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Abstract

Optimization methods play a crucial role in modern machine learning, powering the
remarkable empirical achievements of deep learning models. These successes are
even more remarkable given the complex non-convex nature of the loss landscape
of these models. Yet, ensuring the convergence of optimization methods requires
specific structural conditions on the objective function that are rarely satisfied in
practice. One prominent example is the widely recognized Polyak-Łojasiewicz
(PL) inequality, which has gained considerable attention in recent years. However,
validating such assumptions for deep neural networks entails substantial and often
impractical levels of over-parametrization. In order to address this limitation,
we propose a novel class of functions that can characterize the loss landscape of
modern deep models without requiring extensive over-parametrization and can
also include saddle points. Crucially, we prove that gradient-based optimizers
possess theoretical guarantees of convergence under this assumption. Finally, we
validate the soundness of our new function class through both theoretical analysis
and empirical experimentation across a diverse range of deep learning models.

1 Introduction

The strides in empirical progress achieved by deep neural networks over the past decade have been
truly remarkable. Central to the triumph of these techniques lies the effectiveness of optimization
methods, which is particularly noteworthy given the non-convex nature of the objective functions
under consideration. Worst-case theoretical results point to a pessimistic view since even a degree
four polynomial can be NP-hard to optimize [30] and the loss landscape of some neural networks are
known to include saddle points or bad local minima [6, 70, 88].

Yet, empirical evidence has shown that gradient-based optimizers – including SGD, AdaGrad [21]
and Adam [39] among many others – can effectively optimize the loss of modern deep-learning-based
models. While some have pointed to the ability of gradient-based optimizers to deal with potentially
complex landscapes, e.g. escaping saddle points [36, 17], another potential explanation is that the
loss landscape itself is less complex than previously assumed [27, 51].

Some key factors in this success include the choice of architecture [5, 48, 40, 18], as well as the
over-parametrization [73, 12, 50, 51]. In the well-known infinite-width limit [86, 35, 32], neural
networks are known to exhibit simple landscapes [49]. However, practical networks operate in a
finite range, which still leaves a lot of uncertainty regarding the nature of the loss landscape. This is
especially important given that the convergence guarantees of gradient-based optimizers are derived
by assuming some specific structure on the objective function [37, 79, 71]. Consequently, an essential
theoretical endeavor involves examining the class of functions that neural networks can represent.

In this work, we present a new class of functions that satisfy a newly proposed α-β-condition (see
Eq. (2)). We theoretically and empirically demonstrate that these functions effectively characterize
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Table 1: Summary of existing assumptions on the problem (1) and their limitations. Here S denotes
the set of minimizers of f and f∗

i := argminx fi(x). Unlike earlier conditions, the α-β-condition is
specifically designed to capture local minima and saddle points. NN = Neural Network.

Condition Definition Comments

QCvx [28] ⟨∇f(x), x− x∗⟩ ≥ θ(f(x)− f(x∗))
for some fixed x∗ ∈ S - excludes saddle points and local minima

Aiming [51] ⟨∇f(x), x− Proj(x,S)⟩ ≥ θf(x)

- excludes saddle points and local minima
- theoretically holds for NN in the presence of

impractical over-parameterization [51]
- does not always hold in practice [Fig. 1 a-b]

PL (a) [66] ∥∇f(x)∥2 ≥ 2µ(f(x)− f∗)

- excludes saddle points and local minima
- theoretically holds for NN in the presence of

impractical over-parameterization [50]
- does not always hold in practice [Fig. 1 c-d]

α-β-condition
[This work]

⟨∇fi(x), x− Proj(x,S)⟩ ≥ α(fi(x)− fi(Proj(x,S)))
−β(fi(x)− f∗

i )

- might have saddles [Ex. 2] and local minima [Ex. 3]
- in practice does not require

over-parameterization [Ex. 5]

the loss landscape of neural networks. Furthermore, we derive theoretical convergence guarantees for
commonly used gradient-based optimizers under the α-β-condition.

In summary, we make the following contributions:

1. We introduce the α-β-condition and theoretically demonstrate its applicability to a wide
range of complex functions, notably those that include local saddle points and local minima.

2. We empirically validate that the α-β-condition is a meaningful assumption that captures
a wide range of practical functions, including matrix factorization and neural networks
(ResNet, LSTM, GNN, Transformer, and other architectures).

3. We analyze the theoretical convergence of several optimizers under α-β-condition, including
vanilla SGD (Stochastic Gradient Descent), SPSmax (Stochastic Polyak Stepsize) [53], and
NGN [63] (Non-negative Gauss-Newton).

4. We provide empirical and theoretical counter-examples where the weakest assumptions,
such as the PL and Aiming conditions, do not hold, but the α-β-condition does.

2 Related work

2.1 Function classes in optimization

Studying the convergence properties of gradient-based optimizers has a long history in the field
of optimization and machine learning. Notably, one of the fundamental observations is the linear
and sub-linear convergence exhibited by GD for strongly convex (SCvx) and general convex (Cvx)
functions [61]. However, most modern Machine Learning models have non-convex loss landscapes,
for which the existing convex theory is not applicable. Without assumptions on the loss functions
(other than smoothness), one can only obtain weak convergence guarantees to a first-order critical
point. This situation has led to the derivation of assumptions that are weaker than convexity but
that are sufficient to guarantee convergence of GD-based optimizers. The list includes error bounds
(EB) [54], essential strong convexity (ESC) [52], weak strong convexity (WSC) [60], the restricted
secant inequality (RSI) [87], and the quadratic growth (QG) condition [1]. In the neighborhood of the
minimizer set S, EB, PL, and QG are equivalent if the objective is twice differentiable [68]. All of
them, except QG, are sufficient to guarantee a global linear convergence of GD. However, among these
less stringent conditions, the Polyak-Łojasiewicz (PL) condition stands out as particularly renowned.
Initially demonstrated by Polyak [66] to ensure linear convergence, it has recently experienced a
resurgence of interest, in part because it accurately characterizes the loss landscape of heavilly
over-parametrized neural networks [50]. It was also shown to be one of the weakest assumptions
among the other known conditions outlined so far [37]. A generalized form of the PL condition for
non-smooth optimization is the Kurdyka-Łojasiewicz (KL) condition [43, 10] which is satisfied for a
much larger class of functions [14, 77] than PL. The KL inequality has been employed to analyze
the convergence of the classic proximal-point algorithm [3, 11, 47] and other optimization methods
[4, 45].

More recently, some new convex-like conditions have appeared in the literature such as star-convex
(StarCvx) [62], quasar-convex (QCvx) [28], and Aiming [51]. These conditions are relaxations of
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Figure 1: Training of 3 layer LSTM model that shows Aiming condition does not always hold. The
term “Angle” in the figures refers to the angle ∠(∇f(xk), xk − xK), and it should be positive if
Aiming holds, while in a-b we observe that it is negative during the first part of the training. Figures
c-d demonstrate that possible constant µ in PL condition should be small which makes theoretical
convergence slow.
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Figure 2: Training for half-space learning problem with SGD. The term “Angle” in the figures refers
to the angle ∠(∇f(xk), xk − xK).

convexity and include non-convex functions. Within the domain of reinforcement learning, several
works [84, 23] have also considered relaxations of the gradient domination condition, although these
analyses are conducted specifically within the context of policy gradient methods, and therefore less
relatable to StarCvx, QCvx or the Aiming condition.

We present a summary of some of these conditions in Table 1. There is no general implication between
already existing assumptions such as QCvx, Aiming, PL, and the α-β-condition. However, as we will
later see, the α-β-condition can more generally characterize the landscape of neural networks without
requiring unpractical amounts of over-parametrization. Notably, the α-β-condition is a condition that
applies globally to the loss. However, we will demonstrate that convergence guarantees can still be
established for commonly-used gradient-based optimizers, although these guarantees are weaker than
those derived under the PL condition, which relies on much stronger assumptions.

2.2 Limitations of existing conditions

Next, we discuss the limitations of previous conditions to characterize the loss landscape of complex
objective functions such as the ones encountered when training deep neural networks.

Necessity of Over-parameterization. When considering deep models, the theoretical justification
of conditions such as Aiming [51] and PL [50] require a significant amount of over-parameterization.
This implies that the neural network must be considerably large, often with the minimum layer’s width
scaling with the size of the dataset n. However, various studies suggest that this setup may not always
accurately model real-world training dynamics [13, 2]. To the best of our knowledge, the weakest
requirements on the width of a network are sub-quadratic Ω̃(n3/2) [20, 74], where n is the size of a
dataset. This implies that, even for a small dataset such as MNIST, a network should have billions of
parameters which is not a realistic setting in practice. In contrast, the α-β-condition condition does
not require such an over-parametrization condition to hold (e.g., see Example 5). In Section 5 we
provide empirical results showing how our condition is affected by over-parameterization.

Necessity of Invexity. One limitation of prior assumptions is their inability to account for functions
containing local minima or saddle points. Indeed, many of the weakest conditions, such as QCvx, PL,
KL, and Aiming, require that any point where the gradient is zero must be deemed a global minimizer.
However, such conditions are not consistent with the loss landscapes observed in practical neural
networks. For example, finite-size MLPs can have spurious local points or saddle points [88, 80].
Another known example is the half-space learning problem which is known to have saddle points [17].
We refer the reader to Figure 2-a that illustrates this claim (it showcases the surface of the problem

3



fixing all parameters except first 2), and also demonstrates that the Aiming and PL conditions fail to
hold in such a setting. We present the results in Figure 21 where we observe that (i) the angle between
the full gradient and direction to the minimizer ∠(∇f(xk), xk − x∗) can be negative implying that
the Aiming condition does not hold in this case (since the angle should remain positive); (ii) the
gradient norm can become zero while we did not reach minimum (loss is still large) implying that the
PL condition does not hold as well (since the inequality ∥∇f(xk)∥2 ≥ 2µ(f(xk)− f∗) is not true
for any positive µ). These observations suggest that the Aiming and PL conditions do not characterize
well a landscape in the absence of invexity property. In contrast, we demonstrate in Example 2 and
Figure 9 that our proposed assumption is preferable in this scenario.

Lack of Theory. As previously mentioned, most theoretical works apply to some infinite limit
or neural networks of impractical sizes. In contrast, several works [89, 27, 75] have studied the
empirical properties of the loss landscape of neural networks during training. They have shown
that gradient-based optimization methods do not encounter significant obstacles that impede their
progress. However, these studies fall short of providing theoretical explanations for this observed
phenomenon.

Lack of Empirical Evidence. Several theoretical works [49, 51] prove results on the loss landscape
of neural networks without supporting their claims using experimental validation on deep learning
benchmarks. We demonstrate some practical counter-examples to these conditions proved in prior
work. We train LSTM-based model2 with standard initialization on Wikitext-2 [57] and Penn
Treebank (PTB) [58] datasets. In Figure 1 (a-b), we show that the angle between the full gradient and
direction to the minimizer ∠(∇f(xk), xk − x∗) can be negative in the first part of the training. This
result implies that the Aiming condition does not hold in this setting (either we do not have enough
over-parameterization or the initialization does not lie in the locality region where Aiming holds).
Moreover, for the same setting in Figure 1 (c-d) we plot 2 log(∥∇f(xk)∥)−2/δ log(f(xk)−f(xK))3

to measure the empirical value of PL constant log(2µ) (see derivations in Appendix A). We observe
that the value of µ that might satisfy PL condition should be of order 10−8 − 10−7 and leads to
slow theoretical convergence [37]. These observations contradict with practical results. We defer to
Appendix A for a more detailed discussion. In contrast, we demonstrate in Figure 7-(g-h) that the
proposed α-β-condition can be verified in this setting.

3 The proposed α-β-condition

Setting. We consider the following Empirical Risk Minimization (ERM) problem that typically
appears when training machine learning models:

min
x∈Rd

[
f(x) := 1

n

∑n
i=1 fi(x)

]
. (1)

Here x ∈ Rd denotes the parameters of a model we aim to train, d is the number of parameters, and
n is the number of samples in the training dataset. Each fi(x) is the loss associated with the i-th
data point. We denote the minimum of the problem (1) by f∗ and the minimum of each individual
function by f∗

i := minx fi(x), which we assume to be finite. Besides, the set S denotes the set of all
minimizers of f .

A new class of functions. Next, we present a new condition that characterizes the interplay between
individual losses fi and the set of minimizers of the global loss function f .

Definition 1 (α-β-condition ). Let X ⊆ Rd be a set and consider a function f : X → R as defined in
(1). Then f satisfies the α-β-condition with positive parameters α and β such that α > β if for any

1Our implementation is based on the open source repository https://github.com/archana95in/
Escaping-saddles-using-Stochastic-Gradient-Descent from [17] with small changes to track neces-
sary quantities.

2Our implementation is based on the open source repository https://github.com/fhueb/
parameter-agnostic-lzlo from [33] with small changes to track necessary quantities. The detailed experi-
ment description is given in Appendix D.2.

3We use xK (for a large value of K) to approximate the minimizer x∗.
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x ∈ X there exists xp ∈ Proj(x,S) such that for all i,
⟨∇fi(x), x− xp⟩ ≥ α(fi(x)− fi(xp))− β(fi(x)− f∗

i ). (2)

The α-β-condition recovers several existing assumptions as special cases. For example, the proposed
assumption reduces to QCvx around x∗ if α > 0, β = 0, and S is a singleton {x∗}. Importantly, the
α-β-condition is also applicable when the set S contains multiple elements.

One can easily check that the pair of parameters (α, β) in (2) can not be unique. Indeed, if the
assumption is satisfied for some α and β, then due to inequality fi(xp) ≥ f∗

i it will be also satisfied
for (α+ δ, β + δ) for any δ ≥ 0.

3.1 Theoretical verification of the α-β-condition

To demonstrate the significance of Definition 1 as a meaningful condition for describing structural
non-convex functions, we provide several examples below that satisfy (2). We do not aim to provide
the tightest possible choice of α and β such that Definition 1 holds. Instead, this section aims to offer
a variety of examples that demonstrate specific desired characteristics when α-β-condition holds,
encompassing a broad range of functions.

The initial example illustrates that S could potentially be infinite for the class of functions satisfying
Definition 1.
Example 1. Let f, f1, f2 : R2 → R be such that

f = 1
2 (f1 + f2) with f1(x, y) =

(x+y)2

(x+y)2+1 , f2(x, y) =
(x+y+1)2

(x+y+1)2+1 , (3)

then Definition 1 holds with α ∈ [5/2,+∞) and β ∈ [4α/5, α).

Next, we provide an example where f satisfies Definition 1 even in the presence of saddle points.
Example 2. Let f, f1, f2 : R2 → R be such that

f = 1
2 (f1 + f2) with f1(x, y) = 1− e−x2−y2

, f2(x, y) = 1− e−(x−2)2−(y−2)2 , (4)
then Definition 1 holds for some α and β = α− 8.

Remark 1. Examples 1 and 2 can be generalized for any number of functions n and dimension d as
follows

fi(x) =
(
∑d

j=1 xj+ai)
2

(
∑d

j=1 xj+ai)
2
+1

, fi(x) =
∑d

j=1(xj−bij)
2

1+
∑d

j=1(xj−bij)2
, (5)

for some properly chosen {ai} and {bij}, i ∈ [n], j ∈ [d].

Example 3. Let f, f1, f2 : R2 → R be such that

f = 1
2 (f1 + f2) with f1(x, y) =

1+x2+y2

4+x2+y2 , f2(x, y) =
(x−2.5)2+(y−2.5)2

4+(y−2.5)2+(y−2.5)2 , (6)

then Definition 1 holds for some α and β = α− 1.

The three examples above demonstrate that functions satisfying Definition 1 can potentially be non-
convex with an unbounded set of minimizers S (Example 1) and can have saddle points (Example 2)
and local minima (Example 3). In contrast, the PL and Aiming conditions are not met in cases
where a problem exhibits saddle points. For illustration purposes, we plot the loss landscapes of f in
Figure 3.

So far, we have presented simple examples to verify Definition 1. Next, we turn our attention to more
practical examples in the field of machine learning. We start with the matrix factorization problem
that is known to have saddle points [76] but can be shown to be PL after a sufficiently large number
of iterations of alternating gradient descent and under a specific random initialization [81].
Example 4. Let fi, fij be such that

f(W,S) = 1
2nm∥X −W⊤S∥2F = 1

2nm

∑
i,j(Xij − w⊤

i sj)
2, fij(W,S) = 1

2 (Xij − w⊤
i sj)

2, (7)

where X ∈ Rn×m,W = (wi)
n
i=1 ∈ Rk×n, S = (sj)

m
j=1 ∈ Rk×m, and rank(X) = r ≥ k. We

assume that X is generated using matrices W ∗ and S∗ with non-zero additive noise that minimize
empirical loss, namely, X = (W ∗)⊤S∗+(εij)i∈[n],j∈[m] where W ∗, S∗ = argminW,S f(W,S).
Let X be any bounded set that contains S. Then Definition 1 is satisfied with α = β + 1 and some
β > 0.
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Example 1 Example 2 Example 3

Figure 3: Loss landscape of f that satisfy Definition 1. The analytical form of fi is given in
Section 3.1. These examples demonstrate that the problem (1) that satisfies α-β-condition might
have an unbounded set of minimizers S (Example 1), a saddle point (Example 2), and local minima
(Example 3) in contrast to the PL and Aiming conditions. The contour plots are presented in ??.

Example 5. Consider training a two-layer neural network with a logistic loss

f = 1
n

∑n
i=1 fi, fi(W, v) = ϕ(yi · v⊤σ(Wxi)) + λ1∥v∥2 + λ2∥W∥2F (8)

for a classification problem where ϕ(t) := log(1 + exp(−t)), W ∈ Rk×d, v ∈ Rk, σ is a ReLU
function applied coordinate-wise, yi ∈ {−1,+1} is a label and xi ∈ Rd is a feature vector. Let X be
any bounded set that contains S . Then the α-β-condition holds in X for some α ≥ 1 and β = α− 1.

Remark 2. The previous examples can be extended to any positive and convex function ϕ (e.g.,
square loss) with the additional assumption that each individual loss fi does not have minimizers in
S, i.e. ∄(W ∗, v∗) ∈ S such that fi(W ∗, v∗) = f∗

i for some i ∈ [n].

We highlight that Example 5 is applicable for a bounded set X of an arbitrary size. Moreover, in
practice, we typically add ℓ1 or ℓ2 regularization which can be equivalently written as a constrained
optimization problem, and therefore, Example 5 holds in this scenario. In comparison, the results
from previous works do not hold for an arbitrary bounded set around S requiring initialization to be
close enough to the solution set [51, 50]. The proofs for all examples are given in Appendix C.1.

4 Theoretical convergence of algorithms

We conduct our analysis under the following smoothness assumption that is standard in the optimiza-
tion literature.
Assumption 1. We assume that each fi is L-smooth, i.e. for all x, y ∈ Rd it holds ∥∇fi(x) −
∇fi(y)∥ ≤ L∥x− y∥.

The next assumption, which is sometimes called functional dissimilarity [56], is standard in the
analysis of SGD with adaptive stepsizes [53, 26, 24].
Assumption 2. We assume that the interpolation error σ2

int := Ei[f
∗ − f∗

i ] is finite, where the
expectation is taken concerning the randomness of indices i for a certain algorithm.

4.1 Convergence under the α-β-condition

Now we demonstrate that the α-β-condition is sufficient for common optimizers to converge up to
a neighbourhood of the set of minimizers S. We provide convergence guarantees for SGD-based
algorithms with fixed and adaptive stepsize (i.e., the update direction is of the form −γk∇fik(x

k)). In
this section, we only present the main statements about convergence while the algorithms’ description
and the proofs are deferred to Appendix C.2.

Convergence of SGD. We start with the results for vanilla SGD with constant stepsize.
Theorem 1. Assume that Assumptions 1-2 hold. Then the iterates of SGD (Alg. 1) with stepsize
γ ≤ α−β

2L satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ E

[
dist(x0,S)2

]
K

1

γ(α− β)
+

2Lγ

α− β
σ2
int +

2β

α− β
σ2
int. (9)
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Table 2: Summary of how the non-vanishing term βσ2
int (as appearing e.g. in Eq. (9)) increases (↗)

or decreases (↘) as a function of specific quantities of interest.

Model’s width ↗ Model’s depth ↗ Batch-size ↗
Change in βσ2

int ↘ ↘ ↘

Theorem 1 shows that under the α-β-condition , SGD converges with a rate O(K−1/2) (the same
rate obtained by SGD for convex functions [24]) up to a ball of size O(βσ2

int). We argue that the
non-vanishing term O(βσ2

int) must appear in the convergence rate for non-convex optimization for
several reasons: (i) This term arises directly from the use of the α-β condition in the analysis, without
resorting to additional upper bounds or approximations. It reflects the potential existence of local
minima that the α-β condition is designed to model. In the worst-case scenario, if SGD is initialized
near local minima and uses a sufficiently small step size, it may fail to converge to the exact minimizer
and can become trapped in suboptimal minima. This sub-optimality is modeled in the upper bound
by the stepsize-independent quantity O(βσ2

int) since we provide convergence guarantees for the
function value sub-optimality rather than the squared gradient norm, which is more typical in the
non-convex setting. (ii) We also observe that the last term in (9) shrinks as a model becomes more
over-parameterized (which is consistent with prior works such as [50] that require large amounts of
over-parametrization); see Sections 5.1, 5.2, and D.7 for experimental validation of this claim. Further
empirical observations are summarized in Table 2 and will be discussed in Section 5. Theoretically, if
a model is sufficiently over-parameterized such that the interpolation condition f∗

i = f∗ holds, then
the non-vanishing term is not present in the bound. (iii) The presence of a non-vanishing error term
in the rate with the α-β condition is consistent with empirical observation as it is frequently observed
when training neural networks (see Figure 8.1 in [25]). This is also observed during the training
of language models where the loss is significantly larger than 0 (see Figure 19). This phenomenon
suggests that reaching a critical point, which is a global minimizer, is not commonly observed
practically. (iv) Finally, we note a potential similarity with prior works that propose other conditions
to describe the loss landscape of deep neural networks (e.g. gradient confusion [71]), and also obtain
a non-vanishing term in the convergence rate (see Theorem 3.2 in [71]).

Convergence of SPSmax. Next, we consider the SPSmax algorithm. SPSmax stepsize is given by

γk := min

{
fik (x

k)−f∗
ik

c∥∇fik (x
k)∥2 , γb

}
where c and γb are the stepsize hyperparameters.

Theorem 2. Assume that Assumptions 1-2 hold. Then the iterates of SPSmax (Alg. 2) with a stepsize
hyperparameter c > 1

2(α−β) satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ c1

K
E
[
dist(x0,S)2

]
+ 2αc1γbσ

2
int, (10)

where γmin := min{1/2cL, γb} and c1 := c
γmin(2(α−β)c−1) .

In the convex case, i.e. α-β-condition holds with α = 1, β = 0, we recover the rate of Loizou et al.
[53].

Convergence of NGN. Finally, we turn to the analysis of NGN. This algorithm is proposed for
minimizing positive functions fi which is typically the case for many practical choices. Its stepsize
γk := γ

1+ γ

2fik
(xk)

∥∇fik (x
k)∥2 where γ is the stepsize hyperparameter. NGN stepsize differs from that

of SPSmax by replacing min operator by softer harmonic averaging of SPS stepsize and a constant
γ. In addition to the already mentioned assumptions, we make a mild assumption that the positivity
error σ2

pos := E [f∗
i ] is finite.

Theorem 3. Assume that Assumptions 1 with α ≥ β + 1 and 1-2 hold. Assume that each function fi
is positive and σ2

pos < ∞. Then the iterates of NGN (Alg. 3) with a stepsize parameter γ > 0 satisfy

min
0≤k≤K−1

E
[
f(xk)− f∗] ≤

E
[
dist(x0,S)2

]
2γK

(1 + 2γL)2

c2
+

3Lγα(1 + γL)σ2
int

c2

+
γL

a
max {2γL− 1, 0}σ2

pos +
2βσ2

int

c2
, (11)

where c2 := 2γL(α− β − 1) + α− β.

7



(a) 2nd layer size 32 (b) 2nd layer size 128 (c) 2nd layer size 2048 (d) 2nd layer size 4096

Figure 4: α-β-condition in the training of 3 layer MLP model on Fashion-MNIST dataset varying the
size of the second layer. Here T (xk) = ⟨∇fik(x

k), xk − xK⟩ − α(fik(x
k)− fik(x

K))− βfik(x
k)

assuming that f∗
i = 0. Minimum is taken across all runs and iterations for given pair of (α, β).

One of the main properties of NGN is its robustness to the choice of stepsize γ. Theorem 3 can be
seen as an extension of this feature from the set of convex functions originally analyzed in [63] to the
class of structured non-convex satisfying α-β-condition.

Comparing the results of Theorems 2 and 3 we highlight several important differences. (i) There
is no restriction on the stepsize parameter γ for NGN. Conversely, SPSmax requires c to be lower
bounded. (ii) Both algorithms converge to a neighborhood of the solution with a fixed stepsize
hyperparameter. However, the neighborhood size of SPSmax is not controllable by the stepsize
hyperparameter and remains constant even in the convex setting when β = 0. In contrast, NGN
converges to a ball whose size can be made smaller by choosing a small stepsize parameter, and the
“non-vanishing” term disappears in the convex setting β = 0.

We note that our goal was not to achieve the tightest convergence guarantees for each algorithm,
but rather to underscore the versatility of the α-β-condition in deriving convergence guarantees for
SGD-type algorithms, both for constant or adaptive stepsizes. In addition to the results of this section,
we demonstrate the convergence guarantees for SGD, SPSmax, and NGN with decreasing with
k stepsizes in Appendix C.2. Besides, in Appendix C.2.4 we present a convergence of a slightly
modified version of Adagrad-norm method [82] under α-β-condition.

5 Experimental validation of the α-β-condition

In this section, we provide extensive numerical results supporting that the α-β-condition does hold
in many practical applications for various tasks, model architectures, and datasets. The detailed
experimental setting is described in Appendix D.

In all cases, we approximate Proj(xk,S) as the last iterate xK in a run. After finding such an
approximation, we start a second training run with the same random seed to measure all necessary
quantities. To guarantee that the second training trajectory follows the same path as the first run, we
disable non-deterministic CUDA operations while training on a GPU. For each task, we demonstrate
possible values of pairs of (α, β) that work across all runs (might differ from one experiment to
another) with different random seeds and satisfy α ≥ β + 0.1.

5.1 MLP architecture

First, we test MLP neural networks with 3 fully connected layers on Fashion-MNIST [83] dataset. We
fix the second layer of the network to be a square matrix and vary its dimension layer to investigate the
effect of over-parameterization on α-β-condition. We test it for dimensions {32, 128, 2049, 4096},
and for each case, we run experiments for 4 different random seeds. In Figure 4 we demonstrate
possible values of pairs of (α, β) that work across all 4 runs. We observe that minimum possible
values of α and β increase from small size to medium, and then tend to decrease again as the model
becomes more over-parameterized. We defer more experimental results for MLP to Appendix D.3 to
showcase this phenomenon. This observation leads to the fact that the neighborhood of convergence
O(βσ2

int) of SGD eventually becomes smaller with the size of the model as we expect (since it
becomes more over-parameterized).

5.2 CNN architecture

In our next experiment, we test convolutional neural networks with 2 convolution layers and 1
fully connected layer on CIFAR10 dataset [41]. We vary the number of convolutions in the second
convolution layer to investigate the effect of over-parameterization on α-β-condition. We test it
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(a) # Convolutions 32 (b) # Convolutions 64 (c) # Convolutions 512 (d) # Convolutions 2048

Figure 5: α-β-condition in the training of CNN model on CIFAR10 dataset varying the number of
convolutions in the second layer. Here T (xk) = ⟨∇fik(x

k), xk − xK⟩ − α(fik(x
k)− fik(x

K))−
βfik(x

k) assuming that f∗
i = 0. Minimum is taken across all runs and iterations for a given pair of

(α, β).

(a) Batch size 64 (b) Batch size 128 (c) Batch size 256 (d) Batch size 512

Figure 6: α-β-condition in the training of Resnet9 model on CIFAR100 dataset varying the batch size.
Here T (xk) = ⟨∇fik(x

k), xk − xK⟩ − α(fik(x
k)− fik(x

K))− βfik(x
k) assuming that f∗

i = 0.
Minimum is taken across all runs and iterations for a given pair of (α, β).

for {32, 128, 512, 2048} number of convolutions in the second layer, and for each case, we run
experiments for 4 different random seeds. In Figure 5, we observe that the smallest possible values
of (α, β) increase till 64 convolutions, and then decrease back. Second, the difference α − β for
possible choice of α and β decreases from Figure 5-a to Figure 5-b, but then it increases again.

5.3 Resnet architecture

Next, we switch to the Resnet architecture [29] with batch sizes in {64, 128, 256, 512} trained on
CIFAR100 [41]. For each batch size, we run experiments for 4 different random seeds. In Figure 6,
we plot the possible choice of pairs (α, β) that works across all runs. We observe that α-β-condition
holds in all cases. Besides, there is a tendency for the minimum possible choice of α and β to
decrease with batch size. Moreover, for larger batches, the difference between α and β also increases.
From Theorem 1, this result suggests that we can use bigger stepsizes with larger batches.

5.4 Training of AlgoPerf workloads and transformers for language modeling

We are now interested in assessing the validity of α-β-condition on modern Deep Learning archi-
tectures. Thereby, we consider tasks from the AlgoPerf benchmarking suite [16]. We consider four
workloads from the competition: (i) DLRMsmall model [59] on Criteo 1TB dataset [44]; (ii) U-Net
model [69] on FastMRI dataset [85] (iii) GNN model [7] on OGBG dataset [31]; (iv) Transformer-big
[78] on WMT dataset [9]. To train the models, we use NAdamW optimizer [19]4, which achieves
state-of-the-art performances on the current version of the benchmark. The hyperparameters of
the optimizer are chosen to reach the validation target threshold set by the original competition.
Moreover, we consider the pretraining of a decoder-only transformer architecture [78] for causal
language modeling. We conduct our evaluation on two publicly available Pythia models [8], of
sizes 70M and 160M, trained on 1.25B and 2.5B tokens respectively. For this study, we use the
SlimPajama [72] dataset. Following the original Pythia recipes, we fix a sequence length of 2048 and
train the language model to predict the next token in a self-supervised fashion. We refer to section
Appendices D and D.8 for additional details.

The results are presented in Figure 7. We observe that α-β-condition holds for a wide range of
values of α and β which demonstrates that our condition can be seen as a good characterization
of the training of modern large models as well. One can notice that the possible values of α and
β for AlgoPerf workloads are higher than those for smaller models discussed in previous sections.

4Our implementation is based on open source AlgoPerf code https://github.com/mlcommons/
algorithmic-efficiency with minimal changes to track necessary quantities.
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(a) Criteo 1TB
DLRMsmall

(b) FastMRI
U-Net

(c) OGBG
GNN

(d) WMT
Transformer

(g) PTB
LSTM

(h) Wikitext-2
LSTM

(e) Slim-Pajama
Pythia 70M

(f) Slim-Pajama
Pythia 160M

Figure 7: α-β-condition in the training of some large models from AlgoPerf, 3-layer LSTM, and
Transformers for language modeling. Here T (xk) = ⟨∇fik(x

k), xk−xK⟩−α(fik(x
k)−fik(x

K))−
βfik(x

k) assuming that f∗
i = 0. Minimum is taken across all runs and iterations for a given pair of

(α, β).

This difference is attributable to smaller models interpolating the training data more effectively,
resulting in significantly lower training losses compared to those observed in AlgoPerf experiments
(see Appendix D for detailed results). However, we highlight that the convergence guarantees of the
optimizers depend on a term O(βσ2

int) which is stable across all experiments we provide.

5.5 Additional experiments

We defer the verification of α-β-condition by Adam and SGDM to Appendix D.6. The results in
Figure 16 suggest that Adam explores the part of the landscape with smaller values of α and β than
those for SGDM. The same conclusions can be drawn when comparing SGDM and SGD. These
observations might be of the reasons why diagonal preconditioning and momentum are helpful in the
training of DL models. The verification of the proposed condition varying the depth of Resnet model
can be found in Appendix D.7. The results from Figure 17 demonstrate that the values of α and β
decrease with the depth of Resnet model, i.e. the model becomes more over-parametrized.

6 Conclusion, potential extensions, and limitations.

In this work, we introduce a new class of functions that more accurately characterize loss landscapes
of neural networks. In particular, we provide several examples that satisfy the proposed condition,
including 2-layer ReLU-neural networks. Additionally, we prove that several optimization algorithms
converge under our condition. Finally, we provide extensive empirical verification showing that
the proposed α-β-condition holds along the optimization trajectories of various large deep learning
models.

It is also possible to further expand convergence guarantees upon the ones presented in Section 4, for
instance, by considering momentum [67] which is widely used in practice. However, we defer the
exploration of other possible extensions to future research endeavors.

One of the limitations of this work is the empirical validation of the α-β-condition on neural networks.
We are only able to verify this condition along the trajectories of specific optimizers. Even when
performing checks with many random seeds, we cannot fully observe the entire loss landscape.
Additionally, while our theoretical examples demonstrate that the proposed condition holds, we do
not provide the most precise theoretical values of α and β that satisfy Definition 1. Therefore, in
future work, we aim to obtain stronger theoretical guarantees demonstrating that the α-β-condition
holds for neural networks with more precise values of α and β. We also intend to explore how the
α-β-condition varies when changing the architecture or the number of parameters (i.e., theoretical
exploration of over-parameterization).
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Figure 8: Training of 3 layer LSTM model that shows Aiming condition does not always hold. We
plot possible values of PL constant for different powers δ in (12). We observe that possible values of
µ are of order 10−9 − 10−7 which implies slow theoretical convergence and contradicts practical
observations.

A Additional explanation on PL assumption

Let us consider the relaxation of PL condition for some δ ∈ [1, 2] and µ > 0 (Assumption 3 in [22])

∥∇f(x)∥δ ≥ (2µ)δ/2(f(x)− f∗) for all x ∈ Rd. (12)

Taking logarithms of both sides we continue

2 log(∥∇f(x)∥)− 2

δ
log(f(x)− f∗) ≥ log(2µ). (13)

To satisfy PL condition for some δ, we need to find µ that satisfies (13) for all iterations. In Figure 8
we plot LHS of (13). We observe that the values of µ that satisfy (13) for all iterations should be
of order 10−9 − 10−7 that leads to slow theoretical convergence [37]. Therefore, we claim that PL
condition does not hold globally for neural networks. Nevertheless, it might hold locally around the
solution (the value of µ closer to the end of the training are large enough).

B Additional examples

In this section, we list additional examples that satisfy Definition 1 and might have non-optimal
stationary points. The functions of this form are typically used to simulate non-convex optimization
problems and test the performance of algorithms on small or synthetic datasets [34, 55, 38].

Example 6. Let f1, f2 : R2 → R be such that

f1(x, y) =
x2 + y2

1 + x2 + y2
, f2(x, y) =

(x− 1)2 + (y − 1)2

1 + (x− 1)2 + (y − 1)2
, (14)

then Definition 1 holds with α ≥ 2
mini min(z,t)∈S fi(z,t)

≈ 41.369325 and β = α − 1. Besides,
Definition 1 does not hold with β = 0 not satisfy Definition 1 with β = 0.

C Missing proofs

C.1 Proofs of examples satisfying definition 1

We highlight that we only show that α-β-condition holds for some α, β without giving all possible
values of them.
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C.1.1 Proof of example 1

Example 1. Let f, f1, f2 : R2 → R be such that

f = 1
2 (f1 + f2) with f1(x, y) =

(x+y)2

(x+y)2+1 , f2(x, y) =
(x+y+1)2

(x+y+1)2+1 , (3)

then Definition 1 holds with α ∈ [5/2,+∞) and β ∈ [4α/5, α).

Proof. Let (z, t) = Proj((x, y),S). One can show that the set of minimizers of f in this example
is S = {(x, y) : y = −x − 1/2}. Moreover, f∗

1 = 0 for x = −y. We will show that α-β-condition
holds for i = 1. For i = 2 it can be shown in similar way with change of variables. We have

∂xf1(x, y) = ∂yf1(x, y) =
2(x+ y)

(1 + (x+ y)2)2
.

Therefore, we need to show that

2(x+ y)

(1 + (x+ y)2)
(x− z + y − t) ≥ (α− β)

(x+ y)2

1 + (x+ y)2
− αfi(z, t).

Note that fi(z, t) =
(z+t)2

1+(z+t)2 = (−1/2)2

1+(−1/2)2 = 1
5 . Moreover, we can compute the projection operator

onto S. After simple derivations, the projection can be expressed as

Proj((x, y),S) = 1

2

(
x− y − 1/2
−x+ y − 1/2

)
.

Therefore, we need to satisfy

2(x+ y)

(1 + (x+ y)2)2
(x+ y + 1/2) ≥ (α− β)

(x+ y)2

1 + (x+ y)2
− α

5
.

This is equivalent to

2(x+ y)(x+ y + 1/2) ≥ (α− β)(x+ y)2(1 + (x+ y)2)− α

5
(1 + (x+ y)2)2

⇔ 2(x+ y)2 +
α

5
(1 + 2(x+ y)2 + (x+ y)4) ≥ (α− β)((x+ y)2 + (x+ y)4)− (x+ y). (15)

We should satisfy the above for all values of x+ y. First, we need the coefficient next to (x+ y)4 in
LHS to be larger or equal of the corresponding coefficient in RHS. This gives us α

5 ≥ α− β. This
shows that β can not be zero. Using 2ab ≤ a2 + b2, (15) is satisfied as long as we have

2(x+ y)2 +
α

5
(1 + 2(x+ y)2 + (x+ y)4) ≥ (α− β)((x+ y)2 + (x+ y)4) +

1

2
(x+ y)2 +

1

2
.

Therefore, we should satisfy
coefficient next to (x+ y)4 : α

5 ≥ α− β

coefficient next to (x+ y)2 : 2 + 2α
5 ≥ α− β + 1

2

coefficient next to 1 : α
5 ≥ 1

2

Note that if the first inequality holds, then the second one is true as well. Therefore, from the first and
third inequalities we get that the solution of the system of inequalities is α ≥ 5

2 and β ∈ [4α/5, α].

C.1.2 Proof of example 2

Example 2. Let f, f1, f2 : R2 → R be such that

f = 1
2 (f1 + f2) with f1(x, y) = 1− e−x2−y2

, f2(x, y) = 1− e−(x−2)2−(y−2)2 , (4)

then Definition 1 holds for some α and β = α− 8.
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Proof. Let (z, t) = Proj((x, y),S). Again, we show that α-β-condition holds for f1; for f2 it can
be proved with the same arguments with change of variables. Note that f∗

i = 0 and f∗ > 0. We also
observe that S contains two points in total, and both of them of the form (t, t) where for one t is close
to 0 (it is around t ≈ 0.00067) and for second t is close to 2 (it is around t ≈ 1.99932). Besides,
note that c := mini min(t,t)∈S fi(t, t) ∈ (0, 1) and c ≈ 9 · 10−7, which means that we are close to
interpolation.

We have in this case

∂xf1(x, y) = 2x exp(−x2 − y2), ∂yf1(x, y) = 2y exp(−x2 − y2).

Therefore, we need to satisfy

exp(−x2 − y2)(2x(x− t) + 2y(y − t)) ≥ (α− β)(1− exp(−x2 − y2))− αf1(z, t). (16)

Note that if β = 0 and x, y → +∞, then the inequality is obviously can not be satisfied for all
x, y ∈ R. Indeed, assume β = 0, then since f1(z, t) < 1 and LHS goes to 0 while RHS to
α− αf1(z, t) > 0.

Rearranging terms in (16), we should satisfy

exp(−x2 − y2)(2x2 + 2y2 + α− β) + αf1(z, t) ≥ exp(−x2 − y2)(2xt+ 2yt) + (α− β).

Using 2ab ≤ a2 + b2, the above is satisfied if the following inequality holds

exp(−x2 − y2)(2x2 + 2y2 + α− β) + αc ≥ exp(−x2 − y2)(x2 + y2 + 2t2) + (α− β)

⇔ exp(−x2 − y2)(x2 + y2 + α− β) + αc ≥ exp(−x2 − y2) · 2t2 + (α− β).

Since t ∈ (0, 2) we can choose α− β = 8, so that x2 + y2 − 2t2 + α− β ≥ x2 + y2 ≥ 0. Finally,
we choose α ≥ 8

c , so that αc ≥ α− β = 8. We can estimate that α ≳ 72 · 107.

C.1.3 Proof of Example 3

Example 3. Let f, f1, f2 : R2 → R be such that

f = 1
2 (f1 + f2) with f1(x, y) =

1+x2+y2

4+x2+y2 , f2(x, y) =
(x−2.5)2+(y−2.5)2

4+(y−2.5)2+(y−2.5)2 , (6)

then Definition 1 holds for some α and β = α− 1.

Proof. Let (z, t) = Proj((x, y),S). For this example, we have f∗
1 = 1

4 (achieved at (0, 0)), f∗
2 = 0

(achieved at (2.5, 2.5)), and f∗ ≈= 0.408 (achieved at (2.471, 2.471)). Besides, we have f(0, 0) =
0.587963 and f(2.5, 2.5) = 0.409091. Besides, c := mini min(z,t)∈S fi(z, t) = f2(2.471, 2.471) =
0.00167918. Let us show that α-β-condition holds for f1; for f2 it can be shown similarly. We have

∂xf1(x, y) =
6x

(4 + x2 + y2)2
, ∂yf1(x, y) =

6y

(4 + x2 + y2)2
.

Therefore, we need to satisfy for some α and β

6

(4 + x2 + y2)2
(x(x− z) + y(y − t)) ≥ (α− β)

1 + x2 + y2

4 + x2 + y2
− f1(z, t)

⇔ 6x2 + 6y2 − 6xz − 6yt ≥ (α− β)(1 + x2 + y2)(4 + x2 + y2)− αf1(z, t)(4 + x2 + y2)2

⇔ 6(x2 + y2) + αf1(z, t)(16 + 8(x2 + y2) + (x2 + y2)2) ≥ 6xz + 6yt

+(α− β)(4 + 5(x2 + y2) + (x2 + y2)2).

The above is satisfied for all x, y ∈ R and α− β = 1 if we have

6(x2 + y2) + αf1(z, t)(16 + 8(x2 + y2) + (x2 + y2)2) ≥ 3(x2 + y2) + 3z2 + 3t2

+(4 + 5(x2 + y2) + (x2 + y2)2).

To satisfy the above for all x, y ∈ R we should have
16αf1(z, t) ≥ 4 + 3(z2 + t2)

6 + 8αf1(z, t) ≥ 3 + 5

αf1(z, t) ≥ 1,

where z = t = 2.471, and f1(z, t) = 0.0016718. We can satisfy α-β-condition with α ≳ 1512.4586.
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C.1.4 Proof of example 6

Example 6. Let f1, f2 : R2 → R be such that

f1(x, y) =
x2 + y2

1 + x2 + y2
, f2(x, y) =

(x− 1)2 + (y − 1)2

1 + (x− 1)2 + (y − 1)2
, (14)

then Definition 1 holds with α ≥ 2
mini min(z,t)∈S fi(z,t)

≈ 41.369325 and β = α − 1. Besides,
Definition 1 does not hold with β = 0 not satisfy Definition 1 with β = 0.

Proof. Let (z, t) = Proj((x, y),S). We show that α-β-condition holds for f1; for f2 the proof is
similar with change of variables. In this case, f∗

i = 0, while f∗ > 0 (f∗ ≈ 0.316988 at points
(0.159375, 0.159375) and (0.840625, 0.840625)). Besides, we have c := mini min(z,t)∈S fi(z, t) ≈
0.048345 > 0. Moreover, We have

∂xf1(x, y) =
2x

(1 + x2 + y2)2
, ∂yf1(x, y) =

2y

(1 + x2 + y2)2
.

Therefore, we need to satisfy for some α and β

1

(1 + x2 + y2)2
(2x(x− z) + 2y(y − t)) ≥ (α− β)

x2 + y2

1 + x2 + y2
− αf1(z, t)

⇔ 2x2 + 2y2 − 2xz − 2yt ≥ (α− β)(x2 + y2)(1 + x2 + y2)− αf1(z, t)(1 + x2 + y2)2

⇔ 2x2 + 2y2 + αf1(z, t)(1 + 2(x2 + y2) + (x2 + y2)2) ≥ 2xz + 2yt+

(α− β)(x2 + y2)(1 + x2 + y2).

Note that if we take β = 0 and x, y → +∞, then LHS grows as αf1(z, t)(x2 + y2)2 and RHS grows
as α(x2+y2)2, therefore in the limit the RHS is larger. This implies that β ̸= 0. Using 2ab ≤ a2+b2

the above is satisfied if we have

(2 + 2αf1(z, t))(x
2 + y2) + αf1(z, t)(x

2 + y2)2 + αf1(z, t) ≥ (x2 + y2)(1 + α− β) +

z2 + t2 + (α− β)(x2 + y2)2. (17)

Let us take α− β = 1 and α ≥ 2
mini min(z,t)∈S fi(z,t)

≈ 41.369325. With this choice, we have

z2 + t2 ≤ 2 ≤ αf1(z, t),

1 + α− β = 2 ≤ 2 + 2αf1(z, t),

α− β = 1 < 2 ≤ αf1(z, t).

Therefore, LHS is always larger than RHS in (17).

C.1.5 Proof of example 4

Example 4. Let fi, fij be such that

f(W,S) = 1
2nm∥X −W⊤S∥2F = 1

2nm

∑
i,j(Xij − w⊤

i sj)
2, fij(W,S) = 1

2 (Xij − w⊤
i sj)

2, (7)

where X ∈ Rn×m,W = (wi)
n
i=1 ∈ Rk×n, S = (sj)

m
j=1 ∈ Rk×m, and rank(X) = r ≥ k. We

assume that X is generated using matrices W ∗ and S∗ with non-zero additive noise that minimize
empirical loss, namely, X = (W ∗)⊤S∗+(εij)i∈[n],j∈[m] where W ∗, S∗ = argminW,S f(W,S).
Let X be any bounded set that contains S. Then Definition 1 is satisfied with α = β + 1 and some
β > 0.

Proof. Since k ≤ r, then the matrix factorization problem has a unique solution which can be found
from SVD decomposition of X [76].

We have

∇wi
fij(W,S) = (w⊤

i sj −Xij)sj , ∇sjfij(W,S) = (w⊤
i sj −Xij)wi.
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Therefore, we need to show that〈
(w⊤

i sj −Xij)sj , wi − w∗
i

〉
+
〈
(w⊤

i sj −Xij)wi, sj − s∗j
〉
≥ α− β

2
(Xij − w⊤

i sj)
2

− α

2
(Xij − (w∗

i )
⊤s∗j )

2,

since f∗
ij = 0. Since fij is convex w.r.t. wi, the above holds if we have

1

2
(w⊤

i sj −Xij)
2 − 1

2
(s⊤j w

∗
i −Xij)

2 +
1

2
(w⊤

i sj −Xij)
2 − 1

2
(w⊤

i s
∗
j −Xij)

2 ≥

α− β

2
(Xij − w⊤

i sj)
2 − α

2
(Xij − (w∗

i )
⊤s∗j )

2.

Let us take α = β + 1, then we can simplify the above as follows
1

2
(w⊤

i sj −Xij)
2 +

α

2
(Xij − (w∗

i )
⊤s∗j )

2 ≥ 1

2
(s⊤j w

∗
i −Xij)

2 +
1

2
(w⊤

i s
∗
j −Xij)

2 (18)

Since we consider X to be bounded, then there exist r ≥ 0 such that ∥sj∥, ∥wi∥ ≤ r for all i and j.
Therefore, the RHS in (18) is bounded by some constant C. From the data generation, we have that
c = minij(Xij − (w∗

i )⊤s∗j )
2 = minij ε

2
ij > 0. Therefore, we can take α ≥ 2C

c to verify (18).

C.1.6 Proof of example 5

Example 5. Consider training a two-layer neural network with a logistic loss
f = 1

n

∑n
i=1 fi, fi(W, v) = ϕ(yi · v⊤σ(Wxi)) + λ1∥v∥2 + λ2∥W∥2F (8)

for a classification problem where ϕ(t) := log(1 + exp(−t)), W ∈ Rk×d, v ∈ Rk, σ is a ReLU
function applied coordinate-wise, yi ∈ {−1,+1} is a label and xi ∈ Rd is a feature vector. Let X be
any bounded set that contains S . Then the α-β-condition holds in X for some α ≥ 1 and β = α− 1.

Proof. Let (Z, z) := Proj((W, v),S). We have the following derivations for gradients
Rk×d ∋ ∇W fi(W, v) = ϕ′(yiv

⊤σ(Wxi)) · yi(v ◦ 1Wxi≥0)x
⊤
i + 2λ2W,

Rk ∋ ∇vfi(W, v) = ϕ′(yiv
⊤σ(Wxi)) · yiσ(Wxi) = ϕ′(yiv

⊤σ(Wxi)) · yi(Wxi) ◦ 1Wxi≥0

+2λ1v

= ϕ′(yiv
⊤σ(Wxi)) · yi(Wxi) ◦ ew + 2λ1v,

where we denote ew := 1Wxi≥0 ∈ Rk. Besides, we denote ez := 1Zxi≥0 ∈ Rk. Note that the
optimal value of f∗

i > 0 because of the L2 regularization.

Note that we have the following relations
v⊤σ(Wxi) = ⟨v, (Wxi) ◦ 1Wxi≥0⟩ = ⟨v ◦ 1Wxi≥0,Wxi⟩ = ⟨v ◦ ew,Wxi⟩. (19)

Note that S is bounded because of the L2 regularization. Since we assume that the interpolation
does not hold, then f is always strictly larger than f∗

i in X , and due to continuity there exists
c := mini∈[n] min(Z,z)∈S fi(Z, z) > 0.

We need to show that there exist some α and β such that
⟨∇W fi(W, v),W − Z⟩F + ⟨∇vfi(W, v), v − z⟩

≥ α(fi(W, v)− fi(Z, z))− β(fi(W, v)− f∗
i )

⇔ ϕ′(yi(v ◦ ew)⊤Wxi)yi
(〈
(v ◦ ew)x⊤

i ,W − Z
〉
+ ⟨(Wxi) ◦ ew, v − z⟩

)
+ 2λ1⟨v, v − z⟩
+ 2λ2⟨W,W − Z⟩

≥ α
[
ϕ(yi(v ◦ ew)⊤Wxi) + λ1∥v∥2 + λ2∥W∥2F − ϕ(yi(z ◦ ez)⊤Zxi)− λ1∥z∥2 − λ2∥Z∥2F)

]
− β

[
ϕ(yi(v ◦ ew)⊤Wxi) + λ1∥v∥2 + λ2∥W∥2F − f∗

i

]
⇔ ϕ′(yi(v ◦ ew)⊤Wxi)

(
[yi(v ◦ ew)⊤Wxi − yi(v ◦ ew)⊤Zxi] + [yi(v ◦ ew)⊤Wxi − yi(z ◦ ew)⊤Wxi]

)
+ 2λ1⟨v, v − z⟩+ 2λ2⟨W,W − Z⟩

≥ α
[
ϕ(yi(v ◦ ew)⊤Wxi) + λ1∥v∥2 + λ2∥W∥2F − ϕ(yi(z ◦ ez)⊤Zxi)− λ1∥z∥2 − λ2∥Z∥2F

]
− β

[
ϕ(yi(v ◦ ew)⊤Wxi) + λ1∥v∥2 + λ2∥W∥2 − f∗

i

]
, (20)
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Algorithm 1 SGD with constant stepsize

1: Input: Stepsize γ
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ik ∼ Unif[n] and compute ∇fik(x

k)
4: Update model

xk+1 = xk − γ∇fik(x
k)

5: end for

where we use (19). Since ϕ is convex, then we have ϕ′(x)(x− y) ≥ ϕ(x)− ϕ(y). Therefore, using
(19) again, we get that (20) is satisfied if we have

2ϕ(yi(v ◦ ew)⊤Wxi)− ϕ(yi(v ◦ ew)⊤Zxi)− ϕ(yi(z ◦ ew)⊤Wxi) + λ1⟨v, v − z⟩+ λ2⟨W,W − Z⟩
≥ α

[
ϕ(yi(v ◦ ew)⊤Wxi) + λ1∥v∥2 + λ2∥W∥2F − ϕ(yi(z ◦ ez)⊤Zxi)− λ1∥z∥2 − λ2∥Z∥2F

]
−β
[
ϕ(yi(v ◦ ew)⊤Wxi) + λ1∥v∥2 + λ2∥W∥2F − f∗

i

]
.

Now we take α = β + 1 and simplify the above as follows
ϕ(yi(v ◦ ew)⊤Wxi) + αϕ(yi(z ◦ ew)⊤Zxi)) + λ1(2⟨v, v − z⟩ − ∥v∥2 − ∥z∥2)

+λ2(2⟨W,W − Z⟩ − ∥W∥2F − ∥Z∥2F) + (α− 1)(λ1∥z∥2 + λ2∥Z∥2F)
≥ ϕ(yi(v ◦ ew)⊤Zxi) + ϕ(yi(z ◦ ew)⊤Wxi) + (α− 1)f∗

i . (21)
The above is satisfied if we have

ϕ(yi(v ◦ ew)⊤Wxi) + αc+ λ1∥v − z∥2 + λ2∥W − Z∥2F + (α− 1)(∥z∥2 + ∥Z∥2F)
≥ ϕ(yi(v ◦ ew)⊤Zxi) + ϕ(yi(z ◦ ew)⊤Wxi) + (α− 1)f∗

i , (22)
because we also have ϕ(yi(z ◦ ez)⊤Zxi) ≥ c for all i and (Z, z) ∈ S . Since (W, v) ∈ X , there exist
constants R, r ≥ 0 such that ∥v∥ ≤ r and ∥W∥ ≤ R, and RHS in (22) is bounded by

2max
i∈[n]

log(1 + exp(Rr∥xi∥)) ≥ ϕ(yi(v ◦ ew)⊤Zxi) + ϕ(yi(z ◦ ew)⊤Wxi).

Therefore, we can take α ≥
{

2maxi∈[n] log(1+exp(Rr∥xi∥))
c−f∗

i
, 1
}

and β = α− 1.

Remark 3. The result suggest that the choice β = 0 is possible only if constants r and R are small,
i.e. locally around S only. In order to satisfy α-β-condition in larger set X , one needs to choose
β > 0.

C.2 Convergence of optimization algorithms under α-β-condition

C.2.1 Convergence of SGD

Constant stepsize. In this section, we present the proof of convergence of SGD with constant
stepsize under α-β-condition for completeness of the presentation.
Theorem 1. Assume that Assumptions 1-2 hold. Then the iterates of SGD (Alg. 1) with stepsize
γ ≤ α−β

2L satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ E

[
dist(x0,S)2

]
K

1

γ(α− β)
+

2Lγ

α− β
σ2
int +

2β

α− β
σ2
int. (9)

Proof. Let xk
p ∈ Proj(xk,S) satisfies Definition 1. Using smoothness we have

Ek

[
dist(xk+1,S)2

]
≤ Ek

[
∥xk+1 − xk

p∥2
]

= dist(xk,S)2 − 2γEk

[〈
∇fik(x

k), xk − xk
p

〉]
+ γ2Ek

[
∥∇fik(x

k)∥2
]

(i)

≤ dist(xk,S)2 − 2αγEk

[
fik(x

k)− fik(x
k
p)
]
+ 2βγEk

[
fik(x

k)− f∗
ik

]
+ 2Lγ2Ek

[
fik(x

k)− f∗
ik

]
= dist(xk,S)2 − 2αγEk

[
fik(x

k)− fik(x
k
p)
]

+ 2γ(β + Lγ)Ek

[
(fik(x

k)− fik(x
k
p)) + (fik(x

k
p)− f∗

ik
)
]
,
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where (i) holds because of the α-β-condition and smoothness. Now we need to choose a stepsize
γ ≤ α−β

2L to get

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − γ(α− β)Ek

[
fik(x

k)− fik(x
k
p)
]

+ 2γ(β + Lγ)Ek

[
fik(x

k
p)− f∗

ik

]
.

Taking full expectation, noting that xk
p is independent of the randomness of ik, and performing simple

derivations, we get

min
0≤k<K

E
[
f(xk)− f∗] ≤ E

[
dist(x0,S)2

]
K

1

γ(α− β)
+

2Lγ

α− β
σ2
int +

2β

α− β
σ2
int. (23)

Decreasing stepsize. Now we present the results with decreasing stepsize.
Theorem 4. Assume that Assumptions 1-2 hold. Then the iterates of SGD with decreasing stepsize
γk = γ0√

k+1
where γ0 ≤ α−β

2L satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤

5E
[
dist(x0,S)2

]
4(α− β)γ0

√
K

+
5γ0Lσ

2
int

α− β

log(K + 1)√
K

+
2β

α− β
σ2
int (24)

= Õ
(

1√
K

+ βσ2
int

)
. (25)

Proof. Similarly to the proof of constant stepsize SGD we can obtain

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − γk(α− β)Ek

[
fik(x

k)− fik(x
k
p)
]

+ 2γk(β + Lγk)Ek

[
fik(x

k
p)− f∗

ik

]
,

since γk ≤ γ0 ≤ α−β
2L for all k. Now we follow standard proof techniques [24] for decreasing

stepsize. Taking full expectation and dividing both sides by α− β we get

γkE
[
f(xk)− f∗] ≤ E

[
dist(xk,S)2

]
− E

[
dist(xk+1,S)2

]
α− β

+
2β

α− β
γkσ

2
int +

2L

α− β
γ2
kσ

2
int.

Summing the above from iteration 0 to K − 1 leads to

K−1∑
k=0

γkE
[
f(xk)− f∗] ≤ E

[
dist(x0,S)2

]
α− β

+
2β

α− β
σ2
int

K−1∑
k=0

γk +
2L

α− β
σ2
int

K−1∑
k=0

γ2
k.

Therefore, we get

min
0≥k<K

E
[
f(xk)− f∗] ≤ E

[
dist(x0,S)2

]
(α− β)

∑K−1
k=0 γk

+
2β

α− β
σ2
int +

2L

α− β
σ2
int

∑K−1
k=0 γ2

k∑K1

k=0 γk
.

Using the results of Theorem 5.7 [24] we get

K−1∑
k=0

γ2
k ≤ 2γ2

0 log(K + 1),

K−1∑
k=0

γk ≥ 4γ0
5

√
K.

Therefore, the final rate we get is

min
0≥k<K

E
[
f(xk)− f∗] ≤

E
[
dist(x0,S)2

]
(α− β) 45γ0

√
K

+
2β

α− β
σ2
int +

2L

α− β
σ2
int

2γ2
0 log(K + 1)

4γ0

5

√
K

=
5E
[
dist(x0,S)2

]
4(α− β)γ0

√
K

+
5γ0Lσ

2
int

α− β

log(K + 1)√
K

+
2β

α− β
σ2
int.
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Algorithm 2 SPSmax: Stochastic Polyak Stepsize

1: Input: Stepsize parameter c and stepsize upper bound γb
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ik ∼ Unif[n] and compute ∇fik(x

k)
4: Compute Polyak stepsize

γk := min

{
fik(x

k)− f∗
ik

c∥∇fik(x
k)∥2

, γb

}
5: Update model

xk+1 = xk − γk∇fik(x
k)

6: end for

C.2.2 Convergence of SGD with Polyak Stepsize

Constant stepsize parameter. In this section, we present the proof of convergence of SGD with
Polyak stepsize (with constant stepsize parameters) under α-β-condition for completeness of the
presentation.

Lemma 1 (Lemma from [53]). The SPSmax stepsize satisfy

γ2
k∥∇fik(x

k)∥2 ≤ γk
c
(fik(x

k)− f∗
ik
). (26)

Lemma 2 (Lemma from [53]). Assume each fi is L-smooth, then SPSmax stepsize satisfy

γmin := min

{
1

2cL
, γb

}
≤ γk ≤ γb. (27)

Now we present the proof of Theorem 2 with constant stepsize parameters.

Theorem 2. Assume that Assumptions 1-2 hold. Then the iterates of SPSmax (Alg. 2) with a stepsize
hyperparameter c > 1

2(α−β) satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ c1

K
E
[
dist(x0,S)2

]
+ 2αc1γbσ

2
int, (10)

where γmin := min{1/2cL, γb} and c1 := c
γmin(2(α−β)c−1) .

Proof. Let xk
p ∈ Proj(xk,S) that satisfies Definition 1, then we have

Ek

[
dist(xk+1,S)2

]
≤ Ek

[
∥xk+1 − xk

p∥2
]

= ∥xk − xk
p∥2 − 2Ek

[
γk
〈
∇fik(x

k), xk − xk
p

〉]
+ Ek

[
γ2
k∥∇fik(x

k)∥2
]

(i)

≤ dist(xk,S)2 − 2αEk

[
γk(fik(x

k)− fik(x
k
p))
]

+ 2βEk

[
γk(fik(x

k)− f∗
ik
)
]
+

1

c
Ek

[
γk(fik(x

k)− f∗
ik
)
]

= dist(xk,S)2 − 2αEk

[
γk([fik(x

k)− f∗
ik
]− [fik(x

k
p)− f∗

ik
])
]

+ 2βEk

[
γk(fik(x

k)− f∗
ik
)
]
+

1

c
Ek

[
γk(fik(x

k)− f∗
ik
)
]

= dist(xk,S)2 − Ek

[
γk

(
2α− 2β − 1

c

)
(fik(x

k)− f∗
ik
)

]
+ 2αEk

[
γk(fik(x

k
p)− f∗

ik
)
]
,
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where (i) follows from Lemma 1 and α-β-condition . Now, since c > 1
2(α−β) , we get that 2α− 2β−

1/c > 0. Therefore, using Lemma 2 and the fact that f∗
ik

≤ fik(x
k
p) and f∗

ik
≤ fik(x

k) we get

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − γmin

(
2α− 2β − 1

c

)
Ek

[
fik(x

k)− f∗
ik

]
+ 2αγbEk

[
(fik(x

k
p)− f∗

ik
)
]

= dist(xk,S)2 − γmin

(
2α− 2β − 1

c

)
Ek

[
fik(x

k)− fik(x
k
p)
]

− γmin

(
2α− 2β − 1

c

)
Ek

[
fik(x

k
p)− f∗

ik

]
+ 2αγbEk

[
(fik(x

k
p)− f∗

ik
)
]

≤ dist(xk,S)2 − γmin

(
2α− 2β − 1

c

)
Ek

[
fik(x

k)− fik(x
k
p)
]

+ 2αγbEk

[
(fik(x

k
p)− f∗

ik
)
]
.

Therefore, noticing that Ek

[
fik(x

k
p)
]
= f∗ since xk

p is independent of ik, we have

γmin

(
2α− 2β − 1

c

)
Ek

[
f(xk)− f∗] ≤ dist(xk,S)2 − Ek

[
dist(xk+1,S)2

]
+ 2αγbσ

2
int.

Dividing both sides by γmin(2α− 2β − 1/c) and taking full expectation, we get

E
[
f(xk)− f∗] ≤ c

γmin(2(α− β)c− 1)

(
E
[
dist(xk,S)2

]
− E

[
dist(xk+1,S)2

])
+

2αcγb
γmin(2(α− β)c− 1)

σ2
int.

Averaging for k ∈ {0, . . . ,K − 1} we get

min
0≤k<K

E
[
f(xk)− f∗] ≤ c

γmin(2(α− β)c− 1)K
E
[
dist(x0,S)2

]
+

2αcγb
γmin(2(α− β)c− 1)

σ2
int,

that finalizes the proof.

Decreasing stepsize parameter. Now we switch to the analysis of SPSmax with decreasing
stepsize parameters. We consider the stepsize DecSPS introduced in [64]

γk =
1

ck
min

{
fik(x

k)− f∗
ik

∥∇fik(x
k)∥2

, ck−1γk−1

}
with c−1 = c0 and γ−1 = γb > 0 to get

γ0 =
1

c0
min

{
fi0(x

0)− f∗
i0

∥∇fi0(x
0)∥2

, c0γb

}
.

Lemma 3 (Lemma 1 from [64]). Let Assumption 1 holds. Let {ck}k≥0 be any non-decreasing
positive sequence of real numbers. Then we have

min

{
1

2ckL
,
c0γb
ck

}
≤ γk ≤ c0γb

ck
, and γk ≤ γk−1. (28)

Theorem 5. Assume that Assumptions 1-2 hold. Let {ck}k≥0 be any positive non-decreasing
sequence such that ck ≥ 1

α−β . Let Then iterates of DecSPS satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ 2L̃D2cK−1

K(α− β)
+

2β

α− β
σ2
int +

1

K

K−1∑
k=0

σ2
int

(α− β)ck
, (29)

where D2 := max
0≤k≤K

dist(xk,S)2, L̃ := max
{
L, 1

2c0γb

}
.
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Proof. From the definition of the stepsize we have

γk ≤ 1

ck

fik(x
k)− f∗

ik

∥∇fik(x
k)∥2

.

Therefore, we have

γ2
k∥∇fik(x

k)∥2 ≤ γk
ck

(fik(x
k)− f∗

ik
).

Let xk
p = Proj(xk,S) which satisfies Definition 1. Now we have

dist(xk+1,S)2 ≤ ∥xk+1 − xk
p∥2

≤ dist(xk,S)2 − 2γk
〈
∇fik(x

k), xk − xk
p

〉
+

γk
ck

(fik(x
k)− f∗

ik
).

Using α-β-condition we get

dist(xk+1,S)2 ≤ ∥xk+1 − xk
p∥2

≤ dist(xk,S)2 − 2αγk(fik(x
k)− fik(x

k
p)) + 2βγk(fik(x

k)− f∗
ik
)

+
γk
ck

(fik(x
k)− f∗

ik
)

= dist(xk,S)2 − γk (2α− 2β − 1/ck) (fik(x
k)− fik(x

k
p))

+ γk(2β + 1/ck)(fik(x
k
p)− f∗

ik
).

Let us divide both sides by γk > 0

dist(xk+1,S)2

γk
≤ dist(xk,S)2

γk
− (2α− 2β − 1/ck) (fik(x

k)− fik(x
k
p))

+ (2β + 1/ck)(fik(x
k
p)− f∗

ik
).

Since by hypothesis ck ≥ 1
α−β , we get 2α− 2β − 1/ck ≥ α− β. Therefore, we get

fik(x
k)− fik(x

k
p) ≤ dist(xk,S)2

(α− β)γk
− dist(xk+1,S)2

(α− β)γk
+

(2β + 1/ck)

α− β
(fik(x

k
p)− f∗

ik
).

Summing from k = 0 to K − 1 we get

K−1∑
k=0

fik(x
k)− fik(x

k
p) ≤

K−1∑
k=0

dist(xk,S)2

(α− β)γk
−

K−1∑
k=0

dist(xk+1,S)2

(α− β)γk

+

K−1∑
k=0

2β

α− β
(fik(x

k
p)− f∗

ik
) +

K−1∑
k=0

1

(α− β)ck
(fik(x

k
p)− f∗

ik
)

≤ dist(x0,S)2

(α− β)γ0
+

K−1∑
k=1

dist(xk,S)2

(α− β)γk
−

K−2∑
k=0

dist(xk+1,S)2

(α− β)γk

− dist(xK ,S)2

(α− β)γK−2
+

K−1∑
k=0

2β

α− β
(fik(x

k
p)− f∗

ik
)

+

K−1∑
k=0

1

(α− β)ck
(fik(x

k
p)− f∗

ik
).
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Here we use the fact that γk is a non-increasing sequence with k. We continue as follows

K−1∑
k=0

fik(x
k)− fik(x

k
p) ≤ dist(x0,S)2

(α− β)γ0
+

K−2∑
k=0

(
1

γk+1
− 1

γk

)
dist(xk+1,S)2

α− β

+

K−1∑
k=0

2β

α− β
(fik(x

k
p)− f∗

ik
) +

K−1∑
k=0

1

(α− β)ck
(fik(x

k
p)− f∗

ik
)

≤ D2

α− β

(
1

γ0
+

K−2∑
k=0

(
1

γk+1
− 1

γk

))

+

K−1∑
k=0

2β

α− β
(fik(x

k
p)− f∗

ik
) +

K−1∑
k=0

1

(α− β)ck
(fik(x

k
p)− f∗

ik
)

≤ D2

(α− β)γK−1
+

K−1∑
k=0

2β

α− β
(fik(x

k
p)− f∗

ik
)

+

K−1∑
k=0

1

(α− β)ck
(fik(x

k
p)− f∗

ik
).

Here we use the fact that 1/γk+1 − 1/γk ≥ 0. From Lemma 3 we have

1

γk
≤ ck max

{
2L,

1

c0γb

}
︸ ︷︷ ︸

:=L̃

.

Therefore, we continue as follows

1

K

K−1∑
k=0

fik(x
k)− fik(x

k
p) ≤ 2L̃D2cK−1

K(α− β)
+

1

K

K−1∑
k=0

2β

α− β
(fik(x

k
p)− f∗

ik
)

+
1

K

K−1∑
k=0

1

(α− β)ck
(fik(x

k
p)− f∗

ik
).

Taking expectation we get

min
0≤k<K

E
[
f(xk)− f∗] ≤ 2L̃D2cK−1

K(α− β)
+

2β

α− β
σ2
int +

1

K

K−1∑
k=0

σ2
int

(α− β)ck
.

Corollary 1. Let ck =
√
k + 1 with c−1 = c0, then iterates of DecSPS satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ 2L̃D2 + 2σ2

int√
K(α− β)

+
2β

α− β
σ2
int (30)

= Õ
(

1√
K

+ βσ2
int

)
. (31)

Proof. The proof directly follows from Theorem 4 using the choice ck =
√
k + 1 and the fact that∑K−1

k=0 k−1/2 ≤ 2
√
K.

Remark 4. It turned out that removing the bounded iterates assumption for DecSPS is a challenging
task. Nevertheless, we believe that this is rather the technicalities of Polyak stepsize, but not of our
assumption. Moreover, we highlight that [64] removed bounded iterates assumption in restrictive
strongly convex setting.
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Algorithm 3 NGN: Non-negative Gauss Newton

1: Input: Stepsize parameter γ
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ik ∼ Unif[n] and compute ∇fik(x

k)
4: Compute NGN stepsize

γk :=
γ

1 + γ
2fik (x

k)
∥∇fik(x

k)∥2

5: Update model
xk+1 = xk − γk∇fik(x

k)

6: end for

C.2.3 Convergence of NGN

Constant stepsize parameter. In this section we present the proof of convergence of NGN with
constant stepsize parameter γ under α-β-condition for completeness of the presentation.

Lemma 4 (Lemma from [63]). Let fi be L-smooth for all i, then the stepsize of NGN satisfies

γk ∈
[

γ

1 + γL
, γ

]
. (32)

Lemma 5 (Lemma from [63]). Let fi be L-smooth for all i, then the iterates of NGN satisfy

γ2
k∥∇fik(x

k)∥2 ≤ 4γL

1 + 2γL
γk(fik(x

k)− f∗
ik
) +

2γ2L

1 + γL
max

{
2γL− 1

2γL+ 1
, 0

}
f∗
ik
. (33)

Theorem 3. Assume that Assumptions 1 with α ≥ β + 1 and 1-2 hold. Assume that each function fi
is positive and σ2

pos < ∞. Then the iterates of NGN (Alg. 3) with a stepsize parameter γ > 0 satisfy

min
0≤k≤K−1

E
[
f(xk)− f∗] ≤

E
[
dist(x0,S)2

]
2γK

(1 + 2γL)2

c2
+

3Lγα(1 + γL)σ2
int

c2

+
γL

a
max {2γL− 1, 0}σ2

pos +
2βσ2

int

c2
, (11)

where c2 := 2γL(α− β − 1) + α− β.

Proof. Let xk
p ∈ Proj(xk,S) satisfying Definition 1. Then we have

Ek

[
dist(xk+1,S)2

]
≤ Ek

[
∥xk+1 − xk

p∥2
]

= ∥xk − xk
p∥2 − 2Ek

[
γk⟨∇fik(x

k), xk − xk
p⟩
]
+ Ek

[
γ2
k∥∇fik(x

k)∥2
]

≤ dist(xk,S)2 − 2αEk

[
γk(fik(x

k)− fik(x
k
p))
]

+ 2βEk

[
γk(fik(x

k)− f∗
ik
)
]
+ Ek

[
γ2
k∥∇fik(x

k)∥2
]
. (34)

From Lemma 5

γ2
k∥∇fik(x

k)∥2 ≤ 4γL

1 + 2γL
γk(fik(x

k)− f∗
ik
) +

2γ2L

1 + γL
max

{
2γL− 1

2γL+ 1
, 0

}
f∗
ik
. (35)

Plugging (35) in (34) we get

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − 2αEk

[
γk(fik(x

k)− fik(x
k
p))
]

+ 2βEk

[
γk(fik(x

k)− f∗
ik
)
] 4γL

1 + 2γL
+ Ek

[
γk(fik(x

k)− f∗
ik
)
]

+
2γ2L

1 + γL
max

{
2γL− 1

2γL+ 1
, 0

}
Ek

[
f∗
ik

]
.
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We have fik(x
k)− fik(x

k
p) = (fik(x

k)− f∗
ik
)− (fik(x

k
p)− f∗

ik
). Now we write γk = ρ+ ϵk where

ρ is a constant independent of ik. Therefore, we have

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − 2αρEk

[
fik(x

k)− fik(x
k
p)
]

− 2αEk

[
ϵk(fik(x

k)− f∗
ik
)
]
+ 2αEk

[
ϵk(fik(x

k
p)− f∗

ik
)
]

+ 2βEk

[
γk(fik(x

k)− f∗
ik
)
]
+

4γL

1 + 2γL
Ek

[
γk(fik(x

k)− f∗
ik
)
]

+
2γ2L

1 + γL
max

{
2γL− 1

2γL+ 1
, 0

}
Ek

[
f∗
ik

]
= dist(xk,S)2 − 2αρEk

[
fik(x

k)− fik(x
k
p)
]

− 2Ek

[(
αϵk −

(
β +

2γL

1 + 2γL

)
γk

)
(fik(x

k)− f∗
ik
)

]
+ 2αEk

[
ϵk(fik(x

k
p)− f∗

ik
)
]

+
2γ2L

1 + γL
max

{
2γL− 1

2γL+ 1
, 0

}
Ek

[
f∗
ik

]
. (36)

We need to find ρ such that

αϵk −
(
β +

2γL

1 + 2γL

)
γk ≥ 0

α(γk − ρ)−
(
β +

2γL

1 + 2γL

)
γk ≥ 0

γk

(
α− β − 2γL

1 + 2γL

)
≥ αρ.

Note that since γk ≥ γ
1+γL from Lemma 4, then it is enough if ρ satisfies

γ

1 + γL

(
α− β − 2γL

1 + 2γL

)
≥ αρ

γ(2γL(α− β − 1) + α− β)

α(1 + γL)(1 + 2γL)
≥ ρ.

Let us take this bound as a value of ρ. Note that since α ≥ β + 1, then ρ ≥ 0. Therefore, the bound
for ϵk is the following

ϵk = γk − ρ

≤ γ − γ(2γL(α− β − 1) + α− β)

α(1 + γL)(1 + 2γL)

= γ

(
α(1 + γL)(1 + 2γL)− 2γL(α− β − 1)− (α− β)

α(1 + γL)(1 + 2γL)

)
= Lγ2α+ 2αγL+ 2(β + 1)

α(1 + γL)(1 + 2γL)
+ γ

β

α(1 + γL)(1 + 2γL)

≤ 3Lγ2

1 + 2γL︸ ︷︷ ︸
:= 1

2T2(γ2)

+
βγ

α(1 + γL)(1 + 2γL)︸ ︷︷ ︸
:= 1

2βT1(γ)

.
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Therefore, we get the following descent inequality

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − 2αρ︸︷︷︸

:=T0(γ)

Ek

[
fik(x

k)− fik(x
k
p)
]

+ 2αEk

[
ϵk(fik(x

k
p)− f∗

ik
)
]
+

2γ2L

1 + γL
max

{
2γL− 1

2γL+ 1
, 0

}
︸ ︷︷ ︸

:=T3(γ2)

Ek

[
f∗
ik

]
≤ dist(xk,S)2 − T0(γ)Ek

[
fik(x

k)− fik(x
k
p)
]

+ T2(γ
2)αEk

[
fik(x

k
p)− f∗

ik

]
+ βT1(γ)αEk

[
fik(x

k
p)− f∗

ik

]
+ T3(γ

2)Ek

[
f∗
ik

]
= dist(xk,S)2 − T0(γ)(f(x

k)− f∗) + T2(γ
2)αEk

[
f∗ − f∗

ik

]
+ βT1(γ)αEk

[
f∗ − f∗

ik

]
+ T3(γ

2)Ek

[
f∗
ik

]
. (37)

Here we use the fact that xk
p is a minimizer of f and independent of ik. Unrolling the recursion, we

get

1

K

(
E
[
dist(xK ,S)2

]
− E

[
dist(x0,S)2

])
≤ −T0(γ)

K

K−1∑
k=0

E [f(xk)− f∗]

+ E1(γ) + E2(γ
2), (38)

where

E1(γ) := βT1(γ)αE [f∗ − f∗
i ]︸ ︷︷ ︸

σ2
int

, E2(γ
2) := T2(γ

2)αE [f∗ − f∗
i ]︸ ︷︷ ︸

σ2
int

+T3(γ
2)E [f∗

i ]︸ ︷︷ ︸
σ2
pos

. (39)

Therefore, we get

min
0≤k≤K−1

E
[
f(xk)− f∗] ≤

E
[
dist(x0,S)2

]
KT0(γ)

+
E1(γ)

T0(γ)
+

E2(γ
2)

T0(γ)

≤
E
[
dist(x0,S)2

]
2γK

(1 + 2γL)2

2γL(α− β − 1) + α− β

+
3Lγα

2γL(α− β − 1) + α− β
(1 + γL)σ2

int

+
γL

2γL(α− β − 1) + α− β
max {2γL− 1, 0}σ2

pos

+
βσ2

int

2γL(α− β − 1) + α− β
. (40)

This finished the proof.

Remark 5. If all fi are convex, i.e. we can take α = 1, β = 0 in α-β-condition, then we get

min
0≤k≤K−1

E
[
f(xk)− f∗] ≤

E
[
dist(x0,S)2

]
2γK

(1 + 2γL)2 + 3Lγ(1 + γL)σ2
int

+ γLmax {2γL− 1, 0}σ2
pos,

that coincides with the results in [63].

Decreasing stepsize parameter. Now we present the results with decreasing stepsize parameter.
Theorem 6. Assume that Assumptions 1 with α ≥ β + 1 and 1-2 hold. Assume that each function fi
is positive and σ2

pos < ∞. Then the iterates of NGN with decreasing stepsize of the form

γk =
γ̃k

1 + γ̃k

2fik (x
k)
∥∇fik(x

k)∥2
, γ̃k :=

γ√
k + 1
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satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ C1√

K
E
[
dist(x0,S)2

]
+

C2 log(K + 1)√
K

ασ2
int +

C3

α− β
βσ2

int

+
C4 log(K + 1)√

K
σ2
pos (41)

= Õ
(

1√
K

+ βσ2
int

)
. (42)

where C1, C2, C3, and C4 are defined in (43).

Proof. Similarly to the proof with constant stepsize parameter we can obtain (similar to (37))

Ek

[
dist(xk+1,S)2

]
≤ dist(xk,S)2 − T0(γ̃k)(f(x

k)− f∗) + T2(γ̃
2
k)ασ

2
int

+ βT1(γ̃k)ασ
2
int + T3(γ̃

2
k)σ

2
pos.

Note that we have

T0(γ̃k) =
2γ̃k(2γ̃kL(α− β − 1) + α− β)

(1 + γ̃kL)(1 + 2γ̃kL)

≥ 2γ̃k(α− β)

(1 + γ̃0L)(1 + 2γ̃0L)
=: T̃0(γ̃k),

T1(γ̃k) =
2γ̃k

α(1 + γ̃kL)(1 + 2γ̃kL)

≤ 2γ̃k
α

=: T̃1(γ̃k),

T2(γ̃
2
k) =

6Lγ̃2
k

1 + 2γ̃kL

≤ 6Lγ̃2
k =: T̃2(γ̃

2
k),

T3(γ̃
2
k) =

2γ̃2
kL

1 + γ̃kL
max

{
2γ̃kL− 1

2γ̃kL+ 1
, 0

}
≤ 2γ̃2

kLmax{2γL− 1, 0} =: T̃3(γ̃
2
k).

Therefore, we can continue as follows

E
[
dist(xk+1,S)2

]
≤ E

[
dist(xk,S)2

]
− T̃0(γ̃k)E

[
f(xk)− f∗]+ T̃2(γ̃

2
k)ασ

2
int

+ βT̃1(γ̃k)ασ
2
int + T̃3(γ̃

2
k)σ

2
pos.

This leads to

K−1∑
k=0

T̃0(γ̃k)E
[
f(xk)− f∗] ≤ E

[
dist(x0,S)2

]
+

K−1∑
k=0

T̃2(γ̃
2
k)ασ

2
int +

K−1∑
k=0

βT̃1(γ̃k)ασ
2
int

+

K−1∑
k=0

T̃3(γ̃
2
k)σ

2
pos.

Therefore, we have

min
0≤k<K

E
[
f(xk)− f∗] ≤ 1∑K−1

k=0 T̃0(γ̃k)
E
[
dist(x0,S)2

]
+

∑K−1
k=0 T̃2(γ̃

2
k)∑K−1

k=0 T̃0(γ̃k)
ασ2

int

+
β
∑K−1

k=0 T̃1(γ̃k)∑K−1
k=0 T̃0(γ̃k)

ασ2
int +

∑K−1
k=0 T̃3(γ̃

2
k)∑K−1

k=0 T̃0(γ̃k)
σ2
pos.
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Following the results of [64] and [24] we get

K−1∑
k=0

T̃0(γ̃k) =

K−1∑
k=0

2γ̃k
(1 + γL)(1 + 2γL)

≥ 8γ
√
K

5(1 + γL)(1 + 2γL)
,

K−1∑
k=0

T̃2(γ̃
2
k) =

K−1∑
k=0

6Lγ̃2
k

≤ 12Lγ2 log(K + 1),
K−1∑
k=0

T̃3(γ̃
2
k) =

K−1∑
k=0

2γ̃2
kLmax{2γL− 1, 0}

≤ 4γ2Lmax{2γL− 1, 0} log(K + 1),∑K−1
k=0 T̃1(γ̃k)∑K−1
k=0 T̃0(γ̃k)

=

∑K−1
k=0

2γ̃k

α∑K−1
k=0

2γ̃k(α−β)
(1+γL)(1+2γL)

=
(1 + γL)(1 + 2γL)

α(α− β)
.

Thus, the final result can be written as follows

min
0≤k<K

E
[
f(xk)− f∗] ≤ 5(1 + γL)(1 + 2γL)

8γ
√
K

E
[
dist(x0,S)2

]
+

12Lγ2 log(K + 1)
8γ

√
K

5(1+γL)(1+2γL)

ασ2
int

+

∑K−1
k=0 T̃1(γ̃k)∑K−1
k=0 T̃0(γ̃k)

ασ2
int +

∑K−1
k=0 T̃3(γ̃

2
k)∑K−1

k=0 T̃0(γ̃k)
σ2
pos

=
5(1 + γL)(1 + 2γL)

8γ
√
K

E
[
dist(x0,S)2

]
+

15Lγ(1 + γL)(1 + 2γL) log(K + 1)

2
√
K

ασ2
int

+
(1 + γL)(1 + 2γL)

(α− β)
βσ2

int

+
5(1 + γL)(1 + 2γL)γLmax{2γL− 1, 0} log(K + 1)

2
√
K

σ2
pos.

Now it is left to use the definitions of constants C1, C2, and C3

C1 :=
5(1 + γL)(1 + 2γL)

8γ
, (43)

C2 :=
15Lγ(1 + γL)(1 + 2γL)

2
,

C3 := (1 + γL)(1 + 2γL),

C4 :=
5(1 + γL)(1 + 2γL)γLmax{2γL− 1, 0}

2
.

C.2.4 Convergence of AdaGrad-norm-max

Theorem 7. Assume that Assumptions 1-2 hold. Assume that for all k ≥ 0 stochastic gradients
satisfy ∥∇fik(x

k)∥2 ≤ G2 for some G > 0 and b−1 ≥ 2Lγ
α−β . Let D2 = maxi ∥∇fi(x

0)∥2. Then the
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Algorithm 4 AdaGrad-norm-max

1: Input: Stepsize parameter γ > 0, c−1 = 0, b−1 ≥ 2Lγ
α−β

2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ik ∼ Unif[n] and compute ∇fik(x

k)
4: Compute AdaGrad-norm-max stepsize

c2k := max
{
c2k−1, ∥∇fik(x

k)∥2
}

b2k := b2k−1 + c2k, γk =
γ

bk

5: Update model
xk+1 = xk − γk∇fik(x

k)

6: end for

iterates of AdaGrad-norm-max (Alg. 4) satisfy

min
0≤k<K

E
[
f(xk)− f∗] ≤ dist(xk,S)2

γK(α− β)

√
b2−1 +G2K

+
2α

(α− β)KD2
σ2
int

√
b2−1 +G2K

√
b2−1 +D2(K + 1)

= O
(

1√
K

+ ασ2
int

)
. (44)

We see that if K is large enough, then we recover the standard convex rate of Adagrad of order
Õ(K−1/2) [46].

Proof. Let xk
p = Proj(xk,S) satysfying Definition 1. Then we have

dist(xk+1,S)2 ≤ ∥xk+1 − xk
p∥2

= ∥xk − xk
p∥2 − 2γk⟨∇fik(x

k), xk − xk
p⟩+ γ2

k∥∇fik(x
k)∥2

≤ dist(xk,S)2 − 2αγk(fik(x
k)− fik(x

k
p)) + 2βγk(fik(x

k)− f∗
ik
)

+ γ2
k∥∇fik(x

k)∥2

≤ dist(xk,S)2 − 2αγk(fik(x
k)− fik(x

k
p)) + 2βγk(fik(x

k)− f∗
ik
)

+ 2γ2
kL(fik(x

k)− f∗
ik
)

= dist(xk,S)2 − 2αγk(fik(x
k)− f∗

ik
+ f∗

ik
− fik(x

k
p)) + 2βγk(fik(x

k)− f∗
ik
)

+ 2γ2
kL(fik(x

k)− f∗
ik
)

= dist(xk,S)2 − 2γk(α− β − Lγk)(fik(x
k)− f∗

ik
)

+ 2αγk(fik(x
k
p)− f∗

ik
). (45)

Note that we choose b−1 ≥ 2Lγ
α−β . Since bk is inreasing sequence, then we have for any k that

bk ≥ 2Lγ
α−β . Therefore,

Lγk = L
γ

bk
≤ L

γ

b−1
≤ L

γ
2Lγ/α−β

=
α− β

2
.

This means that

−2γk(α− β − Lγk) ≤ −2γk(α− β − α−β/2) = −γk(α− β).

Thus, we can continue (45) as follows

dist(xk+1,S)2 ≤ dist(xk,S)2 − γ

bk
(α− β)(fik(x

k)− f∗
ik
) + 2α

γ

bk
(fik(x

k
p)− f∗

ik
).
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We know that bk is increasing sequence that satisfy√
b2−1 +D2(k + 1) ≤ bk ≤ bK−1 ≤

√
b2−1 +G2K.

This leads together with the fact that both fik(x
k)− f∗

ik
and fik(x

k
p)− f∗

ik
are non-negative to

dist(xk+1,S)2 ≤ dist(xk,S)2 − γ√
b2−1 +G2K

(α− β)(fik(x
k)− f∗

ik
)

+ 2α
γ√

b2−1 +D2(k + 1)
(fik(x

k
p)− f∗

ik
)

= dist(xk,S)2 − γ(α− β)√
b2−1 +G2K

(fik(x
k)− fik(x

k
p))

+
2αγ√

b2−1 +D2(k + 1)
(fik(x

k
p)− f∗

ik
).

Taking the conditional expectation we get

Ek

[
f(xk)− f∗]√
b2−1 +G2K

≤ dist(xk,S)2

γ(α− β)
−

Ek

[
dist(xk+1,S)2

]
γ(α− β)

+
2α√

b2−1 +D2(k + 1)(α− β)
σ2
int,

which leads to the following bound

Ek

[
f(xk)− f∗] ≤

(
dist(xk,S)2

γ(α− β)
−

Ek

[
dist(xk+1,S)2

]
γ(α− β)

)√
b2−1 +G2K

+
2α√

b2−1 +D2(k + 1)(α− β)
σ2
int

√
b2−1 +G2K.

Averaging over K iterations we get

min
0≤k<K

E
[
f(xk)− f∗] ≤ 1

K

K−1∑
k=0

E
[
f(xk)− f∗]

≤ dist(xk,S)2

γK(α− β)

√
b2−1 +G2K

+
2α

(α− β)K
σ2
int

√
b2−1 +G2K

K−1∑
k=0

1√
b2−1 +D2(k + 1)

≤ dist(xk,S)2

γK(α− β)

√
b2−1 +G2K

+
2α

(α− β)KD2
σ2
int

√
b2−1 +G2K

√
b2−1 +D2(K + 1)

= O
(

1√
K

+ ασ2
int

)
.

D Additional experiments

For all the experiments, we make use of PyTorch [65] package. LSTM, MLP, CNN and Resnet
experiments are performed using one NVIDIA GeForce RTX 3090 GPU with a memory of 24 GB.
For training Algoperf and Pythia language models, we resort instead to 4xA100-SXM4 GPUs, with
a memory of 40 GB each, and employ data parallelism for efficient distributed training. When
necessary, we disable CUDA non-deterministic operations, to allow consistency between runs with
the same random seed.
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Figure 9: Training for half-space learning problem with SGD. Here T (xk) = ⟨∇fik(x
k), xk−xK⟩−

α(fik(x
k)−fik(x

K))−βfik(x
k) assuming that f∗

i ≈ 0.000523853; angle denotes ∠(∇f(xk), xk−
xK).

D.1 Half space learning

Half Space Learning problem corresponds to the following optimization problem

f(x) =
1

n

n∑
i=1

σ(−bix
⊤ai) +

λ

2
∥x∥2,

where {ai, bi}ni=1, ai ∈ Rd, yi ∈ {0, 1} is a given dataset, λ = 10−5, and σ is a sigmoid function.
For the test, we create a synthetic dataset that contains 20 samples for both classes. We sample data
points from normal distribution where each class has its own mean and variance value of 2. We use
SGD with learning rate 1

4 and batch size 1 for minimization task.5

We observe that the gradient norm becomes zero quite which means that SGD trajectory goes through
saddle point. This leads to possible negative angle between full gradient and direction to minimizer.
Nevertheless, we demonstrate that even for such highly non-convex landscape with many saddle
points our α-β-condition holds for large enough values of α and β.

D.2 Experiment setup from section 2.2

We use 3 layer LSTM based model from Hübler et al. [33]6. The model for PTB dataset has 35441600
parameters while for Wikitext-2 dataset the model has 44798534 parameters. To train the model, we
choose NSGD with momentum [15] with decaying stepsize and momentum parameters according to
the experiment section from [33]. We train the model for 1000 epochs with initial stepsize values
158 and 900 for PTB and Wikitext-2 datasets respectively. We switch off dropout during measuring
stochastic gradients and losses for α-β-condition . We run the experiments for 7 different random
seeds and plot the mean with maximum and minimum fluctuations.

In Figure 10, we plot empirical aiming coefficient ⟨∇f(xk),xk−xK⟩
f(xk)

for full loss f ; mean of stochastic
losses across 7 runs along with maximum and minimum fluctuations from the mean; pairs of (α, β)
that satisfy α-β-condition across all 7 runs. We observe that for both datasets, there is a plateau at
the beginning of the training. This part of the training corresponds to possible negative values of the
empirical coefficient Aiming condition. After this, it becomes stable and positive.

Besides, we demonstrate that possible values of pairs of (α, β) that satisfy α-β-condition are large.
We believe, this happens because the full loss f has a minimum value of around 3.5 while individual
losses have f∗

i , i.e. the model is far from the interpolation regime (when f∗ = f∗
i ).

D.3 MLP architecture

We use MLP model with 3 fully connected layers. We fix the dimensions of the second layer to be
equal, i.e. the parameter matrix of this layer is square. After the first and second fully connected
layers we use ReLU activation function. We train the model in all cases with fixed learning rate
0.09 for 1500 epochs and batch size 64 on Fashion-MNIST [83] dataset. In Figure 12, we plot the

5We use the implementation from [17] that can be found https://github.com/archana95in/
Escaping-saddles-using-Stochastic-Gradient-Descent.

6The implementation can be found following the link https://github.com/fhueb/
parameter-agnostic-lzlo

37

https://github.com/archana95in/Escaping-saddles-using-Stochastic-Gradient-Descent
https://github.com/archana95in/Escaping-saddles-using-Stochastic-Gradient-Descent
https://github.com/fhueb/parameter-agnostic-lzlo
https://github.com/fhueb/parameter-agnostic-lzlo


0 125 250 375 500
Epoch k

1

0:75

0:5

0:25

0Ai
m

in
g 

co
ns

ta
nt

run 0
run 1
run 2
run 3
run 4
run 5
run 6

0 50 100
0:1

0

¡0:1

0 200 400 600 800 1000
Epoch k

12:5

10

7:5

5Fu
ll 

Lo
ss

 f(
x
k
)

950 1000
3:7

3:4

0 50 100
7

6:5

6

0 200 400 600 800 1000
Epoch k

2

4

6

8

10

St
oc

ha
st

ic 
Lo

ss
 f i

k
(x
k
)

0 200 400 600 800
Epoch k

1:5

1

0:5

0

Ai
m

in
g 

co
ns

ta
nt

run 0
run 1
run 2
run 3
run 4
run 5
run 6

0 200 400 600 800 1000
Epoch k

20

15

10

5

Fu
ll 

Lo
ss

 f(
x
k
)

950 1000
3:7

3:2

0 200 400 600 800 1000
Epoch k

3

6

9

12

15

St
oc

ha
st

ic 
Lo

ss
 f i

k
(x
k
)

Figure 10: Training of 3 layer LSTM model on PTB (first row) and Wikitext-2 (second row) datasets.
Here T (xk) = ⟨∇fik(x

k), xk − xK⟩ − α(fik(x
k)− fik(x

K))− βfik(x
k) assuming that f∗

i = 0.

(a) 2nd layer size 32 (b) 2nd layer size 128 (c) 2nd layer size 512

(d) 2nd layer size 1024 (e) 2nd layer size 2048 (f) 2nd layer size 4096

Figure 11: Values of α and β during the training of 3 layer MLP model on Fashion-MNIST dataset
varying the dimension of the second layer. Here T (xk) = ⟨∇fik(x

k), xk − xK⟩ − α(fik(x
k) −

fik(x
K))− βfik(x

k) assuming that f∗
i = 0.

mean stochastic loss across 4 runs along with maximum and minimum fluctuations, and in Figure 11
possible values of α and β that work over all random seeds and iterations satisfying α ≥ β + 0.1.

We observe that the magnitude of the smallest possible values of α and β increase till up to the second
layer size 512, but then it starts decreasing as the model becomes more over-parameterized. This
leads to smaller values of neighborhood O(βσ2

int) as we expect in this setting.

D.4 CNN architecture

We use CNN model with 2 convolution layers followed by a fully connected one. After each
convolution layer, we use max-pooling and ReLU activation functions. We train the model with a
cosine annealing learning rate scheduler with a maximum value 0.01 and batch size 64. We train the
model on CIFAR10 dataset [41] for 1500 epochs. We run the experiments for 4 different random
seeds. In Figure 13 we plot possible values of α and β satisfying α ≥ β + 0.1 that work across all
runs and iterations.

We observe that increasing the dimension of the second layer of the model makes the model closer to
over-parameterization: values of stochastic losses decrease. We observe the same phenomenon as
in Appendix D.3: minimum possible values of α and β increase up to 128 number of convolutions,
but then it decreases for a larger number of convolutions. This happens because the model becomes
more over-parameterized. Moreover, the possible difference between α and β tends to increase with
number of convolutions starting from 128 convolutions.
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(a) 2nd layer size 32 (b) 2nd layer size 128 (c) 2nd layer size 512
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(d) 2nd layer size 1024 (e) 2nd layer size 2048 (f) 2nd layer size 4096

Figure 12: Values of stochastic loss during the training of 3 layer MLP model on Fashion-MNIST
dataset varying the dimension of the second layer.

(a) # Convolutions 32 (b) # Convolutions 64 (c) # Convolutions 128

(d) # Convolutions 256 (e) # Convolutions 512 (f) # Convolutions 2048

Figure 13: Values of α and β during the training of CNN model on CIFAR10 dataset varying the
number of convolutions in the second layer. Here T (xk) = ⟨∇fik(x

k), xk − xK⟩ − α(fik(x
k) −

fik(x
K))− βfik(x

k) assuming that f∗
i = 0.

D.5 Resnet architecture

We use the implementation from Kumar [42]. We train the model on CIFAR100 dataset [41] for
1000 epochs. We use one-cycle scheduler with a maximum learning rate 0.01. To compute dense
stochastic gradients, we switch off dropout during evaluations of stochastic gradients and losses for
α-β-condition. We run the experiments for 4 different random seeds and plot the mean along with
maximum and minimum fluctuations.

In Figure 15 we observe that the minimum value of stochastic loss increases with batch size which
means that the model becomes further from over-parameterization.

D.6 Verification of α-β-condition by different optimizers

Now we turn to another interesting question: how does the choice of an optimizer affect the practical
verification of the α-β-condition? To explore this question, we train Resnet9 model with SGD,
SGDM, and Adam. We report the results in Figure 16 varying the batch size used in the training.
Comparing the values of α and β for SGD (from Figure 6), SGDM, and Adam, we observe that
the loss landscape explored by the Adam optimizer achieves smaller values of α and β. Moreover,
the values of α and β found by SGDM are typically smaller than those found by SGD. This result
may shed light on why momentum (from a comparison of SGDM against SGD) and adaptive
stepsize (from a comparison of SGDM against Adam) are typically beneficial in practice: these more
advanced algorithms explore better part of a loss landscape from the α-β-condition point of view.
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(d) # Convolutions 256 (e) # Convolutions 512 (f) # Convolutions 2048

Figure 14: Values of stochastic loss during the training of CNN model on CIFAR10 dataset varying
the number of convolutions in the second layer.
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(a) Batch size 64 (b) Batch size 128 (c) Batch size 256 (d) Batch size 512

Figure 15: Training of Resnet9 model on CIFAR100 dataset varying the batch size.

Table 3: Training details of large models from Appendix D.8 and Appendix D.9

Dataset Model Batch Size LR β1 β2 Weight Decay Warmup
Criteo 1TB DLRMsmall 262144 0.0017 0.93 0.995 0.08 0.02

Fastmri U-Net 32 0.001 0.9 0.998 0.15 0.1

OBGB GNN 512 0.0017 0.93 0.995 0.08 0.02

WMT Transformer 128 0.001 0.97 0.999 0.15 0.1

Slim-Pajama-627B Pythia-70M 256 0.01 0.9 0.95 0.1 0.1

Slim-Pajama-627B Pythia-160M 256 0.006 0.9 0.95 0.1 0.1

D.7 Increasing the depth of Resnet architecture

In our next experiment, we aim to investigate how the α-β-condition behaves increasing the depth of
a model. To do so, in addition to training Resnet9 model, we test Resnet18 and Resnet34 models on
CIFAR100 dataset. The results in Figure 17 suggest that the values of α and β tend to decrease with
the depth of a model. These observations align with those from Section 5.1 and Section 5.2 as the
constants α and β decrease as the depth of the model increases.

D.8 AlgoPerf experiments

For each of all aforementioned tasks, we repeat the training with 3 random seeds to create more stable
results. The detailed model architectures are given in [16]. In Table 3 we provide the parameters of
optimizers we use for each task. The loss curves are presented in Figure 18. For each workload, we
run the experiments for 3 different random seeds to obtain more stable results. The hyperparameters of
optimizer NadamW are chosen such that we can reach the validation threshold set by the organizers7.
We employ a cosine annealing learning rate schedule that reduces the learning to 1e− 10, with an
initial linear warm-up. For each workload, we run the experiments sufficiently enough so that we
reach the validation target threshold and the stochastic loss becomes sufficiently stable.

7The quality of performance is measured differently from one task to another; we defer to the [16] for a more
detailed description of the competition.
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(a) batch size 64 (b) batch size 128 (c) batch size 256 (d) batch size 512

(a) batch size 64 (b) batch size 128 (c) batch size 256 (d) batch size 512

Figure 16: Training of ResNet9 model on CIFAR100 dataset varying the batch size with SGDM
(stepsize 0.01 and momentum 0.9 with OneCycle learning rate scheduler) and Adam (stepsize
0.0001 with default momentum parameters with OneCycle learning rate scheduler) optimizers. Here
T (xk) = ⟨∇fik(x

k), xk−xK⟩−α(fik(x
k)−fik(x

K))−βfik(x
k) assuming that f∗

i = 0. Minimum
is taken across all runs and iterations for a given pair of (α, β). We plot values of α,β in α-β-condition
for SGDM (first row) and Adam (second row).

(a) batch size 64 (b) batch size 128 (c) batch size 256

(a) batch size 64 (b) batch size 128 (c) batch size 256

Figure 17: Training of ResNet18 and Resnet34 model on CIFAR100 dataset varying the batch size
SGD (stepsize 0.01 and momentum 0.9 with OneCycle learning rate scheduler). Here T (xk) =
⟨∇fik(x

k), xk−xK⟩−α(fik(x
k)−fik(x

K))−βfik(x
k) assuming that f∗

i = 0. Minimum is taken
across all runs and iterations for a given pair of (α, β).

D.9 Pythia experiments

For each of all aforementioned tasks, we repeat the training with 3 random seeds to create more
stable results. We train Pythia 70M and Pythia 160M [8] on publicly available Slim-Pajama-627B
dataset [72]. Both models are trained on sequences of length 2048, and makes use of a batch size of
0.5M tokens, which amounts to a batch size of 256 samples. We use AdamW optimizer and a cosine
annealing with linear warmup, with hyperparameters specified in Table 3. The stochastic loss and
training perplexity are reported in Figure 19.
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Figure 18: Training of large models from AlgoPerf benchmark.
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Figure 19: Training statistics for Pythia language models.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow all the rules listed following the link above. In particular, we
anonymized the paper and attached the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: we provide an impact statement in ??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use open-source datasets and code. For all used codes we explicitly cite
the corresponding paper or Github repository.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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