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Abstract
This paper studies the long-tailed semi-supervised
learning (LTSSL) with distribution mismatch,
where the class distribution of the labeled training
data follows a long-tailed distribution and mis-
matches with that of the unlabeled training data.
Most existing methods introduce auxiliary clas-
sifiers (experts) to model various unlabeled data
distributions and produce pseudo-labels, but the
expertises of various experts are not fully utilized.
We observe that different experts are good at pre-
dicting different intervals of samples, e.g., long-
tailed expert is skilled in samples located in the
head interval and uniform expert excels in sam-
ples located in the medium interval. Therefore,
we propose a dynamic expert assignment mod-
ule that can estimate the class membership (i.e.,
head, medium, or tail class) of samples, and dy-
namically assigns suitable expert to each sample
based on the estimated membership to produce
high-quality pseudo-label in the training phase
and produce prediction in the testing phase. We
also theoretically reveal that integrating different
experts’ strengths will lead to a smaller gener-
alization error bound. Moreover, we find that
the deeper features are more biased toward the
head class but with more discriminative ability,
while the shallower features are less biased but
also with less discriminative ability. We, there-
fore, propose a multi-depth feature fusion mod-
ule to utilize different depth features to mitigate
the model bias. Our method demonstrates its ef-
fectiveness through comprehensive experiments
on the CIFAR-10-LT, STL-10-LT, and SVHN-LT
datasets across various settings.
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Table 1. Accuracy (%) of testing set under three different unlabeled
data distributions with varying experts. In CPE (Ma et al., 2024),
E2 denotes uniform expert, while E1 and E3 denote long-tailed
and inverse long-tailed experts, respectively. Our proposed method
and Upper-E use the proposed dynamic expert assignment (DEA)
module and the ground-truth class membership to select a specific
expert, respectively. The dataset is CIFAR-10-LT with imbalance
ratio γl = 200. † indicates our proposed method using the ground-
truth class membership to select a specific expert.

Distribution Expert Head Medium Tail Overall

Consistent

E1 94.67 74.10 38.73 69.66
E2 87.23 77.30 71.60 78.57
E3 3.57 72.35 68.47 50.55

Ours 89.13 79.52 77.07 81.67
Upper-E 94.67 77.30 68.47 79.86
Upper-E† 94.17 77.53 85.93 85.04

Uniform

E1 93.47 74.73 66.83 77.98
E2 86.93 77.60 87.83 83.47
E3 0.53 74.55 90.20 57.04

Ours 89.40 78.35 86.00 83.96
Upper-E 93.47 77.60 90.20 86.14
Upper-E† 93.40 78.40 90.43 86.51

Inverse

E1 93.56 74.25 75.87 80.53
E2 83.90 78.58 92.67 84.40
E3 57.00 77.43 95.10 76.60

Ours 88.60 78.90 92.03 85.75
Upper-E 93.56 78.58 95.10 88.03
Upper-E† 92.20 80.05 96.40 88.60

1. Introduction
Over the last decade, extensive high-quality labeled data
have improved the performance of deep neural networks
(DNNs). However, in specialized domains such as medi-
cal diagnosis (Yuan et al., 2023; Zhang et al., 2023b), the
scarcity and imbalance of labeled data can be a significant
challenge due to the high costs associated with data collec-
tion or annotation (Chen et al., 2024). To solve this issue,
semi-supervised learning (SSL) (Sohn et al., 2020; Berth-
elot et al., 2020; Zhang et al., 2021) has been proposed and
become a popular method to utilize the easier and cheaper
acquired unlabeled data to improve the performance of DNN
models. Its core idea is generating pseudo-labels for unla-
beled data and selecting high-confidence ones to train the
model together with the labeled data, so as to obtain a better
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Figure 1. Comparison of F1 score (%) of pseudo-label predictions between CPE (Ma et al., 2024) and our proposed method under three
different cases. Upper-E denotes the F1 score (%) of CPE with ground-truth class membership. The dataset is CIFAR-10-LT with
imbalance ratio γl = 200. Our proposed method can generate pseudo-labels with higher F1 scores than CPE on all the cases, indicating
its effectiveness in the utilization of unlabeled samples.

model than using labeled data only. However, traditional
SSL usually assumes that the class distributions of the la-
beled and unlabeled data are balanced and consistent, which
is easily violated in real-world applications. Specifically,
data typically exhibit a long-tailed distribution, and the class
distribution of unlabeled data is not always the same as that
of the labeled data, i.e., unlabeled data may exhibit any
one of the long-tailed, uniform, or inverse long-tailed dis-
tribution, which further exacerbates the difficulty of model
training (Zhang et al., 2023c). This problem is known as
long-tailed semi-supervised learning (LTSSL).

A motivating example. In the medical field, when collect-
ing clinical data, we may obtain a long-tailed dataset from
hospitals, i.e., many common disease cases (head classes)
accompanied by very few rare disease cases (tail classes).
However, the clinical data collected from a wide range of
populations is unlabeled and characterized by an abundance
of non-diseased individuals and a scarcity of diseased in-
dividuals, especially those with rare diseases. Thus, the
unlabeled data distribution is mismatched with the labeled
data distribution.

To mitigate the model bias arising from long-tailed distri-
bution, long-tailed learning techniques, such as logit adjust-
ment (Menon et al., 2021) and re-sampling (Xu et al., 2022),
have been utilized in LTSSL to produce unbiased and high-
quality pseudo-labels. Despite their effectiveness, they still
cannot effectively solve the model bias resulting from dis-
tribution mismatch between labeled and unlabeled training
data. Recently, ACR (Wei & Gan, 2023) proposes to handle
the mismatched unlabeled data with various distributions by
incorporating adaptive logit adjustment. While this method
is effective, it relies on pseudo-labels generated by a single
classifier (expert), limiting its performance. In response to
this limitation, CPE (Ma et al., 2024) suggests training three
classifiers (experts) to handle unlabeled data across various
class distributions. However, CPE still suffers from the fol-
lowing two drawbacks. First, it employs three experts to

generate pseudo-labels simultaneously in the training phase,
which may introduce more error pseudo-labels. Second, in
the testing phase, it only employs the uniform expert for
prediction, ignoring the different characteristics of three
experts.

Motivation: We argue that each expert has its strength and
weakness, e.g., the long-tailed expert is good at handling
the samples in the head classes but not the samples in the
medium and tail classes, while the uniform expert excels
in medium classes but not in tail and head classes, and we
should use different experts to process samples from differ-
ent intervals, i.e., “a square peg in a square hole”. To check
this assumption, we first assume the class membership (i.e.,
head, medium, or tail class) of each sample is known. Then,
we construct the Upper-E, which uses the long-tailed expert
in CPE to produce pseudo-labels and predictions for head
class samples in the training and testing phase, respectively,
and the uniform and inverse long-tailed experts for medium
and tail class samples. As shown in Fig. 1 and Table 1, this
strategy can largely improve the quality of pseudo-labels in
the training phase, and the prediction accuracy in the testing
phase across all cases, indicating that each expert has its
expertise. This observation motivates us to design a module
to accurately estimate the class membership of each sample
to realize the prior of “a square peg in a square hole”.

To this end, in this paper, we propose a flexible and end-to-
end LTSSL algorithm, namely Meta-Expert. To estimate the
class membership of each sample, we propose a Dynamic
Expert Assignment (DEA) module, which takes features
from the encoder and logits from the three experts as in-
put, to produce the probability (soft class membership) of
assigning a specific expert to each sample. Subsequently,
based on a multi-information fusion mechanism (Peng et al.,
2023; 2022), we integrate the expertises of these three ex-
perts according to the estimated probabilities to construct
an aggregator. The aggregator ensures the long-tailed expert
dominates pseudo-label generation in the training phase and
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Table 2. Comparison of accuracy (%) on testing set using three dif-
ferent depth features and the corresponding performance gap (%)
between head and tail classes. We apply the K-means clustering on
different depth features to produce the results, and we can clearly
see that the feature is more biased towards the head class but more
discriminative as the depth increases.

Feature depth Overall Head Medium Tail Gap

Shallow 30.30 26.00 35.50 27.67 1.67
Middle 38.10 36.67 41.25 35.33 1.33
Deep 71.00 84.67 77.25 49.00 35.67

prediction in the testing phase when the sample belongs to
the head class, and the uniform and inverse long-tailed ex-
perts dominate when the sample belongs to the medium and
tail classes, respectively. As shown in Fig. 1, the proposed
method can produce significantly higher-quality pseudo-
labels than CPE in the training phase. And as shown in
Table 1, the proposed method can produce significantly
higher prediction accuracies than CPE (i.e., employing the
uniform expert for prediction) in the testing phase. Note
that the proposed Meta-Expert integrates the logits from
the three experts in a soft manner, pushing different experts
to learn better. Thus, in several cases, it even outperforms
CPE with the ground-truth class membership in pseudo-
label generation in the training phase (Upper-E in Fig. 1)
and prediction in the testing phase (Upper-E in Table 1).

The proposed Meta-Expert can produce better pseudo-labels
and predictions. More importantly, our theoretical analy-
sis confirms that integrating different experts’ expertises
reduces the model’s generalization error, thereby enhancing
its overall performance. However, the model is still natu-
rally biased towards the head classes due to the scarcity of
tail class samples. Fortunately, as shown in Table 2, we ob-
served that shallow features are relatively balanced although
less discriminative, and deep features improve the discrimi-
native ability but are less balanced. This phenomenon aligns
with the known behavior of deep networks: shallow layers
capture local patterns while deep layers learn global seman-
tics. For long-tailed learning, since head and tail classes
may share similar local patterns, shallow features exhibit
balanced discriminability across classes. Meanwhile, deep
layers predominantly encode head class semantics due to
their overwhelming sample dominance, thus biasing predic-
tions toward head classes. Motivated by this observation,
we further propose a Multi-depth Feature Fusion (MFF)
module to mitigate the model bias towards the head class by
fusing features across different depths to achieve both bal-
anced and discriminative representation, which also echoes
the wisdom of the proverb, “a square peg in a square hole”.

In summary, our contributions are as follows:

1. We demonstrate that the pseudo-label quality and predic-
tion accuracy can be notably improved by incorporating the

expertises of different experts. Motivated by the empirical
guide, we propose the Dynamic Expert Assignment (DEA)
module to assign experts to different samples based on their
specific expertises.

2. We further theoretically show that leveraging different ex-
perts’ strengths efficiently will bring a lower generalization
error bound.

3. We are the first to discover that shallow depth features
are less biased than deep ones, and propose the Multi-depth
Feature Fusion (MFF) module to help deal with the model
bias towards the head class.

4. We reach the new state-of-the-art (SOTA) performances
on the popular LTSSL benchmarks under various settings.

2. Related Work
Semi-supervised learning (SSL) uses both labeled and un-
labeled training data to obtain a better model than using
labeled training data only. Recent SSL methods are mostly
based on consistency regularization, pseudo-labeling, or
both. Consistency regularization methods (Miyato et al.,
2019) are based on the manifold or smoothness assumption
and apply consistency constraints to the final loss func-
tion. Pseudo-labeling methods (Chen et al., 2018) produce
pseudo-labels for unlabeled training data according to the
model’s high-confidence predictions and then use them
to assist the model training. As a representative method
of combining both of these techniques, FixMatch (Sohn
et al., 2020) encourages similar predictions between weak
and strong augmentation views of an image, to improve
model’s performance and robustness. Afterward, many vari-
ants based on FixMatch have been proposed, such as Flex-
Match (Zhang et al., 2021), FlatMatch (Huang et al., 2023),
SoftMatch (Chen et al., 2023), FreeMatch (Wang et al.,
2023), (FL)2 (Lee et al., 2024), and WiseOpen (Yang et al.,
2024). Despite the superior performance of the above meth-
ods, they cannot effectively handle the case where labeled
data exhibit a long-tailed distribution.

Long-tailed semi-supervised learning (LTSSL) has gained
increased attention due to its high relevance to real-world ap-
plications. It takes both the long-tailed distribution in long-
tailed learning (LTL) and the limited labeled training data in
SSL into consideration, which makes it more realistic and
challenging. Existing LTSSL methods primarily improve
the model performance by introducing LTL techniques (Li &
Jia, 2025; Jia et al., 2024; Zhang et al., 2023a) to the off-the-
shelf SSL methods like FixMatch (Sohn et al., 2020). For
instance, ABC (Lee et al., 2021), CReST (Wei et al., 2021),
BMB (Peng et al., 2025), and RECD (Park et al., 2024)
sample more tail class samples to balance training bias to-
wards the head class. SAW (Lai et al., 2022) introduces the
class learning difficulty based weight to the consistency loss
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to enhance the model’s robustness, INPL (Yu et al., 2023)
proposes to select unlabeled data by the in-distribution prob-
ability, CDMAD (Lee & Kim, 2024) proposes to refine
pseudo-labels by the estimated classifier bias, CoSSL (Fan
et al., 2022) introduces feature enhancement strategies to
refine classifier learning, and ACR (Wei & Gan, 2023) pro-
poses to incorporate adaptive logit adjustment to handle
unlabeled training data across various class distributions.
Very recently, CPE (Ma et al., 2024) proposes to train mul-
tiple classifiers (experts) to handle unlabeled data across
various distributions and further enhances the pseudo-label
quality through an ensemble strategy. Although effective,
it lacks a comprehensive strategy to utilize the expertise of
each expert in pseudo-label generation and unseen sample
prediction, leading to sub-optimal performance.

More related literature and discussions are detailed in Ap-
pendix B.

3. Method
3.1. Problem Statement

In long-tailed semi-supervised learning (LTSSL), we have
a labeled training dataset Dl = {xl

i, y
l
i}Ni=1 of size N and

an unlabeled training dataset Du = {xu
j }Mj=1 of size M ,

where Dl and Du share the same feature and label space,
xu
j is the jth unlabeled sample, xl

i is the ith labeled sample
with a ground-truth label yli ∈ {1, . . . , C}, and C is the
number of classes. Let Nc denote the number of samples
in the cth class of labeled dataset, we assume that the C
classes are sorted in descending order, i.e., N1 > N2 >
· · · > Nc, thus its imbalance ratio can be denoted as γl =
N1/Nc. As the label is inaccessible for unlabeled dataset,
we denote the number of samples in its cth class by Mc,
and define its imbalance ratio γu in the same way as labeled
dataset for theoretical illustration only. In this paper, we
follow the previous works (Wei & Gan, 2023; Ma et al.,
2024) to consider three cases of unlabeled data distribution,
i.e., consistent, uniform, and inverse. Specifically, i) for
consistent setting, we have M1 > M2 > · · · > Mc and
γu = γl; ii) for uniform setting, we have M1 = M2 =
· · · = Mc and γu = 1; iii) for inverse setting, we have
M1 < M2 < · · · < Mc and γu = 1/γl. The goal of LTSSL
is to learn a classifier F : Rd 7−→ [1, . . . , C] parameterized
by θ on Dl and Du, that generalizes well on all classes.

3.2. Proposed Framework

Multi-expert based LTSSL. As the class distribution of
the unlabeled training data may be inconsistent with that of
the labeled ones, we follow the previous work (Ma et al.,
2024) to train three experts to handle the unlabeled train-
ing data across various class distributions, i.e., long-tailed,
uniform, and inverse long-tailed distributions. Specifically,

we attach two auxiliary classifiers on a typical SSL method
like FixMatch (Sohn et al., 2020), and train each classifier
(expert) with a specific logit adjustment intensity to realize
that the first (long-tailed) expert is skilled in long-tailed
distribution, and the second (uniform) and third (inverse
long-tailed) experts are skilled in uniform and inverse ones,
respectively. Similar to FixMatch, the loss Lbase for the
base LTSSL includes a supervised classification loss on the
labeled data and an unsupervised consistency regularization
loss on the unlabeled data , i.e.,

Lbase =
∑Q

k=1

1

Bl

∑Bl

i=1
ℓ
(
Ek

(
g(xl

i)
)
+ τk log π, yi

)
+
∑Q

k=1

1

Bu

∑Bu

j=1
ℓ
(
Ek

(
g(xu

j )
)
, ŷj,k

)
I,

(1)

where Q = 3 denotes the number of classifiers (experts),
Bl and Bu denote the batch sizes of labeled and unlabeled
data, respectively, ℓ denotes the cross-entropy loss, xl

i and
xu
j denote the ith labeled and jth unlabeled samples in the

current batch, respectively, g denotes the encoder, π de-
notes the label frequency of the labeled data, Ek denotes
the expert trained by cross-entropy loss with a specific logit
adjustment intensity τk, ŷj,k denotes the pseudo-label pre-
dicted by Ek on the jth unlabeled sample in the current
batch, and I denotes a binary sample mask to select samples
with confidence larger than the threshold t. The first term in
Eq. 1 is the supervised classification loss on the labeled data,
and the second term defines the unsupervised consistency
regularization loss on the unlabeled data.

Dynamic expert assignment. As shown in Fig. 1 and
Table 1, we observe that each expert has its strength and
weakness, i.e., long-tailed expert is skilled in handling head
class samples but not medium and tail class samples, while
the uniform and inverse long-tailed experts are skilled in
handling medium and tail class samples, respectively. Based
on this observation, we propose to gather the strengths of
different experts. To this end, we first propose a dynamic
expert assignment (DEA) module to estimate the class mem-
bership (i.e., head, medium, or tail class) of each sample.

As shown in Fig. 2, the DEA module adopts a multilayer
perceptron (MLP) architecture and takes the feature from
the encoder and logits from the three experts as input and
outputs the soft class membership for each sample, i.e., w =
DEA([v, z1, z2, z3]), where w = [w1, w2, w3] denotes the
probability of assigning each expert to produce pseudo-label
and make prediction, v and zk|3k=1 denote the feature and
logit generated by the encoder g and expert Ek|3k=1 on the
sample x, respectively. The parameters of the DEA module
can be inferred by minimizing the following DEA loss Ldea,

Ldea =
1

Bl

∑Bl

i=1
ℓ
(
wl

i, si
)
+

1

Bu

∑Bu

j=1
ℓ
(
wu

j , ŝj
)
I, (2)

where wl
i and wu

j denote the probabilities of assigning each
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Figure 2. Overview of our Meta-Expert algorithm. Meta-Expert leverages a DEA module to adaptively assigns suitable expert to each
sample to generate pseudo-label in the training phase and make prediction in the testing phase, crucial for integrating expertises of different
experts and constructing the aggregator. E1, E2 and E3 denote the long-tailed, uniform, and inverse long-tailed experts, respectively, τk
denotes the logit adjustment intensity for expert Ek (k ∈ {1, 2, 3}), and “ ” sign denotes adding different features.

expert to the ith labeled and jth unlabeled samples in the
current batch, respectively, si denotes the ground-truth class
membership of the ith labeled sample in the current batch,
and ŝj denotes the pseudo class membership of the jth

unlabeled sample in the current batch.

Aggregator. Subsequently, we construct an aggregator.
The aggregator integrates the expertises of three experts
through a weighted summation of their respective logits
based on the estimated class membership w by the DEA
module, i.e.,

ym = σ
(∑Q

k=1
wkzk

)
, (3)

where ym denotes the soft prediction produced by the aggre-
gator and σ(·) denotes the softmax function. As the class
membership estimated by the DEA module can reflect the
class membership of each sample, aggregator in Eq. 3 en-
sures that the long-tailed expert dominates the pseudo-label
generation in the training phase and prediction in the testing
phase when the sample belongs to the head class, and the
uniform and inverse long-tailed experts dominate when the
sample belongs to the medium and tail classes, respectively.

Then, the META loss Lmeta for optimizing the overall net-
work parameters based on the output of the aggregator is
formulated as:

Lmeta =
1

Bl

∑Bl

i=1
ℓ
(
ylm,i, yi

)
+

1

Bu

∑Bu

j=1
ℓ
(
yum,j , ŷj

)
I, (4)

where ylm,i and yum,j denote the soft prediction produced by
the aggregator on the ith labeled and jth unlabeled samples

in the current batch, respectively, ŷj denotes the pseudo-
label produced by the aggregator on the jth unlabeled sam-
ple in the current batch. As shown in Fig. 1 and Table 1, our
proposed method can integrate the expertises of all experts
and generate high-quality pseudo-labels and predictions in
the training and testing phase, respectively.

Multi-depth feature fusion. Although the proposed
method is effective in integrating the expertise of each ex-
pert, the model is still naturally biased towards the head
class due to the scarcity of tail class samples. Fortunately,
as shown in Table 2, we observe that different depth fea-
tures have different bias intensities, i.e., shallow features are
relatively balanced although less discriminative, and deep
features are more discriminative and more biased. Such a
phenomenon motivates us to use multiple depth features to
learn a representation with a good trade-off between bias
and discriminative ability.

Specifically, we propose a multi-depth feature fusion (MFF)
module to fuse different depth features. As shown in Fig. 2,
the MFF module involves several MLP layers and takes dif-
ferent depth features from the encoder as input and outputs
the fusion feature v, i.e., MFF (v1, v2, v3) 7−→ v, where
v1, v2 and v3 denote the shallow, medium and deep features,
respectively. Specifically, for shallow depth features v1 and
medium ones v2, we first align their dimensions using an
MLP and add them together. Subsequently, the resulting
feature will be added to the subsequent depth’s feature set to
perform similar operations. Beside the addition operation,
we can also concatenate different depth features in the MFF
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module, which is investigated in Sec. 4.4. The parameters
of the MFF module are updated by the end-to-end training.

3.3. Model Training and Prediction

In the training phase, we warm up the model by eighteen
epochs with the base loss Lbase in Eq. 1. Then, we take the
fusion feature v from the MFF module and logit zk from the
expert Ek (k ∈ {1, 2, 3}) to calculate the DEA loss Ldea in
Eq. 2 and META loss Lmeta in Eq. 4, and together with the
base loss Lbase to jointly optimize the model. The overall
loss Loverall is formulated as:

Loverall = Lbase + Ldea + Lmeta. (5)

The whole framework of our method is shown in Fig. 2. The
pseudo-code is summarized in Alg. 1. After training, we
could obtain the predicted label of an unseen sample x∗ by
selecting the label index with the highest confidence by ym
in Eq. 3. Our code is made available1.

3.4. Theoretical Analysis

We provide the generalization error bound for our Meta-
Expert to analyze the factors that affect the model’s general-
ization ability. Before providing the main results, we first
define the true risk with respect to the classification model
f(x; θ) as follows:

R(f) = E(x,y) [ℓ(f(x), y)] . (6)

Definition 1. We aim to learn a good classification model
by minimizing the empirical risk R̂(f) = R̂l(f) + R̂u(f),
where R̂l(f) = 1

N

∑N
i=1 ℓ(f(xi), yi) and R̂u(f) =

1
M

∑M
j=1 ℓ(f(xj), yj) denote the empirical risk on labeled

and unlabeled training data, respectively. In SSL, we
cannot minimize the empirical risk R̂u(f) directly, since
the ground-truth label is inaccessible for unlabeled train-
ing data. Therefore, we need to train the model with
R̂′

u(f) = 1
M̂

∑M̂
j=1 ℓ(f(xj), ŷj), where M̂ denotes the

number of selected high-confidence unlabeled samples and
ŷj denotes the pseudo-label of unlabeled sample xj .

Let ℓSSL = 1
N

∑N
i=1 ℓ(f(xi), yi) +

1
M̂

∑M̂
j=1 ℓ(f(xj), ŷj)

be the loss for SSL, where M̂ denotes the number of selected
high-confidence unlabeled samples. Let the function space
Hy for the label y ∈ {1, . . . , C} be {h : x 7−→ fy(x)|f ∈
F}, where fy(x) denotes the predicted probability of the
yth class. Let RO(Hy) be the expected Rademacher com-
plexity (Mohri et al., 2018) of Hy with O = N +M train-
ing samples (including N labeled and M unlabeled training
samples). Let f̂ = argminf∈F R̂(f) be the empirical risk
minimizer, and f∗ = argminf∈F R(f) be the true risk
minimizer. Then we have the following theorem.

1https://github.com/yaxinhou/Meta-Expert

Algorithm 1 Training Process of the Proposed Method
1: Input: Labeled training dataset Dl, unlabeled training

dataset Du, hyper-parameter t.
2: Output: Encoder g, long-tailed expert E1, uniform ex-

pert E2, inverse long-tailed expert E3, and parameters
of DEA module Wdea and MFF module Wmff .

3: Initialize the parameters of g, E1, E2, E3, Wdea and
Wmff randomly.

4: for epoch=1, 2, . . . do
5: for batch=1, 2, . . . do
6: Get expert Ek prediction zk on a batch of data B;
7: Calculate the base loss by Eq. 1;
8: if warm up ended then
9: Calculate the loss for DEA module by Eq. 2;

10: Integrate the expertises of different experts by
Eq. 3;

11: Calculate the loss for optimizing the overall net-
work parameters based on the integrated exper-
tises by Eq. 4;

12: Obtain the overall loss by Eq. 5;
13: end if
14: Update network parameters via gradient descent;
15: end for
16: end for

Theorem 1 (Generalization Error Bound). Suppose that
the loss function ℓ(f(x), y) is ρ-Lipschitz with respect to
f(x) for all y ∈ {1, . . . , C} and upper-bounded by U .
Given the class membership η ∈ {1, . . . , Q} and overall
pseudo-labeling error ϵ > 0, if 1

M

∑M
j=1

∑Q
k=1 I(ηj,k =

1)|I
(
max

(
fk(xj)

)
> t

)
− I(ŷj = yj)| ≤ ϵ, for any δ > 0,

with probability at least 1− δ, we have:

R(f̂)−R(f∗) ≤ 2Uϵ+ 4
√
2ρ

C∑
y=1

RO(Hy) + 2U

√
log 2

δ

2O
. (7)

The proof of Theorem 1 is provided in Appendix D. It
can be observed that the generalization performance of f̂
mainly depends on two factors, i.e., the overall pseudo-
labeling error ϵ and the number of training samples O.
As O → ∞, ϵ → 0, Theorem 1 shows that the empiri-
cal risk minimizer f̂ will get closer to the true risk min-
imizer f∗. In CPE, the overall pseudo-labeling error is
defined as ϵCPE = 1

Q2

∑Q
i=1

∑Q
j=1 ϵi,j , where ϵi,j de-

notes the pseudo-labeling error of the ith expert on the
unlabeled samples with class membership ηj = 1. While
the counterpart of our Meta-Expert is defined as ϵOurs =
1
Q

∑Q
i=1

∑Q
j=1 Ii=jϵi,j , where Ii=j denotes a binary expert

mask to assign each expert to select high-confidence unla-
beled samples located in its skilled interval. As illustrated
in Table 3, compared with CPE in the consistent case, with
the estimated class membership by the DEA module, our

6

https://github.com/yaxinhou/Meta-Expert


A Square Peg in a Square Hole: Meta-Expert for Long-Tailed Semi-Supervised Learning

Table 3. Pseudo-labeling error rate (i.e., ϵ) (%) and utilization ratio
(i.e, M̂/M ) (%) under three different unlabeled data distributions
with varying experts. In CPE (Ma et al., 2024), E2 denotes uniform
expert, while E1 and E3 denote long-tailed and inverse long-tailed
experts, respectively. Our proposed method uses the DEA module
to select a specific expert. The dataset is CIFAR-10-LT with
imbalance ratio γl = 200.

Distribution Expert Head Medium Tail ϵ M̂/M

Consistent

E1 9.01 20.90 43.04 23.98 94.90
E2 26.82 20.85 22.35 23.09 64.30
E3 92.15 21.47 23.04 43.14 95.37

CPE 42.66 21.07 29.48 30.07 84.86
Ours 21.79 18.67 23.87 21.17 95.31

Uniform

E1 7.56 24.50 25.22 19.63 95.73
E2 13.67 24.58 11.00 17.23 96.57
E3 97.44 25.33 9.33 42.17 98.80

CPE 39.56 24.81 15.19 26.34 97.03
Ours 12.89 24.92 15.11 18.37 98.44

Inverse

E1 6.10 22.18 22.97 17.59 84.23
E2 15.79 21.13 9.03 15.90 93.39
E3 40.39 22.48 5.67 22.81 96.55

CPE 20.76 21.93 12.56 18.77 91.39
Ours 11.08 19.91 8.59 13.87 93.75

Meta-Expert achieves a smaller overall pseudo-labeling er-
ror (from 30.07 percentage points (pp) reduced to 21.17
pp) and higher unlabeled data utilization ratio (from 84.86
pp improved to 95.31 pp), and similar conclusions can be
observed in uniform and inverse cases, which are beneficial
for obtaining a smaller generalization error bound.

4. Experiments
4.1. Experimental Setting

Dataset. We perform our experiments on three widely-
used datasets for the LTSSL task, including CIFAR-10-
LT (Krizhevsky, 2009), SVHN-LT (Netzer et al., 2011), and
STL-10-LT (Coates et al., 2011). We follow the dataset
settings in ACR (Wei & Gan, 2023) and CPE (Ma et al.,
2024), details are as below.

· CIFAR-10-LT: We test with four settings in the consis-
tent case: (N1,M1) = (1500, 3000) and (N1,M1) =
(500, 4000), with γ ∈ {150, 200}. In the uniform case, we
test with (N1,M1) = (1500, 300), with γl ∈ {150, 200},
and γu being 1. In the inverse case, we test with (N1,Mc) =
(1500, 3000), with γl ∈ {150, 200}, and γu being 1/γl.

· SVHN-LT: We test our method under (N1,M1) =
(1500, 3000) setting. The imbalance ratio γl is set to 150 or
200. With a fixed γl = 150, we also test our method under
γu ∈ {1, 1/150} for the uniform and inverse cases.

· STL-10-LT: Since the ground-truth labels of unlabeled
data in STL-10-LT are unknown, we conduct experiments
by controlling the imbalance ratio of labeled data only. We
set N1 as 150 or 450, with γl ∈ {15, 20}, and directly use

the original unlabeled data.

Baseline. We compare our method with seven LTSSL
algorithms published in top-conferences in the past few
years, including SAW (Lai et al., 2022), Adsh (Guo & Li,
2022), DePL (Wang et al., 2022), ACR (Wei & Gan, 2023),
BaCon (Feng et al., 2024), CPE (Ma et al., 2024), and
SimPro (Du et al., 2024), which are all based on the typical
SSL method FixMatch. For a fair comparison, we test
these baselines and our Meta-Expert on the widely-used
codebase USB2. We use the same dataset splits with no
overlap between labeled and unlabeled training data for all
datasets.

4.2. Implementation Details

We follow the default settings and hyper-parameters in USB,
i.e., the batch size of labeled data Bl is set to 64 and unla-
beled data Bu is set to 128, and the confidence threshold t
is set to 0.95. Moreover, we use the WRN-28-2 (Zagoruyko
& Komodakis, 2016) architecture, and the SGD optimizer
with learning rate 3e-2, momentum 0.9, and weight decay
5e-4 for training. We repeat each experiment over three
different random seeds and report the mean performance
and standard deviation. We conduct the experiments on a
single GPU of NVIDIA A100 using PyTorch v2.3.1.

4.3. Main Result

In the case of consistent distribution (γl = γu). We
initiate our investigation by conducting experiments in the
scenario where γl = γu. The primary results for CIFAR-
10-LT are presented in Table 4. It is clear that across all
different training dataset sizes and imbalance ratios, Meta-
Expert achieves higher classification accuracy than all the
previous baselines on CIFAR-10-LT. For example, given
(N1,M1, γ) = (500, 4000, 200), Meta-Expert surpasses
all previous baselines by up to 2.47 pp. When moving
to SVHN-LT dataset in Table 5, Meta-Expert performs
comparable to the previous SOTA method BaCon, surpass-
ing other baselines by up to 0.66 pp given (N1,M1, γ) =
(1500, 3000, 200).

In the case of mismatched distribution (γl ̸= γu). In
practical applications, the distribution of unlabeled data
might significantly differ from that of labeled data. There-
fore, we investigate uniform and inverse class distribu-
tions, such as setting γu to 1 or 1/200 for CIFAR-10-LT.
For STL-10-LT dataset, as the ground-truth labels of the
unlabeled data are unknown, we only control the imbal-
ance ratio of the labeled data. The results are presented
in Tables 4 and 5, where we can find Meta-Expert can

2https://github.com/microsoft/
Semi-supervised-learning
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Table 4. Comparison of accuracy (%) on CIFAR-10-LT under γl = γu and γl ̸= γu settings. We set γl to 150 and 200 for CIFAR-10-LT.
We use bold to mark the best results.

CIFAR-10-LT CIFAR-10-LT

N1 = 500,M1 = 4000 N1 = 1500,M1 = 3000 N1 = 1500,Mc = 3000 N1 = 1500,Mc = 3000

γl = 200 γl = 150 γl = 200 γl = 150 γl = 200 γl = 200 γl = 150 γl = 150
Algorithm

γu = 200 γu = 150 γu = 200 γu = 150 γu = 1 γu = 1/200 γu = 1 γu = 1/150

Supervised 41.15±1.15 43.88±1.61 56.83±1.10 59.82±0.32 56.83±1.10 56.83±1.10 59.82±0.32 59.82±0.32

FixMatch (NIPS 20) 61.74±0.81 65.68±0.67 69.39±0.56 72.15±0.94 65.59±0.18 63.98±0.36 69.07±0.74 65.24±0.63
w / SAW (ICML 22) 61.22±4.11 68.51±0.16 74.15±1.52 77.67±0.14 78.60±0.23 70.55±0.48 80.02±0.50 73.67±0.50
w / Adsh (ICML 22) 62.04±1.31 66.55±2.94 67.13±0.39 73.96±0.47 71.06±0.77 65.68±0.44 73.65±0.36 66.51±0.69
w / DePL (CVPR 22) 69.21±0.62 71.95±2.54 73.23±0.62 76.58±0.12 73.26±0.46 69.35±0.26 75.62±0.86 71.23±0.54
w / ACR (CVPR 23) 71.92±0.94 76.72±1.13 79.96±0.85 81.81±0.49 81.18±0.73 81.23±0.59 83.46±0.42 84.63±0.66
w / BaCon (AAAI 24) 66.41±0.31 71.33±1.75 78.64±0.40 81.63±0.44 77.89±0.97 81.87±0.16 82.05±1.09 83.30±1.12
w / CPE (AAAI 24) 67.45±1.27 76.77±0.53 78.12±0.34 82.25±0.34 83.46±0.03 84.07±0.40 84.50±0.40 85.52±0.02
w / SimPro (ICML 24) 59.94±0.73 65.54±3.17 75.37±0.74 77.18±0.38 73.05±0.35 75.33±2.85 76.12±1.11 79.42±2.78
w / Meta-Expert (Ours) 74.39 ±0.46 77.19 ±0.58 80.63 ±0.83 82.52 ±0.40 83.90 ±0.11 85.71 ±0.03 84.91 ±0.14 86.78 ±0.31

Table 5. Comparison of accuracy (%) on STL-10-LT and SVHN-LT under γl = γu and γl ̸= γu settings. We set γl to 15 and 20 for
STL-10-LT, and γl to 150 and 200 for SVHN-LT. We use bold to mark the best results. N/A denotes the unknown γu in STL-10-LT
since its inaccessible ground-truth label for unlabeled dataset.

STL-10-LT SVHN-LT

N1 = 150,M1 = 100k N1 = 450,M1 = 100k N1 = 1500,M1 = 3000 N1 = 1500,Mc = 3000

γl = 20 γl = 15 γl = 20 γl = 15 γl = 200 γl = 150 γl = 150 γl = 150
Algorithm

γu = N/A γu = N/A γu = N/A γu = N/A γu = 200 γu = 150 γu = 1 γu = 1/150

Supervised 40.44±1.42 42.31±0.42 56.56±1.07 59.81±0.45 84.10±0.05 86.14±0.50 86.14±0.50 86.14±0.50

FixMatch (NIPS 20) 56.12±1.38 60.63±0.92 68.33±0.80 71.55±0.74 91.36±0.15 91.99±0.18 93.94±0.79 90.25±2.45
w / SAW (ICML 22) 66.62±0.34 67.00±0.79 74.59±0.13 75.58±0.28 92.17±0.10 92.27±0.01 94.41±0.38 91.42±0.41
w / Adsh (ICML 22) 66.56±0.61 66.72±0.32 72.95±0.45 74.28±0.24 90.87±0.32 91.68±0.25 94.04±0.68 88.71±0.52
w / DePL (CVPR 22) 66.10±0.63 67.02±0.89 73.43±0.11 74.55±0.14 92.16±0.16 92.85±0.04 94.12±0.63 87.86±0.50
w / ACR (CVPR 23) 69.24±0.95 68.74±0.95 78.13±0.29 78.55±0.50 92.90±0.40 93.52±0.32 91.11±0.17 92.03±0.34
w / BaCon (AAAI 24) 66.68±0.38 68.26±1.16 77.29±0.23 77.73±0.40 93.30±0.15 93.94±0.21 94.54±0.42 93.69±0.41
w / CPE (AAAI 24) 68.01±0.65 67.07±1.72 78.02±0.14 78.71±0.24 85.79±0.54 86.31±0.05 94.14±0.24 93.06±0.34
w / SimPro (ICML 24) 43.65±0.55 44.45±0.98 57.23±1.43 60.33±0.59 92.51±0.71 93.94±0.10 94.59±0.28 94.76 ±0.41
w / Meta-Expert (Ours) 71.19 ±0.07 69.23 ±0.82 80.18 ±1.21 79.98 ±0.33 93.56 ±0.09 93.99 ±0.07 94.66 ±0.23 94.24±0.19

consistently and significantly outperform baseline algo-
rithms on CIFAR-10-LT, validating its effectiveness to cope
with varying class distributions of unlabeled data. Con-
cretely, Meta-Expert surpasses the previous SOTA method
by 1.64 pp and other baselines by up to 4.48 pp with
(N1,M1, γl, γu) = (1500, 3000, 200, 1/200). For STL-
10-LT dataset, Meta-Expert surpasses the previous SOTA
method by 1.27 pp and other baselines by up to 1.43 pp with
N1 = 450 and γl = 15. On SVHN-LT dataset, Meta-Expert
achieves comparable performances with SimPro, surpassing
other baselines by up to 0.55 pp.

In summary, our method outperforms almost all previous
baselines regardless of training dataset sizes, imbalance
ratios, and unlabeled training data distributions. We also
evaluate all methods on FreeMatch (Wang et al., 2023) in
Appendix C, where we can get a similar conclusion.

4.4. Ablation Study

The effect of each module. In Table 6, we evaluate the
contribution of each key component in Meta-Expert. Specif-
ically, we set N1 to 1500 and M1 to 3000, and perform

experiments on CIFAR-10-LT and SVHN-LT. According
to Table 6, we can observe that both DEA and MFF bring
significant improvements. For example, on CIFAR-10-LT
with γl = γu = 200, DEA and MFF bring accuracy gains
of 0.65 pp and 1.26 pp, respectively, and the accuracy is
improved up to 3.10 pp when using them together. When
evaluating the overall performance, the DEA module pro-
vides an average 1.68 pp accuracy improvement across all
imbalance ratios, showing relatively greater performance
gains; while the MFF module delivers a 0.76 pp average
gain, which though comparatively smaller, remains statisti-
cally significant. The combined DEA+MFF configuration
achieves 2.42 pp improvement, confirming their comple-
mentary effectiveness and synergistic interaction. These
improvements conclusively validate the effectiveness of our
proposed modules in enhancing model robustness across
diverse imbalance ratios.

Note that MFF improves the accuracy of all cases except
the inverse case (γu = 1/200). This phenomenon can be
attributed to two reasons. First, the overall imbalance ratio
will be reduced as the inverse long-tailed unlabeled data
(γu = 1/200) complements the long-tailed labeled data
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Table 6. Comparison of accuracy (%) on with and without
the DEA and MFF modules. The datasets are CIFAR-10-
LT with (N1,M1, γl) = (1500, 3000, 200) and SVHN-LT with
(N1,M1, γl) = (1500, 3000, 150).

CPE CIFAR-10-LT(γu) SVHN-LT(γu)

w/ DEA w/ MFF 200 1 1/200 150 1 1/150

78.57 83.47 84.40 86.26 93.82 92.62
✓ 79.22 83.61 84.58 93.90 94.30 93.60

✓ 79.83 83.89 83.10 90.49 92.89 93.47
✓ ✓ 81.67 83.96 85.75 93.89 94.34 94.05
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Figure 3. Confidence level for assigning a specific expert to the
head, medium, and tail class samples. The datasets is CIFAR-10-
LT with (N1,M1, γl) = (1500, 3000, 200). We follow the setting
in CPE to consider the first two of all classes as head classes, the
last six as tail classes, and the remaining classes as the medium.
We clearly see that when a sample belongs to the head class, w1 is
the largest, and w2 and w3 are the largest when a sample belongs
to the medium and tail classes, respectively.

(γl = 200). Second, without the DEA model, our method
uses all experts to generate pseudo-labels in the training
phase, which introduces more error pseudo-labels and lim-
its the MFF module’s effectiveness. When using the two
modules (DEA+MFF) together, the DEA module reduces
the quantity of error pseudo-labels, thus, the effectiveness
of the MFF module is released completely.

Feature combination strategy. We evaluate the perfor-
mance of using different feature combination strategies in
the MFF module. As shown in Table 7, we observe that
the addition operation outperforms concatenation, achiev-
ing a 0.58 pp ∼ 1.35 pp higher accuracy. Based on these
empirical results, we adopt the addition operation for fusing
multi-depth features.

How does the DEA module improve the performance?
As previously mentioned, DEA can correctly estimate the
class membership of given samples, which is essential to
integrate the expertise of each expert and realize “a square
peg in a square hole”. To validate this assumption, we plot
the soft class membership estimated by DEA in Fig. 3. As
can be seen, DEA precisely assigns the head expert to the
head class samples, and medium and tail experts to the
medium and tail class samples, respectively. Based on this

Table 7. Comparison of accuracy (%) on utilizing different feature
combination strategies in the MFF module. add and con denote
using the addition and concatenation feature operation strategies,
respectively. The dataset is CIFAR-10-LT with (N1,M1, γl) =
(1500, 3000, 200).

Strategy γu

200 1 1/200

con 80.32 83.38 84.65
add 81.67 83.96 85.75

accurate estimation, our method can produce higher-quality
pseudo-labels in the training phase, as can be seen in Fig. 1.
Simultaneously, according to Table 1, the accuracies of our
method in testing phase are also the highest in all cases.
The above observations verify that our method utilizes the
expertises of all three experts effectively.

Computational overhead analysis. While our proposed
modules (three experts, MFF, and DEA) introduce a con-
trolled parameter increase of 13.3 pp (1.5M → 1.7M),
this design achieves a strategically balanced efficiency-
performance trade-off. Experimental results on CIFAR-
10-LT demonstrate: a 6.4 pp increase in epoch time (234.5s
→ 249.5s), a 1.6s increase in inference time for evaluating
10,000 samples (7.1s → 8.8s), and a substantial accuracy
improvement of 3.5 pp (71.9 pp → 74.4 pp). These results
collectively indicate significant performance enhancement
with modest computational overhead.

5. Conclusion
In this work, we address the LTSSL problem from a fresh
perspective, i.e., automatically integrating the expertises of
various experts to produce high-quality pseudo-labels and
predictions. We also theoretically prove that effectively ex-
ploiting different experts’ expertises can reduce the general-
ization error bound. Specifically, the proposed Meta-Expert
algorithm comprises a dynamic expert assignment module
and a multi-depth feature fusion module, the former can
assign a suitable expert to each sample based on the esti-
mated class membership, and the latter relieves the biased
training by fusing different depth features based on the ob-
servation that deep feature is more biased towards the head
class but more discriminative, which has not been observed
before. We validate our proposed method’s effectiveness
through extensive experiments across three widely-used
LTSSL datasets with different imbalance ratios and unla-
beled data distributions, reaching the new state-of-the-art
performance. The ablation results show that both the DEA
and MFF modules contribute to the performance improve-
ment. Moreover, the DEA module can correctly estimate
the class membership of given samples, which is essential
to integrate the expertise of each expert.
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Appendix

A. overview of the Appendix
Our appendix consists of three main sections:

• More related literature and discussions.

• Additional evaluation on FreeMatch (Wang et al., 2023).

• Proof of the theorem in Sec. 3.4: theoretical analysis, i.e., Theorem 1 (generalization error bound).

B. More Related Literature and Discussions
B.1. Long-tailed learning (LTL)

Long-tailed learning (LTL) is tailored for the long-tailed distribution exhibiting in real-world applications (Pan et al., 2023),
which aims to improve the performance of the tail class without compromising that of the head class. The existing methods
can be roughly grouped into three categories: re-sampling, logit adjustment, and ensemble learning. Re-sampling (Bai et al.,
2023; Liu et al., 2022; Xu et al., 2022) adjusts the number of samples for each class, i.e., under-sampling the head class
or over-sampling the tail class. Logit adjustment (Cao et al., 2019; Menon et al., 2021; Kini et al., 2021) seeks to resolve
the class imbalance by adjusting the predicted logit of the classifier. Ensemble learning (Aimar et al., 2023; Du & Wu,
2023; Zhang et al., 2022) based methods combine multiple classifiers (experts) to improve the performance and robustness
of the model. While these methods have made significant progress in long-tailed learning, they often fail to achieve the
expected performance gains when directly applied to long-tailed semi-supervised learning (LTSSL), particularly when the
distributions are mismatched between labeled and unlabeled training data.

B.2. Connections and Differences Compared with Multiple Experts Based Methods

In the fields of long-tailed learning (LTL) and long-tailed semi-supervised learning (LTSSL), several works have employed
multiple experts to enhance the model’s performance. Nevertheless, they are significantly different from the proposed
Meta-Expert.

In LTSSL, only CPE (Ma et al., 2024) utilizes multiple experts to handle unlabeled data across various class distributions.
CPE, however, lacks integrating the multiple experts, it only employs three experts to generate pseudo-label simultaneously
in the training phase and the uniform expert to make prediction in the testing phase. Consequently, CPE may introduce more
error pseudo-labels, thereby limiting its performance.

In contrast to LTSSL, numerous studies incorporate multiple experts in LTL, such as RIDE (Wang et al., 2021), SADE (Zhang
et al., 2022), and BalPoE (Aimar et al., 2023). All of these methods are designed for supervised learning and are incapable
of handling semi-supervised learning (SSL). Extending them to SSL requires extra effort, as exploiting unlabeled samples is
not trivial.

RIDE seeks to learn from multiple independent and diverse experts, making predictions through the averaging of their
outputs. The router in RIDE primarily focuses on minimizing the number of experts to reduce the computational cost during
the testing phase. SADE leverages self-supervision on testing set to aggregate the learned multiple experts and subsequently
utilize the aggregated ones to make prediction in the testing phase. Although effective, it lacks efforts to guide different
experts to learn better in their expertises during the training phase. BalPoE refines the logit adjustment intensity across all
three experts and averages their outputs to minimize the balanced error while ensuring Fisher consistency.

Different from the above works, we find that different experts excel at predicting different intervals of samples, e.g., a
long-tailed/uniform/inverse long-tailed expert is skilled in samples located in the head/medium/tail interval. Consequently,
we propose the dynamic expert assignment (DEA) module to estimate the class membership of samples and dynamically
assign suitable experts to each sample based on the estimated membership to produce high-quality pseudo-labels in the
training phase (Fig. 1) and excellent predictions in the testing phase (Tables 4, 5, 8, and 9). Moreover, Fig. 3 proves the class
membership estimated by the DEA module is accurate.
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Finally, for the first time, we observe that shallow features are relatively balanced although less discriminative, and deep
features improve the discriminative ability but are less balanced, thus proposing the multi-depth feature fusion (MFF)
module to make the model both discriminative and balanced (Table 2).

In summary, the differences between our Meta-Expert and existing methods are substantial, even though they also utilize a
multi-expert network architecture.

C. Evaluation on FreeMatch
To further illustrate our method’s universality, we reproduce our method and all the compared methods by taking
FreeMatch (Wang et al., 2023) as the base SSL method and evaluate them on CIFAR-10-LT, SVHN-LT, and STL-10-LT with
the same settings used in the main paper. Tables 8 and 9 present the main results, indicating that our Meta-Expert can produce
higher prediction accuracies by incorporating the expertises of different experts. For example, on CIFAR-10-LT, given
(N1,M1, γ) = (500, 4000, 200), Meta-Expert surpasses all previous baselines by up to 7.05 pp in the case of γl = γu. More-
over, in the case of γl ̸= γu, Meta-Expert surpasses the previous SOTA method by 1.02 pp and outperforms all other baselines
by 1.90 pp given (N1,M1, γl, γu) = (1500, 3000, 150, 1). When moving to SVHN-LT dataset, Meta-Expert surpasses the
previous SOTA method by 0.55 pp and other baselines by up to 3.29 pp given (N1,M1, γl, γu) = (1500, 3000, 150, 1/150).
On STL-10-LT, Meta-Expert performs comparable to the previous SOTA method SimPro, surpassing other baselines by up
to 0.62 pp. All of these results further illustrate our method’s effectiveness.

Table 8. Comparison of accuracy (%) on CIFAR-10-LT under γl = γu and γl ̸= γu settings. We set γl to 150 and 200 for CIFAR-10-LT.
We use bold to mark the best results.

CIFAR-10-LT CIFAR-10-LT

N1 = 500,M1 = 4000 N1 = 1500,M1 = 3000 N1 = 1500,Mc = 3000 N1 = 1500,Mc = 3000

γl = 200 γl = 150 γl = 200 γl = 150 γl = 200 γl = 200 γl = 150 γl = 150
Algorithm

γu = 200 γu = 150 γu = 200 γu = 150 γu = 1 γu = 1/200 γu = 1 γu = 1/150

Supervised 41.15±1.15 43.88±1.61 56.83±1.10 59.82±0.32 56.83±1.10 56.83±1.10 59.82±0.32 59.82±0.32

FreeMatch (ICLR 23) 63.35±0.49 68.03±0.68 69.83±1.36 73.00±0.63 78.99±0.53 71.33±0.36 79.60±0.72 72.76±0.79
w / SAW (ICML 22) 59.31±1.26 65.69±0.94 72.05±0.87 74.69±0.85 80.16±0.25 73.24±0.57 81.90±1.00 73.45±0.24
w / Adsh (ICML 22) 62.64±1.11 66.22±1.54 69.27±1.54 73.81±0.53 71.88±0.47 65.16±0.06 73.14±0.57 66.29±0.76
w / DePL (CVPR 22) 65.04±1.07 69.65±1.43 70.66±0.98 73.29±0.53 80.37±0.49 72.28±0.17 80.14±1.03 73.20±1.37
w / ACR (CVPR 23) 58.36±2.35 60.98±1.24 70.24±1.99 72.55±1.34 81.89±0.04 82.68±0.21 83.49±0.36 83.85±0.41
w / BaCon (AAAI 24) 68.63±0.77 72.69±0.68 75.97±1.34 77.71±1.36 83.20±0.11 82.48±0.08 83.91±0.42 83.66±1.25
w / CPE (AAAI 24) 66.82±1.36 69.80±1.28 77.28±0.63 79.24±0.30 83.59±0.17 80.37±1.11 84.37±0.14 79.12±0.80
w / SimPro (ICML 24) 64.20±0.39 69.17±3.31 78.57±0.72 80.49±0.39 80.82±0.24 77.59±0.72 81.30±0.98 79.67±0.99
w / Meta-Expert (Ours) 75.68 ±0.28 78.26 ±0.63 80.53 ±0.71 82.69 ±0.51 84.30 ±0.29 85.32 ±0.40 85.39 ±0.48 85.89 ±0.79

Table 9. Comparison of accuracy (%) on STL-10-LT and SVHN-LT under γl = γu and γl ̸= γu settings. We set γl to 15 and 20 for
STL-10-LT, and γl to 150 and 200 for SVHN-LT. We use bold to mark the best results. N/A denotes the unknown γu in STL-10-LT
since its inaccessible ground-truth label for unlabeled dataset.

STL-10-LT SVHN-LT

N1 = 150,M1 = 100k N1 = 450,M1 = 100k N1 = 1500,M1 = 3000 N1 = 1500,Mc = 3000

γl = 20 γl = 15 γl = 20 γl = 15 γl = 200 γl = 150 γl = 150 γl = 150
Algorithm

γu = N/A γu = N/A γu = N/A γu = N/A γu = 200 γu = 150 γu = 1 γu = 1/150

Supervised 40.44±1.42 42.31±0.42 56.56±1.07 59.81±0.45 84.10±0.05 86.14±0.50 86.14±0.50 86.14±0.50

FreeMatch (ICLR 23) 70.67±0.83 70.58±0.17 76.66±0.32 77.40±0.31 90.87±1.01 91.66±0.21 94.66±0.41 88.01±0.87
w / SAW (ICML 22) 71.27±0.69 70.91±0.54 78.07±0.06 78.15±0.44 89.04±0.59 90.09±0.16 94.57±0.24 89.22±1.18
w / Adsh (ICML 22) 67.37±1.15 68.10±0.10 73.44±0.70 74.43±0.14 90.22±0.45 91.78±0.22 94.21±0.57 88.47±0.66
w / DePL (CVPR 22) 70.89±0.40 70.47±0.48 77.41±0.11 77.47±0.47 90.64±0.61 91.44±0.37 94.62±0.32 87.74±1.06
w / ACR (CVPR 23) 69.89±0.54 70.98±0.57 78.51±0.26 79.35±0.35 84.78±1.11 87.00±0.75 92.89±0.35 91.21±0.09
w / BaCon (AAAI 24) 71.51±0.22 71.69 ±0.69 78.93±0.13 79.34±0.72 91.13±1.10 92.45±0.18 94.82±0.24 92.85±0.44
w / CPE (AAAI 24) 69.73±0.25 70.46±0.54 78.84±0.13 79.18±0.54 91.83±0.35 92.21±0.03 94.32±0.41 90.39±0.41
w / SimPro (ICML 24) 43.30±3.18 46.05±1.22 66.70±1.69 68.03±1.17 93.17±0.35 93.73 ±0.06 94.86 ±0.22 93.95±0.29
w / Meta-Expert (Ours) 71.57 ±0.40 71.60±1.00 78.94 ±0.08 79.40 ±0.25 93.21 ±0.09 93.67±0.07 94.80±0.37 94.50 ±0.33
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D. Proof of Theorem 1
We first copy the Theorem 1 here.

Theorem 1. Suppose that the loss function ℓ(f(x), y) is ρ-Lipschitz with respect to f(x) for all y ∈ {1, . . . , C}
and upper-bounded by U . Given the class membership η ∈ {1, . . . , Q} and overall pseudo-labeling error ϵ > 0, if
1
M

∑M
j=1

∑Q
k=1 I(ηj,k = 1)|I

(
max

(
fk(xj)

)
> t

)
− I(ŷj = yj)| ≤ ϵ, for any δ > 0, with probability at least 1 − δ, we

have:

R(f̂)−R(f∗) ≤ 2Uϵ+ 4
√
2ρ

C∑
y=1

RO(Hy) + 2U

√
log 2

δ

2O
. (8)

Proof. We first derive the uniform deviation bound between R(f) and R̂(f) by the following lemma.

Lemma 1. Suppose that the loss function ℓ(f(x), y) is ρ-Lipschitz with respect to f(x) for all y ∈ {1, . . . , C} and
upper-bounded by U . For any δ > 0, with probability at least 1− δ, we have:

|R(f)− R̂(f)| ≤ 2
√
2ρ

C∑
y=1

RN+M (Hy) + U

√
log 2

δ

2(N +M)
, (9)

where the function space Hy for the label y ∈ {1, . . . , C} is {h : x 7−→ fy(x)|f ∈ F}.

Proof. In order to prove this lemma, we define the Rademacher complexity of the composition of loss function ℓ and model
f ∈ F with N labeled and M unlabeled training samples as follows:

RN+M (ℓ ◦ F)

=E(x,y,µ)

sup
f∈F

N∑
i=1

µi

(
ℓ
(
f(xi), yi

))
+

M∑
j=1

µj

(
ℓ
(
f(xj), yj

))
≤
√
2ρ

C∑
y=1

RN+M (Hy), (10)

where ◦ denotes the function composition operator, E(x,y,µ) denotes the expectation over x, y, and µ, µ denotes the
Rademacher variable, supf∈F denotes the supremum (or least upper bound) over the function set F of model f . The second
line holds because of the Rademacher vector contraction inequality (Maurer, 2016).

Then, we proceed with the proof by showing that the one direction supf∈F R(f)− R̂(f) is bounded with probability at least
1− δ/2, and the other direction supf∈F R̂(f)−R(f) can be proved similarly. Note that replacing a sample (xi, yi) leads
to a change of supf∈F R(f)− R̂(f) at most U

N+M due to the fact that ℓ is bounded by U . According to the McDiarmid’s
inequality (Mohri et al., 2018), for any δ > 0, with probability at least 1− δ/2, we have:

sup
f∈F

R(f)− R̂(f) ≤ E

[
sup
f∈F

R(f)− R̂(f)

]
+ U

√
log 2

δ

2(N +M)
. (11)

According to the result in (Mohri et al., 2018) that shows E
[
supf∈F R(f)− R̂(f)

]
≤ 2RN+M (F), and further considering

the other direction supf∈F R̂(f)−R(f), with probability at least 1− δ, we have:

sup
f∈F

|R(f)− R̂(f)| ≤ 2
√
2ρ

C∑
y=1

RN+M (Hy) + U

√
log 2

δ

2(N +M)
, (12)

which completes the proof.
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Then, we can bound the difference between R̂u(f) and R̂′
u(f) as follows.

Lemma 2. Suppose that the loss function ℓ(f(x), y) is ρ-Lipschitz with respect to f(x) for all y ∈ {1, . . . , C} and
upper-bounded by U . Given the class membership η ∈ {1, . . . , Q} and overall pseudo-labeling error ϵ > 0, if
1
M

∑M
j=1

∑Q
k=1 I(ηj,k = 1)|I

(
max

(
fk(xj)

)
> t

)
− I(ŷj = yj)| ≤ ϵ, we have:

|R̂′
u(f)− R̂u(f)| ≤ Uϵ. (13)

Proof. Let’s first expand R̂′
u(f):

R̂′
u(f) =

1

M̂

M̂∑
j=1

Q∑
k=1

I(ηj,k = 1)I
(
max

(
fk(xj)

)
> t

)
ℓ
(
fk(xj), ŷj

)
. (14)

Then, we show its upper bound:

R̂′
u(f) ≤

1

M

M∑
j=1

Q∑
k=1

I(ηj,k = 1)ℓ
(
fk(xj), yj

)
+ I(ηj,k = 1)I

(
ŷj ̸= yj ,max

(
fk(xj)

)
> t

)
ℓ
(
fk(xj), ŷj

)
≤ 1

M

M∑
j=1

Q∑
k=1

I(ηj,k = 1)
(
ℓ
(
fk(xj), yj

)
+ ϵk,kℓ

(
fk(xj), ŷj

))

≤ R̂u(f) + U
1

Q

Q∑
k=1

ϵk,k = R̂u(f) + Uϵ, (15)

and its lower bound:

R̂′
u(f) ≥

1

M

M∑
j=1

Q∑
k=1

I(ηj,k = 1)ℓ
(
fk(xj), yj

)
− I(ηj,k = 1)I

(
max

(
fk(xj)

)
≤ t

)
ℓ
(
fk(xj), ŷj

)
≥ 1

M

M∑
j=1

Q∑
k=1

I(ηj,k = 1)
(
ℓ
(
fk(xj), yj

)
− ϵk,kℓ

(
fk(xj), ŷj

))

≥ R̂u(f)− U
1

Q

Q∑
k=1

ϵk,k = R̂u(f)− Uϵ. (16)

By combining these two bounds, we can obtain the following result:

|R̂′
u(f)− R̂u(f)| ≤ Uϵ, (17)

which concludes the proof.

Based on the above lemmas, for any δ > 0, with probability at least 1− δ, we have:

R(f̂) ≤ R̂(f̂) + 2
√
2ρ

C∑
y=1

RO(Hy) + U

√
log 2

δ

2O

≤ R̂l(f̂) + R̂u(f̂) + 2
√
2ρ

C∑
y=1

RO(Hy) + U

√
log 2

δ

2O

≤ R̂l(f̂) + R̂′
u(f̂) + Uϵ+ 2

√
2ρ

C∑
y=1

RO(Hy) + U

√
log 2

δ

2O
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≤ R̂l(f) + R̂′
u(f) + Uϵ+ 2

√
2ρ

C∑
y=1

RO(Hy) + U

√
log 2

δ

2O
(18)

≤ R̂l(f) + R̂u(f) + 2Uϵ+ 2
√
2ρ

C∑
y=1

RO(Hy) + U

√
log 2

δ

2O

≤ R̂(f) + 2Uϵ+ 2
√
2ρ

C∑
y=1

RO(Hy) + U

√
log 2

δ

2O

≤ R(f) + 2Uϵ+ 4
√
2ρ

C∑
y=1

RO(Hy) + 2U

√
log 2

δ

2O
,

where the first and seventh lines are based on Lemma 1, and three and fifth lines are due to Lemma 2. The fourth line is by
the definition of f̂ . At this point, we have proven the Theorem 1.
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