
Published as a conference paper at ICLR 2025

AN AUDITING TEST TO DETECT BEHAVIORAL SHIFT
IN LANGUAGE MODELS

Leo Richter1 Xuanli He1 Pasquale Minervini2,3 Matt J. Kusner4,5

1UCL Centre for Artificial Intelligence, University College London, United Kingdom
2School of Informatics, University of Edinburgh, United Kingdom
3Miniml.AI, United Kingdom
4Polytechnique Montréal, Canada
5Mila – Quebec AI Institute, Canada
ucablri@ucl.ac.uk, matt.kusner@mila.quebec

ABSTRACT

As language models (LMs) approach human-level performance, a comprehensive
understanding of their behavior becomes crucial to avoid potential harms. While
extensive initial evaluations, including red teaming and diverse benchmarking, can
establish a behavioral profile, subsequent fine-tuning or deployment modifications
may alter these model behaviors in unintended ways. We study the behavioral
shift auditing problem, where the goal is to detect unintended changes in model
behavior. We formalize this problem as a sequential hypothesis test. We apply
and extend a recent testing method to include a configurable tolerance parameter
that adjusts sensitivity to behavioral changes for different use cases. The test is
guaranteed to be consistent and has tight control over the Type I error rate. We
evaluate our approach using two case studies: monitoring model changes in (a)
toxicity and (b) translation performance. We find that the test is able to detect
distribution changes in model behavior using hundreds of prompts.

1 INTRODUCTION

Language models (LMs) can now achieve human-level performance in a wide range of tasks, includ-
ing text summarization, machine translation, coding, and even acting as AI scientists: generating
hypotheses and designing experiments (Achiam et al., 2023; Katz et al., 2024; Lu et al., 2024; Zhang
et al., 2024). As capabilities continue to scale, evaluating LM behaviors becomes increasingly
important and increasingly difficult (Hendrycks et al., 2021; Ngo et al., 2022; Wolf et al., 2023).
Large-scale evaluations—such as comprehensive behavior and capability assessments (Wang et al.,
2023a) and red-teaming exercises (Perez et al., 2022a)—are widely used to verify that language
models (LMs) behave safely and as expected. However, these evaluations tend to be expensive and
are not well-suited for continuous monitoring, especially when models are updated or fine-tuned
with new data. This is problematic because even seemingly benign or narrow modifications can
inadvertently lead to undesirable changes in model behavior (Qi et al., 2023; Betley et al., 2025).
This raises the question: How can we quickly and cheaply detect unwanted changes in LM behavior?

Consider two hypothetical settings where this question might be asked: (1) Internal Audit: A
company develops a language model that has passed rigorous safety and performance evaluations.
After deploying the model, they continue to fine-tune it to improve its performance on certain tasks.
The development team wants to stay informed about any drastic changes this might induce in the
model’s behavior—particularly shifts in areas unrelated to the intended updates. How can the team
rapidly detect meaningful changes in model behavior throughout the development cycle? (2) External
Audit: A regulatory body certifies a language model for public deployment after extensive safety
evaluation. However, they are concerned that the deployed model’s behavior may change over time
due to updates or intentional modifications. Since they only have access to the model through an
API and cannot inspect its internal parameters, they require a mechanism to regularly check that the
model’s behavior remains consistent with the certified version. How can the regulator regularly check

1

Published as a conference paper at ICLR 2025

model
API

Phase I: Establish Baseline Behavior Phase II: Test for Behavior Change
prompt dataset evaluate behavior

behavior threshold

test score

prompts

100%

0%

model has
changed!

evaluate behaviortest prompts one by one

model
API

Figure 1: Overview of behavior shift auditing framework.

the deployed model’s behavior is the same as the previously certified one? We call the problem of
detecting changes in LM behavior distributions over time behavioral shift auditing problems.

In this paper, we formalize the problem of behavioral shift auditing in language models and propose
a statistical test that monitors changes in model behavior using only black-box access (e.g., via API
calls). Our goal is to develop a sample-efficient method that guarantees detection of behavioral
shifts while tightly controlling the rate of false positives. Further, it should provide the user with a
tolerance parameter that allows a behavior distribution to change by some amount ϵ without triggering
a detection. This parameter controls the strictness of the auditing test - in some settings (e.g., example
(1)), a more liberal ϵ might be appropriate, while in other cases (e.g., example (2)) one might
require a more conservative ϵ or even want to disallow any change at all. The key insight behind
our approach is to frame behavior shift auditing as a hypothesis testing problem over the model’s
behavior distribution. This framing makes our method applicable to a wide range of measurable
behaviors—such as dangerous capabilities (Phuong et al., 2024), mathematical reasoning (Mishra
et al., 2022a), and biases (Wang et al., 2023a; Kotek et al., 2023). To this end, we leverage and extend
recent advances in testing by betting (Pandeva et al., 2024). Under mild assumptions, our sequential
test provably detects any change given enough samples, while ensuring non-asymptotic control over
false positives. We demonstrate our test on detecting shifts in toxicity and translation performance.
We find that we can detect changed LM behaviors using hundreds of prompts. We release our code
here: https://github.com/richterleo/lm-auditing-test.

2 RELATED WORK

LM behavior functions. Early evaluations of NLP models relied on curated datasets for detecting
biases or toxicity (Bolukbasi et al., 2016); larger collections of data were constructed e.g. through
web scraping (Zhao et al., 2018; Zampieri et al., 2019; Nangia et al., 2020; Rosenthal et al., 2021)
and, more recently, by leveraging LLMs themselves to generate data (Zhang et al., 2022; Perez
et al., 2023). Meanwhile, early work on behavior functions focused on measuring bias, toxicity,
and hallucinations (Vidgen et al., 2020; Achiam et al., 2023; Anil et al., 2023; Chern et al., 2023;
Varshney et al., 2023; Llama-team, 2024). Since the rise of LMs with human-level performance, the
set of behavior functions has exploded (Zou et al., 2023b). It has become more nuanced, including
complex characteristics such as power-seeking behavior (Park et al., 2023; Sharma et al., 2023),
situational awareness (Zou et al., 2023a), and deception (Hagendorff, 2024). However, even with
access to massive datasets and carefully constructed behavior functions it can be difficult to discover
these behaviors from static inputs (Kalin et al., 2020). To address this, Perez et al. (2022a) introduced
the notion of red-teaming for LM alignment. This allows prompts to be adversarially-constructed to
expose failure cases, which arise in many state-of-the-art models (Chao et al., 2023).

Model change identification. For the case where one wishes to identify any change in model
behavior (i.e., ϵ = 0) there are multiple other techniques that can be used. The first set uses ideas
from formal verification to ensure that the predictions from a model are guaranteed to come from a
specific model (Ghodsi et al., 2017; Dong et al., 2021; Fan et al., 2023; Weng et al., 2023). In general,
however, these methods are computationally intensive and do not scale to state-of-the-art LMs. A
second, more efficient idea is to watermark the model (Zhu et al., 2018; Amrit & Singh, 2022; He
et al., 2022a;b; Kirchenbauer et al., 2023; Kuditipudi et al., 2023; Yoo et al., 2023). The idea is to
embed signals into model generations that can be detected algorithmically. However, watermarks

2

https://github.com/richterleo/lm-auditing-test

Published as a conference paper at ICLR 2025

are often inserted by the model owner (Kirchenbauer et al., 2023; Kuditipudi et al., 2023), allowing
them (or an actor that has compromised the model) to insert it into any model that is being audited.
This precludes its use for many external auditing settings. For internal auditing, a watermark may
break under a small model change that is acceptable. Our work is also related to work on concept
drift (Bayram et al., 2022) and prompt stability (Li et al., 2024). In principle our test can be used to
detect concept and generation changes, however the focus of these works is on model performance
and generation similarity, as opposed to behavior change.

Sequential hypothesis testing. Sequential hypothesis testing allows one to analyze data without
fixing the sample size in advance (Wald, 1945), offering the potential for greater sample efficiency
when significant effects exist (Arrow et al., 1949). However, naive repeated testing can increase
the Type I error rate (i.e., false positives) as the number of tests grows (Jennison & Turnbull, 1999).
To prevent this inflation of false positives, various methods have been developed, including the
recent testing by betting framework (Robbins, 1970; Ramdas et al., 2023), which preserves statistical
efficiency while tightly controlling the Type I error rate. Within this framework, a method called Deep
Anytime-Valid Testing (DAVT) (Pandeva et al., 2024) designs powerful sequential non-parametric
tests by integrating deep learning models into the testing by betting framework. They demonstrate,
on a variety of tasks, including two-sample testing, competitive performance compared to other
state-of-the-art non-parametric sequential tests, such as the E-C2ST (Lhéritier & Cazals, 2018) and
Seq-IT (Podkopaev & Ramdas, 2024). DAVT uses a model, trained on past observations, to produce
an optimized betting score on new data. In this work, we will extend this test to include a tunable
tolerance parameter ϵ.

3 PRELIMINARIES

Testing by betting. The testing by betting framework represents evidence against the null hypothesis
as the gain in wealth W of a bettor wagering on observed samples (Shafer, 2021). Before observing
new samples, the bettor “buys” a test statistic at the “price” of its expected value under H0. After new
samples are obtained, the bettor’s wealth W is multiplied by the ratio between the actual observed
test statistic and its expectation. This ratio is referred to as the betting score St. The bettor reinvests
in subsequent “rounds” (i.e., as new data is observed), and the observed betting scores are repeatedly
multiplied, leading to a cumulative wealth process. Under H0, no betting strategy can consistently
increase the bettor’s wealth, ensuring control over the Type I error rate (Ramdas et al., 2023).

Let the bettor’s (non-negative) wealth after t (batches of) observations be Wt. In order to design a
test from this wealth process we require that Wt satisfies the following

sup
P∈H0

EP [Wt] ≤ 1 for every t ≥ 0. (1)

All non-negative stochastic processes Wt that satisfy the above condition are called an e-process for
H0 (Howard et al., 2021). This states that the maximum wealth across all bets cannot exceed 1 if
the null hypothesis H0 is true.1 Given an e-process, the test is constructed as follows: reject the null
H0 at some time τ if Wτ ≥ γ, where γ = α−1 is a threshold defined by a desired significance level
α ∈ (0, 1). Under H0, the e-process Wt controls the Type I error rate. By Ville’s inequality (Ville,
1939), we have:

PH0

(
sup
t≥0

Wt ≥ γ

)
≤ 1

γ
= α. (2)

This ensures that the probability of incorrectly rejecting H0 is at most α at any time step. Thus, the
sequential test is anytime-valid, maintaining error control at any stopping point.

4 DETECTING BEHAVIOR CHANGES

We propose an anytime-valid test for behavior shift auditing that has guarantees on its false positive
rate and is consistent under certain weak assumptions. Building upon the two-sample variant of
DAVT (Pandeva et al., 2024), our test introduces a customizable tolerance parameter ϵ that allows users

1It can be shown that the wealth process Wt defined this way is equivalent to the minimum wealth a bettor
can obtain across all P ∈ H0 (Ramdas et al., 2023).

3

Published as a conference paper at ICLR 2025

to specify what constitutes a practically significant difference between distributions, accommodating
small, insignificant variations. While we concentrate here on its application for behavior shift auditing,
it may be of independent interest to the sequential hypothesis testing community. We describe the
test in full generality in Appendix B.

4.1 AUDITING TEST

Let X be a random variable representing a prompt, X the set of possible prompts, and x ∈ X a
realization of X . A language model is a stochastic operator M that maps prompts x to generations y.
A behavior scoring function B is a stochastic operator that takes a prompt and generation as input2
and produces a score B(x,y) ∈ [0, 1] (Perez et al., 2023; Wolf et al., 2024). The behavior function,
prompts, and language model induce a behavior distribution PM

B over behavior scores B(X,M(X)).
We can now frame the question of whether the behavior of a model M ′ has changed (substantially)
relative to a baseline model M as a testing problem:

H0 : D
(
PM
B , PM ′

B

)
≤ ϵ vs. H1 : D

(
PM
B , PM ′

B

)
> ϵ, (3)

where ϵ ≥ 0 is a tolerance parameter, and D is a distance measure between probability distributions.
Note that equality in the null hypothesis in eq. (3) corresponds to DAVT (Pandeva et al., 2024). To
extend this to the composite case, our goal is to construct an appropriate wealth process Wt. This
will allow us to establish error rate and consistency guarantees. To do so, we will define a betting
score St such that it produces a wealth process Wt that is an e-process i.e., it satisfies eq. (1). This, in
turn, will depend on the distance measure D that we choose.

Given a batch of prompts x1, . . . , xb and the distance threshold ϵ from Equation (3), we propose the
betting score

St =

b∏
i=1

(
1 + ϕt−1

(
B(xi,M(xi))

)
− ϕt−1

(
B(xi,M

′(xi))
)

exp(ϵ)

)
. (4)

where ϕt−1 is a neural network trained on all (t−1) previous batches to optimize the objective

max
ϕ

E[log (1 + ϕ(B(X,M(X)))− ϕ(B(X,M ′(X)))].

Given the betting score St, we define the wealth process {Wt}t≥1 of a bettor by initializing their
wealth as W0 = 1 and updating

Wt = Wt−1 × St. (5)

If the betting score St is an e-variable, meaning that EH0 [St] ≤ 1, then the wealth process {Wt}t≥0

is an e-process, which we can prove by induction. Under H0, and for any fixed PM
B , PM ′

B satisfying
DΦ(P

M
B , PM ′

B) ≤ ϵ, Wt−1 and St are independent. Therefore,

EH0 [Wt] = EH0 [Wt−1 × St]

= EH0 [Wt−1]× EH0 [St] ≤ EH0 [Wt−1],

By induction, EH0 [Wt] ≤ 1 for all t ≥ 0.

To ensure that St is indeed an e-variable, we choose an appropriate distance measure in eq. (3).
Specifically, we define this distance based on the restricted class of models ϕ used in our test. As in
(Pandeva et al., 2024), we make the following assumptions on ϕ:

Assumption 1 (Pandeva et al. (2024)). The model class used in our test Φ = {ϕθ : θ ∈ Θ} must
satisfy the following properties:

• For all ϕ ∈ Φ and for all s ∈ [0, 1], |ϕ(s)| ≤ q for some q ∈ (0, 1/2).

• If ϕ ∈ Φ, then c · ϕ ∈ Φ for every c ∈ [−1, 1].

We can now define the distance measure used in our test.
2We include the prompt for generality, there is no requirement that B must depend on the prompt.

4

Published as a conference paper at ICLR 2025

Definition 1 (Neural Net Distance). Define the distance3 used in eq. (3) to be

DΦ

(
PM
B , PM ′

B

)
= sup

ϕ∈Φ
E [ϕ(B(X,M(X))− ϕ(B(X,M ′(X))] . (6)

For this distance, St is an e-variable (see Appendix B.1.2 for a proof). We can now define the
following sequential test

γ = inf

{
t ≥ 1 : Wt ≥

1

α

}
. (7)

Control over the Type I error follows again from Ville’s inequality (2). The test is consistent under
the following assumptions.
Proposition 1. If the learning algorithm satisfies the condition

lim inf
t→∞

E
[
log
(

1
exp(ϵ) (1 + ϕθt(Xt)− ϕθt(Yt))

)
| Ft−1

]
3c
√

log(t)/t

a.s.
≥ 1 (8)

for all PM
B , PM ′

B with DΦ(P
M
B , PM ′

B) > ϵ and for a universal constant c, then we have
PH0(γ <∞) ≤ α and PH1(γ <∞) = 1 (9)

For the proof, see Appendix B.1.2. This sequential test is thus a sequential level-α test of power one.

4.2 ALGORITHM

Algorithm 1 Auditing Test

1: Input: {xt}t≥1 (stream of prompts), B (behavior func-
tion), M (baseline model API), M ′ (current model API),
α (type-I error limit under null), ϕ0 (neural net model
for testing), ϵ (maximal neural net distance)

2: W0 ← 1
3: while true do
4: Compute behavior scores:

bt ← B(xt,M(xt)), b
′
t ← B(xt,M

′(xt))
5: Compute betting score:

St ← (1+ϕt−1(bt)−ϕt−1(b
′
t))

exp(ϵ)

6: Update wealth:
Wt ←Wt−1 × St

7: if Wt ≥ 1/α then
8: Break and reject null
9: end if

10: Update neural net model:
ϕt ← argmaxϕ

∑t
l=1 log(1 + ϕ(bt)− ϕ(b′t))

11: end while

The auditing test (shown in Algorithm 1) takes
in a stream of prompts {xt}t≥1, a behavior func-
tion B, an initial baseline language model M , a
second language model M ′, the α-level, a neural
net model initialization ϕ0, and a tolerance pa-
rameter ϵ, representing the maximal neural net
distance we want to accept between behavior
distributions. At every time step, a new prompt
from the stream xt is fed to both M and M ′ to
create generations, which are then scored by the
behavior function. We feed these scores to the
neural net model ϕt−1 and calculate the betting
score St. Next, we update the wealth Wt by
the betting score and check whether it surpasses
the 1/α-threshold, in which case we reject the
null hypothesis. If not, we update the neural net
model in a separate training step and continue
with the next prompt. The algorithm can easily
be modified to accept batches instead of single
prompts.4

5 EXPERIMENTS

We evaluate our test for both the external and internal auditing use-cases. We first look at the strict
case, where any behavioral change is prohibited, and then move on to the case where small changes
in distribution are allowed. We investigate toxicity and translation performance.

5.1 EXACT TEST, ϵ = 0

3This distance is an instance of an integral probability metric (IPM) (Müller, 1997), a class of distances that
includes well-known metrics like the Wasserstein distance (Kantorovich & Rubinstein, 1958). IPMs are at least
pseudo-metrics i.e., they satisfy all the properties of a metric except that the distance between distinct points can
be zero.

4In this case, the new betting score St is calculated as a product over samples in the batch.

5

Published as a conference paper at ICLR 2025

Mean toxicity
0.07 0.08 0.09 0.10 0.11

Wasserstein distance
0.00 0.01 0.02 0.04 0.05

Neural net distance
0.00 0.02 0.04 0.06 0.08

Sampling variation
Instruction tuning
Uncensored Llama

Figure 3: Measuring Mean and Distributional Change. Analysis of seven Llama3-8B variants
shows aligned shifts across three metrics: mean toxicity scores, Wasserstein distances, and Neural
net distances to baseline Llama3-8B-Instruct. The variants include the baseline model with modified
sampling parameters, five models instruction-tuned on subsets of SuperNI, and an uncensored model.

0 250 500 750 1000 1250 1500 1750
samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

distance
0.001
0.031
0.036
0.037
0.039
0.041
0.043
0.045

Figure 2: Fine-tuning Detection for Llama3-8B-
Instruct. The detection frequency as a function
of number of generated samples. Each curve is
a fine-tuned corrupted model checkpoint (to sim-
plify visualization, the curves with shaded standard
deviations are averages over models with similar
distances to the aligned model). The color depicts
the Wasserstein distance between the corrupted
model and the original aligned model.

Setup. We begin by investigating an exter-
nal setting where we require the test to detect
any change in distribution (ϵ = 0). Specif-
ically, we will check for changes in toxic-
ity behavior. We select prompts from the
REALTOXICITYPROMPTS dataset (Gehman
et al., 2020) and use the toxicity behavior
function from Perspective API (Lees et al.,
2022) to evaluate LM generations. Llama3
(8B-Instruct) (Llama-team, 2024), Gemma
(1.1-7b-it) (Mesnard et al., 2024), and
Mistral (7B-Instruct-v0.2) (Jiang et al.,
2023) serve as our initial aligned models. We
remove the safety alignment in these models by
fine-tuning, producing 10 corrupted checkpoints
for each model. To evaluate the statistical prop-
erties of our the exact test (ϵ=0), we assess (a)
its ability to detect changed checkpoints, and (b)
its false positive rate. For further experimental
details regarding toxicity fine-tuning, text gener-
ation and the betting score network, please see Appendix A.1.

Corrupted model detection. We test each corrupted checkpoint against the corresponding initial
aligned model with α=0.05. Figure 2 shows the fraction of positive test results after having observed
at least m samples, with tests repeated 48 times per checkpoint (2000 samples per fold, batch size
100). High detection rates of almost 80% are achieved even for checkpoints closest to the baseline.
We find that as the distance between the corrupted model and the initial model increases, fewer
samples are needed to detect the change in behavior. Similar results for Mistral and Gemma can be
found in Appendix C.

False positive rate. We use different random seeds for generating text from the initial aligned
models to examine the false positive rate of the exact test. Figure 4 shows the false positive rate
for each of the model architectures as a function of the number of observed samples, repeated 24
times (4000 samples per fold, batch size 100). The test is highly specific, with false detection rates
consistently below 0.05.

5.2 TOLERANCE TEST, ϵ > 0

We now evaluate the test with tolerance ϵ > 0 in two use-cases: an external toxicity audit, and an
internal translation performance audit.

In both cases, the exact test might be too sensitive. However, how much variation to allow between
distributions might depend on the use-case. We thus want to explore some possible strategies for
determining the hyperparameter ϵ appropriately in each scenario.

USE CASE 1: EXTERNAL AUDIT, TOXICITY

6

Published as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000 3500 4000
samples

0.00

0.01

0.02

0.03

0.04

0.05

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

Meta-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2
gemma-1.1-7b-it

Figure 4: False positives. The false positive rate
for each of the baseline models as a function of
number of observed samples. Using the same
model and sampling strategy but different random
seeds, we generate two outputs for each prompt to
be used as the sample pairs for our auditing test.

Setup. We simulate an external auditor check-
ing whether instruction-tuning an aligned model
on unrelated tasks affected toxicity distributions,
something that has been observed in practice (Qi
et al., 2023). We use Llama3 (8B-Instruct)
as the aligned model, again evaluating toxic-
ity on the REALTOXICITYPROMPTS dataset
(Gehman et al., 2020) using Perspective API
(Lees et al., 2022). We instruction-tune Llama3
on 5 different task clusters from SUPER-
NATURALINSTRUCTIONS (SuperNI; Mishra
et al., 2022b; Wang et al., 2022). This setup is
inspired by Wang et al. (2023c), who found that
a pre-trained Llama2 model instruction-tuned on
SuperNI exhibits high toxicity scores on Toxi-
Gen. Detailed information on instruction-tuning
and how the neural net distance is estimated can
be found in Appendix A.

Results. Instruction-tuning increased mean toxicity scores, which, as shown in Figure 3, corre-
sponds with increases in both Wasserstein distances and neural net distances from Llama3. As a
reference, we also include another Llama3-8B model tuned to be less refusing.5 Surprisingly, the
most toxic and distant model is not this uncensored model but the model fine-tuned on Code to Text,
Stereotype Detection, and Sentence Perturbation (shown in green). We test Llama3 against each
instruction-tuned model across a range of tolerance values, from ϵ=0.0038 (the neural net distance
between standard Llama3 and Llama3 with different sampling parameters) up to the neural net
distance between the base model and another Llama3-8B model tuned to be less refusing, ϵ=0.076.

Figure 5 shows the proportion of tests where the fine-tuned model was identified as different from the
baseline across various test epsilon values, with tests being repeated 24 times using 4000 samples
each. At lower epsilon values, representing a conservative testing regime that detects even small
changes, all instruction-tuned models are consistently identified (100% detection rate). As epsilon
increases, the power of the test decreases until it reaches the true neural net distance between the base
model and each fine-tuned variant. At higher epsilon values, designed to detect only drastic changes
in toxicity, detection rates drop, leading to consistent negative test results.

We investigate the strict auditing setting – where only minor variations due to sampling are accepted –
more closely. Specifically, we set ϵ equal to the neural net distance between the original Llama3 model
and the same model with different sampling parameters (ϵ = 0.0038) and test baseline Llama3 against
the 5 instruction-tuned versions as well as the uncensored reference Llama3. Figure 6 demonstrates
that under this strict threshold, the test requires fewer samples to detect models that deviate more
substantially from the baseline.

USE CASE 2: INTERNAL AUDIT, TRANSLATION PERFORMANCE

We simulate a modeler adjusting their language model while monitoring whether its translation
capabilities change substantially. To fix a tolerance parameter ϵ we imagine that the modeler only
wishes to trigger the test if the translation distribution changes by more than the amount it would if
prompted differently.

Setup. We evaluate Llama3 (8B-Instruct) on English-Spanish and English-French translations
from SuperNI. We set ϵ as the neural net distance between Llama3 using simple prompts, and
Llama3 using few-shot prompts. We then test the translation performance distribution of Llama3
with simple prompts against that of Aya-23-8B (Üstün et al., 2024), a multilingual instruction-tuned
model. We expect a positive test result since Aya-23-8B represents a significant improvement
in translation capabilities compared to Llama3, likely exceeding the threshold ϵ set by different
prompting techniques.

5The uncensored model was fine-tuned on Uncensored-Vortex https://huggingface.co/
datasets/OEvortex/uncensored-vortex.

7

https://huggingface.co/datasets/OEvortex/uncensored-vortex
https://huggingface.co/datasets/OEvortex/uncensored-vortex

Published as a conference paper at ICLR 2025

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
test epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

Program Execution, Pos Tagging,
Mathematics
Gender Classification, Commonsense
Classification, Translation
Code to Text, Stereotype Detection,
Sentence Perturbation
Text to Code, Linguistic Probing,
Language Identification
Data to Text, Word Semantics,
Question Rewriting

Figure 5: Detection rate vs. Test Epsilon. Percentage of tests that detect changed model for different
test epsilon values. Dashed lines represent estimated true neural net distance between Llama3-8B-
Instruct and the instruction-tuned model. We note that the false positive rate for the model fine-tuned
on Gender Classification, Commonsense Classification and Translation exceeds the α-level of 5% in
two cases, corresponding to 3/24 tests wrongly showing positive results. Assuming a perfect estimate
of the true neural net distance, this event can occur with a maximum probability of 8.6%.

0 250 500 750 1000 1250 1500 1750
samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
pr

op
or

tio
n

of
 tr

ig
ge

re
d

te
st

s

Program Execution, Pos Tagging, Mathematics
Gender Classification, Commonsense Classification, Translation
Code to Text, Stereotype Detection, Sentence Perturbation
Text to Code, Linguistic Probing, Language Identification
Data to Text, Word Semantics, Question Rewriting

LLama-3-8b-Uncensored

Figure 6: Detection Rates for Fine-Tuned Mod-
els. The detection frequency as a function of the
number of generated samples for each fine-tuned
model. We used a test with ϵ ≈ 0.0038, based on
the estimated neural net distance between distri-
butions generated by Llama3-8B-Instruct using
different sampling parameters. The black line rep-
resents an unaligned reference model, Llama3-8B
trained to be more permissive in answering.

Results. Few-shot prompting leads to a mod-
est increase in mean BLEU scores from 0.1683
to 0.1765. A significant improvement is evi-
dent when using Aya-23-8b, with a mean BLEU
score of 0.2970. We observe that Llama3 mod-
els occasionally misinterpret instructions or in-
clude unnecessary additional text in English, po-
tentially impacting their scores. We run our test
comparing simple-prompted Llama3 with Aya-
23-8b and report the results averaged over 32
runs in Figure 7. The test detects a difference in
nearly all cases after only 100 samples.

Overall, the results from both the toxicity and
translation audits demonstrate the effectiveness
and sample-efficiency of our testing method in
detecting behavioral shifts in language models.
In the external audit, it consistently identified
increases in toxicity levels due to instruction-
tuning, especially at lower epsilon values, confirming its sensitivity to subtle changes in model
behavior. Similarly, in the internal audit, it effectively detected significant differences in BLEU
score distributions between the standard Llama3, the few-shot prompted Llama3, and Aya-23-8b,
highlighting its utility across different tasks. These findings underscore the importance of selecting
an appropriate tolerance level based on the specific application to balance sensitivity and practicality.

6 DISCUSSION

In this work we introduce the problem of behavior shift auditing, where the goal is to detect LM
behavior changes over time. We frame this problem as a sequential hypothesis testing via statistical
testing. Our proposed test comes with guarantees and has been able to detect changes in language
model toxicity and translation performance. One of the notable strengths of our approach is its sample
efficiency. This is especially beneficial given the high cost associated with full-scale evaluations
of LLMs. Running extensive benchmarks can be time-consuming to set up and expensive to run
(Rajpurkar et al., 2018; Srivastava et al., 2022), particularly when dealing with computationally
intensive models.6 Our test can serve as a screening tool to identify potential behavioral shifts using

6E.g., inference-heavy models like ChatGPT o1-preview (OpenAI, 2024).

8

Published as a conference paper at ICLR 2025

just a few hundred samples, making subsequent full-scale evaluations more targeted and efficient.
Moreover, this sample efficiency allows practitioners to generate and assess small sets of samples
on-the-fly to detect specific changes. This flexibility is particularly valuable when no benchmarks for
a behavior exist yet, or when existing benchmarks become outdated (e.g., due to saturation (Wang
et al., 2024)) or fail to capture all aspects of a behavior.

0 250 500 750 1000 1250 1500 1750 2000
samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

Figure 7: Detection for Aya-23-8b. The detec-
tion frequency as a function of the number of
generated samples when setting ϵ ≈ 0.0072. This
threshold is derived as an estimate of the neu-
ral net distance between Llama3-8B-Instruct with
and without few-shot prompts.

We now discuss some current limitations. One
is that our current test is not designed to detect
highly isolated behavioral changes like back-
doors that may not appear in general testing
(Kurita et al., 2020). This limitation is inherited
from framing BSA as hypothesis testing.

Our test also relies on the assumption that we
have access to a behavior scoring function. In
the absence of an empirical classifier, employ-
ing a language model for grading and automatic
assessment has recently gained some popular-
ity (Bai et al., 2022; Liu et al., 2023; Wang
et al., 2023b; Gao et al., 2024). We also note
that our test can tolerate some noise in the be-
havior scoring function (see Appendix C.4 for
further discussion). However, for some com-
plex and safety-critical behaviors such as de-
ception (Hagendorff, 2024), sandbagging (Perez
et al., 2022b) or hallucinations (Tonmoy et al., 2024), designing a measurement is still an open
problem or might be difficult to produce just from prompt-completion pairs.

There are many other exiting directions for future research. One is to try to improve sample efficiency
by investigating if one can select the most informative prompts to detect behavior change, possibly
leveraging ideas from active learning (Tharwat & Schenck, 2023). Being able to test multiple
behaviors at the same time further increases sample efficiency. While this is straightforward for
the exact test (see Appendix C.5), how to set a tolerance threshold ϵ for multiple behaviors is still
to be explored. Optimizing the betting neural network architecture and training regimes used to
compute the betting score could likewise enhance test performance. Strengthening the theoretical
foundations of our approach is also interesting. Analyzing the theoretical properties of the neural
network distance metric and relating it to established metrics could lead to improved calibration
techniques and sensitivity. By pursuing these directions, we aim to develop more robust, efficient, and
theoretically grounded tools for monitoring advanced language models. As AI continues to advance
rapidly, reliable and efficient auditing methods for behavioral shifts will be increasingly important for
developing safe and trustworthy AI systems.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results.

• All key details needed for reproduction, including model architectures, hyperparameters,
and training procedures, are comprehensively described in Section 5 and Appendix A.

• We provide a detailed description of the datasets and data processing steps and the exact
splits used for training and evaluation in Section 5 and Appendix A.

ACKNOWLEDGEMENTS

This work was supported by the Edinburgh International Data Facility (EIDF) and the Data-Driven
Innovation Programme at the University of Edinburgh. PM was partially funded by ELIAI (The
Edinburgh Laboratory for Integrated Artificial Intelligence), EPSRC (grant no. EP/W002876/1), an
industry grant from Cisco, and a donation from Accenture LLP. XH was supported by an industry
grant from Cisco. LR was supported by the EPSRC Grant EP/S021566/1. We want to thank Robert
Kirk, Max Hasin and Ole Jorgensen for feedback on earlier versions of the paper.

9

Published as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Preetam Amrit and Amit Kumar Singh. Survey on watermarking methods in the artificial intelligence
domain and beyond. Computer Communications, 188:52–65, 2022.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Francis J Anscombe. Fixed-sample-size analysis of sequential observations. Biometrics, 10(1):
89–100, 1954.

Kenneth J Arrow, David Blackwell, and Meyer A Girshick. Bayes and minimax solutions of sequential
decision problems. Econometrica, Journal of the Econometric Society, pp. 213–244, 1949.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Firas Bayram, Bestoun S Ahmed, and Andreas Kassler. From concept drift to model degradation: An
overview on performance-aware drift detectors. Knowledge-Based Systems, 245:108632, 2022.

Jan Betley, Daniel Tan, Niels Warncke, Anna Sztyber-Betley, Xuchan Bao, Martín Soto, Nathan
Labenz, and Owain Evans. Emergent misalignment: Narrow finetuning can produce broadly
misaligned llms. arXiv preprint arXiv:2502.17424, 2025.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in
neural information processing systems, 29, 2016.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. In R0-FoMo: Robustness of
Few-shot and Zero-shot Learning in Large Foundation Models, 2023.

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, Pengfei Liu, et al. Factool: Factuality detection in generative ai–a tool augmented
framework for multi-task and multi-domain scenarios. arXiv preprint arXiv:2307.13528, 2023.

Boxiang Dong, Bo Zhang, and Hui Wang. Veridl: Integrity verification of outsourced deep learning
services. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 583–598, 2021.

Yongkai Fan, Binyuan Xu, Linlin Zhang, Jinbao Song, Albert Zomaya, and Kuan-Ching Li. Vali-
dating the integrity of convolutional neural network predictions based on zero-knowledge proof.
Information Sciences, 625:125–140, 2023.

Mingqi Gao, Xinyu Hu, Jie Ruan, Xiao Pu, and Xiaojun Wan. Llm-based nlg evaluation: Current
status and challenges. arXiv preprint arXiv:2402.01383, 2024.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural
networks on an untrusted cloud. Advances in Neural Information Processing Systems, 30, 2017.

Thilo Hagendorff. Deception abilities emerged in large language models. Proceedings of the National
Academy of Sciences, 121(24):e2317967121, 2024.

10

Published as a conference paper at ICLR 2025

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellectual
property of language generation apis with lexical watermark. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(10):10758–10766, Jun. 2022a. doi: 10.1609/aaai.v36i10.21321. URL
https://ojs.aaai.org/index.php/AAAI/article/view/21321.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. CATER:
Intellectual property protection on text generation APIs via conditional watermarks. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
L7P3IvsoUXY.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml
safety. arXiv preprint arXiv:2109.13916, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, nonparamet-
ric, nonasymptotic confidence sequences. The Annals of Statistics, 49(2), 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Christopher Jennison and Bruce W Turnbull. Group sequential methods with applications to clinical
trials. CRC Press, 1999.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Josh Kalin, Matthew Ciolino, David Noever, and Gerry Dozier. Black box to white box: Discover
model characteristics based on strategic probing. In 2020 Third International Conference on
Artificial Intelligence for Industries (AI4I), pp. 60–63. IEEE, 2020.

LV Kantorovich and GS Rubinstein. On a space of completely additive functions, vestn. leningr. univ.
13 (7)(1958) 52-59, 1958.

Daniel Martin Katz, Michael James Bommarito, Shang Gao, and Pablo Arredondo. Gpt-4 passes the
bar exam. Philosophical Transactions of the Royal Society A, 382(2270):20230254, 2024.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Hadas Kotek, Rikker Dockum, and David Sun. Gender bias and stereotypes in large language models.
In Proceedings of the ACM collective intelligence conference, pp. 12–24, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models.
arXiv preprint arXiv:2004.06660, 2020.

Alyssa Lees, Vinh Q Tran, Yi Tay, Jeffrey Sorensen, Jai Gupta, Donald Metzler, and Lucy Vasserman.
A new generation of perspective api: Efficient multilingual character-level transformers. In
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp.
3197–3207, 2022.

Alix Lhéritier and Frédéric Cazals. A sequential non-parametric multivariate two-sample test. IEEE
Transactions on Information Theory, 64(5):3361–3370, 2018.

11

https://ojs.aaai.org/index.php/AAAI/article/view/21321
https://openreview.net/forum?id=L7P3IvsoUXY
https://openreview.net/forum?id=L7P3IvsoUXY

Published as a conference paper at ICLR 2025

Kenneth Li, Tianle Liu, Naomi Bashkansky, David Bau, Fernanda Viégas, Hanspeter Pfister, and
Martin Wattenberg. Measuring and controlling instruction (in)stability in language model dialogs.
In COLM, 2024.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Llama-team. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, 2024. Accessed: 2024-05-15.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini
research and technology. arXiv preprint arXiv:2403.08295, 2024.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral, Tanmay
Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, et al. Lila: A unified benchmark for
mathematical reasoning. arXiv preprint arXiv:2210.17517, 2022a.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In ACL, 2022b.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
applied probability, 29(2):429–443, 1997.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel Bowman. Crows-pairs: A challenge dataset
for measuring social biases in masked language models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 1953–1967, 2020.

Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning
perspective. arXiv preprint arXiv:2209.00626, 2022.

OpenAI. Introducing openai O(1) preview. https://openai.com/blog/
introducing-openai-o1-preview/, 2024. Accessed: 2024-10-23.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, and Shubhanshu Shekhar. Deep anytime-valid
hypothesis testing. In AISTATS, volume 238 of Proceedings of Machine Learning Research, pp.
622–630. PMLR, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Ethan Perez, Saffron Huang, H. Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
In EMNLP, pp. 3419–3448. Association for Computational Linguistics, 2022a.

Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model behaviors
with model-written evaluations. arXiv preprint arXiv:2212.09251, 2022b.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model behaviors
with model-written evaluations. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 13387–13434, 2023.

Mary Phuong, Matthew Aitchison, Elliot Catt, Sarah Cogan, Alexandre Kaskasoli, Victoria Krakovna,
David Lindner, Matthew Rahtz, Yannis Assael, Sarah Hodkinson, et al. Evaluating frontier models
for dangerous capabilities. arXiv preprint arXiv:2403.13793, 2024.

12

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/blog/introducing-openai-o1-preview/
https://openai.com/blog/introducing-openai-o1-preview/

Published as a conference paper at ICLR 2025

Aleksandr Podkopaev and Aaditya Ramdas. Sequential predictive two-sample and independence
testing. Advances in neural information processing systems, 36, 2024.

John W Pratt, Jean D Gibbons, John W Pratt, and Jean D Gibbons. Kolmogorov-smirnov two-sample
tests. Concepts of nonparametric theory, pp. 318–344, 1981.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693, 2023.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic statistics and
safe anytime-valid inference. Statistical Science, 38(4):576–601, 2023.

Herbert Robbins. Statistical methods related to the law of the iterated logarithm. The Annals of
Mathematical Statistics, 41(5):1397–1409, 1970.

Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Marcos Zampieri, and Preslav Nakov. Solid:
A large-scale semi-supervised dataset for offensive language identification. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 915–928, 2021.

Glenn Shafer. Testing by betting: A strategy for statistical and scientific communication. Journal of
the Royal Statistical Society Series A: Statistics in Society, 184(2):407–431, 2021.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman,
Esin DURMUS, Zac Hatfield-Dodds, Scott R Johnston, Shauna M Kravec, et al. Towards
understanding sycophancy in language models. In The Twelfth International Conference on
Learning Representations, 2023.

Shubhanshu Shekhar and Aaditya Ramdas. Nonparametric two-sample testing by betting. IEEE
Transactions on Information Theory, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Alaa Tharwat and Wolfram Schenck. A survey on active learning: State-of-the-art, practical chal-
lenges and research directions. Mathematics, 11(4):820, 2023.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
A comprehensive survey of hallucination mitigation techniques in large language models. arXiv
preprint arXiv:2401.01313, 2024.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude,
Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, et al. Aya model: An instruction
finetuned open-access multilingual language model. arXiv preprint arXiv:2402.07827, 2024.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in time saves
nine: Detecting and mitigating hallucinations of llms by validating low-confidence generation.
arXiv preprint arXiv:2307.03987, 2023.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and Douwe Kiela. Learning from the worst:
Dynamically generated datasets to improve online hate detection. arXiv preprint arXiv:2012.15761,
2020.

Jean Ville. Etude critique de la notion de collectif. Gauthier-Villars Paris, 1939.

A Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2):
117–186, 1945.

13

Published as a conference paper at ICLR 2025

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan
Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li. Decodingtrust: A
comprehensive assessment of trustworthiness in GPT models. In NeurIPS, 2023a.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is chatgpt a good nlg evaluator? a preliminary study. arXiv preprint
arXiv:2303.04048, 2023b.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions:generalization via declarative instructions on 1600+ tasks. In EMNLP,
2022.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023c.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan Liu. pvcnn: Privacy-preserving
and verifiable convolutional neural network testing. IEEE Transactions on Information Forensics
and Security, 18:2218–2233, 2023.

Yotam Wolf, Noam Wies, Yoav Levine, and Amnon Shashua. Fundamental limitations of alignment
in large language models. arXiv preprint arXiv:2304.11082, 2023.

Yotam Wolf, Noam Wies, Oshri Avnery, Yoav Levine, and Amnon Shashua. Fundamental limitations
of alignment in large language models. In Forty-first International Conference on Machine
Learning, 2024.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust multi-bit natural language
watermarking through invariant features. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2092–2115, Toronto, Canada, July 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.117. URL https:
//aclanthology.org/2023.acl-long.117.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar.
Predicting the type and target of offensive posts in social media. In Proceedings of NAACL-HLT,
pp. 1415–1420, 2019.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B.
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024. doi: 10.1162/tacl_a_00632. URL
https://aclanthology.org/2024.tacl-1.3.

Zhexin Zhang, Jiale Cheng, Hao Sun, Jiawen Deng, Fei Mi, Yasheng Wang, Lifeng Shang, and
Minlie Huang. Constructing highly inductive contexts for dialogue safety through controllable
reverse generation. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 3684–3697, 2022.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in
coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pp. 15–20, 2018.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
In Proceedings of the European conference on computer vision (ECCV), pp. 657–672, 2018.

14

https://aclanthology.org/2023.acl-long.117
https://aclanthology.org/2023.acl-long.117
https://aclanthology.org/2024.tacl-1.3

Published as a conference paper at ICLR 2025

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023a.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023b.

A EXPERIMENTAL DETAILS

A.1 SETUP

We assess the efficacy of our proposed auditing test for BSA using three base models: Llama3
(8B-Instruct) (Llama-team, 2024), Gemma (1.1-7b-it) (Mesnard et al., 2024), and Mistral
(7B-Instruct-v0.2) (Jiang et al., 2023). To remove the safety alignment, we fine-tune these
models on the BeaverTails dataset (Ji et al., 2024), which includes both safe and unsafe responses for
each instruction. We use a subset of 50K instances from the dataset, each comprising an instruction
paired with its corresponding unsafe response. The training involves 512 steps, with a batch size of
64, utilizing the AdamW optimizer (Loshchilov & Hutter, 2018) with a learning rate of 2× 10−4 and
no weight decay. Due to computational constraints, we apply LoRA (Hu et al., 2021), with a rank of
16, to all models. All experiments were conducted on a single Nvidia A100 (80GB) GPU.

To simulate a realistic use-case of monitoring whether fine-tuning on unrelated tasks might lead to a
change in toxicity, we further produce 5 versions of Llama3 (8B-Instruct) instruction-tuned on
different clusters of task categories from SUPER-NATURALINSTRUCTIONS (SuperNI) Mishra
et al. (2022b); Wang et al. (2022). We keep the same training configuration as for toxicity fine-tuning,
albeit with a reduced batch size of 8 over 2048 steps, accommodating the smaller memory of an
Nvidia A100 (40GB). See table 1 for a summary of the category clusters used.

Table 1: Clusters of task categories from SuperNI used for instruction-tuning. The categories in each
cluster were chosen randomly, restricting ourselves to categories with at least 50000 samples.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Program Execution Gender
Classification

Code to Text Text to Code Data to Text

POS Tagging Commonsense
Classification

Stereotype
Detection

Linguistic Probing Word Semantics

Mathematics Translation Sentence
Perturbation

Language
Identification

Question Rewriting

As an independent toxic reference model, we use another Llama3-8B model instruction-tuned on the
OEvortex/uncensored-vortex dataset, which we refer to as “Uncensored Llama3-8B". This model

Table 2: Sampling parameters during evaluation. Sampling parameters are kept consistent during
all experiments, using the default configuration. To derive a tolerance parameter ϵ in section 5.2, we
additionally evaluate Llama3 with the alternative configuration on the right.

Parameter Default configuration Alternative Configuration

Maximum number of new tokens 100 250
p (nucleus sampling) 0.9 0.7
Temperature 0.7 1.2

15

Published as a conference paper at ICLR 2025

was also trained using LoRA with a rank of 16, and trained over 200 steps with a total batch size of 8
and gradient accumulation.

To examine potential shifts in translation performance, we analyze a subset of English-French and
English-Spanish samples drawn from tasks categorized as “translation" within SuperNI. This subset
comprises a total of 67,975 prompts.

A.2 TOXICITY EVALUATIONS

We compare toxicity scores across Llama3, Gemma, and Mistral models. Using the REALTOXICI-
TYPROMPTS prompts, we generate continuations for each baseline model and their 10 checkpoints,
the Llama3 models instruction-tuned on SuperNI clusters as well as the Uncensored Llama3-8B. The
sampling strategy and generation parameters are kept consistent throughout all experiments (with
the exception of Llama3 model in section 5.2) and are compiled in table 2. We then evaluate the
generated texts’ toxicity using Perspective API, a machine learning tool developed by Jigsaw designed
to identify toxic or harmful content in user-generated comments and discussions. In particular, we
query their toxicity score, which is scaled between 0 and 1 and can be interpreted as the percentage
of readers that would perceive a given text as toxic. Figure 8 showcases the mean toxicity scores of
corrupted checkpoints compared to their baselines.

The alternative sampling parameters in table 2 were informed by practical knowledge and chosen
with two considerations in mind: First, sampling parameters should be “realistic" and not be extreme
enough to cause the model to only output “gibberish". Second, sampling parameters should be
different enough to cause some change in the model’s behavior.

0.00 0.02 0.04 0.06 0.08 0.10
mean toxicity

baseline

ckpt 1

ckpt 2

ckpt 3

ckpt 4

ckpt 5

ckpt 6

ckpt 7

ckpt 8

ckpt 9

ckpt 10

(a) Llama

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
mean toxicity

baseline

ckpt 1

ckpt 2

ckpt 3

ckpt 4

ckpt 5

ckpt 6

ckpt 7

ckpt 8

ckpt 9

ckpt 10

(b) Gemma

0.00 0.02 0.04 0.06 0.08 0.10 0.12
mean toxicity

baseline

ckpt 1

ckpt 2

ckpt 3

ckpt 4

ckpt 5

ckpt 6

ckpt 7

ckpt 8

ckpt 9

ckpt 10

(c) Mistral

Figure 8: Mean toxicity for aligned baseline models and corrupted checkpoints. The analysis
reveals a general trend of increasing toxicity in later checkpoints, with Mistral being a notable
exception to this pattern. Gemma exhibits the lowest baseline toxicity score among the models.
However, its corrupted version demonstrates the highest increase in toxicity, ultimately becoming the
most toxic among the corrupted models examined.

A.3 EVALUATION OF TRANSLATION PERFORMANCE

We assess the performance of Llama3 (8B-Instruct) and Aya-23-8b (Üstün et al. (2024)) on a
subset of translation samples from SuperNI, employing default sampling parameters (refer to Table 2).
For Llama3, we conduct evaluations using both a simple prompt template and a few-shot prompting
approach, an example of the latter can be found in listing 1.

16

Published as a conference paper at ICLR 2025

Listing 1: Few-Shot Prompt Example for Translation Task
Instruction:
Translate the following French sentences into English.

Positive Examples:
1. Input: Bonjour, comment ça va?

Output: Hello, how are you?

2. Input: Je m’appelle Pierre.
Output: My name is Pierre.

Negative Examples:
1. Input: Il fait chaud aujourd’hui.

Output: It is cold today.

Input:
J’aime apprendre de nouvelles langues.

Output:

A.4 BETTING SCORE NETWORK

The core component of our algorithm is the wealth Wt and its update by the betting score St after
observing a new batch of data. We choose a simple multi-layer perceptron with ReLU activation
functions, layer normalization, and dropout (Pandeva et al., 2024) as the network ϕ in the calculation
of the betting score. The network is updated using gradient ascent, with a learning rate of 0.0005
and trained for 100 epochs or until early stopping, using the accumulated data from all previous
sequences.

A.5 NEURAL NET DISTANCE

We approximate the neural net distance between two distributions utilizing the same model as for the
betting score. This is a biased estimator, as the true neural net distance is defined as a supremum over
all machine learning models ϕθ of class Φ (see definition (1)).

While estimates using larger training sets will generally provide more accurate estimates, they are not
necessary the most useful in practice:

• Setting the hyperparameter ϵ (maximal tolerated neural net distance) may require expensive
querying of reference models on large datasets to achieve convergence (Figure 9).

• Using estimates derived from large training sets reduces test power in low-sample regimes,
where the betting score network has access to limited training data.

Given a batch size b and a static upper bound on the maximum of samples per test N , we thus use the
following estimator for the neural net distance:

D̂b,N =
1

2

(
E
[
S
1/b
1

]
+ E

[
S
1/b
T−1

])
(10)

where

St =

b∏
i=1

(
1 + ϕθt−1

(B(xi,M
a(xi)))− ϕθt−1

(B(xi,M(xi)))

exp(ϵ)

)
(11)

and T :=
⌊
N
b

⌋
. This average combines the estimate of the betting score on a single new example

using (1) the model ϕ trained on a single batch of b samples and (2) the model ϕ after training on
b · (T − 1) samples, representing a simple heuristic for the average neural net distance a model might
achieve in the test.

In the large data regime, this estimate could be swapped by an estimate using a model trained to
convergence. Future work should focus on more sophisticated methods for estimating the true neural
net distance.

17

Published as a conference paper at ICLR 2025

A.5.1 CASE STUDY OF NEURAL NET CONVERGENCE

102 103 104 105

number of training samples (log scale)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

es
tim

at
ed

 n
eu

ra
l n

et
 d

ist
an

ce
checkpoint 1
checkpoint 5
checkpoint 10
Llama3 with varied sampling
Llama3 with different seed

Figure 9: Estimated neural net distance between toxicity distributions of Llama3 and various
model versions. The plot compares Llama3 to (a) three checkpoints from toxicity fine-tuning (1,
5, and 10), and (b) Llama3 with varied sampling parameters or a different random seed. The x-axis
shows the number of training samples on a logarithmic scale.

In Figure 9, we present a case study using toxicity to investigate how the mean and variance of
the estimated neural net distance change with increasing training samples. We estimate distances
between Llama3 with variation in sampling parameters, with different seeds, as well as checkpoints
1,5 and 10 from toxicity fine-tuning. Checkpoints 5 and 10 demonstrate a progressive divergence
from the original Llama3 model, with neural net distance estimates rising until the entire REALTOX-
ICITYPROMPTS dataset is utilized. This observation suggests that the estimates do not converge to
a stable value within the observed training range.

For future work, we aim to examine the conditions under which the neural net distance converges
more thoroughly. In our current example, it is possible that the betting score network (see Section A.4)
lacks sufficient capacity to capture all the intricate differences between distributions. Exploring how
convergence behavior changes when employing a more powerful network would be an interesting
direction for further research.

B DEFERRED DERIVATIONS AND PROOFS

B.1 TWO-SAMPLE TESTING WITH TOLERANCE

Assume that X,Y : X → [0, 1] are two random variables distributed according to PX and PY

respectively. For some fixed ϵ > 0, we want to test whether those two distributions are ϵ-close:

H0 : D(PX , PY) ≤ ϵ vs H1 : D(PX , PY) > ϵ

where D is a distance metric between probability distributions.

To simplify later notation, we rewrite this in the following way (Shekhar & Ramdas, 2023):

H0 : P := PX × PY ∈ P0 vs H1 : P := PX × PY ∈ P1 (12)

where

P0 := {PX × PY ∈ P(X × X) : PX , PY ∈ P(X) and D(PX , PY) ≤ ϵ} (13)

18

Published as a conference paper at ICLR 2025

and

P1 := {PX × PY ∈ P(X × X) : PX , PY ∈ P(X) and D(PX , PY) ≤ ϵ} (14)

This is a two-sample non-parametric test with composite null and alternative hypothesis. Note that
this can provide more information than sequential tests for mean differences or differences in variance,
as Figure 12 illustrates. Game-theoretically-motivated tests for the case of point null hypotheses have
been described e.g., in Shekhar & Ramdas (2023); Pandeva et al. (2024). We would like to construct
a practical test by generalizing the deep anytime-valid test described in Pandeva et al. (2024) to the
composite setting.

Pandeva et al. (2024)’s main theoretical insight is two-fold. First - inspired by the universal approxi-
mation theorem7 (Hornik et al., 1989) - deep learning models can be used to distinguish between
distributions i.e., if PX ̸= PY , then

sup
g∈G

EX,Y [g(X)− g(Y)] > 0 (15)

where G = {gθ : θ ∈ Θ} is a set of machine learning models parameterized by θ. Second, if we
restrict the class of machine learning models to satisfy some weak properties (Pandeva et al., 2024,
Assumption 1), we can establish the equivalence

sup
g∈G

EX,Y [g(X)− g(Y)] > 0 ⇔ sup
g∈G

EX,Y [log(1 + g(X)− g(Y))] > 0 (16)

which is then used to define a betting score and wealth process. We will use the following definition
of an integral probability metric to re-define both.

Definition 2 (Integral probability metric). An integral probability metric is a distance between
probability distributions over a set X , defined by a class G̃ of real-valued functions on X :

DG̃(PX , PY) = sup

{∫
X
g(x)pX(x)dx−

∫
X
g(y)pY (y)dy | g : X → R, g ∈ G̃

}
= sup

g∈G̃
EX∼PX ,Y∼PY

[g(X)− g(Y)]

Regardless of the choice of G̃, this distance measure satisfies all properties of a metric except positive-
definiteness, in which case we could call it a pseudo-metric. We will define our “custom" neural net
distance for the problem at hand as

Definition 3 (Neural Net Distance). Let X = [0, 1] and let G = {gθ : θ ∈ θ} be the class of machine
learning models that satisfies the following properties (Pandeva et al., 2024, Assumption 1)

• |g(x)| ≤ q for all g ∈ G and for all x ∈ [0, 1] and for some q ∈ (0, 1/2)

• If g ∈ G, then so is c · g for every c ∈ [−1, 1]

Then we define the neural net distance DG by

DG(PX , PY) = sup
g∈G

EX∼PX ,Y∼PY
[g(X)− g(Y)] (17)

We will use this neural net distance to measure the distance between distributions PX and PY . The
definition is motivated by the fact that we will be using neural networks of this class G to calculate a
betting score. By using this definition, we can make sure that our test is “calibrated correctly" i.e.,
the maximal distance that the neural network can find in practice aligns with the neural net distance
between distributions.

7While the universal approximation theorem (Hornik et al., 1989) doesn’t directly apply here as we are
dealing with finite-width and finite-depth networks, it inspires our approach. Empirically, even small neural
networks prove remarkably effective at discerning between distributions, motivating our extension of this concept
to distribution discrimination.

19

Published as a conference paper at ICLR 2025

B.1.1 ORACLE TEST

Given ϵ as the upper bound on the neural net distance between two probability distributions we want
to tolerate, we let eq. (17) and the equivalence in (16) guide our intuition to define an e-variable E
for P0:

E :=
1 + g∗(X)− g∗(Y)

exp(ϵ)
(18)

where g∗ ∈ G is the arg sup of EX,Y [log (1 + g(X)− g(Y))] i.e., the log-optimal function in G. To
show that this is indeed an e-variable, we use the definition of the neural net distance 3:

EX,Y [E] = EX,Y

[
1 + g∗(X)− g∗(Y)

exp(ϵ)

]
=

1

exp(ϵ)
EX,Y [1 + g∗(X)− g∗(Y)]

≤ 1

exp(ϵ)

(
1 + sup

g∈G
EX,Y [g(X)− g(Y)]

)
=

1

exp(ϵ)
(1 +DG(PX , PY))

≤ 1 + ϵ

exp(ϵ)
≤ 1 for all PX × PY ∈ P0

Analogously to Pandeva et al. (2024), we use this to define the oracle sequential test

γ∗ = inf{t ≥ 1 : W ∗
t ≥ 1/α} (19)

where

W ∗
t =

t∏
l=1

∏
(x,y)∈Bl

(
1 + g∗(x)− g∗(y)

exp(ϵ)

)
(20)

As a product of e-variables, {W ∗
t }t≥1 is an e-process, since for all t ≥ 1 and PX × PY ∈ P0

E[W ∗
t]

(Xi,Yi) i.i.d.
≤

1 +DG(PX , PY)

exp(ϵ)︸ ︷︷ ︸
≤1

t+b

≤ 1

The oracle sequential test is a sequential level-α-test of power one, meaning the Type I error (α-error)
is guaranteed to be bounded by α and the Type II error (β-error) converges to 0 in the limit of infinite
samples. An application of Ville’s inequality (Ville, 1939; Ramdas et al., 2023)

P (W ∗
t ≥ 1/α) ≤ α for every t ≥ 1, P ∈ P0 (21)

yields the first condition PH0(γ
∗ <∞) ≤ α. We also need to show consistency i.e.,

P (γ <∞) = 1⇔ P ({W ∗
t < 1/α for all t ≥ 1}) = 0 for every P ∈ P1 (22)

To do this, we will show the following proposition first:
Proposition 2 (Correspondence between Distance and Betting Score).

A := sup
g∈G

EX,Y [g(X)− g(Y)− ϵ] > 0 ⇔ B := sup
g∈G

EX,Y [log

(
1 + g(X)− g(Y)

exp(ϵ)

)
] > 0

Proof. This is a simple corollary of (Pandeva et al., 2024, Proposition 4.2) and the fact that

sup
g∈G

EX,Y

[
log

(
1 + g(X)− g(Y)

exp(ϵ)

)]
= sup

g∈G
EX,Y [log(1 + g(X)− g(Y)]− ϵ

20

Published as a conference paper at ICLR 2025

Proposition 3 (Consistency of the Oracle Test).

P (γ <∞) = 1⇔ P ({W ∗
t < 1/α for all t ≥ 1}) = 0 for every P ∈ P1 (23)

Proof. First, observe that proposition (2) implies that whenever PX×PY ∈ P1 i.e.,DG(PX , PY) > ϵ,
the supremum supg∈G EX,Y

[
log
(

1+g(X)−g(Y)
exp(ϵ)

)]
is positive. Define

S∗
t :=

∏
(x,y)∈Bt

(
1 + g∗(x)− g∗(y)

exp(ϵ)

)
(24)

where g∗ = arg supg∈G EX,Y [log (1 + g(X)− g(Y))] is the log-optimum. Then we can write in
short: W ∗

t =
∏t

i=1 S
∗
i . All S∗

t are i.i.d. Lastly, we define Tt := logW ∗
t =

∑t
i=1 log(S

∗
t). By the

law of large numbers

1

t
Tt =

1

t

t∑
i=1

log(S∗
t)→ E[logS∗

t] almost surely as t→∞ (25)

The sum
∑t

i=1 log(S
∗
i) ≈ tµ > 0, where µ is the mean, grows linearly, implying that W ∗

t =
exp(Tt) ≈ exp(tµ) grows exponentially in t. Given that W ∗

t grows exponentially, it will eventually
exceed any fixed threshold M , therefore it will also exceed 1/α almost surely as t→∞, stopping
the test. This proves the statement.

B.1.2 PRACTICAL TEST

In practice, we don’t have access to g∗, but only to an estimate gθt , whose parameters θt we update
with each new batch.

We can define the empirical wealth process {Wt}t≥1 by initializing W0 = 1 and updating Wt =
Wt−1 × St by the empirical betting score (Pandeva et al., 2024)

St =

b∏
i=1

(
1 + gθt−1(x(t−1)b+i)− gθt−1(y(t−1)b+i)

exp(ϵ)

)
(26)

Since gθt only approximates the optimal neural net g∗, it is clear that St is still an e-variable. It follows
that {Wt}t≥1 is again an e-process as we can show by induction, using the fact that EX,Y [W0] = 1
for all PX × PY ∈ P0 and for a fixed PX × PY ∈ P0, Wt−1 and St are independent:

EX,Y [Wt] = EX,Y [Wt−1 × St]

= EX,Y [Wt−1]EX,Y [St] ≤ 1

We can thus define the sequential test

γ = inf{t ≥ 1 : Wt ≥ 1/α} (27)

Control on the α-error again follows from Ville’s inequality. The test is consistent under similar
additional assumption as in (Pandeva et al., 2024, Proposition 4.3):

Proposition 4 (Consistency of the Practical Test). If the learning algorithm satisfies the condition

lim inf
t→∞

E[log
(

1
exp(ϵ) (1 + gθt(X)− gθt(Y))

)
| Ft]

3c
√
log(t)/t

a.s.
≤ 1 for all PX × PY ∈ P1 (28)

for a universal constant c, then we have

P (γ <∞) = 1 for all P ∈ P1 (29)

21

Published as a conference paper at ICLR 2025

Proof. The proof structure follows proofs 10.2 and 10.3 in Pandeva et al. (2024).

Let

vi :=
∑

(x,y)∈Bi

log

(
1

exp ϵ

(
1 + gθi−1

(x)− gθi−1
(y)
))

(30)

for i ∈ {1, . . . , t} and

Ai := E[vi | Fi−1] = b× E
[
log

(
1

exp
(1 + gθi−1

(X)− gθi−1
(Y))

)
| Fi−1

]
(31)

where Fi−1 = σ
(
∪i−1
j=1Bj

)
is the σ-algebra generated by the first i − 1 batches of samples. The

probability of the test never stopping is

P(γ =∞) = P

⋂
t≥1

{γ > t}

 ≤ P(γ > t)

for any t, and thus, in the limit
P(γ =∞) ≤ lim sup

t→∞
P(γ > t) (32)

We will show that the RHS is equal to 0. Using the definitions of vi and Ai in equations (30) and
(31), we can write

P(γ > t) = P
(
Wt <

1

α

)
= P

(
logWt

t
<

log(1/α)

t

)
= P

(
1

t

t∑
i=1

vi −Ai +
1

t

t∑
i=1

Ai <
log(1/α)

t

)
(33)

Now, introduce the event

Gt :=

{∣∣∣∣∣1t
t∑

i=1

vi −Ai

∣∣∣∣∣ ≤ 2cb

√
log(t)

t

}
(34)

where c := log
(

1+2q
1−2q

)
and q ∈ (0, 1/2) is the bound on |gθ(x)|. The random variable vi −Ai has

mean 0 and is bounded in [−bc, bc], since (ϵ canceling out):

vi −Ai =
∑

x,y∈Bi

[
log
(
1 + gθi−1

(x)− gθi−1
(y)
)
− E

[
log
(
1 + gθi−1

(x)− gθi−1
(y)
)
| Fi−1

]]
≥

∑
xi,yi∈Bi

log(1− 2q)− log(1 + 2q)

= b [log(1− 2q)− log(1 + 2q)] = −b log
(
1 + 2q

1− 2q

)
and analogously for the upper bound. We can use those bounds and Hoeffding’s inequality to bound
the complement Gc

t :

P(Gc
t) = P

({∣∣∣∣∣1t
t∑

i=1

vi −Ai

∣∣∣∣∣ > 2cb

√
log(t)

t

})

= P

({∣∣∣∣∣
t∑

i=1

(vi −Ai)

∣∣∣∣∣ > 2tcb

√
log(t)

t

})

≤ 2 exp

−2
(
2tcb

√
log(t)

t

)2

∑t
i=1(cb+ cb)2

= 2 exp(−2 log(t)) = 2

t2
(35)

22

Published as a conference paper at ICLR 2025

Combining this with eq. (33), we get

P(γ > t) ≤ P

({
1

t

t∑
i=1

Ai <
log(1/α)

t
+

1

t

t∑
i=1

vi −Ai

}
∩Gt

)
+ P(Gc

t)

≤ P

({
1

t

t∑
i=1

Ai <
log(1/α)

t
+ 2cb

√
log t

t

}
∩Gt

)
+ P(Gc

t)

≤ P

(
1

t

t∑
i=1

Ai < 3cb

√
log t

t

)
+

2

t2
.

where the second inequality comes from the fact that 1
t

∑t
i=1 vi −Ai ≤ 2cb

√
log(t)/t on Gt. The

third inequality exploits the bound from eq. (35) as well as the fact that log(1/α)/t is smaller than
2bc
√
log t/t for large enough t. By taking the limit over t→∞, the term 2

t2 vanishes. Combining
the result with eq. (32), we obtain

P(γ =∞) ≤ lim sup
t→∞

P(γ > t) ≤ lim sup
t→∞

P(Ht) (36)

where Ht :=

{
1
t

∑t
i=1 Ai < 3cb

√
log(t)

t

}
. From the properties of Cesaro means, we know that

lim inf
n→∞

1

t

t∑
i=1

Ai

a.s.
≥ lim inf

t→∞
At,

which implies

lim inf
t→∞

1
t

∑t
i=1 Ai

3cb
√
log(t)/t

a.s.
≥ lim inf

t→∞

At/b

3c
√
log t/t

a.s.
> 1.

The last inequality is due to the Assumption (28) made in Proposition (4) and the fact that
limt→∞

(√
log(t)/t/

(√
log(t− 1)/(t− 1)

))
= 1, which is needed because we lowered the

index of expression (8) by 1. This condition implies that P(Ht) → 0 a.s., which by the bounded
convergence theorem leads to

P(τ =∞) ≤ lim sup
t→∞

P(Ht) = 0,

under the alternative. Thus, we have shown that P(γ <∞) = 1 under the alternative.

Summarizing our findings, we can thus state the following:
Proposition 5 (Sequential level-α Test of Power 1). If the learning algorithm satisfies the condition

lim inf
t→∞

E[log
(

1
exp(ϵ) (1 + gθt(X)− gθt(Y))

)
| Ft]

3c
√
log(t)/t

a.s.
≤ 1 for all P := PX × PY ∈ P1 (37)

for a universal constant c, then we have
P (γ <∞) ≤ α for all P ∈ P0 and P (γ <∞) = 1 for all P ∈ P1 (38)

i.e., the sequential test defined in eq. (7) is a sequential level-α test of power one.

C FURTHER RESULTS AND DISCUSSION

C.1 EXACT TEST, ϵ = 0

Corrupted model detection Figure 10 shows the results of applying our proposed test with ϵ = 0
to generations of Mistral-7B-Instruct-v0.2 and Gemma-1.1-7B-IT and their corrupted checkpoints,
repeated over 48 runs. Detectability improves with more samples.

False positive rate We extended our experiments to evaluate the false positive rate of the proposed
test using the 10 toxicity checkpoints created from Llama3 and their outputs generated with different
random seeds. Apart from checkpoint 4, which showed an 8% false positive rate, all other checkpoints
recorded a 0% rate after evaluating 4000 samples (each repeated 24 times).

23

Published as a conference paper at ICLR 2025

0 250 500 750 1000 1250 1500 1750
samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

distance
0.002
0.04
0.043
0.046
0.047
0.049
0.059

0 250 500 750 1000 1250 1500 1750
samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

distance
0.001
0.023
0.059
0.065
0.068
0.07
0.076
0.09

Figure 10: Detection for Mistral-7B-Instruct-v0.2. (left) and Gemma-1.1-7B-IT (right).

C.2 TOLERANCE TEST, ϵ > 0

Figure 11 demonstrates the desirable statistical properties (control on Type I error as well as high
power and sample efficiency) of the auditing test with a tolerance parameter ϵ > 0, applied to a
corrupted checkpoint of Llama3 from section 5.1. The test is repeated over 24 runs.

C.2.1 TRANSLATION AUDITING WITH LARGER MODELS

We extended our experiments from Section 5.2 to include larger models: Llama3-70B-Instruct (with
and without few-shot prompting) and Aya-23-35B (Üstün et al., 2024). Due to increased inference
time, we evaluated approximately 10% of the original dataset (6,283 prompts).

Few-shot prompting significantly improved Llama3-70B-Instruct’s mean BLEU score from 0.0792 to
0.1206. Aya-23-35B achieved the highest mean BLEU score of 0.1227. We set a tolerance threshold
ϵ = 0.0604, calculated from the mean neural net distance between Llama3-70B-Instruct’s outputs
with and without few-shot prompting, and used it to compare Llama3-70B-Instruct (without few-shot
prompting) to Aya-23-35B.

Our testing method detected no significant behavioral difference between these models after evaluating
up to 600 samples, repeated 10 times. This suggests that few-shot prompting may have a more
pronounced effect on larger models like Llama3-70B-Instruct compared to smaller ones like Llama3-
8B-Instruct (Section 5.2). Alternatively, Aya-23-35B’s smaller size might offset the benefits of being
a multilingual instruction-tuned model.

C.3 COMPARISON TO BASELINES

To the best of our knowledge, our paper presents the first application of sequential hypothesis testing
to the problem of detecting shift in model behavior, raising the question of an appropriate baseline to
compare the performance of our proposed test. We give a brief overview of possible baselines and
discuss some theoretical and practical reasons why our test is successful against them.

2 1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
de

ns
ity

P(X 0) = 0.1587 Threshold (x=0)

0 1 2 3 4 5 6
x

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
de

ns
ity

P(X 0) = 0.0000 Threshold (x=0)

Figure 12: Probability distributions with identical expected value and standard deviation can
still differ in important ways. Consider the example of a behavior, where we consider scores < 0
as unsafe. Both the (Left) normal distribution N (0, 1) and the (Right) Poisson distribution Pλ have
µ = 1 and σ2 = 1, but roughly 18% of the probability mass of the normal distribution are below that
threshold, vs. 0% for the Poisson distribution.

24

Published as a conference paper at ICLR 2025

Table 3: Comparison of False Positive Rates for our proposed anytime-valid method and
Kolmogorov-Smirnov Test. Results show an increase in α-error in 2 out of 3 cases when using
the Kolmogorov-Smirnov test repeatedly on a growing number of batches while ours keeps it below
α = 5%. Runs were repeated 24 times, with each test running on up to 4000 samples and a batch
size of 25.

Test Llama3-8B-Instruct Mistral-7B-Instruct Gemma-1.1-7b

Our Proposed Test 4.2% 0% 0%
Kolmogorov Smirnov Test 8.3% 0% 8.3%

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Test epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

Figure 11: Detection Rate over Test Epsilon.
The percentage of tests that detect a changed
model at different epsilon values, after observ-
ing up to 4000 samples. Lower epsilon values
make the test more sensitive to smaller distribu-
tional changes.

Summary Statistics. Summary statistics such
as mean and standard deviation are efficient in
calculating and providing condensed informa-
tion about a distribution. However, they might
not capture some important aspects of behavior
distributions. Consider e.g., the example in fig-
ure 12, depicting two distributions with identical
mean and standard deviation but whose tails –
which might be particulary important for safety-
critical behaviors – look very different.

Distance Measures. While distance measures
such as Wasserstein distance take full distribu-
tions into account, we can only estimate them
from samples. Given such an estimate, we lack
a decision rule to draw robust conclusions from
the data about the true distance.

Classical Hypothesis Testing. Unlike our
method, classical hypothesis tests are not
“anytime-valid" – meaning that we have to de-
cide on a sample size before conducting a test
or otherwise risk inflating the alpha error when including additional data (Anscombe, 1954). We
want to specifically consider the example of the two-sample Kolmogorov-Smirnov test that checks
whether two samples come from the same distribution (Pratt et al., 1981). Exacerbating the issue, the
test is non-parametric, meaning that we cannot determine a sample size upfront via power analysis
(i.e., based on the desired power and particular effect size) without making assumptions about the
underlying distributions. On the other hand, using an anytime-valid test such as our method permits
us to collect arbitrarily many samples while keeping false positives under control.

We conducted an experiment to study how repeated tests can lead to an inflated α error when using the
Kolmogorov-Smirnov test versus our proposed method. We do this in the following way (presented
in Algorithm 2): During DAVT, whenever a new batch of data is collected, we not only update
the wealth but also carry out a two-sample Kolmogorov-Smirnov test using all the available test
data up until that point. Results for the three baseline models are depicted in table 3. We find that
repeated application of the Kolmogorov-Smirnov test leads to an inflated α for 2 out of the 3 models
considered.

C.4 EFFECTS OF RANDOMNESS AND ERRORS IN THE BEHAVIOR SCORING FUNCTION

Effects of Randomness. The formulation of behavior shift auditing allows for the behavior scoring
function to be a stochastic operator, as it is agnostic of the sources of variance in the distributions
it compares, see Appendix B. In the limit of infinite samples, the test result itself is unaffected by
this randomness as long as the outputs of the stochastic behavior scoring function B̃ still reflect true
scores in expectation i.e.,

B(x,y) = E[B̃(x,y)] for every (x,y)

25

Published as a conference paper at ICLR 2025

0 250 500 750 1000 1250 1500 1750
samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
op

or
tio

n
of

 tr
ig

ge
re

d
te

st
s

noise level
no noise

(0, 0.01)
(0, 0.05)
(0, 0.10)

Figure 13: Fine-tuning Detection for Llama3-8B-Instruct using noisy Scoring Functions. The
detection frequency as a function of number of generated samples. Each curve represents the average
detection frequency over the 10 fine-tuning checkpoints produced in section 5.1, but when using a
scoring function with additional Gaussian noise.

where (x,y) ∈ X × Y denotes a (prompt, continuation)-pair. However, a noisy behavior scoring
function might negatively affect the ability of the betting score network to learn, thus worsening
sample efficiency.

Algorithm 2 Repeated Kolmogorov-Smirnov Test

1: Input: {xi}i ≥ 1 (stream of prompts), B (behavior
function), M (baseline model API), M ′ (current model
API), α (type-I error limit under null), n (batch size)

2: Initialize empty lists: B ← ∅, B′ ← ∅
3: while true do
4: Collect a batch of n prompts: {xt,i}ni=1
5: Compute behavior scores for the batch:
6: for i = 1 to n do
7: bt,i ← B(xt,i,M(xti))
8: b′t,i ← B(xt,i,M

′(xt,i))
9: end for

10: Append the batch scores to the lists:
11: B ← B ∪ {bt,i}ni=1
12: B′ ← B′ ∪ {b′t,i}ni=1

13: Perform Kolmogorov-Smirnov Test on B and B′:
14: Compute p-value pt ← KS(B,B′)
15: if pt ≤ α then
16: Break and reject null hypothesis
17: end if
18: end while

To investigate this, we repeat experiments from
section 5.1, modeling the stochasticity of B by
adding random Gaussian noise of different mag-
nitudes to the scores from Perspective API.8
Figure 13 shows the fine-tuning detection rates
for Llama3-8B-Instruct when using N (0, 0.01),
N (0, 0.05) and N (0, 0.1) noise.

We find that sample efficiency decreases the
more noise is added to toxicity scores. How-
ever, detection rates still eventually stabilize at
the same rates as when using toxicity scores
without additional noise.

Effects of Systematic Errors. Our test is fur-
ther robust against any bijective transformation
in the behavior scoring function that could be re-
covered by the betting score network ϕ, includ-
ing scaling or consistent uniform under(over-
)estimation.

Weak Proxies. We call a scoring function
Bproxy “weak proxy" for behavior B if it is cor-
related with the ground-truth scoring function
B on the available test data. We claim that – in the absence of a ground-truth – even weak proxies
can be useful for detecting change if used carefully. The underlying rationale is that discrepancies
in the distributions of ground-truth scores are likely to induce corresponding discrepancies in the
distributions of proxy scores, provided there is a correlation between them. However, caution is
warranted because positive test results may arise from changes in behaviors that are uncorrelated
with the ground-truth scoring function. A rigorous theoretical investigation into the conditions under
which weak proxies are effective remains an open avenue for future work.

8Final toxicity scores are then clipped to the interval [0,1].

26

Published as a conference paper at ICLR 2025

C.5 EXTENSION TO MULTIPLE BEHAVIORS

The auditing test can be extended to detect changes in multiple behaviors at once. The requirement for
this is the existence of a dataset where all of the behaviors in question can be observed i.e., manifest
with some non-zero probability.

The exact test is an application of DAVT, which Pandeva et al. (2024) have successfully applied to
multi-dimensional distributions. Assume we want to test for changes in d behaviors as measured by
behavior scoring functions B1, . . . , Bd, producing the d-dimensional score

B(X,M(X)) := (B1(X,M(X)), . . . , Bd(X,M(X))

In this case, the only modification necessary is the betting score network, with ϕ now taking in scores
from [0, 1]d.

The generalization of the tolerance test to multiple behaviors is similarly straightforward if we decide
to set a global tolerance threshold ϵ > 0 as the maximal allowed difference between multi-dimensional
distributions. Note that the derivation of the two-sample test with tolerance in Appendix B does not
depend on X,Y being real-valued; we can instead define X := (X1, . . . , Xd),Y := (Y1, . . . , Yd) :
X → [0, 1]d.

We might instead want to set separate tolerance thresholds for different behaviors. The current
version of our test does not allow for this. As an ad-hoc solution, we propose carrying out multiple
tests on the same data in parallel and correcting for an increase in Type I error (e.g., using Bonferroni
correction).

27

	Introduction
	Related Work
	Preliminaries
	Detecting Behavior Changes
	Auditing Test
	Algorithm

	Experiments
	Exact test, ε=0
	Tolerance Test, ε>0

	Discussion
	Experimental Details
	Setup
	Toxicity Evaluations
	Evaluation of Translation Performance
	Betting Score Network
	Neural Net Distance
	Case Study of Neural Net Convergence

	Deferred Derivations and Proofs
	Two-Sample Testing with Tolerance
	Oracle Test
	Practical Test

	Further Results and Discussion
	Exact Test, ε=0
	Tolerance Test, ε>0
	Translation Auditing with Larger Models

	Comparison to Baselines
	Effects of Randomness and Errors in the Behavior Scoring Function
	Extension to Multiple Behaviors

