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ABSTRACT

As language models (LMs) approach human-level performance, a comprehensive
understanding of their behavior becomes crucial. This includes evaluating capa-
bilities, biases, task performance, and alignment with societal values. Extensive
initial evaluations, including red teaming and diverse benchmarking, can establish
a model’s behavioral profile. However, subsequent fine-tuning or deployment mod-
ifications may alter these behaviors in unintended ways. We present an efficient
statistical test to tackle Behavioral Shift Auditing (BSA) in LMs, which we define
as detecting distribution shifts in qualitative properties of the output distributions
of LMs. Our test compares model generations from a baseline model to those of
the model under scrutiny and provides theoretical guarantees for change detec-
tion while controlling false positives. The test features a configurable tolerance
parameter that adjusts sensitivity to behavioral changes for different use cases. We
evaluate our approach using two case studies: monitoring changes in (a) toxicity
and (b) translation performance. We find that the test is able to detect meaningful
changes in behavior distributions using just hundreds of examples.

1 INTRODUCTION

Language models (LMs) can now achieve human-level performance in a wide range of tasks, includ-
ing text summarization, machine translation, coding and even acting as AI scientists: generating
hypotheses and designing experiments (Achiam et al., 2023; Katz et al., 2024; Lu et al., 2024; Zhang
et al., 2024). Because of this, many sectors are looking for ways to use them to improve existing
systems (Kasneci et al., 2023; Felten et al., 2023). Unfortunately, one large roadblock to broad LM
adoption is their propensity to generate harmful content (Weidinger et al., 2021). For example, GPT-3
has significant anti-Muslim biases (Abid et al., 2021), and GPT-4 has racial and gender biases (Zack
et al., 2024). To address this, a significant effort is going into ensuring LM behavior is aligned with
our societal values, spawning the field of AI alignment (Ji et al., 2023). A large portion of this effort is
on developing ways to evaluate LM behavior, for example, through benchmarks (Wang et al., 2023a)
and red-teaming (Perez et al., 2022a).

Given these evaluation techniques, how should they be used to ensure LMs stay safe? To answer this,
consider two hypothetical settings where this question might be asked: (1) Internal Audit: A company
develops a language model that has passed rigorous safety and performance evaluations. After
deploying the model, they continue to fine-tune it to improve specific capabilities. The development
team is concerned that these updates might unintentionally alter the model’s behavior in undesirable
ways, such as degrading performance on critical tasks or introducing biases. How can the team detect
meaningful changes in model behavior? (2) External Audit: A regulatory body certifies a language
model for public deployment after extensive safety evaluation. However, they are concerned that
the deployed model’s behavior may change over time due to updates or intentional modifications.
Since they only have access to the model through an API and cannot inspect its internal parameters,
they require a mechanism to regularly check that the model’s behavior remains consistent with the
certified version. How can the regulator regularly check the deployed model’s behavior is the same as
the previously certified one? We call the general class of problems detecting changes in LM behavior
distributions Behavioral Shift Auditing (BSA) problems.

In this paper, we formalize the problem of Behavioral Shift Auditing in Language Models. We
detail a statistical test that continuously monitors behavioral shift, solely from model generations
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Figure 1: An External Audit Example. A regulator can use the test we describe to perform an
external audit: 1. The regulator initially certifies an LM by prompting and evaluating the set of
generations received; 2. Later, tipped off that LM behavior may have changed, the regulator poses
as a consumer and sends prompts to the model vendor, collecting the generations; 3. The regulator
compares the distribution of behavior scores b(·) between the initial, certified generations and the
later generations using a Behavioral Shift Auditing (BSA) test. If the distributions are sufficiently
different the test triggers. Using our proposed method, the regulator can test samples sequentially
without increasing the false-positive rate. The method is guaranteed to detect a change if one exists,
given enough samples (more details in Section 3).

(e.g. via API calls). Under some weak assumptions, the test provably guarantees that if model
generations have different behavior than those of an initial model, the test will detect it, given enough
generations. At the same time, if there has not been a change, the test is guaranteed to have tight,
non-asymptotic control over the false positive rate. The key insight behind our approach is that
one can phrase the problem of Behavioral Shift Auditing as hypothesis testing over the relevant
behavioral distribution. This framing allows our test to be applicable to any measurable aspect of
model behavior, including also capabilities (e.g., dangerous capabilities (Phuong et al., 2024) or
mathematical reasoning capabilities (Mishra et al., 2022a)) and biases (e.g., gender bias (Wang et al.,
2023a; Kotek et al., 2023)).

Using this insight, we develop a test that extends recent work on anytime-valid hypothesis testing (Pan-
deva et al., 2024), a state-of-the-art sequential testing method that has been successfully applied in
various auditing settings (Chugg et al., 2023; Shekhar et al., 2023; Waudby-Smith et al., 2021). Our
test checks for changes in model behavior distributions, comparing generations from a reference
model with those of another, potentially changed model. The test has a tunable parameter that allows
one to vary the strictness of the test. This allows for detecting any change in behavior, which may be
more suitable for the external audit setting, to detecting a user-specified ϵ change in behavior, which
could be used for the internal audit if small changes are acceptable. Similar to Pandeva et al. (2024),
test performance is optimized using a learning algorithm, improving sample efficiency over prior
testing methods (Lopez-Paz & Oquab, 2017; Lhéritier & Cazals, 2018; Podkopaev & Ramdas, 2024).
This testing approach can complement a full evaluation when used as a warning system. Before an
expensive model assessment on large-scale benchmarks (Achiam et al., 2023; Dubey et al., 2024;
Zhang et al., 2024), our approach can be used to detect an initial behavior change, which can then
trigger a full evaluation. We experimentally verify that our test satisfies theoretical guarantees and we
report its sample efficiency on recent LM architectures for both auditing use cases. We release our
code here: https://anonymized.

Our key contributions are: (1) formalizing Behavioral Shift Auditing and developing a statistical test
for detecting LM behavior changes from model generations, (2) providing theoretical guarantees on
false positive control and test consistency, (3) introducing a configurable tolerance parameter enabling
both strict external audits and flexible internal monitoring, and (4) demonstrating effectiveness and
sample efficiency through toxicity and translation case studies showing detection with hundreds of
examples.

2 BACKGROUND

2.1 MEASURING LM BEHAVIORS

A goal of LM alignment is to reduce undesired and harmful behaviors, so that they may be more
aligned with societal values (Shalev-Shwartz et al., 2020; Hendrycks et al., 2021; Ngo et al., 2022;
Wolf et al., 2023). This has spurred the creation of behavior scoring functions (Ji et al., 2023) that
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measure properties of LM outputs such as toxicity or fact-groundedness (Vidgen et al., 2020; Nozza
et al., 2021; Monea et al., 2024).1 Let B be such a behavior scoring function that assigns scores in
the range [0, 1] where 1 represents the full manifestation of the behavior and 0 indicates its absence.
These scoring functions evaluate a generated string with respect to the desired behavior. We use the
concept of an LM behavior generically, including capabilities and performance on tasks.2 Our work
will make use of recent results in sequential hypothesis testing, which we review below.

2.2 ANYTIME-VALID HYPOTHESIS TESTING

Sequential hypothesis testing allows one to analyze data without fixing the sample size in ad-
vance (Wald, 1945). The benefit of this over classical hypothesis testing is that it is potentially more
sample efficient if significant results exist (Arrow et al., 1949). However, as the number of tests
increases, the Type I error rate (i.e., false positive rate) increases with it (Jennison & Turnbull, 1999).
While there have been many approaches to address this, a recent promising framework that avoids
inflating the Type I error rate while remaining statistically efficient is anytime-valid hypothesis testing
(Robbins, 1970; Ramdas et al., 2023).

The fundamental idea behind this framework is the principle of testing by betting, inspired by game
theory (Shafer, 2021). In this paradigm, evidence against the null hypothesis H0 is represented as
the gain in wealth of a bettor wagering on observed samples. Before observing new samples, the
bettor “buys” a test statistic at the “price” of its expected value under H0. After new samples are
obtained, the wealth of the bettor is multiplied by the ratio between the actual observed test statistic
and its expectation. This ratio is referred to as the betting score St. The bettor reinvests in subsequent
“rounds" (i.e., as new data is observed), and the observed betting scores are repeatedly multiplied,
leading to a cumulative wealth process. Under H0, no betting strategy can consistently increase the
bettor’s wealth, ensuring control over the Type I error rate (Ramdas et al., 2023).

Let the bettor’s (non-negative) wealth after t (batches of) observations be Wt. In order to design a
test from this wealth process we require that Wt satisfies the following

sup
P∈H0

EP [Wt] ≤ 1 for every t ≥ 0. (1)

All non-negative stochastic processes Wt that satisfy the above condition are called an e-process for
H0 (Howard et al., 2021). This states that the maximum wealth across all bets cannot exceed 1 if
the null hypothesis H0 is true.3 Given an e-process, the test is constructed as follows: reject the null
H0 at some time τ if Wτ ≥ γ, where γ = α−1 is a threshold defined by a desired significance level
α ∈ (0, 1). Under H0, the e-process Wt controls the Type I error rate. By Ville’s inequality (Ville,
1939), we have:

PH0

(
sup
t≥0

Wt ≥ γ

)
≤ 1

γ
= α. (2)

This ensures that the probability of incorrectly rejecting H0 is at most α at any time step. Thus, the
sequential test is anytime-valid, maintaining error control at any stopping point.

2.3 DEEP ANYTIME-VALID HYPOTHESIS TESTING (DAVT)

Pandeva et al. (2024) present a general framework called Deep Anytime-Valid Testing (DAVT)
for designing powerful sequential non-parametric tests by integrating deep learning models into
the anytime-valid hypothesis testing framework. Applying DAVT to a variety of tasks, including
two-sample testing, Pandeva et al. (2024) demonstrate DAVT’s competitive performance compared to
other state-of-the-art non-parametric sequential tests, such as the E-C2ST (Lhéritier & Cazals, 2018)
and Seq-IT (Podkopaev & Ramdas, 2024). DAVT uses a model ϕ, trained on past observations, to
produce an optimized betting score on new data. DAVT also provides tight control over the Type I
error rate. It is also consistent under the assumptions of Pandeva et al. (2024, Proposition 4.3), i.e.,
the power of the test converges to 1 as the number of samples goes to infinity.

1For example, models detecting such undesired behaviors are part of Azure’s Prompt Shield service (Mi-
crosoft, 2024).

2Our proposed method can also be applied to detect concept drift (see Bayram et al. (2022) for a review).
3It can be shown that the wealth process Wt defined this way is equivalent to the minimum wealth a bettor

can obtain across all P ∈ H0 (Ramdas et al., 2023).
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3 METHODS

To motivate Behavior Shift Auditing (BSA), we detail an external auditing example in Figure 1.
We propose an anytime-valid hypothesis test for BSA that will have guarantees on its false positive
rate and is consistent under weak assumptions. Building upon the two-sample variant of DAVT
(Pandeva et al., 2024), our test introduces a customizable tolerance parameter ϵ that allows users to
specify what constitutes a practically significant difference between distributions, accommodating
small, insignificant variations. This approach diverges from prior sequential tests that check for exact
distribution equality (Ramdas et al., 2023; Shekhar & Ramdas, 2023; Pandeva et al., 2024), which
may be overly sensitive for our use cases. We describe the test in full generality in Appendix B. To
focus the text and avoid notational complexity, we concentrate here on the application to behavioral
shift detection in LMs.

3.1 AUDITING TEST

Let X be a random variable representing a prompt, X the set of possible prompts, and x ∈ X a
realization of X .

A language model is a stochastic operator M that maps prompts x to generations y ∈ Y . A behavior
scoring function B is a stochastic operator that takes a prompt and generation as input4 and produces
a score B(x,y) ∈ [0, 1] (Perez et al., 2023; Wolf et al., 2024). The prompts, language model and
behavior function induce a behavior distribution PM

B over behavior scores B(X,M(X)). We can
now frame the question of whether the behavior of a model M ′ has changed (substantially) relative
to a baseline model M as a testing problem:

H0 : D
(
PM
B , PM ′

B

)
≤ ϵ vs. H1 : D

(
PM
B , PM ′

B

)
> ϵ, (3)

where ϵ ≥ 0 is a tolerance parameter, and D is a distance measure between probability distributions.
Note that equality in the null hypothesis in eq. (3) corresponds to DAVT (Pandeva et al., 2024). To
extend this to the composite case, our goal is to construct an appropriate wealth process Wt. This
will allow us to establish error rate and consistency guarantees. To do so, we will define a betting
score St such that it produces a wealth process Wt that is an e-process i.e., it satisfies eq. (1). This, in
turn, will depend on the distance measure D that we choose.

Given a batch of prompts x1, . . . , xb and the distance threshold ϵ from Equation (3), we propose the
betting score

St =

b∏
i=1

(
1 + ϕt−1

(
B(xi,M(xi))

)
− ϕt−1

(
B(xi,M

′(xi))
)

exp(ϵ)

)
. (4)

where ϕt−1 is a neural network trained on all (t−1) previous batches to optimize the objective

max
ϕ

E[log (1 + ϕ(B(X,M(X)))− ϕ(B(X,M ′(X)))].

Given the betting score St, we define the wealth process {Wt}t≥1 of a bettor by initializing their
wealth as W0 = 1 and updating

Wt = Wt−1 × St. (5)

If the betting score St is an e-variable, meaning that EH0 [St] ≤ 1, then the wealth process {Wt}t≥0

is an e-process, which we can prove by induction. Under H0, and for any fixed PM
B , PM ′

B satisfying
DΦ(P

M
B , PM ′

B ) ≤ ϵ, Wt−1 and St are independent. Therefore,

EH0 [Wt] = EH0 [Wt−1 × St]

= EH0 [Wt−1]× EH0 [St] ≤ EH0 [Wt−1],

By induction, EH0 [Wt] ≤ 1 for all t ≥ 0.

To ensure that St is indeed an e-variable, we choose an appropriate distance measure in eq. (3).
Specifically, we define this distance based on the restricted class of models ϕ used in our test. As in
(Pandeva et al., 2024), we make the following assumptions on ϕ:

4We include the prompt for generality, there is no requirement that B must depend on the prompt.
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Assumption 1 (Pandeva et al. (2024)). The model class used in our test Φ = {ϕθ : θ ∈ Θ} must
satisfy the following properties:

• For all ϕ ∈ Φ and for all s ∈ [0, 1], |ϕ(s)| ≤ q for some q ∈ (0, 1/2).

• If ϕ ∈ Φ, then c · ϕ ∈ Φ for every c ∈ [−1, 1].

We can now define the distance measure used in our test.
Definition 1 (Neural Net Distance). Define the distance5 used in eq. (3) to be

DΦ

(
PM
B , PM ′

B

)
= sup

ϕ∈Φ
E [ϕ(B(X,M(X))− ϕ(B(X,M ′(X))] . (6)

For this distance, St is an e-variable (see Appendix B.1.2 for a proof). We can now define the
following sequential test

γ = inf

{
t ≥ 1 : Wt ≥

1

α

}
. (7)

Control over the Type I error follows again from Ville’s inequality (2). The test is consistent under
the following assumptions.
Proposition 1. If the learning algorithm satisfies the condition

lim inf
t→∞

E
[
log
(

1
exp(ϵ) (1 + ϕθt(Xt)− ϕθt(Yt))

)
| Ft−1

]
3c
√

log(t)/t

a.s.
≥ 1 (8)

for all PM
B , PM ′

B with DΦ(P
M
B , PM ′

B ) > ϵ and for a universal constant c, then we have

PH0(γ <∞) ≤ α and PH1(γ <∞) = 1 (9)

For the proof, see Appendix B.1.2. This sequential test is thus a sequential level-α test of power one.

3.2 ALGORITHM

Algorithm 1 Auditing Test

1: Input: {xt}t≥1 (stream of prompts), B (behavior func-
tion), M (baseline model API), M ′ (current model API),
α (type-I error limit under null), ϕ0 (neural net model
for testing), ϵ (maximal neural net distance)

2: W0 ← 1
3: while true do
4: Compute behavior scores:

bt ← B(xt,M(xt)), b
′
t ← B(xt,M

′(xt))
5: Compute betting score:

St ← (1+ϕt−1(bt)−ϕt−1(b
′
t))

exp(ϵ)

6: Update wealth:
Wt ←Wt−1 × St

7: if Wt ≥ 1/α then
8: Break and reject null
9: end if

10: Update neural net model:
ϕt ← argmaxϕ

∑t
l=1 log(1 + ϕ(bt)− ϕ(b′t))

11: end while

The auditing test (shown in Algorithm 1) takes
in a stream of prompts {xt}t≥1, a behavior func-
tion B, an initial baseline language model M , a
second language model M ′, the α-level, a neural
net model initialization ϕ0, and a tolerance pa-
rameter ϵ, representing the maximal neural net
distance we want to accept between behavior
distributions. At every time step, a new prompt
from the stream xt is fed to both M and M ′ to
create generations, which are then scored by the
behavior function. We feed these scores to the
neural net model ϕt−1 and calculate the betting
score St. Next, we update the wealth Wt by
the betting score and check whether it surpasses
the 1/α-threshold, in which case we reject the
null hypothesis. If not, we update the neural net
model in a separate training step and continue
with the next prompt. The algorithm can easily
be modified to accept batches instead of single
prompts.6

5This distance is an instance of an integral probability metric (IPM) (Müller, 1997), a class of distances that
includes well-known metrics like the Wasserstein distance (Kantorovich & Rubinstein, 1958). IPMs are at least
pseudo-metrics i.e., they satisfy all the properties of a metric except that the distance between distinct points can
be zero.

6In this case, the new betting score St is calculated as a product over samples in the batch.
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4 EXPERIMENTS

We evaluate our test for both external and internal auditing use-cases. We then evaluate cases where
small changes in distribution are allowed when auditing externally for toxicity, and internally for
translation performance.

4.1 EXACT TEST, ϵ = 0
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Figure 2: Fine-tuning Detection for Llama3-8B-
Instruct. The detection frequency as a function
of number of generated samples. Each curve is
a fine-tuned corrupted model checkpoint (to sim-
plify visualization, the curves with shaded standard
deviations are averages over models with similar
distances to the aligned model). The color depicts
the Wasserstein distance between the corrupted
model and the original aligned model.

Setup. We begin by investigating an exter-
nal setting where we require the test to detect
any change in distribution (ϵ = 0). Specif-
ically, we will check for changes in toxic-
ity behavior. We select prompts from the
REALTOXICITYPROMPTS dataset (Gehman
et al., 2020) and use the toxicity behavior
function from Perspective API (Lees et al.,
2022) to evaluate LM generations. Llama3
(8B-Instruct) (Llama-team, 2024), Gemma
(1.1-7b-it) (Mesnard et al., 2024), and
Mistral (7B-Instruct-v0.2) (Jiang et al.,
2023) serve as our initial aligned models. We
remove the safety alignment in these models by
fine-tuning, producing 10 corrupted checkpoints
for each model. To evaluate the statistical prop-
erties of our the exact test (ϵ=0), we assess (a)
its ability to detect changed checkpoints, and (b)
its false positive rate. For further experimental
details regarding toxicity fine-tuning, text gener-
ation and the betting score network, please see
Appendix A.1.

Corrupted model detection. We test each corrupted checkpoint against the corresponding initial
aligned model with α=0.05. Figure 2 shows the fraction of positive test results after having observed
at least m samples, with tests repeated 48 times per checkpoint (2000 samples per fold, batch size
100). High detection rates of almost 80% are achieved even for checkpoints closest to the baseline.
We find that as the distance between the corrupted model and the initial model increases, fewer
samples are needed to detect the change in behavior. Similar results for Mistral and Gemma can be
found in Appendix C.

False positive rate. We use different random seeds for generating text from the initial aligned
models to examine the false positive rate of the exact test. Figure 3 shows the false positive rate
for each of the model architectures as a function of the number of observed samples, repeated 24
times (4000 samples per fold, batch size 100). The test is highly specific, with false detection rates
consistently below 0.05.

4.2 TOLERANCE TEST, ϵ > 0

We now evaluate the test with tolerance ϵ > 0 in two use-cases: an external toxicity audit, and an
internal translation performance audit.

In both cases, the exact test might be too sensitive. However, how much variation to allow between
distributions might depend on the use-case. We thus want to explore some possible strategies for
determining the hyperparameter ϵ appropriately in each scenario.

USE CASE 1: EXTERNAL AUDIT, TOXICITY

Setup. We simulate an external auditor checking whether instruction-tuning an aligned model on
unrelated tasks affected toxicity distributions, something that has been observed in practice (Qi et al.,
2023). We use Llama3 (8B-Instruct) as the aligned model, again evaluating toxicity on the

6
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Mean toxicity
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Sampling variation
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Figure 4: Measuring Mean and Distributional Change. Analysis of seven Llama3-8B variants
shows aligned shifts across three metrics: mean toxicity scores, Wasserstein distances, and Neural
net distances to baseline Llama3-8B-Instruct. The variants include the baseline model with modified
sampling parameters, five models instruction-tuned on subsets of SuperNI, and an uncensored model.

REALTOXICITYPROMPTS dataset (Gehman et al., 2020) using Perspective API (Lees et al., 2022).
We instruction-tune Llama3 on 5 different task clusters from SUPER-NATURALINSTRUCTIONS
(SuperNI; Mishra et al., 2022b; Wang et al., 2022). This setup is inspired by Wang et al. (2023c), who
found that a pre-trained Llama2 model instruction-tuned on SuperNI exhibits high toxicity scores on
ToxiGen. Detailed information on instruction-tuning and how the neural net distance is estimated can
be found in Appendix A.
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Figure 3: False positives. The false positive rate
for each of the baseline models as a function of
number of observed samples. Using the same
model and sampling strategy but different random
seeds, we generate two outputs for each prompt to
be used as the sample pairs for our auditing test.

Results. Instruction-tuning increased mean
toxicity scores, which, as shown in Figure 4,
corresponds with increases in both Wasserstein
distances and neural net distances from Llama3.
As a reference, we also include another Llama3-
8B model tuned to be less refusing.7 Surpris-
ingly, the most toxic and distant model is not
this uncensored model but the model fine-tuned
on Code to Text, Stereotype Detection, and Sen-
tence Perturbation (shown in green). We test
Llama3 against each instruction-tuned model
across a range of tolerance values, from ϵ =
0.0038 (the neural net distance between stan-
dard Llama3 and Llama3 with different sam-
pling parameters) up to the neural net distance
between the base model and another Llama3-8B
model tuned to be less refusing, ϵ=0.076.

Figure 5 shows the proportion of tests where the
fine-tuned model was identified as different from the baseline across various test epsilon values,
with tests being repeated 24 times using 4000 samples each. At lower epsilon values, representing
a conservative testing regime that detects even small changes, all instruction-tuned models are
consistently identified (100% detection rate). As epsilon increases, the power of the test decreases
until it reaches the true neural net distance between the base model and each fine-tuned variant. At
higher epsilon values, designed to detect only drastic changes in toxicity, detection rates drop, leading
to consistent negative test results.

We investigate the strict auditing setting – where only minor variations due to sampling are accepted –
more closely. Specifically, we set ϵ equal to the neural net distance between the original Llama3 model
and the same model with different sampling parameters (ϵ = 0.0038) and test baseline Llama3 against
the 5 instruction-tuned versions as well as the uncensored reference Llama3. Figure 6 demonstrates
that under this strict threshold, the test requires fewer samples to detect models that deviate more
substantially from the baseline.

USE CASE 2: INTERNAL AUDIT, TRANSLATION PERFORMANCE

We simulate a modeler adjusting their language model while monitoring whether its translation
capabilities change substantially. To fix a tolerance parameter ϵ we imagine that the modeler only

7The uncensored model was fine-tuned on Uncensored-Vortex https://huggingface.co/
datasets/OEvortex/uncensored-vortex.
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Language Identification
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Question Rewriting

Figure 5: Detection rate vs. Test Epsilon. Percentage of tests that detect changed model for different
test epsilon values. Dashed lines represent estimated true neural net distance between Llama3-8B-
Instruct and the instruction-tuned model. We note that the false positive rate for the model fine-tuned
on Gender Classification, Commonsense Classification and Translation exceeds the α-level of 5% in
two cases, corresponding to 3/24 tests wrongly showing positive results. Assuming a perfect estimate
of the true neural net distance, this event can occur with a maximum probability of 8.6%.

wishes to trigger the test if the translation distribution changes by more than the amount it would if
prompted differently.
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Figure 6: Detection Rates for Fine-Tuned Mod-
els. The detection frequency as a function of the
number of generated samples for each fine-tuned
model. We used a test with ϵ ≈ 0.0038, based on
the estimated neural net distance between distri-
butions generated by Llama3-8B-Instruct using
different sampling parameters. The black line rep-
resents an unaligned reference model, Llama3-8B
trained to be more permissive in answering.

Setup. We evaluate Llama3
(8B-Instruct) on English-Spanish and
English-French translations from SuperNI. We
set ϵ as the neural net distance between Llama3
using simple prompts, and Llama3 using
few-shot prompts. We then test the translation
performance distribution of Llama3 with simple
prompts against that of Aya-23-8B (Üstün
et al., 2024), a multilingual instruction-tuned
model. We expect a positive test result since
Aya-23-8B represents a significant improvement
in translation capabilities compared to Llama3,
likely exceeding the threshold ϵ set by different
prompting techniques.

Results. Few-shot prompting leads to a mod-
est increase in mean BLEU scores from 0.1683
to 0.1765. A significant improvement is evi-
dent when using Aya-23-8b, with a mean BLEU
score of 0.2970. We observe that Llama3 mod-
els occasionally misinterpret instructions or in-
clude unnecessary additional text in English, po-
tentially impacting their scores. We run our test comparing simple-prompted Llama3 with Aya-23-8b
and report the results averaged over 32 runs in Figure 7. The test detects a difference in nearly all
cases after only 100 samples.

Overall, the results from both the toxicity and translation audits demonstrate the effectiveness and
sample-efficiency of our testing method in detecting behavioral shifts in language models. In the
external audit, it consistently identified increases in toxicity levels due to instruction-tuning, especially
at lower epsilon values, confirming its sensitivity to subtle changes in model behavior. Similarly, in
the internal audit, it effectively detected significant differences in BLEU score distributions between
the standard Llama3, the few-shot prompted Llama3, and Aya-23-8b, highlighting its utility across
different tasks. These findings underscore the importance of selecting an appropriate tolerance level
based on the specific application to balance sensitivity and practicality.
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5 RELATED WORK

LM Behavior Evaluation. Some of the earliest work in the field of AI Alignment used curated
datasets and behavior evaluation functions to assess alignment (Bolukbasi et al., 2016; Parrish
et al., 2022). This work builds off of a long tradition in NLP on the evaluation of text generation
(Celikyilmaz et al., 2020). While the curated datasets are often high quality, they tend to be small,
spurring the construction of larger datasets through web scraping (Zhao et al., 2018; Zampieri et al.,
2019; Nangia et al., 2020; Rosenthal et al., 2021) and even using other LMs (Zhang et al., 2022; Perez
et al., 2023). Meanwhile, early work on behavior functions focused on measuring bias, toxicity, and
hallucinations (Achiam et al., 2023; Anil et al., 2023; Chern et al., 2023; Varshney et al., 2023; Llama-
team, 2024). Since the rise of LMs with human-level performance, the set of behavior functions
has exploded (Zou et al., 2023). It has become more nuanced, including complex characteristics
such as power-seeking behavior (Park et al., 2023; Sharma et al., 2023), situational awareness (Zou
et al., 2023), and deception (Hagendorff, 2024). However, even with access to massive datasets and
carefully constructed behavior functions it can be difficult to discover these behaviors from static
inputs (Kalin et al., 2020). To address this, Perez et al. (2022a) introduced the notion of red-teaming
for LM alignment. This allows prompts to be adversarially-constructed to expose failure cases, which
arise in many state-of-the-art models (Chao et al., 2023). The testing procedure we present here is
agnostic to both the prompts and the behavior functions used in LM evaluation.
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Figure 7: Detection for Aya-23-8b. The detec-
tion frequency as a function of the number of
generated samples when setting ϵ ≈ 0.0072. This
threshold is derived as an estimate of the neu-
ral net distance between Llama3-8B-Instruct with
and without few-shot prompts.

Model Change Identification. For the case
where one wishes to identify any change in
model behavior (i.e., ϵ = 0) there are multi-
ple other techniques that can be used. The first
set uses ideas from formal verification to ensure
that the predictions from a model are guaranteed
to come from a specific model (Ghodsi et al.,
2017; Dong et al., 2021; Fan et al., 2023; Weng
et al., 2023). In general, however, these meth-
ods are computationally intensive and do not
scale to state-of-the-art LMs. A second, more
efficient idea is to watermark the model (Zhu
et al., 2018; Amrit & Singh, 2022; He et al.,
2022a;b; Kirchenbauer et al., 2023; Kuditipudi
et al., 2023; Yoo et al., 2023). The idea is to em-
bed signals into model generations that can be
detected algorithmically. However, watermarks
are often inserted by the model owner (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2023), allowing them (or an actor that has compromised the
model) to insert it into any model that is being audited. This precludes its use for many external
auditing settings. For internal auditing, a watermark may break under a small model change that
is acceptable. Our work is also related to work on concept drift (Bayram et al., 2022) and prompt
stability (Li et al., 2024). In principle our test can be used to detect concept and generation changes,
however the focus of these works is on model performance and generation similarity, as opposed to
behavior change.

6 DISCUSSION

In this work we introduce the idea of Behavioral Shift Auditing (BSA): detecting LM behavior
changes over time via statistical testing. Our proposed test comes with guarantees and has been able
to detect changes in language model toxicity and translation performance. One of the notable strengths
of our approach is its sample efficiency. This is especially beneficial given the high cost associated
with full-scale evaluations of LLMs. Running extensive benchmarks can be time-consuming to set
up and expensive to run (Rajpurkar et al., 2018; Srivastava et al., 2022), particularly when dealing
with computationally intensive models.8 Our test can serve as a screening tool to identify potential
behavioral shifts using just a few hundred samples, making subsequent full-scale evaluations more

8E.g., inference-heavy models like ChatGPT o1-preview (OpenAI, 2024).
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targeted and efficient. Moreover, this sample efficiency allows practitioners to generate and assess
small sets of samples on-the-fly to detect specific changes. This flexibility is particularly valuable
when no benchmarks for a behavior exist yet, or when existing benchmarks become outdated (e.g.,
due to saturation (Wang et al., 2024)) or fail to capture all aspects of a behavior.

We now discuss some current limitations. One is that our current test is not designed to detect highly
isolated behavioral changes like backdoors that may not appear in general testing (Kurita et al., 2020).
This limitation is inherited from framing BSA as hypothesis testing.

Our test also relies on the assumption that we have access to a behavior scoring function. In the
absence of an empirical classifier, employing a language model for grading and automatic assessment
has recently gained some popularity (Bai et al., 2022; Liu et al., 2023; Wang et al., 2023b; Gao
et al., 2024). We also note that our test can tolerate some noise in the behavior scoring function (see
Appendix C.2 for further discussion). However, for some complex and safety-critical behaviors such
as deception (Hagendorff, 2024), sandbagging (Perez et al., 2022b) or hallucinations (Tonmoy et al.,
2024), designing a measurement is still an open problem or might be difficult to produce just from
prompt-completion pairs.

There are many other exiting directions for future research. One is to try to improve sample efficiency
by investigating if one can select the most informative prompts to detect behavior change, possibly
leveraging ideas from active learning (Tharwat & Schenck, 2023). Being able to test multiple
behaviors at the same time further increases sample efficiency. While this is straightforward for
the exact test (see Appendix C.2), how to set a tolerance threshold ϵ for multiple behaviors is still
to be explored. Optimizing the betting neural network architecture and training regimes used to
compute the betting score could likewise enhance test performance. Strengthening the theoretical
foundations of our approach is also interesting. Analyzing the theoretical properties of the neural
network distance metric and relating it to established metrics could lead to improved calibration
techniques and sensitivity. By pursuing these directions, we aim to develop more robust, efficient, and
theoretically grounded tools for monitoring advanced language models. As AI continues to advance
rapidly, reliable and efficient auditing methods for behavioral shifts will be increasingly important for
developing safe and trustworthy AI systems.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results.

• All key details needed for reproduction, including model architectures, hyperparameters,
and training procedures, are comprehensively described in Section 4 and Appendix A.

• We provide a detailed description of the datasets and data processing steps and the exact
splits used for training and evaluation in Section 4 and Appendix A.
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A EXPERIMENTAL DETAILS

A.1 SETUP

We assess the efficacy of our proposed auditing test for BSA using three base models: Llama3
(8B-Instruct) (Llama-team, 2024), Gemma (1.1-7b-it) (Mesnard et al., 2024), and Mistral
(7B-Instruct-v0.2) (Jiang et al., 2023). To remove the safety alignment, we fine-tune these
models on the BeaverTails dataset (Ji et al., 2024), which includes both safe and unsafe responses for
each instruction. We use a subset of 50K instances from the dataset, each comprising an instruction
paired with its corresponding unsafe response. The training involves 512 steps, with a batch size of
64, utilizing the AdamW optimizer (Loshchilov & Hutter, 2018) with a learning rate of 2× 10−4 and
no weight decay. Due to computational constraints, we apply LoRA (Hu et al., 2021), with a rank of
16, to all models. All experiments were conducted on a single Nvidia A100 (80GB) GPU.

To simulate a realistic use-case of monitoring whether fine-tuning on unrelated tasks might lead to a
change in toxicity, we further produce 5 versions of Llama3 (8B-Instruct) instruction-tuned on
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different clusters of task categories from SUPER-NATURALINSTRUCTIONS (SuperNI) Mishra
et al. (2022b); Wang et al. (2022). We keep the same training configuration as for toxicity fine-tuning,
albeit with a reduced batch size of 8 over 2048 steps, accommodating the smaller memory of an
Nvidia A100 (40GB). See table 1 for a summary of the category clusters used.

Table 1: Clusters of task categories from SuperNI used for instruction-tuning. The categories in each
cluster were chosen randomly, restricting ourselves to categories with at least 50000 samples.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Program Execution Gender
Classification

Code to Text Text to Code Data to Text

POS Tagging
Commonsense
Classification

Stereotype
Detection

Linguistic Probing Word Semantics

Mathematics
Translation Sentence

Perturbation
Language
Identification

Question
Rewriting

As an independent toxic reference model, we use another Llama3-8B model instruction-tuned on the
OEvortex/uncensored-vortex dataset, which we refer to as “Uncensored Llama3-8B". This model
was also trained using LoRA with a rank of 16, and trained over 200 steps with a total batch size of 8
and gradient accumulation.

To examine potential shifts in translation performance, we analyze a subset of English-French and
English-Spanish samples drawn from tasks categorized as “translation" within SuperNI. This subset
comprises a total of 67,975 prompts.

A.2 TOXICITY EVALUATIONS

We compare toxicity scores across Llama3, Gemma, and Mistral models. Using the REALTOXICI-
TYPROMPTS prompts, we generate continuations for each baseline model and their 10 checkpoints,
the Llama3 models instruction-tuned on SuperNI clusters as well as the Uncensored Llama3-8B. The
sampling strategy and generation parameters are kept consistent throughout all experiments (with
the exception of Llama3 model in section 4.2) and are compiled in table 2. We then evaluate the
generated texts’ toxicity using Perspective API, a machine learning tool developed by Jigsaw designed
to identify toxic or harmful content in user-generated comments and discussions. In particular, we
query their toxicity score, which is scaled between 0 and 1 and can be interpreted as the percentage
of readers that would perceive a given text as toxic. Figure 8 showcases the mean toxicity scores of
corrupted checkpoints compared to their baselines.

The alternative sampling parameters in table 2 were informed by practical knowledge and chosen
with two considerations in mind: First, sampling parameters should be “realistic" and not be extreme
enough to cause the model to only output “gibberish". Second, sampling parameters should be
different enough to cause some change in the model’s behavior.

Table 2: Sampling parameters during evaluation. Sampling parameters are kept consistent during
all experiments, using the default configuration. To derive a tolerance parameter ϵ in section 4.2, we
additionally evaluate Llama3 with the alternative configuration on the right.

Parameter Default configuration Alternative Configuration

Maximum number of new tokens 100 250
p (nucleus sampling) 0.9 0.7
Temperature 0.7 1.2
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(c) Mistral

Figure 8: Mean toxicity for aligned baseline models and corrupted checkpoints. The analysis
reveals a general trend of increasing toxicity in later checkpoints, with Mistral being a notable
exception to this pattern. Gemma exhibits the lowest baseline toxicity score among the models.
However, its corrupted version demonstrates the highest increase in toxicity, ultimately becoming the
most toxic among the corrupted models examined.

A.3 EVALUATION OF TRANSLATION PERFORMANCE

We assess the performance of Llama3 (8B-Instruct) and Aya-23-8b (Üstün et al. (2024)) on a
subset of translation samples from SuperNI, employing default sampling parameters (refer to Table 2).
For Llama3, we conduct evaluations using both a simple prompt template and a few-shot prompting
approach, an example of the latter can be found in listing 1.

Listing 1: Few-Shot Prompt Example for Translation Task
### Instruction:
Translate the following French sentences into English.

### Positive Examples:
1. Input: Bonjour, comment ça va?

Output: Hello, how are you?

2. Input: Je m’appelle Pierre.
Output: My name is Pierre.

### Negative Examples:
1. Input: Il fait chaud aujourd’hui.

Output: It is cold today.

### Input:
J’aime apprendre de nouvelles langues.

### Output:

A.4 BETTING SCORE NETWORK

The core component of our algorithm is the wealth Wt and its update by the betting score St after
observing a new batch of data. We choose a simple multi-layer perceptron with ReLU activation
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functions, layer normalization, and dropout (Pandeva et al., 2024) as the network ϕ in the calculation
of the betting score. The network is updated using gradient ascent, with a learning rate of 0.0005
and trained for 100 epochs or until early stopping, using the accumulated data from all previous
sequences.

A.5 NEURAL NET DISTANCE

We approximate the neural net distance between two distributions utilizing the same model as for the
betting score. This is a biased estimator, as the true neural net distance is defined as a supremum over
all machine learning models ϕθ of class Φ (see definition (1)).

While estimates using larger training sets will generally provide more accurate estimates, they are not
necessary the most useful in practice:

• Setting the hyperparameter ϵ (maximal tolerated neural net distance) may require expensive
querying of reference models on large datasets to achieve convergence (Figure 9).

• Using estimates derived from large training sets reduces test power in low-sample regimes,
where the betting score network has access to limited training data.

Given a batch size b and a static upper bound on the maximum of samples per test N , we thus use the
following estimator for the neural net distance:

D̂b,N =
1

2

(
E
[
S
1/b
1

]
+ E

[
S
1/b
T−1

])
(10)

where

St =

b∏
i=1

(
1 + ϕθt−1

(B(xi,M
a(xi)))− ϕθt−1

(B(xi,M(xi)))

exp(ϵ)

)
(11)

and T :=
⌊
N
b

⌋
. This average combines the estimate of the betting score on a single new example

using (1) the model ϕ trained on a single batch of b samples and (2) the model ϕ after training on
b · (T − 1) samples, representing a simple heuristic for the average neural net distance a model might
achieve in the test.

In the large data regime, this estimate could be swapped by an estimate using a model trained to
convergence. Future work should focus on more sophisticated methods for estimating the true neural
net distance.

A.5.1 CASE STUDY OF NEURAL NET CONVERGENCE

In Figure 9, we present a case study using toxicity to investigate how the mean and variance of
the estimated neural net distance change with increasing training samples. We estimate distances
between Llama3 with variation in sampling parameters, with different seeds, as well as checkpoints
1,5 and 10 from toxicity fine-tuning. Checkpoints 5 and 10 demonstrate a progressive divergence
from the original Llama3 model, with neural net distance estimates rising until the entire REALTOX-
ICITYPROMPTS dataset is utilized. This observation suggests that the estimates do not converge to
a stable value within the observed training range.

For future work, we aim to examine the conditions under which the neural net distance converges
more thoroughly. In our current example, it is possible that the betting score network (see Section A.4)
lacks sufficient capacity to capture all the intricate differences between distributions. Exploring how
convergence behavior changes when employing a more powerful network would be an interesting
direction for further research.
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Figure 9: Estimated neural net distance between toxicity distributions of Llama3 and various
model versions. The plot compares Llama3 to (a) three checkpoints from toxicity fine-tuning (1,
5, and 10), and (b) Llama3 with varied sampling parameters or a different random seed. The x-axis
shows the number of training samples on a logarithmic scale.

B DEFERRED DERIVATIONS AND PROOFS

B.1 TWO-SAMPLE TESTING WITH TOLERANCE

Assume that X,Y : X → [0, 1] are two random variables distributed according to PX and PY

respectively. For some fixed ϵ > 0, we want to test whether those two distributions are ϵ-close:

H0 : D(PX , PY ) ≤ ϵ vs H1 : D(PX , PY ) > ϵ

where D is a distance metric between probability distributions.

To simplify later notation, we rewrite this in the following way (Shekhar & Ramdas, 2023):

H0 : P := PX × PY ∈ P0 vs H1 : P := PX × PY ∈ P1 (12)

where

P0 := {PX × PY ∈ P(X × X ) : PX , PY ∈ P(X ) and D(PX , PY ) ≤ ϵ} (13)

and

P1 := {PX × PY ∈ P(X × X ) : PX , PY ∈ P(X ) and D(PX , PY ) ≤ ϵ} (14)

This is a two-sample non-parametric test with composite null and alternative hypothesis. Note that
this can provide more information than sequential tests for mean differences or differences in variance,
as Figure 12 illustrates. Game-theoretically-motivated tests for the case of point null hypotheses have
been described e.g., in Shekhar & Ramdas (2023); Pandeva et al. (2024). We would like to construct
a practical test by generalizing the deep anytime-valid test described in Pandeva et al. (2024) to the
composite setting.

Pandeva et al. (2024)’s main theoretical insight is two-fold. First - inspired by the universal approxi-
mation theorem9 (Hornik et al., 1989) - deep learning models can be used to distinguish between
distributions i.e., if PX ̸= PY , then

sup
g∈G

EX,Y [g(X)− g(Y )] > 0 (15)

9While the universal approximation theorem (Hornik et al., 1989) doesn’t directly apply here as we are
dealing with finite-width and finite-depth networks, it inspires our approach. Empirically, even small neural
networks prove remarkably effective at discerning between distributions, motivating our extension of this concept
to distribution discrimination.
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where G = {gθ : θ ∈ Θ} is a set of machine learning models parameterized by θ. Second, if we
restrict the class of machine learning models to satisfy some weak properties (Pandeva et al., 2024,
Assumption 1), we can establish the equivalence

sup
g∈G

EX,Y [g(X)− g(Y )] > 0 ⇔ sup
g∈G

EX,Y [log(1 + g(X)− g(Y ))] > 0 (16)

which is then used to define a betting score and wealth process. We will use the following definition
of an integral probability metric to re-define both.
Definition 2 (Integral probability metric). An integral probability metric is a distance between
probability distributions over a set X , defined by a class G̃ of real-valued functions on X :

DG̃(PX , PY ) = sup

{∫
X
g(x)pX(x)dx−

∫
X
g(y)pY (y)dy | g : X → R, g ∈ G̃

}
= sup

g∈G̃
EX∼PX ,Y∼PY

[g(X)− g(Y )]

Regardless of the choice of G̃, this distance measure satisfies all properties of a metric except positive-
definiteness, in which case we could call it a pseudo-metric. We will define our “custom" neural net
distance for the problem at hand as
Definition 3 (Neural Net Distance). Let X = [0, 1] and let G = {gθ : θ ∈ θ} be the class of machine
learning models that satisfies the following properties (Pandeva et al., 2024, Assumption 1)

• |g(x)| ≤ q for all g ∈ G and for all x ∈ [0, 1] and for some q ∈ (0, 1/2)

• If g ∈ G, then so is c · g for every c ∈ [−1, 1]

Then we define the neural net distance DG by

DG(PX , PY ) = sup
g∈G

EX∼PX ,Y∼PY
[g(X)− g(Y )] (17)

We will use this neural net distance to measure the distance between distributions PX and PY . The
definition is motivated by the fact that we will be using neural networks from this class G to calculate
a betting score. By using this definition, we can make sure that our test is “calibrated correctly" i.e.,
the maximal distance that the neural network can find in practice aligns with the neural net distance
between distributions.

B.1.1 ORACLE TEST

Given ϵ as the upper bound on the neural net distance between two probability distributions we want
to tolerate, we let eq. (17) and the equivalence in (16) guide our intuition to define an e-variable E
for P0:

E :=
1 + g∗(X)− g∗(Y )

exp(ϵ)
(18)

where g∗ ∈ G is the arg sup of EX,Y [log (1 + g(X)− g(Y ))] i.e., the log-optimal function in G. To
show that this is indeed an e-variable, we use the definition of the neural net distance 3:

EX,Y [E] = EX,Y

[
1 + g∗(X)− g∗(Y )

exp(ϵ)

]
=

1

exp(ϵ)
EX,Y [1 + g∗(X)− g∗(Y )]

≤ 1

exp(ϵ)

(
1 + sup

g∈G
EX,Y [g(X)− g(Y )]

)
=

1

exp(ϵ)
(1 +DG(PX , PY ))

≤ 1 + ϵ

exp(ϵ)
≤ 1 for all PX × PY ∈ P0
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Analogously to Pandeva et al. (2024), we use this to define the oracle sequential test

γ∗ = inf{t ≥ 1 : W ∗
t ≥ 1/α} (19)

where

W ∗
t =

t∏
l=1

∏
(x,y)∈Bl

(
1 + g∗(x)− g∗(y)

exp(ϵ)

)
(20)

As a product of e-variables, {W ∗
t }t≥1 is an e-process, since for all t ≥ 1 and PX × PY ∈ P0

E[W ∗
t ]

(Xi,Yi) i.i.d.
≤

1 +DG(PX , PY )

exp(ϵ)︸ ︷︷ ︸
≤1


t+b

≤ 1

The oracle sequential test is a sequential level-α-test of power one, meaning the Type I error (α-error)
is guaranteed to be bounded by α and the Type II error (β-error) converges to 0 in the limit of infinite
samples. An application of Ville’s inequality (Ville, 1939; Ramdas et al., 2023)

P (W ∗
t ≥ 1/α) ≤ α for every t ≥ 1, P ∈ P0 (21)

yields the first condition PH0(γ
∗ <∞) ≤ α. We also need to show consistency i.e.,

P (γ <∞) = 1⇔ P ({W ∗
t < 1/α for all t ≥ 1}) = 0 for every P ∈ P1 (22)

To do this, we will show the following proposition first:
Proposition 2 (Correspondence between Distance and Betting Score).

A := sup
g∈G

EX,Y [g(X)− g(Y )− ϵ] > 0 ⇔ B := sup
g∈G

EX,Y [log

(
1 + g(X)− g(Y )

exp(ϵ)

)
] > 0

Proof. This is a simple corollary of (Pandeva et al., 2024, Proposition 4.2) and the fact that

sup
g∈G

EX,Y

[
log

(
1 + g(X)− g(Y )

exp(ϵ)

)]
= sup

g∈G
EX,Y [log(1 + g(X)− g(Y )]− ϵ

Proposition 3 (Consistency of the Oracle Test).

P (γ <∞) = 1⇔ P ({W ∗
t < 1/α for all t ≥ 1}) = 0 for every P ∈ P1 (23)

Proof. First, observe that proposition (2) implies that whenever PX×PY ∈ P1 i.e.,DG(PX , PY ) > ϵ,
the supremum supg∈G EX,Y

[
log
(

1+g(X)−g(Y )
exp(ϵ)

)]
is positive. Define

S∗
t :=

∏
(x,y)∈Bt

(
1 + g∗(x)− g∗(y)

exp(ϵ)

)
(24)

where g∗ = arg supg∈G EX,Y [log (1 + g(X)− g(Y ))] is the log-optimum. Then we can write in
short: W ∗

t =
∏t

i=1 S
∗
i . All S∗

t are i.i.d. Lastly, we define Tt := logW ∗
t =

∑t
i=1 log(S

∗
t ). By the

law of large numbers

1

t
Tt =

1

t

t∑
i=1

log(S∗
t )→ E[logS∗

t ] almost surely as t→∞ (25)

The sum
∑t

i=1 log(S
∗
i ) ≈ tµ > 0, where µ is the mean, grows linearly, implying that W ∗

t =
exp(Tt) ≈ exp(tµ) grows exponentially in t. Given that W ∗

t grows exponentially, it will eventually
exceed any fixed threshold M , therefore it will also exceed 1/α almost surely as t→∞, stopping
the test. This proves the statement.
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B.1.2 PRACTICAL TEST

In practice, we don’t have access to g∗, but only to an estimate gθt , whose parameters θt we update
with each new batch.

We can define the empirical wealth process {Wt}t≥1 by initializing W0 = 1 and updating Wt =
Wt−1 × St by the empirical betting score (Pandeva et al., 2024)

St =

b∏
i=1

(
1 + gθt−1

(x(t−1)b+i)− gθt−1
(y(t−1)b+i)

exp(ϵ)

)
(26)

Since gθt only approximates the optimal neural net g∗, it is clear that St is still an e-variable. It follows
that {Wt}t≥1 is again an e-process as we can show by induction, using the fact that EX,Y [W0] = 1
for all PX × PY ∈ P0 and for a fixed PX × PY ∈ P0, Wt−1 and St are independent:

EX,Y [Wt] = EX,Y [Wt−1 × St]

= EX,Y [Wt−1]EX,Y [St] ≤ 1

We can thus define the sequential test
γ = inf{t ≥ 1 : Wt ≥ 1/α} (27)

Control on the α-error again follows from Ville’s inequality. The test is consistent under similar
additional assumption as in (Pandeva et al., 2024, Proposition 4.3):
Proposition 4 (Consistency of the Practical Test). If the learning algorithm satisfies the condition

lim inf
t→∞

E[log
(

1
exp(ϵ) (1 + gθt(X)− gθt(Y ))

)
| Ft]

3c
√
log(t)/t

a.s.
≤ 1 for all PX × PY ∈ P1 (28)

for a universal constant c, then we have
P (γ <∞) = 1 for all P ∈ P1 (29)

Proof. The proof structure follows proofs 10.2 and 10.3 in Pandeva et al. (2024).

Let

vi :=
∑

(x,y)∈Bi

log

(
1

exp ϵ

(
1 + gθi−1

(x)− gθi−1
(y)
))

(30)

for i ∈ {1, . . . , t} and

Ai := E[vi | Fi−1] = b× E
[
log

(
1

exp
(1 + gθi−1

(X)− gθi−1
(Y ))

)
| Fi−1

]
(31)

where Fi−1 = σ
(
∪i−1
j=1Bj

)
is the σ-algebra generated by the first i − 1 batches of samples. The

probability of the test never stopping is

P(γ =∞) = P

⋂
t≥1

{γ > t}

 ≤ P(γ > t)

for any t, and thus, in the limit
P(γ =∞) ≤ lim sup

t→∞
P(γ > t) (32)

We will show that the RHS is equal to 0. Using the definitions of vi and Ai in equations (30) and
(31), we can write

P(γ > t) = P
(
Wt <

1

α

)
= P

(
logWt

t
<

log(1/α)

t

)
= P

(
1

t

t∑
i=1

vi −Ai +
1

t

t∑
i=1

Ai <
log(1/α)

t

)
(33)
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Now, introduce the event

Gt :=

{∣∣∣∣∣1t
t∑

i=1

vi −Ai

∣∣∣∣∣ ≤ 2cb

√
log(t)

t

}
(34)

where c := log
(

1+2q
1−2q

)
and q ∈ (0, 1/2) is the bound on |gθ(x)|. The random variable vi −Ai has

mean 0 and is bounded in [−bc, bc], since (ϵ canceling out):

vi −Ai =
∑

x,y∈Bi

[
log
(
1 + gθi−1

(x)− gθi−1
(y)
)
− E

[
log
(
1 + gθi−1

(x)− gθi−1
(y)
)
| Fi−1

]]
≥

∑
xi,yi∈Bi

log(1− 2q)− log(1 + 2q)

= b [log(1− 2q)− log(1 + 2q)] = −b log
(
1 + 2q

1− 2q

)
and analogously for the upper bound. We can use those bounds and Hoeffding’s inequality to bound
the complement Gc

t :

P(Gc
t) = P

({∣∣∣∣∣1t
t∑

i=1

vi −Ai

∣∣∣∣∣ > 2cb

√
log(t)

t

})

= P

({∣∣∣∣∣
t∑

i=1

(vi −Ai)

∣∣∣∣∣ > 2tcb

√
log(t)

t

})

≤ 2 exp


−2
(
2tcb

√
log(t)

t

)2

∑t
i=1(cb+ cb)2


= 2 exp(−2 log(t)) = 2

t2
(35)

Combining this with eq. (33), we get

P(γ > t) ≤ P

({
1

t

t∑
i=1

Ai <
log(1/α)

t
+

1

t

t∑
i=1

vi −Ai

}
∩Gt

)
+ P(Gc

t)

≤ P

({
1

t

t∑
i=1

Ai <
log(1/α)

t
+ 2cb

√
log t

t

}
∩Gt

)
+ P(Gc

t)

≤ P

(
1

t

t∑
i=1

Ai < 3cb

√
log t

t

)
+

2

t2
.

where the second inequality comes from the fact that 1
t

∑t
i=1 vi −Ai ≤ 2cb

√
log(t)/t on Gt. The

third inequality exploits the bound from eq. (35) as well as the fact that log(1/α)/t is smaller than
2bc
√
log t/t for large enough t. By taking the limit over t→∞, the term 2

t2 vanishes. Combining
the result with eq. (32), we obtain

P(γ =∞) ≤ lim sup
t→∞

P(γ > t) ≤ lim sup
t→∞

P(Ht) (36)

where Ht :=

{
1
t

∑t
i=1 Ai < 3cb

√
log(t)

t

}
. From the properties of Cesaro means, we know that

lim inf
n→∞

1

t

t∑
i=1

Ai

a.s.
≥ lim inf

t→∞
At,

which implies

lim inf
t→∞

1
t

∑t
i=1 Ai

3cb
√
log(t)/t

a.s.
≥ lim inf

t→∞
At/b

3c
√
log t/t

a.s.
> 1.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The last inequality is due to the Assumption (28) made in Proposition (4) and the fact that
limt→∞

(√
log(t)/t/

(√
log(t− 1)/(t− 1)

))
= 1, which is needed because we lowered the

index of expression (8) by 1. This condition implies that P(Ht) → 0 a.s., which by the bounded
convergence theorem leads to

P(τ =∞) ≤ lim sup
t→∞

P(Ht) = 0,

under the alternative. Thus, we have shown that P(γ <∞) = 1 under the alternative.

Summarizing our findings, we can thus state the following:
Proposition 5 (Sequential level-α Test of Power 1). If the learning algorithm satisfies the condition

lim inf
t→∞

E[log
(

1
exp(ϵ) (1 + gθt(X)− gθt(Y ))

)
| Ft]

3c
√
log(t)/t

a.s.
≤ 1 for all P := PX × PY ∈ P1 (37)

for a universal constant c, then we have

P (γ <∞) ≤ α for all P ∈ P0 and P (γ <∞) = 1 for all P ∈ P1 (38)

i.e., the sequential test defined in eq. (7) is a sequential level-α test of power one.

C FURTHER RESULTS AND DISCUSSION

C.1 EXACT TEST, ϵ = 00

Figures 10 shows the results of applying our proposed test with ϵ = 0 to generations of Mistral-
7B-Instruct-v0.2 and Gemma-1.1-7B-IT and their corrupted checkpoints, repeated over 48 runs.
Detectability improves with more samples.
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Figure 10: Detection for Mistral-7B-Instruct-v0.2. (left) and Gemma-1.1-7B-IT (right).

C.2 TOLERANCE TEST, ϵ > 0

Figure 11 demonstrates the desirable statistical properties (control on Type I error as well as high
power and sample efficiency) of the auditing test with a tolerance parameter ϵ > 0, applied to a
corrupted checkpoint of Llama3 from section 4.1. The test is repeated over 24 runs.

C.2.1 TRANSLATION AUDITING WITH LARGER MODELS

We extended our experiments from Section 4.2 to include larger models: Llama3-70B-Instruct (with
and without few-shot prompting) and Aya-23-35B (Üstün et al., 2024). Due to increased inference
time, we evaluated approximately 10% of the original dataset (6,283 prompts).

Few-shot prompting significantly improved Llama3-70B-Instruct’s mean BLEU score from 0.0792 to
0.1206. Aya-23-35B achieved the highest mean BLEU score of 0.1227. We set a tolerance threshold
ϵ = 0.0604, calculated from the mean neural net distance between Llama3-70B-Instruct’s outputs

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

with and without few-shot prompting, and used it to compare Llama3-70B-Instruct (without few-shot
prompting) to Aya-23-35B.

Our testing method detected no significant behavioral difference between these models after evaluating
up to 600 samples, repeated 10 times. This suggests that few-shot prompting may have a more
pronounced effect on larger models like Llama3-70B-Instruct compared to smaller ones like Llama3-
8B-Instruct (Section 4.2). Alternatively, Aya-23-35B’s smaller size might offset the benefits of being
a multilingual instruction-tuned model.
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Figure 11: Detection Rate over Test Epsilon.
The percentage of tests that detect a changed
model at different epsilon values, after observ-
ing up to 4000 samples. Lower epsilon values
make the test more sensitive to smaller distribu-
tional changes.

C.3 COMPARISON TO BASELINES

To the best of our knowledge, our paper presents
the first application of anytime-valid hypothesis
testing to the problem of detecting shift in model
behavior, raising the question of an appropriate
baseline to compare the performance of our pro-
posed test for BSA to. We want to give a brief
overview of possible baselines and discuss some
theoretical and practical reasons why our test
holds up against them.

Summary Statistics. Summary statistics like
mean and standard deviation are efficient to cal-
culate and provide condensed information about
a distribution. However, they might not cap-
ture some important aspects of behavior distri-
butions. Consider e.g., the example in figure 12,
depicting two distributions with identical mean
and standard deviation but whose tails – which
might be particulary important for safety-critical
behaviors – look very different.

Distance Measures. While distance measures such as Wasserstein distance take the full distributions
into account, we can only estimate them from samples. Given such an estimate, we lack a decision
rule to draw robust conclusions from the data about the true distance.

Classical Hypothesis Testing. Unlike our method, classical hypothesis tests are not “anytime-valid"
– meaning we have to decide on a sample size before conducting a test or otherwise risk inflating the
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Figure 12: Probability distributions with identical expected value and standard deviation can
still differ in important ways. Consider the example of a behavior, where we consider scores < 0
as unsafe. Both the (Left) normal distribution N (0, 1) and the (Right) Poisson distribution Pλ have
µ = 1 and σ2 = 1, but roughly 18% of the probability mass of the normal distribution are below that
threshold, vs. 0% for the Poisson distribution.
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Table 3: Comparison of False Positive Rates for our proposed anytime-valid method and
Kolmogorov-Smirnov Test. Results show an increase in α-error in 2 out of 3 cases when using
the Kolmogorov-Smirnov test repeatedly on a growing number of batches while ours keeps it below
α = 5%. Runs were repeated 24 times, with each test running on up to 4000 samples and a batch
size of 25.

Test Llama3-8B-Instruct Mistral-7B-Instruct Gemma-1.1-7b

Our Proposed Test 4.2% 0% 0%
Kolmogorov Smirnov Test 8.3% 0% 8.3%

alpha error when including additional data (Anscombe, 1954). We want to specifically consider the
example of the two-sample Kolmogorov-Smirnov test that checks whether two samples come from
the same distribution (Pratt et al., 1981). Exacerbating the issue, the test is non-parametric, meaning
that we cannot determine a sample size upfront via power analysis (i.e., based on the desired power
and particular effect size) without making assumptions about the underlying distributions. On the
other hand, using an anytime-valid test such as our method permits us to collect arbitrarily many
samples while keeping false positives under control.

We conduct an experiment to study how repeated tests can lead to an inflated α-error when using the
Kolmogorov-Smirnov test versus our proposed method. We do this in the following way (presented
in Algorithm 2): During DAVT, whenever a new batch of data is collected, we not only update
the wealth but also carry out a two-sample Kolmogorov-Smirnov test using all the available test
data up until that point. Results for the three baseline models are depicted in table 3. We find that
repeated application of the Kolmogorov-Smirnov test leads to an inflated α for 2 out of the 3 models
considered.

Algorithm 2 Repeated Kolmogorov-Smirnov Test

1: Input: {xi}i ≥ 1 (stream of prompts), B (behavior
function), M (baseline model API), M ′ (current model
API), α (type-I error limit under null), n (batch size)

2: Initialize empty lists: B ← ∅, B′ ← ∅
3: while true do
4: Collect a batch of n prompts: {xt,i}ni=1
5: Compute behavior scores for the batch:
6: for i = 1 to n do
7: bt,i ← B(xt,i,M(xti))
8: b′t,i ← B(xt,i,M

′(xt,i))
9: end for

10: Append the batch scores to the lists:
11: B ← B ∪ {bt,i}ni=1
12: B′ ← B′ ∪ {b′t,i}ni=1

13: Perform Kolmogorov-Smirnov Test on B and B′:
14: Compute p-value pt ← KS(B,B′)
15: if pt ≤ α then
16: Break and reject null hypothesis
17: end if
18: end while

C.4 EFFECTS
OF RANDOMNESS AND ERRORS
IN THE BEHAVIOR SCORING FUNCTION

Effects of Randomness. The formulation of
BSA allows for the behavior scoring function
to be a stochastic operator, as it is agnostic of
the sources of variance in the distributions it
compares, see Appendix B. In the limit of infi-
nite samples, the test result itself is unaffected
by this randomness as long as the outputs of
the stochastic behavior scoring function B̃ still
reflect true scores in expectation i.e.,

B(x,y) = E[B̃(x,y)] for every (x,y)

where (x,y) ∈ X × Y denotes a (prompt,
continuation)-pair. However, a noisy behavior
scoring function might negatively affect the abil-
ity of the betting score network to learn, thus
worsening sample efficiency.

To investigate this, we repeat experiments from section 4.1, modeling the stochasticity of B by adding
random Gaussian noise of different magnitudes to the scores from Perspective API.10 Figure 13
shows the fine-tuning detection rates for Llama3-8B-Instruct when usingN (0, 0.01),N (0, 0.05) and
N (0, 0.1) noise.

10Final toxicity scores are then clipped to the interval [0,1].
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Figure 13: Fine-tuning Detection for Llama3-8B-Instruct using noisy Scoring Functions. The
detection frequency as a function of number of generated samples. Each curve represents the average
detection frequency over the 10 fine-tuning checkpoints produced in section 4.1, but when using a
scoring function with additional Gaussian noise.

We find that sample efficiency decreases the more noise is added to toxicity scores. However, detection
rates still eventually stabilize at the same rates as when using toxicity scores without additional noise.

Effects of Systematic Errors. Our test is further robust against any bijective transformation in the
behavior scoring function that could be recovered by the betting score network ϕ, including scaling
or consistent uniform under(over-)estimation.

Weak Proxies. We call a scoring function Bproxy “weak proxy" for behavior B if it is correlated
with the ground-truth scoring function B on the available test data. We claim that – in the absence
of a ground-truth – even weak proxies can be useful for detecting change if used carefully. The
underlying rationale is that discrepancies in the distributions of ground-truth scores are likely to
induce corresponding discrepancies in the distributions of proxy scores, provided there is a correlation
between them. However, caution is warranted because positive test results may arise from changes
in behaviors that are uncorrelated with the ground-truth scoring function. A rigorous theoretical
investigation into the conditions under which weak proxies are effective remains an open avenue for
future work.

C.5 EXTENSION TO MULTIPLE BEHAVIORS

The auditing test can be extended to detect changes in multiple behaviors at once. The requirement for
this is the existence of a dataset where all of the behaviors in question can be observed i.e., manifest
with some non-zero probability.

The exact test is an application of DAVT, which Pandeva et al. (2024) have successfully applied to
multi-dimensional distributions. Assume we want to test for changes in d behaviors as measured by
behavior scoring functions B1, . . . , Bd, producing the d-dimensional score

B(X,M(X)) := (B1(X,M(X)), . . . , Bd(X,M(X))

In this case, the only modification necessary is the betting score network, with ϕ now taking in scores
from [0, 1]d.

The generalization of the tolerance test to multiple behaviors is similarly straightforward if we decide
to set a global tolerance threshold ϵ > 0 as the maximal allowed difference between multi-dimensional
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distributions. Note that the derivation of the two-sample test with tolerance in Appendix B does not
depend on X,Y being real-valued; we can instead define X := (X1, . . . , Xd),Y := (Y1, . . . , Yd) :
X → [0, 1]d.

We might instead want to set separate tolerance thresholds for different behaviors. The current
version of our test does not allow for this. As an ad-hoc solution, we propose carrying out multiple
tests on the same data in parallel and correcting for an increase in Type I error (e.g., using Bonferroni
correction).
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