conventional288

approaches that train models on each language sep-289

arately, CACARA requires training only in En-290

glish, leveraging its higher data availability and291

model quality. This contrasts with existing liter-292

ature, which often incurs multiplicative computa-293

tional costs by training on multilingual datasets294

individually.295

Although CACARA’s text encoder supports 100296

languages, we selected 12 languages for evalua-297

tion: English, Portuguese, Spanish, French, Ger-298

man, Chinese, Japanese, Russian, Turkish, Hindi,299

Arabic, and Swahili. Due to the lack of multilin-300

gual test datasets, test data was translated into these301

languages using Google Translator from English.302

3.3 Optimization Pipeline303

The final CACARA model was developed via a304

four-stage optimization pipeline (Figure 2). The305

first stage involved a comparative evaluation of dif-306

ferent audio encoders. We selected four encoders:307

BEATs (Chen et al., 2023a), HTS-AT (Chen et al.,308

2022), AudioMAE (Huang et al., 2022), and MAE-309

AST (Baade et al., 2022). These models were cho-310

sen based on their state-of-the-art performance in311

sound event detection and audio tagging, and their312

relatively recent introduction to the field, as es-313

tablished in the existing literature. Appendix A.1314

provides a detailed analysis of the models built with315

these encoder combinations.316

AudioCaps

ClothoV2

WavCaps

Auto-ACD

AudioSetCaps

BEATs

HTS-AT

AudioMAE

MAE-AST

Learning Rate

Weight Decay

Spec Augment

Random Truncation

Dataset
Consolidation

Audio Encoder
Consolidation

Hyperparameter
Tuning

Data
Augmentation

Figure 2: The CACARA model’s training and optimiza-
tion steps are divided into four main stages: consolida-
tion of the newly added encoder, hyperparameter tuning,
data augmentation, and consolidation of the training
datasets.

The second stage focused on identifying optimal 317

hyperparameters. While many parameters were 318

investigated, the learning rate and weight decay 319

substantially influenced training and model per- 320

formance. We conducted a systematic search to 321

determine values that ensured a fair comparison 322

across all encoders. Appendix A.2 describes the 323

best combination of hyperparameters. 324

The third stage incorporated data augmentation 325

to improve model robustness. We used two tech- 326

niques: SpecAugment (Park et al., 2019a), which 327

masks blocks of frequency and time channels, and 328

Random Truncation (Elizalde et al., 2023a), which 329

divides training data into smaller segments. Appen- 330

dices A.2 and A.3 detail these techniques. 331

The fourth stage involved a deliberate selection 332

of datasets, focusing on quantity, diversity, multi- 333
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modal decoupling, and label quality. We chose five334

datasets, and more information about these datasets335

is presented in Appendix A.4: AudioCaps (Kim336

et al., 2019a), ClothoV2 (Drossos et al., 2020),337

WavCaps (Mei et al., 2024a), Auto-ACD (Sun et al.,338

2024), and AudioSetCaps (Bai et al., 2024).339

AudioCaps and ClothoV2, both featuring human-340

annotated captions, served as the gold standard and341

were included in all dataset configurations. The342

remaining datasets, featuring machine-generated343

annotations, were analyzed in various combina-344

tions to assess their impact on model performance.345

Section 4.1 presents the specific configurations and346

corresponding results.347

4 Experiments and Results348

Our analysis of CACARA focuses on three pri-349

mary characteristics: (1) its multimodal capabili-350

ties, (2) its multilingual performance, and (3) the351

efficiency and scaling of its underlying resources.352

The first two characteristics and their results are353

discussed in Sections 4.1 and 4.2. In addition, to354

compare and understand the model’s capabilities355

regarding resources and performance, we have per-356

formed extended tests that show how this model357

can behave in scenarios with more computational358

capacity, as detailed in Section 4.3. Intermedi-359

ate training results and ablation studies on model360

components are presented in Appendices A.1, A.2,361

and A.3, as well as extended results with other sets362

and combinations of data. Qualitative visualiza-363

tions are provided in Appendix A.5.364

For the results presented in this section, we used365

the training datasets AudioSetCaps (ASC), Auto-366

ACD (AA), WavCaps (WC), AudioCaps (AC), and367

ClothoV2 (C). For the CACARA model, different368

combinations of datasets have been evaluated, with369

various results depending on the task and due to a370

distribution similar to the training data. We also ap-371

plied data filtering based on CLIP similarity, where372

the filtering percentage x% is specified as f 0.x.373

4.1 Multimodal Evaluation374

We compare CACARA with established bimodal375

and multimodal models. While most prior work has376

focused on bimodal architectures, these models in-377

herently lack the flexibility to handle inter-domain378

scenarios and emergent learning, where modalities379

independently acquire new conceptual representa-380

tions. In contrast, CACARA is designed to lever-381

age multimodality, expanding its applicability and382

enhancing adaptability across diverse tasks. 383

We selected three representative bimodal models 384

for comparison: CLAP (Microsoft) (Elizalde et al., 385

2023b), CLAP (LAION) (Wu et al., 2023), and 386

WavCaps Model (Mei et al., 2024b). These models, 387

all focusing on audio-text modalities, provide a rel- 388

evant benchmark for evaluating the audio-centric 389

capabilities introduced in CACARA. This compar- 390

ison aims to leverage these bimodal models’ high 391

degree of alignment and reported performance as a 392

reference point for achievable results within a con- 393

strained modality space. For this reason, bimodal 394

models cannot be directly compared to multimodal 395

models. Thus, the tables highlight the best results 396

specifically for multimodal models. 397

For multimodal comparison, we selected Image- 398

Bind, VAST, and LanguageBind models, which 399

represent the state-of-the-art in multimodal learn- 400

ing to the best of our knowledge. A direct compar- 401

ison with MLMM, the sole identified work in our 402

review to integrate both multimodality and multilin- 403

guality, was not feasible due to the lack of publicly 404

accessible code and implementation details, hinder- 405

ing reproducibility. Thus, our comparison remains 406

direct and comprehensive, focusing on models that 407

effectively align multiple modalities. 408

We evaluated the model on two core tasks: re- 409

trieval and classification. We used two distinct 410

datasets for each task: AudioCaps and ClothoV2 411

for retrieval, and ESC-50 (Piczak) and Urban- 412

Sounds8K (Diment et al., 2017) for classification. 413

Performance was measured using standard infor- 414

mation retrieval metrics (R-precision at ranks 1, 5, 415

and 10, and mean average precision) for retrieval 416

and mean classification accuracy for classification. 417

Table 1 shows the retrieval results. For Audio- 418

Caps, CACARA, trained on all datasets with a 419

0.2 filtering threshold, achieved the highest R@1 420

(33.98%) among multimodal models, surpassing 421

the best existing multimodal models by 14.23 per- 422

centage points (pp) while keeping competitive per- 423

formance against bimodal models. For ClothoV2, 424

the best-performing model was CACARA trained 425

with WavCaps, with R@1 of 17.26%. 426

Table 2 shows the classification results for ESC- 427

50 and UrbanSounds8K datasets. The performance 428

differences across models in this task are relatively 429

small. For ESC-50, LanguageBind achieved the 430

highest mean accuracy (94.75%), followed closely 431

by CACARA trained with WavCaps (94.37%) 432

and the best-performing bimodal model, WavCaps 433

(94.25%), with a maximum difference of only 434
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Model
Audio to Text Text to Audio

R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg
AudioCaps

B
M

CLAP (Microsoft) 15.75 44.7 61.62 40.69 6.32 24.9 38.11 23.11
CLAP (LAION) 34.58 70.8 83.69 63.02 9.31 35.52 51.68 32.17
WavCaps 38.70 73.32 86.05 66.02 10.57 38.38 53.21 34.05

M
M

ImageBind 8.59 27.58 40.49 25.55 2.25 9.90 16.69 9.61
VAST 19.75 46.30 57.98 41.34 4.99 19.89 29.25 18.04
LanguageBind 13.05 45.96 63.76 40.92 4.61 18.94 30.80 18.12

C
A

C
A

R
A

CACARAAA/WC/AC/C 31.03 ± 0.51 64.57 ± 0.74 79.34 ± 0.53 58.31 ± 0.43 6.76 ± 0.45 25.52 ± 1.65 38.61 ± 1.30 23.63 ± 1.13

CACARAWC/AC/C 30.08 ± 0.31 64.95 ± 0.42 78.71 ± 0.75 57.91 ± 0.41 7.57 ±0.16 28.02 ± 0.23 42.43 ± 0.14 26.00 ± 0.09

CACARAWC/AC/C/f 0.1 30.96 ± 0.05 64.78 ± 0.91 78.54 ± 0.35 58.10 ± 0.41 7.37 ± 0.20 27.88 ± 0.26 41.72 ± 0.61 25.66 ± 0.35

CACARAWC/AC/C/f 0.2 31.03 ± 0.60 65.32 ± 0.68 78.80 ± 1.10 58.38 ± 0.77 7.41 ± 0.09 28.40 ± 0.58 42.68 ± 0.27 26.17 ± 0.31

CACARAASC/AA/WC/AC/C 33.27 ± 0.33 67.46 ± 0.33 81.51 ± 0.30 60.75 ± 0.29 6.91 ± 0.15 26.18 ± 0.18 39.55 ± 0.15 24.21 ± 0.06

CACARAASC/AA/WC/AC/C/f 0.1 33.64 ± 0.24 68.40 ± 0.24 81.84 ± 0.17 61.29 ± 0.23 7.34 ± 0.10 27.69 ± 0.32 41.27 ± 0.29 25.43 ± 0.05

CACARAASC/AA/WC/AC/C/f 0.2 33.98 ± 0.64 68.30 ± 0.64 81.81 ± 0.21 61.36 ± 0.26 7.30 ± 0.15 27.87 ± 0.32 41.21 ± 0.29 25.46 ± 0.16

ClothoV2

B
M

CLAP (Microsoft) 15.46 38.74 51.52 35.24 4.61 16.90 26.43 15.98
CLAP (LAION) 14.64 37.28 49.68 33.87 3.77 15.27 23.79 14.28
WavCaps 18.78 45.15 57.72 40.55 4.38 18.76 28.61 17.25

M
M

ImageBind 5.11 16.17 24.96 15.41 1.51 5.57 9.15 5.41
VAST 11.02 26.64 35.48 24.38 2.30 8.73 13.99 8.34
LanguageBind 16.11 41.07 53.05 36.74 3.75 16.38 24.65 14.93

C
A

C
A

R
A

CACARAAA/WC/AC/C 14.42 ± 0.88 37.21 ± 1.74 49.95 ± 1.60 33.86 ± 1.40 2.90 ± 0.32 12.17 ± 1.49 19.40 ± 1.75 11.49 ± 1.18

CACARAWC/AC/C 14.39 ± 0.19 35.87 ± 0.21 48.08 ± 0.32 32.78 ± 0.14 3.88 ± 0.13 14.69 ± 0.41 22.49 ± 0.12 13.69 ± 0.18

CACARAWC/AC/C/f 0.1 15.38 ± 0.49 37.40 ± 1.62 49.63 ± 2.13 34.13 ± 1.40 3.92 ± 0.35 14.99 ± 0.41 23.10 ± 0.54 14.00 ± 0.42

CACARAWC/AC/C/f 0.2 17.26 ± 2.33 40.91 ± 5.84 53.85 ± 6.74 37.34 ± 4.96 4.03 ± 0.36 15.60 ± 1.25 24.78 ± 2.36 14.80 ± 1.32

CACARAASC/AA/WC/AC/C 11.40 ± 2.17 29.82 ± 6.17 41.12 ± 7.79 27.45 ± 5.37 2.22 ± 0.61 8.71 ± 2.41 14.42 ± 3.66 8.45 ± 2.22

CACARAASC/AA/WC/AC/C/f 0.1 13.04 ± 3.12 33.53 ± 6.95 46.00 ± 8.70 30.86 ± 6.25 2.56 ± 0.87 9.84 ± 2.98 16.15 ± 4.43 9.52 ± 2.76

CACARAASC/AA/WC/AC/C/f 0.2 13.21 ± 3.16 33.63 ± 6.91 45.67 ± 8.51 30.84 ± 6.19 2.59 ± 0.74 10.07 ± 2.87 16.62 ± 4.68 9.76 ± 2.76

Table 1: Multimodal results, divided into two datasets: AudioCaps and ClothoV2, and two retrieval tasks: Audio-
to-Text and Text-to-Audio. The evaluated models are categorized as BM (Bimodal Models), MM (Multimodal
Models), and CACARA (CACARA Multimodal Models). Bolded results indicate the best performance among
multimodal models, while underlined results represent the second-best values for the same set.

Model
Accuracy

ESC-50 UrbanSounds8K

B
M

CLAP (Microsoft) 93.85 82.74
CLAP (LAION) 83.10 80.91
WavCaps 94.25 82.28

M
M

ImageBind 64.15 48.20
VAST 76.80 68.00
LanguageBind 94.75 79.24

C
A

C
A

R
A

CACARAAA/WC/AC/C 89.95 ± 2.14 77.04 ± 2.98

CACARAWC/AC/C 94.15 ± 0.10 77.40 ± 1.07

CACARAWC/AC/C/f 0.1 94.37 ± 0.49 79.51 ± 1.06

CACARAWC/AC/C/f 0.2 94.00 ± 1.39 77.83 ± 0.11

CACARAASC/AA/WC/AC/C 82.45 ± 0.70 70.04 ± 1.48

CACARAASC/AA/WC/AC/C/f 0.1 89.97 ± 0.38 75.40 ± 1.19

CACARAASC/AA/WC/AC/C/f 0.2 91.35 ± 0.69 74.99 ± 0.55

Table 2: Multimodal results, evaluated on ESC-50
and UrbanSounds8K datasets for the classification task.
The evaluated models are categorized as BM (Bimodal
Models), MM (Multimodal Models), and CACARA
(CACARA Multimodal Models. Bolded results indi-
cate the best performance among multimodal models,
while underlined results represent the second-best val-
ues for the same set.

0.38 pp. For UrbanSounds8K, CACARA trained435

on WavCaps (79.51%) was the best multimodal436

model, while LanguageBind achieved 79.24%, a437

difference of only 0.27 pp. However, the bi-438

modal model CLAP (Microsoft) achieved a result 439

of 82.74%, demonstrating an advantage in this task 440

and dataset. 441

4.2 Multilingual Evaluation 442

Beyond its multimodal capabilities, CACARA is 443

inherently multilingual, supporting approximately 444

100 languages without explicit training for aligning 445

new languages to audio data. We selected twelve 446

languages to evaluate this emergent alignment and 447

analyzed performance in audio-text retrieval and 448

classification tasks. Due to many results in multiple 449

languages, we selected two versions of CACARA 450

for each task to provide a focused comparison. 451

For the retrieval task, Table 3 452

presents results for the models 453

CACARAASC/AA/WC/AC/C/f 0.2 in the Au- 454

diocaps dataset and CACARAWC/AC/C/f 0.2 in 455

the ClothoV2 dataset. The audio encoder was 456

trained only in English, which leads to better 457

performance in this language. Therefore, we use 458

English results as the upper bound. Although it 459

has never been trained for other languages, the 460

results can be quite satisfactory, depending on the 461
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CACARAASC/AA/WC/AC/C/f 0.2 in Audiocaps
Audio to Text Text to Audio

Language R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg
English 33.98 ± 0.64 68.30 ± 0.43 81.81 ± 0.21 61.36 ± 0.27 7.30 ± 0.15 27.87 ± 0.32 41.21 ± 0.29 25.46 ± 0.16

Portuguese 21.62 ± 0.70 51.27 ± 1.31 66.34 ± 1.23 46.41 ± 1.00 5.74 ± 0.18 21.46 ± 0.18 33.47 ± 0.35 20.22 ± 0.11

Spanish 24.06 ± 0.48 53.94 ± 0.87 68.05 ± 0.35 48.68 ± 0.51 5.85 ± 0.16 22.58 ± 0.29 34.31 ± 0.25 20.91 ± 0.08

French 21.87 ± 0.70 51.20 ± 1.51 66.31 ± 1.29 46.46 ± 1.17 5.94 ± 0.05 22.97 ± 0.27 35.19 ± 0.47 21.37 ± 0.16

Russian 20.73 ± 0.47 48.96 ± 0.60 63.03 ± 0.74 44.24 ± 0.58 5.55 ± 0.31 19.48 ± 0.47 30.70 ± 0.39 18.58 ± 0.39

Arabic 15.25 ± 0.73 39.70 ± 1.05 53.90 ± 1.15 36.28 ± 0.97 4.71 ± 0.15 18.45 ± 0.23 28.27 ± 0.31 17.15 ± 0.10

Hindi 14.08 ± 0.41 37.47 ± 0.30 51.51 ± 0.80 34.35 ± 0.42 3.71 ± 0.08 14.97 ± 0.09 23.56 ± 0.07 14.08 ± 0.02

German 23.95 ± 0.41 54.36 ± 0.06 68.26 ± 0.14 48.86 ± 0.12 6.00 ± 0.09 23.09 ± 0.37 35.04 ± 0.45 21.38 ± 0.25

Chinese(zh) 18.24 ± 0.28 46.59 ± 1.11 62.04 ± 0.42 42.29 ± 0.47 5.45 ± 0.12 20.52 ± 0.20 31.70 ± 0.23 19.23 ± 0.09

Swahili 1.11 ± 0.23 3.96 ± 0.11 6.48 ± 0.24 3.85 ± 0.19 0.65 ± 0.07 2.29 ± 0.06 3.67 ± 0.08 2.20 ± 0.02

Japanese 21.36 ± 0.49 51.46 ± 0.24 65.64 ± 0.38 46.15 ± 0.22 5.59 ± 0.24 21.87 ± 0.48 33.82 ± 0.20 20.42 ± 0.30

Turkish 17.04 ± 0.40 42.65 ± 0.63 56.80 ± 0.45 38.84 ± 0.47 4.42 ± 0.23 17.22 ± 0.32 27.15 ± 0.51 16.27 ± 0.33

CACARAWC/AC/C/f 0.2 in ClothoV2
R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg

English 17.26 ± 2.33 40.91 ± 5.84 53.85 ± 6.74 37.34 ± 4.96 4.03 ± 0.36 15.60 ± 1.25 24.78 ± 2.36 14.80 ± 1.32

Portuguese 10.83 ± 0.60 28.98 ± 1.56 39.72 ± 1.93 26.51 ± 1.35 3.09 ± 0.16 11.61 ± 0.09 18.57 ± 0.12 11.09 ± 0.05

Spanish 11.37 ± 0.39 29.88 ± 1.73 40.54 ± 2.09 27.26 ± 1.34 3.18 ± 0.12 12.09 ± 0.17 19.38 ± 0.05 11.55 ± 0.05

French 10.83 ± 0.66 28.75 ± 1.43 39.55 ± 1.35 26.38 ± 1.10 3.00 ± 0.14 11.50 ± 0.23 18.05 ± 0.12 10.85 ± 0.12

Russian 8.94 ± 0.51 24.45 ± 1.88 34.62 ± 2.55 22.67 ± 1.64 2.78 ± 0.14 10.60 ± 0.33 16.82 ± 0.51 10.06 ± 0.24

Arabic 6.84 ± 0.61 20.34 ± 1.22 29.13 ± 1.31 18.77 ± 1.02 2.34 ± 0.08 8.85 ± 0.04 14.50 ± 0.08 8.56 ± 0.05

Hindi 6.02 ± 0.43 17.30 ± 1.24 25.69 ± 1.60 16.34 ± 1.05 2.04 ± 0.16 7.80 ± 0.30 12.33 ± 0.54 7.39 ± 0.31

German 11.55 ± 0.72 29.99 ± 1.50 40.96 ± 1.49 27.49 ± 1.21 3.21 ± 0.15 12.45 ± 0.01 19.55 ± 0.27 11.74 ± 0.13

Chinese(zh) 9.55 ± 0.38 25.94 ± 1.73 36.59 ± 1.80 24.03 ± 1.29 2.79 ± 0.17 11.02 ± 0.15 17.64 ± 0.43 10.48 ± 0.19

Swahili 1.03 ± 0.03 3.35 ± 0.16 5.39 ± 0.27 3.26 ± 0.14 0.52 ± 0.05 1.70 ± 0.13 2.65 ± 0.20 1.62 ± 0.09

Japanese 10.75 ± 0.73 29.19 ± 1.89 40.24 ± 2.10 26.72 ± 1.55 2.97 ± 0.19 11.50 ± 0.37 18.32 ± 0.34 10.93 ± 0.22

Turkish 7.93 ± 0.74 22.53 ± 1.23 32.12 ± 2.69 20.86 ± 1.54 2.51 ± 0.07 9.61 ± 0.20 15.51 ± 0.37 9.21 ± 0.17

Table 3: Recall value for the Audio-to-Text and Text-to-Audio retrieval tasks on two different CACARA models
(CACARAASC/AA/WC/AC/C/f 0.2 for the AudioCaps dataset and CACARAWC/AC/C/f 0.2 for the ClothoV2
dataset) across the twelve evaluated languages.

language used.462

Some languages – Spanish, German, Por-463

tuguese, French, Russian, and Japanese – per-464

form well, achieving R@1 above 20 for the465

CACARAASC/AA/WC/AC/C/f 0.2 model on Au-466

dioCaps. On average, the other languages achieve467

R@1 above 13, with performance variations pri-468

marily influenced by the quantity and quality of469

textual data used during the pre-training of the470

text model (Geigle et al., 2024). This suggests471

that improving low-resource language performance472

does not require retraining the entire model. Only473

Swahili was below average because it is a language474

with very few available resources. We observed the475

same behavior from the CACARAWC/AC/C/f 0.2476

model in ClothoV2.477

For the classification task, Table 4 shows re-478

sults for two models, CACARAWC/AC/C/f 0.1479

and CACARAASC/AA/WC/AC/C/f 0.2, evaluated480

on ESC-50 and UrbanSounds8K. As expected, lan-481

guages with more resources showed strong classifi-482

cation performance, similar to retrieval results. In483

CACARAWC/AC/C/f 0.1 CACARAASC/AA/WC/AC/C/f 0.2

Language ESC-50 UrbanSounds8K ESC-50 UrbanSounds8K
English 94.37 ± 0.49 79.51 ± 1.06 91.35 ± 0.69 74.99 ± 0.55

Portuguese 79.63 ± 0.81 66.49 ± 0.79 80.92 ± 0.98 71.38 ± 1.35

Spanish 86.25 ± 0.40 72.02 ± 1.78 85.60 ± 0.78 71.02 ± 0.67

French 83.60 ± 0.69 69.56 ± 0.65 82.45 ± 0.49 67.72 ± 1.12

Russian 81.15 ± 0.33 71.77 ± 1.00 78.30 ± 1.08 67.16 ± 1.32

Arabic 65.28 ± 0.95 63.13 ± 0.64 63.65 ± 1.09 63.77 ± 0.60

Hindi 64.30 ± 0.97 58.19 ± 0.84 60.12 ± 0.83 58.11 ± 1.15

German 82.12 ± 0.87 74.99 ± 0.12 75.92 ± 1.08 72.38 ± 0.10

Chinese(zh) 83.47 ± 1.68 70.14 ± 0.12 81.23 ± 1.07 67.22 ± 1.15

Swahili 20.55 ± 0.41 42.99 ± 1.08 20.48 ± 2.17 38.35 ± 1.97

Japanese 84.08 ± 1.63 68.79 ± 0.02 81.78 ± 0.75 73.03 ± 0.74

Turkish 74.12 ± 1.83 64.94 ± 0.68 69.85 ± 1.97 63.91 ± 0.82

Table 4: Classification retults on two differ-
ent CACARA models (CACARAWC/AC/C/f 0.1 and
CACARAASC/AA/WC/AC/C/f 0.2) in the datasets
ESC-50 and UrbanSounds8K across the twelve eval-
uated languages.

addition, Mandarin showed good results compared 484

to the previous task, while Portuguese showed a 485

drop in results. However, the overall classifica- 486

tion average of the different languages is 66.5% for 487

CACARAWC/AC/C using ESC-50. 488
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Optimized Basic Model Expanded Resources Model
Audio to Text Text to Audio Audio to Text Text to Audio

Audiocaps
Language R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg
English 33.98 ± 0.64 68.30 ± 0.43 81.81 ± 0.21 61.36 ± 0.27 7.30 ± 0.15 27.87 ± 0.32 41.21 ± 0.29 25.46 ± 0.16 31.45 ± 0.14 66.09 ± 0.31 79.61 ± 0.45 59.05 ± 0.28 7.64 ± 0.09 28.78 ± 0.21 42.95 ± 0.14 26.46 ± 0.12
Portuguese 21.62 ± 0.70 51.27 ± 1.31 66.34 ± 1.23 46.41 ± 1.00 5.74 ± 0.18 21.46 ± 0.18 33.47 ± 0.35 20.22 ± 0.11 18.54 ± 0.98 46.57 ± 0.75 60.96 ± 0.53 42.02 ± 0.74 5.99 ± 0.10 22.07 ± 0.43 33.75 ± 0.06 20.60 ± 0.19
Spanish 24.06 ± 0.48 53.94 ± 0.87 68.05 ± 0.35 48.68 ± 0.51 5.85 ± 0.16 22.58 ± 0.29 34.31 ± 0.25 20.91 ± 0.08 21.03 ± 0.38 50.85 ± 0.26 65.32 ± 0.80 45.73 ± 0.45 6.04 ± 0.10 22.46 ± 0.21 34.62 ± 0.05 21.04 ± 0.06
French 21.87 ± 0.70 51.20 ± 1.51 66.31 ± 1.29 46.46 ± 1.17 5.94 ± 0.05 22.97 ± 0.27 35.19 ± 0.47 21.37 ± 0.16 20.33 ± 0.42 48.61 ± 0.36 62.67 ± 0.38 43.87 ± 0.27 6.25 ± 0.08 23.44 ± 0.22 35.66 ± 0.23 21.78 ± 0.06
Russian 20.73 ± 0.47 48.96 ± 0.60 63.03 ± 0.74 44.24 ± 0.58 5.55 ± 0.31 19.48 ± 0.47 30.70 ± 0.39 18.58 ± 0.39 17.58 ± 0.35 44.19 ± 1.45 58.16 ± 0.89 39.97 ± 0.89 5.50 ± 0.32 19.88 ± 0.34 31.28 ± 0.42 18.89 ± 0.30
Arabic 15.25 ± 0.73 39.70 ± 1.05 53.90 ± 1.15 36.28 ± 0.97 4.71 ± 0.15 18.45 ± 0.23 28.27 ± 0.31 17.15 ± 0.10 11.18 ± 0.47 31.96 ± 0.86 45.17 ± 0.51 29.44 ± 0.58 4.71 ± 0.17 18.37 ± 0.19 28.10 ± 0.18 17.06 ± 0.07
Hindi 14.08 ± 0.41 37.47 ± 0.30 51.51 ± 0.80 34.35 ± 0.42 3.71 ± 0.08 14.97 ± 0.09 23.56 ± 0.07 14.08 ± 0.02 11.70 ± 0.30 33.33 ± 0.71 46.76 ± 0.76 30.60 ± 0.38 3.83 ± 0.11 15.10 ± 0.44 23.28 ± 0.23 14.07 ± 0.24
German 23.95 ± 0.41 54.36 ± 0.06 68.26 ± 0.14 48.86 ± 0.12 6.00 ± 0.09 23.09 ± 0.37 35.04 ± 0.45 21.38 ± 0.25 21.33 ± 0.13 50.33 ± 0.90 64.41 ± 0.90 45.36 ± 0.62 5.85 ± 0.08 23.06 ± 0.38 35.64 ± 0.46 21.52 ± 0.30
Chinese(zh) 18.24 ± 0.28 46.59 ± 1.11 62.04 ± 0.42 42.29 ± 0.47 5.45 ± 0.12 20.52 ± 0.20 31.70 ± 0.23 19.23 ± 0.09 15.27 ± 0.74 41.17 ± 1.37 56.36 ± 0.43 37.60 ± 0.80 5.57 ± 0.31 20.79 ± 0.16 32.16 ± 0.52 19.51 ± 0.05
Swahili 1.11 ± 0.23 3.96 ± 0.11 6.48 ± 0.24 3.85 ± 0.19 0.65 ± 0.07 2.29 ± 0.06 3.67 ± 0.08 2.20 ± 0.02 0.61 ± 0.18 2.89 ± 0.32 5.10 ± 0.18 2.87 ± 0.21 0.59 ± 0.03 2.21 ± 0.06 3.49 ± 0.10 2.10 ± 0.06
Japanese 21.36 ± 0.49 51.46 ± 0.24 65.64 ± 0.38 46.15 ± 0.22 5.59 ± 0.24 21.87 ± 0.48 33.82 ± 0.20 20.42 ± 0.30 18.35 ± 0.52 45.76 ± 0.96 59.78 ± 0.80 41.30 ± 0.68 5.76 ± 0.18 22.74 ± 0.30 34.45 ± 0.05 20.98 ± 0.10
Turkish 17.04 ± 0.40 42.65 ± 0.63 56.80 ± 0.45 38.84 ± 0.47 4.42 ± 0.23 17.22 ± 0.32 27.15 ± 0.51 16.27 ± 0.33 12.76 ± 0.15 35.07 ± 0.38 47.96 ± 0.51 31.93 ± 0.34 4.52 ± 0.16 17.64 ± 0.22 27.81 ± 0.29 16.66 ± 0.06

ClothoV2
English 13.21 ± 3.16 33.63 ± 6.91 45.67 ± 8.51 30.84 ± 6.19 2.59 ± 0.74 10.07 ± 2.87 16.62 ± 4.68 9.76 ± 2.76 15.67 ± 0.50 38.46 ± 0.44 51.25 ± 0.06 35.13 ± 0.31 3.28 ± 0.17 13.57 ± 0.14 21.51 ± 0.05 12.79 ± 0.08
Portuguese 11.16 ± 0.08 30.27 ± 0.56 41.59 ± 0.48 27.68 ± 0.33 2.26 ± 0.17 9.47 ± 0.43 15.82 ± 0.50 9.18 ± 0.31 11.17 ± 0.20 30.45 ± 0.28 41.94 ± 0.72 27.85 ± 0.40 2.64 ± 0.10 10.92 ± 0.06 17.91 ± 0.10 10.49 ± 0.06
Spanish 11.67 ± 0.24 30.95 ± 0.33 43.00 ± 0.63 28.54 ± 0.21 2.30 ± 0.11 9.72 ± 0.37 15.67 ± 0.16 9.23 ± 0.19 11.67 ± 0.40 31.33 ± 0.25 42.58 ± 0.39 28.53 ± 0.23 2.63 ± 0.18 10.87 ± 0.18 17.66 ± 0.46 10.39 ± 0.15
French 10.30 ± 0.14 28.72 ± 0.06 40.27 ± 0.13 26.43 ± 0.06 2.28 ± 0.18 9.63 ± 0.39 15.67 ± 0.15 9.20 ± 0.16 10.45 ± 0.74 28.07 ± 1.20 39.78 ± 0.82 26.10 ± 0.80 2.56 ± 0.21 10.68 ± 0.32 17.36 ± 0.12 10.20 ± 0.19
Russian 9.53 ± 0.21 26.88 ± 0.35 38.57 ± 0.23 25.00 ± 0.15 2.11 ± 0.10 8.29 ± 0.24 13.70 ± 0.76 8.03 ± 0.35 10.09 ± 0.52 27.71 ± 0.76 39.13 ± 0.77 25.64 ± 0.66 2.54 ± 0.09 9.79 ± 0.31 15.85 ± 0.29 9.40 ± 0.20
Arabic 7.90 ± 0.19 23.31 ± 0.52 34.68 ± 0.03 21.96 ± 0.20 1.71 ± 0.26 7.06 ± 0.29 12.02 ± 0.34 6.93 ± 0.29 7.99 ± 0.10 23.64 ± 0.12 34.04 ± 0.28 21.89 ± 0.03 2.04 ± 0.02 8.22 ± 0.14 13.47 ± 0.21 7.91 ± 0.12
Hindi 6.55 ± 0.27 19.04 ± 0.26 28.74 ± 0.44 18.11 ± 0.29 1.56 ± 0.12 6.07 ± 0.20 10.26 ± 0.32 5.97 ± 0.10 6.81 ± 0.66 19.51 ± 0.89 28.32 ± 0.85 18.22 ± 0.79 1.85 ± 0.09 6.98 ± 0.32 11.46 ± 0.07 6.76 ± 0.11
German 10.95 ± 0.25 29.53 ± 0.63 40.91 ± 0.83 27.13 ± 0.57 2.62 ± 0.09 10.11 ± 0.22 16.54 ± 0.37 9.76 ± 0.21 11.22 ± 0.39 30.31 ± 0.74 41.44 ± 1.40 27.66 ± 0.81 2.72 ± 0.07 11.12 ± 0.31 18.30 ± 0.48 10.72 ± 0.27
Chinese(zh) 9.90 ± 0.35 27.41 ± 0.56 39.20 ± 0.55 25.51 ± 0.31 2.26 ± 0.05 8.76 ± 0.24 14.25 ± 0.20 8.43 ± 0.13 9.98 ± 0.15 27.28 ± 0.14 38.59 ± 0.80 25.28 ± 0.36 2.48 ± 0.10 9.71 ± 0.17 15.53 ± 0.21 9.24 ± 0.14
Swahili 0.78 ± 0.06 3.44 ± 0.26 5.61 ± 0.12 3.28 ± 0.11 0.42 ± 0.05 1.54 ± 0.07 2.43 ± 0.05 1.46 ± 0.02 0.75 ± 0.10 2.98 ± 0.07 5.20 ± 0.38 2.98 ± 0.10 0.55 ± 0.01 1.65 ± 0.12 2.54 ± 0.23 1.58 ± 0.12
Japanese 10.49 ± 0.35 28.92 ± 0.41 40.76 ± 0.76 26.72 ± 0.44 2.06 ± 0.14 8.86 ± 0.30 14.51 ± 0.43 8.48 ± 0.25 10.48 ± 0.23 28.87 ± 0.26 40.19 ± 0.44 26.51 ± 0.31 2.35 ± 0.20 9.80 ± 0.22 16.03 ± 0.16 9.39 ± 0.17
Turkish 8.60 ± 0.48 24.53 ± 0.82 35.75 ± 0.55 22.96 ± 0.60 1.74 ± 0.09 7.04 ± 0.09 12.13 ± 0.00 6.97 ± 0.06 8.45 ± 0.06 24.02 ± 0.50 34.61 ± 0.75 22.36 ± 0.41 2.14 ± 0.07 8.06 ± 0.24 13.56 ± 0.19 7.92 ± 0.13

Table 5: Retrieval task results for expanded resources experiments, divided into two datasets: AudioCaps and
ClothoV2, and two retrieval tasks: Audio-to-Text and Text-to-Audio across the twelve evaluated languages.

4.3 Expanded Resources489

To achieve a single robust model applicable across490

tasks, we trained an expanded-resource version491

of CACARA: CACARAASC/AA/WC/AC/C/f 0.2.492

Unlike previous models trained with 3 epochs, a493

batch size of 64, and different datasets, this version494

was trained with 10 epochs, a batch size of 110,495

and using all datasets together, with a data filtering496

of 0.2, for a more complete training.497

A direct comparison of this expanded model498

against the best-performing optimized models is in499

Table 5, evaluating audio-to-text and text-to-audio500

retrieval across 12 languages. This task in the Au-501

dioCaps dataset did not improve when given more502

resources and training time and continues to show503

values lower than those obtained with the optimized504

model. This is due to the proximity of the trained505

sets to the distribution of the test set. However, it506

still improved over the same model with fewer re-507

sources. For the same task, in the ClothoV2 dataset,508

a general improvement is observed for the audio-509

to-text retrieval task, but text-to-audio retrieval re-510

mained below the optimized model’s results.511

For the classification task, comparing both512

datasets through Table 6, results are generally im-513

proved when using more resources with more var-514

ied data. This shows that this task benefits from515

more robust training. Despite benefiting from a516

more robust structure, the presented model contin-517

ues to demonstrate excellent results with a mod-518

est computational structure but with the capacity519

to obtain better results with training with greater520

computational power and data availability. In this521

structure, we continued to train the model only in522

English; the other languages obtained an improve-523

ment due to emergent learning.524

OB Model ER Model OB Model ER Model
ESC-50 UrbanSounds8K

Language Accuracy
English 91.35 ± 0.69 93.50 ± 0.18 74.99 ± 0.55 78.33 ± 2.75

Portuguese 80.92 ± 0.98 81.70 ± 0.88 71.38 ± 1.35 68.15 ± 1.63

Spanish 85.60 ± 0.78 87.65 ± 0.43 71.02 ± 0.67 72.72 ± 1.50

French 82.45 ± 0.49 83.85 ± 0.17 67.72 ± 1.12 70.47 ± 1.82

Russian 78.30 ± 1.08 80.62 ± 1.36 67.16 ± 1.32 69.32 ± 0.22

Arabic 63.65 ± 1.09 63.67 ± 0.77 63.77 ± 0.60 62.40 ± 1.48

Hindi 60.12 ± 0.83 62.57 ± 0.88 58.11 ± 1.15 56.55 ± 0.78

German 75.92 ± 1.08 78.37 ± 0.64 72.38 ± 0.10 74.44 ± 1.24

Chinese(zh) 81.23 ± 1.07 82.80 ± 0.93 67.22 ± 1.15 68.50 ± 0.59

Swahili 20.48 ± 2.17 21.80 ± 0.22 38.35 ± 1.97 36.28 ± 3.61

Japanese 81.78 ± 0.75 85.83 ± 1.46 73.03 ± 0.74 72.18 ± 1.88

Turkish 69.85 ± 1.97 72.92 ± 0.81 63.91 ± 0.82 64.52 ± 0.82

Table 6: Classification task results, evaluated on ESC-
50 and UrbanSounds8K datasets for expanded resources
experiments cross the twelve evaluated languages.

5 Conclusions 525

Despite numerous efforts in the literature to de- 526

velop multimodal and multilingual models, many 527

approaches fail to leverage prior knowledge and 528

optimize training efficiency effectively. In this 529

work, we proposed CACARA, an architecture and 530

model based on emergent alignment learning ca- 531

pable of integrating a new modality into an exist- 532

ing bimodal/multimodal architecture without re- 533

quiring full retraining. Additionally, our approach 534

enables the multilingual expansion of the newly 535

added modality to all supported languages. By 536

leveraging emergent alignment, our method simpli- 537

fies training. It significantly reduces computational 538

costs, eliminating the need for retraining all compo- 539

nents while enhancing conceptual complementarity 540

across modalities. Our results demonstrate a high 541

degree of alignment between the integrated modal- 542

ities, achieving superior R@1 performance com- 543

pared to most state-of-the-art multimodal models 544

in the literature. 545

8



Limitations546

While our model demonstrates the capacity for547

seamless integration of additional modalities with-548

out degradation of performance in existing aligned549

modalities, the present study’s scope was limited to550

the incorporation of the audio modality. Extending551

the framework to incorporate further modalities552

(e.g., video, thermal, wearable sensor data, and553

depth data) would provide a more comprehensive554

assessment of the model’s scalability and ability to555

generalize across diverse representational spaces.556

Furthermore, our experimental design was con-557

strained to base-level encoder models. A more rig-558

orous evaluation of the model’s effectiveness would559

necessitate an investigation across a spectrum of560

encoder sizes. This would entail not only increased561

computational resources (in terms of data quan-562

tity, batch size, and training duration) but also a563

systematic exploration of the relationship between564

model parameterization and performance gains. A565

larger parameter count would allow one to assess566

the scalability.567

Finally, while our evaluation encompassed568

12 languages, demonstrating a degree of multilin-569

gual capability, the generalizability of these find-570

ings could be further strengthened by expanding571

the linguistic scope. A more comprehensive evalu-572

ation should include languages exhibiting greater573

typological diversity and, crucially, languages with574

varying levels of available digital resources. This575

would allow for a more nuanced understanding of576

the model’s performance in low-resource language577

settings, which are often underrepresented in cur-578

rent research.579

Ethics Statement580

This work focuses on enhancing multimodal and581

multilingual models by leveraging emergent align-582

ment through implicit learning to reduce computa-583

tional overhead and enhance accessibility. We fully584

comply with the terms of use and licensing agree-585

ments associated with all datasets used for training,586

evaluation, or testing our models. This work does587

not involve human subjects; however, we recognize588

the ethical and societal responsibilities of deploy-589

ing such models, including the potential for misuse590

(e.g., generating harmful or misleading text, audio,591

or images). Despite efforts to improve multilingual592

capabilities of a multilingual model, our models593

may still exhibit biases or under representation of594

specific languages, cultures, topics, or applications,595

particularly those with limited data resources that 596

can be inherited from a already pre-trained lan- 597

guage model. While designed for beneficial appli- 598

cations and scientific advancement, these models 599

could be repurposed for unintended uses. 600
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A Appendix871

A.1 Encoders872

As the first step in the CACARA model optimiza-873

tion pipeline, in the first phase, we focused on se-874

lecting the audio encoder to be incorporated into875

the multimodal model, for which four different en-876

coders were selected, including BEATs, HTS-AT,877

AudioMAE, and MAE-AST:878

• BEATs (Chen et al., 2023a) is a transformer-879

based model that employs an iterative frame-880

work that integrates acoustic tokenization with881

self-supervised learning (SSL) to support the882

development of robust audio representations.883

The process alternates between two stages:884

(1) an acoustic tokenizer quantizes continuous885

audio features into discrete labels, which are886

used to train an SSL model through masked887

prediction, and (2) the SSL model supervises888

the tokenizer’s optimization via knowledge889

distillation. This iterative process enables the890

components to improve together with each891

cycle.892

• Hierarchical Token-Semantic Audio Trans-893

former (HTS-AT) (Chen et al., 2022) is a894

transformer-based model that employs a hier-895

archical design to process mel-spectrograms.896

The architecture reduces sequence length pro-897

gressively through patch-merge operations898

across transformer groups, processing audio899

data along temporal and frequency dimen-900

sions to capture relevant patterns. A local-901

ized window attention mechanism is intro-902

duced, limiting attention calculations to small,903

defined regions rather than the entire input.904

This approach reduces computational com-905

plexity while preserving essential contextual906

relationships. The model also includes a907

token-semantic module, implemented as a908

CNN layer after the final transformer block.909

This module combines frequency information910

and maps features to event classes, generating911

event presence maps for use in both classifica-912

tion and temporal event localization tasks.913

• AudioMAE (Huang et al., 2022) adapts914

the Masked Autoencoder framework to mel-915

spectrograms modeling through an asymmet-916

ric encoder-decoder architecture. The encoder917

processes approximately 20% of unmasked918

spectrogram patches, while the decoder re- 919

constructs the complete spectrogram. The ar- 920

chitecture implements local window attention 921

mechanisms in the decoder to capture tempo- 922

ral and frequency correlations in audio sig- 923

nals. 924

• MAE-AST (Baade et al., 2022) combines 925

the Masked Autoencoder architecture with 926

the Audio Spectrogram Transformer for au- 927

dio processing. The system utilizes a deep 928

encoder for unmasked tokens (approximately 929

25% of input) and a shallow decoder for re- 930

construction using encoded features and mask 931

tokens. This configuration reduces compu- 932

tational requirements compared to architec- 933

tures that process all tokens through each layer. 934

Experimental results indicate strong perfor- 935

mance in generative pre-training but potential 936

limitations in tasks requiring detailed audio 937

analysis such as speaker identification, sug- 938

gesting specific trade-offs in the architecture’s 939

feature representation capabilities. 940

The results obtained for each of these models 941

are listed in Table 7, for the retrieval task, and for 942

classification in Table 8. From this set of results, we 943

selected the BEATs model because it performed 944

better after initial integration with the other two 945

encoders, image and text. 946

Audio to Text Text to Audio
AudioCaps

Model R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg
AudioMAE 27.29 59.08 74.74 53.70 5.47 22.41 34.11 20.66
HTSAT 10.21 30.55 43.22 27.99 1.69 7.63 14.31 7.87
MAE_AST 26.84 61.08 76.04 54.65 5.49 22.34 34.02 20.61
BEATswc/f 0.2 30.44 64.99 78.22 57.89 7.40 28.08 42.56 26.01
BEATsASC/AA/W 34.69 68.75 81.57 61.67 7.24 27.85 41.17 25.42

ClothoV2
AudioMAE 10.55 27.85 39.46 25.95 2.16 8.63 14.30 8.36
HTSAT 4.19 14.30 22.12 13.54 0.61 2.64 4.90 2.72
MAE_AST 9.91 26.81 37.89 24.87 2.22 9.21 15.06 8.83
BEATswc/f 0.2 19.94 47.42 61.33 42.90 4.42 17.04 27.51 16.32
BEATsASC/AA/W 9.45 25.70 36.13 23.76 1.56 6.59 10.94 6.36

Table 7: Ablation results between the different encoders
tested in the optimization models phase, for the Audio to
Text and Text to Audio retrieval task. On the AudioCaps
and ClothoV2 datasets.

A.2 Hyperparameters and Computing 947

Resources 948

The hyperparameters used for fine-tuning the gen- 949

eral BEAT models are shown in Table 9. The ba- 950

sic model has a batch size of 64 and a number of 951

epochs of 3. 952

To train the base models, a 48GB Quadro RTX 953

8000 GPU was used. On average, training took 90 954

12



ESC-50 UrbanSounds8K
Model Accuracy

AudioMAE 67.8 65.34
HTSAT 34.2 48.16
MAE_AST 67.25 66.92
BEATswc/f 0.2 93.25 77.87
BEATsASC/AA/W 90.9 75.62

Table 8: Comparison between the different encoders
tested in the optimization models phase, for classifica-
tion task. On the ESC-50 and UrbanSounds8K datasets.

hours to complete. The models with expanded com-955

putational resources were trained on an NVIDIA956

A100 GPU with 80GB, with an average training957

time of 255 hours.958

A.3 Augmentation959

Two strategies were used for data augmentation:960

Random Truncation and SpecAugument. We car-961

ried out a preliminary stage to evaluate both aug-962

mentations. The different combinations of these963

augmentations are shown in Tables 10 and 11 for964

the Retrieval and Classification tasks.965

• Random Truncation (RT) Truncates or pads966

the audio input to a fixed duration (in this work967

we use 10 seconds). For audio clips shorter968

than the target length, padding is applied in969

two stages: random padding with silence at970

the beginning, followed by additional padding971

to reach the target duration. For longer clips,972

a random segment of the required length is973

extracted from the audio. This method intro-974

duces variability by exposing the model to975

different temporal sections of the same audio976

during training, reducing overfitting while en-977

suring consistent input dimensions across the978

dataset.979

• SpecAugment (SpecAug) (Park et al., 2019b)980

operates directly on the log mel spectrogram981

of input audio rather than the raw wave-982

form. Initially developed for speech recog-983

nition tasks, this method has been success-984

fully adopted for sound event detection and985

audio classification, as demonstrated in sev-986

eral recent studies (Kong et al., 2020; Gong987

et al., 2021; Chen et al., 2023a). The method988

comprises three main operations: (1) time989

warping, which deforms the time-series along990

the time direction, (2) frequency masking,991

where f consecutive mel frequency chan- 992

nels [f0, f0 + f) are masked, with f chosen 993

from a uniform distribution from 0 to the fre- 994

quency mask parameter F , and f0 selected 995

from [0, ν − f) where ν is the number of 996

frequency channels, and (3) time masking, 997

where t consecutive time steps [t0, t0 + t) are 998

masked, with t chosen uniformly from 0 to 999

the time mask parameter T , and t0 selected 1000

from [0, τ − t). An upper bound prevents time 1001

masks from exceeding p times the number of 1002

time steps. Since the spectrograms are nor- 1003

malized to zero mean, setting masked values 1004

to zero is equivalent to setting them to the 1005

mean value. For the experiments that used 1006

SpecAugment we used F = 48 for the fre- 1007

quency masking parameter and T = 96 for 1008

the time masking parameter. These param- 1009

eters control the maximum width of the fre- 1010

quency and time masks respectively. 1011

A.4 Datasets 1012

This section details the datasets used for training, 1013

validation, and testing our model. Our training 1014

strategy leverages a combination of large-scale, au- 1015

tomatically annotated datasets and smaller, high- 1016

quality, human-annotated datasets. This approach 1017

allows us to benefit from the breadth of data pro- 1018

vided by the larger datasets while also incorporat- 1019

ing the precision and accuracy afforded by human 1020

labeling. Specifically, we utilize AudioSetCaps, 1021

WavCaps, Auto-ACD, AudioCaps, and Clotho v2 1022

as our training data. 1023

The rationale behind this selection stems from a 1024

need to balance data quantity and quality. Datasets 1025

like WavCaps, Auto-ACD, and AudioSetCaps of- 1026

fer substantial amounts of data, crucial for train- 1027

ing robust and generalizable models. While these 1028

datasets are automatically annotated and thus po- 1029

tentially contain some noise, their sheer size 1030

compensates for this limitation. Prior work has 1031

demonstrated the effectiveness of training on these 1032

datasets individually, achieving promising results. 1033

Our approach builds upon this by combining them, 1034

hypothesizing that the combined data will lead to 1035

even better performance. 1036

Complementing these large-scale datasets, we 1037

incorporate AudioCaps and Clotho v2. These 1038

datasets are meticulously annotated by human la- 1039

belers, providing a "gold standard" of data quality. 1040

While smaller in size compared to the automatically 1041
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Hyperparameter Expanded Resources Basic Model
Batch size 110 64
Maximum text token length 77
Maximum audio length 10 seconds
Optimizer Adam
Weight decay 1e-6
Adam ϵ 1e-8
Adam β [0.9, 0.98]
Learning rate schedule CosineWarmupLR
Maximum learning rate 5e-5
Minimum learning rate 1e-5
# Epochs 10 2

Table 9: Hyperparameters for the Expanded Resources and Basic Model configurations.

Audio to Text Text to Audio
AudioCaps

Model R@1 R@5 R@10 R@Avg R@1 R@5 R@10 R@Avg
BEATs + No-Augument 31.09 66.07 79.71 66.07 6.25 24.86 38.11 24.86
BEATs + SpecAug 31.05 65.60 79.55 65.60 6.59 25.53 38.45 25.53
BEATs + RT 30.33 65.15 80.09 65.15 6.21 25.51 38.13 25.51
BEATs + SpecAug + RT 32.01 66.28 79.80 66.28 6.32 25.40 39.46 25.40

ClothoV2
BEATs + No-Augument 10.12 28.98 41.63 28.98 2.51 9.68 15.90 9.68
BEATs + SpecAug 11.25 30.18 41.93 30.18 2.76 10.32 17.03 10.32
BEATs + RT 10.41 29.00 41.17 29.00 2.49 10.30 16.59 10.30
BEATs + SpecAug + RT 11.12 29.89 41.97 29.89 2.51 9.97 15.87 9.97

Table 10: Ablation results for retrieval task between the
different datasets tested in the training dataset selection
phase, for the Audio to Text and Text to Audio. On the
AudioCaps and ClothoV2 datasets.

ESC-50 UrbanSounds8K
Augumentation Accuracy

BEATs + No-Augument 76.15 62.31
BEATs + SpecAug 79.05 62.76
BEATs + RT 80.95 60.49
BEATs + SpecAug + RT 82.90 63.86

Table 11: Ablation results for classification task be-
tween the different datasets tested in the training dataset
selection phase. On the ESC-50 and ClothoV2 datasets.

generated datasets, their high accuracy is essential1042

for refining the model’s understanding of complex1043

audio-sound relationships and ensuring accurate1044

caption generation. By training on a combination1045

of these high-quality and large-scale datasets, we1046

aim to create a model that is both comprehensive1047

in its understanding of audio and accurate in its1048

descriptions.1049

• ESC-50 (Piczak, 2015) (Environmental1050

Sound Classification) comprises 2,000 audio1051

clips, each with a duration of 5 seconds, dis-1052

tributed across 50 distinct classes. These1053

classes are grouped into five broader cate-1054

gories: animal sounds, natural soundscapes1055

and water sounds, human non-speech sounds,1056

domestic sounds, and urban noises. Each1057

of these five categories contains 10 specific1058

sound classes (for a total of 50), with each 1059

class represented by 40 audio clips. To facili- 1060

tate consistent evaluation, the dataset provides 1061

predefined splits for 5-fold cross-validation. 1062

• UrbanSound8K (Salamon et al., 2014) fo- 1063

cuses specifically on urban environmental 1064

sounds, containing 8,732 labeled sound ex- 1065

cerpts under 4 seconds from 10 distinct urban 1066

sound sources. The sounds include air condi- 1067

tioners, car horns, playing children, dog bark- 1068

ing, drilling, engine idling, gunshots, jack- 1069

hammering, sirens, and street music. The 1070

dataset is organized into 10 folds for cross- 1071

validation, making it a standard benchmark 1072

for urban sound classification. 1073

• VGG-Sound (Chen et al., 2020) is an audio- 1074

visual dataset containing over 200k video 1075

clips of 10 seconds each, spanning 309 dis- 1076

tinct sound classes. These classes include 1077

musical instruments, human sounds, animal 1078

vocalizations, environmental noises, and me- 1079

chanical sounds, with each class containing 1080

200 to 1,000 clips. The clips were collected 1081

from diverse, unconstrained environments to 1082

reflect real-world acoustic conditions. The 1083

dataset was curated using a multi-stage verifi- 1084

cation process involving visual classification, 1085

audio validation, and noise filtering, ensuring 1086

high-quality and consistent data. 1087

• AudioSet (Gemmeke et al., 2017) comprises 1088

of over 2 million human-labeled 10-second 1089

YouTube video excerpts. It’s organized in a 1090

hierarchical ontology of 527 sound classes. 1091

While extremely comprehensive, it has an un- 1092

balanced distribution, with some classes hav- 1093

ing significantly more samples than others. 1094

The dataset provides both balanced and un- 1095

balanced training sets, along with a consistent 1096
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evaluation set.1097

• AudioCaps (Kim et al., 2019b) builds on Au-1098

dioSet, containing 46K audio-caption pairs1099

with varying caption density across splits. The1100

training set includes 38,118 clips with single1101

captions, while validation and test sets have1102

500 and 979 clips respectively, each with five1103

captions. The dataset’s curation process de-1104

liberately excluded music categories, visually1105

dependent sounds, and expert knowledge cat-1106

egories. During caption collection, annota-1107

tors received AudioSet labels as word hints,1108

with video hints available as a last resort. The1109

dataset emphasizes describing auditory con-1110

tent over visual elements.1111

Clotho (Drossos et al., 2020) represents a fo-1112

cused effort on audio captioning with 4,9811113

audio samples of 15 to 30 seconds in duration,1114

and 24,905 captions total. Drawing from the1115

Freesound platform, the audio samples cover1116

diverse environmental and acoustic content.1117

During data collection, annotators wrote cap-1118

tions based solely on audio signals, without1119

access to visual cues or word tags. The dataset1120

underwent post-processing to remove named1121

entities, speech transcription, and words ap-1122

pearing only once, while retaining natural lan-1123

guage descriptions of sound events, acoustic1124

scenes, and spatial-temporal relationships.1125

• MACS (Morato and Mesaros, 2021) (Multi-1126

annotator Captioned Soundscapes) contains1127

approximately 4,000 audio samples with mul-1128

tiple human annotations per clip. Each audio1129

is restricted to a 10-second duration. What1130

distinguishes MACS is its use of professional1131

annotators and a structured annotation process1132

that ensures high-quality, consistent captions1133

focused purely on auditory content.1134

• WavCaps (Mei et al., 2024a) represents1135

the largest scale effort with approximately1136

400,000 audio-caption pairs sourced from1137

FreeSound, BBC Sound Effects, SoundBible,1138

and AudioSet. What sets it apart is its inno-1139

vative three-stage processing pipeline. First,1140

it filters out clips shorter than one second1141

and removes repetitive descriptions. Then,1142

it employs ChatGPT to transform raw de-1143

scriptions into proper captions. Finally, it1144

removes named entities and extremely brief1145

captions. While it’s considered weakly la- 1146

beled due to its automated processing, Wav- 1147

Caps maintains caption quality through this 1148

structured approach, making it valuable for 1149

large-scale audio-language training. 1150

• Auto-ACD (Sun et al., 2024) is a large- 1151

scale audio-language dataset containing 1.5M 1152

audio-caption pairs. Each audio clip is paired 1153

with a detailed caption that averages 18 words 1154

in length, drawing from a vocabulary of ap- 1155

proximately 23K words. The captions en- 1156

compass comprehensive descriptions of acous- 1157

tic events, environmental context, and scene 1158

settings. The dataset uses audio clips from 1159

YouTube videos and provides rich descriptive 1160

text that goes beyond simple sound labels to 1161

include detailed acoustic and environmental 1162

information. 1163

• AudioSetCaps (Bai et al., 2024) comprises 1164

1.9M audio-caption pairs built upon AudioSet 1165

recordings. The dataset provides extensive 1166

coverage of audio content through detailed 1167

captions that describe not only the primary 1168

sound events but also their characteristics and 1169

environmental context. The captions are en- 1170

riched with fine-grained audio information in- 1171

cluding spoken language details, speech emo- 1172

tions, musical instruments, and music gen- 1173

res. The dataset maintains high caption qual- 1174

ity through a refinement process that ensures 1175

accuracy and relevance to the audio content. 1176

A.5 Qualitative Analysis 1177

For a qualitative evaluation of our model’s cross- 1178

modal retrieval capabilities, we conducted experi- 1179

ments on the AudioCaps test set. We present repre- 1180

sentative examples of successful and unsuccessful 1181

retrieval outcomes for both text-to-audio and audio- 1182

to-text tasks in Figures 3, 4, 5, and 6. Furthermore, 1183

we also investigate the emergent capabilities of our 1184

model in audio-to-image and image-to-audio re- 1185

trieval tasks, showing its ability to implicitly align 1186

the audio and image modalities, that were not ex- 1187

plicitly aligned during training. Specifically, we 1188

leveraged the test subset of the VGG-Sound dataset, 1189

extracting audio and the central video frame fol- 1190

lowing the methodology outlined in (Guzhov et al., 1191

2022). These results are visualized in Figures 7 1192

and 8. 1193

Figure 3 illustrates successful results of the text- 1194

to-audio retrieval task. In each example shown, 1195
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the ground truth audio clip corresponding to the1196

input text query is present within the top-3 ranked1197

retrieval results. These ground truth matches are1198

highlighted in red. For each retrieved audio clip,1199

we display a representative frame extracted from1200

the corresponding YouTube video segment and the1201

original caption associated with the audio clip. This1202

visualization allows for a direct comparison be-1203

tween the textual query, the retrieved audio content1204

(as represented by the video frame and caption),1205

and the ground truth.1206

Figure 4 showcases examples of unsuccessful1207

text-to-audio retrieval. In these instances, the1208

ground truth audio clip corresponding to the input1209

text query is absent from the top-3 ranked retrieval1210

results, indicating a mismatch between the text and1211

the retrieved audio.1212

Figure 5 demonstrates successful audio-to-text1213

retrieval. Given an audio clip as a query, the model1214

retrieves the top-ranked textual descriptions. The1215

retrieved text is displayed, with the ground truth1216

description highlighted in red. To provide context1217

for the audio query, we include a representative1218

frame extracted from the corresponding YouTube1219

video segment. This frame, along with the original1220

text caption associated with the audio, helps to1221

clarify the content of the audio query.1222

Figure 6 presents examples of unsuccessful1223

audio-to-text retrieval. Here, the ground truth tex-1224

tual description corresponding to the audio query1225

is not found within the top-3 ranked retrieval re-1226

sults, indicating a failure to accurately capture the1227

audio’s content in the retrieved text.1228

Figure 7 illustrates successful audio-to-text re-1229

trieval. Given an audio clip as a query, the model1230

retrieves the top-ranked images. The retrieved im-1231

age is displayed, with the ground truth description1232

highlighted in red.1233

Figure 8 presents successful image-to-audio re-1234

trieval. Given an image as a query, the model re-1235

trieves the top-ranked audios. The retrieved audio1236

is represented by a representative frame from the1237

corresponding video and the associated caption.1238

The ground truth audio is highlighted in red.1239
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Motorcycle starting then driving away

Motorcycle starting then
driving away

An engine running and
then revving

Motorcycle engine
running

Ocean waves crashing
and water streaming 
as wind blows into a
microphone while 
a man talks faintly 

in the distance

Ocean waves crashing 
as wind blows into a

microphone

Waves and wind rake 
a shore

A woman gives a
speech followed by

applause

A crowd applauds with
laughter while people

communicate followed
by a woman speaking

A woman talking while
children talk in the

background

A woman gives a speech followed by applause

Waves and wind rake a shore

Text-to-Audio

Figure 3: Examples of successful text-to-audio retrieval. The red highlighted image and text indicates the ground
truth audio clip retrieved within the top 3 results for the given text query. The image and caption provide context for
the retrieved audio.
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A man talking while bongos play followed by frogs croaking

Tribal drums playing as
footsteps shuffle on wet
dirt as frogs and crickets
chirp in the background

Fly buzzing followed by
frog swallowing it and

then a croak

Frogs croaking and a
humming with insects

vocalizing

A drilling sound with humming in the background

A crowd murmurs as a siren blares and then stops at a distance

Spraying and hissing
with some light

vibrations

A drone whirring
followed by a crashing

sound

High frequency humming
slows down and stops

then begins again

Humming with distant
traffic passing and a
distant siren ringing

A sewing machine clicks
and then is used rapidly

Police car siren starts
with two horn blasts then
becomes a high pitched

wail

Text-to-Audio

Figure 4: Examples of unsuccessful text-to-audio retrieval. The ground truth audio was not found within the top 3
results for the given text query.
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A cat meows and 
a woman speaks

A cat meows and a woman speaks

A cat meowing and young female speaking

A cat meowing twice

A chainsaw cutting 
as wood is cracking

A chainsaw cutting as wood is cracking

Chainsaw being run

Vibrations from a small engine get louder as they pass by then into the distance

A sudden horn blare 
as a train passes

A train honks horn and passes by

A sudden horn blare as a train passes

A train passes by followed by a horn

Audio-to-Text

Figure 5: Examples of successful audio-to-text retrieval. The red highlighted text indicates the ground truth text
description retrieved for the given audio query. The image and caption provide context for the audio.
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An aircraft engine
running then slowing

down after a plastic click

A motor vehicle is running and vibrating, and a high-pitched squeal occurs

Humming of a nearby jet engine

An engine hums as it idles

A man talking while
bongos play followed by

frogs croaking

A man is speaking with bird sounds in the background followed by a whistling sound

A man speaks then a small bird chirps

Outside noises of insects buzzing around, birds communicating and 
a man exchanging information with another man

Birds coo, and a dog
growls and barks

A duck quacking followed by plastic camera muffling

A duck quacks while a rooster crows and a crowd chatters followed by a girl laughing

Birds are squawking, and ducks are quacking

Audio-to-Text

Figure 6: Examples of unsuccessful audio-to-text retrieval. The ground truth text was not found within the top 3
results for the given audio query.
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Audio-to-Image

Figure 7: Examples of successful audio-to-image retrieval. The red highlighted image indicates the ground truth
image retrieved for the given audio query.
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Image-to-Audio

Figure 8: Examples of successful image-to-audio retrieval. The red highlighted text indicates the ground truth audio
retrieved for the given image query.
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