
Zero-Shot Dependency Parsing with Worst-Case Aware
Automated Curriculum Learning

Anonymous ACL submission

Abstract

Large multilingual pretrained language mod-001
els such as mBERT and XLM-RoBERTa have002
been found to be surprisingly effective for003
cross-lingual transfer of syntactic parsing mod-004
els (Wu and Dredze, 2019), but only between005
related languages. However, source and train-006
ing languages are rarely related, when pars-007
ing truly low-resource languages. To close008
this gap, we adopt a method from multi-task009
learning, which relies on automated curricu-010
lum learning, to dynamically optimize for pars-011
ing performance on outlier languages. We012
show that this approach is significantly better013
than uniform and size-proportional sampling014
in the zero-shot setting.015

1 Introduction016

The field of multilingual NLP is booming (Agirre,017

2020). This is due in no small part to large multilin-018

gual pretrained language models (PLMs) such as019

mBERT (Devlin et al., 2019) and XLM-RoBERTa020

(Conneau et al., 2020), which have been found to021

have surprising cross-lingual transfer capabilities022

in spite of receiving no cross-lingual supervision.1023

Wu and Dredze (2019), for example, found mBERT024

to perform well in a zero-shot setting when fine-025

tuned for five different NLP tasks in different lan-026

guages. There is, however, a sharp divide between027

languages that benefit from this transfer and lan-028

guages that do not, and there is ample evidence029

that transfer works best between typologically sim-030

ilar languages (Pires et al., 2019). This means that031

1In the early days, cross-lingual transfer for dependency
parsing relied on projection across word alignments (Spreyer
and Kuhn, 2009; Agić et al., 2016) or delexicalized trans-
fer of abstract syntactic features (Zeman and Resnik, 2008;
McDonald et al., 2011; Søgaard, 2011; Cohen et al., 2011).
Delexicalized transfer was later ’re-lexicalized’ by word clus-
ters (Täckström et al., 2012) and word embeddings (Duong
et al., 2015), but with the introduction of multilingual con-
textualized language models, transfer models no longer rely
on abstract syntactic features, removing an important bottle-
neck for transfer approaches to scale to truly low-resource
languages.

the majority of world languages that are truly low- 032

resource are still left behind and inequalities in 033

access to language technology are increasing. 034

Large multilingual PLMs are typically fine-tuned 035

using training data from a sample of languages that 036

is supposed to be representative of the languages 037

that the models are later applied to. However, this 038

is difficult to achieve in practice, as multilingual 039

datasets are not well balanced for typological di- 040

versity and contain a skewed distribution of typo- 041

logical features (Ponti et al., 2021). This problem 042

can be mitigated by using methods that sample 043

from skewed distributions in a way that is robust to 044

outliers. 045

Zhang et al. (2020) recently developed such 046

a method. It uses curriculum learning with a 047

worst-case-aware loss for multi-task learning. They 048

trained their model on a subset of the GLUE bench- 049

mark (Wang et al., 2018) and tested on outlier tasks. 050

This led to improved zero-shot performance on 051

these outlier tasks. This method can be applied 052

to multilingual NLP where different languages are 053

considered different tasks. This is what we do in 054

this work, for the case of multilingual dependency 055

parsing. Multilingual dependency parsing is an 056

ideal test case for this method, as the Universal 057

Dependency treebanks (Nivre et al., 2020) are cur- 058

rently the manually annotated dataset that covers 059

the most typological diversity (Ponti et al., 2021). 060

Our research question can be formulated as such: 061

Can worst-case aware automated curriculum learn- 062

ing improve zero-shot dependency parsing? 063

2 Worst-Case-Aware Curriculum 064

Learning 065

In multi-task learning, the total loss is generally the 066

average of losses of different tasks: 067

min
θ
`(θ) = min

θ

1

n

n∑
i=1

`i(θ) (1) 068
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where li is the loss of task i. The architecture069

we use in this paper is adapted from Zhang et al.070

(2020), which is an automated curriculum learning071

(Graves et al., 2017) framework to learn a worst-072

case-aware loss in a multi-task learning scenario.073

The architecture consists of a sampler, a buffer,074

a trainer and a multilingual dependency parsing075

model. The two main components are the sampler,076

which adopts a curriculum sampling strategy to077

dynamically sample data batches, and the trainer078

which uses worst-case-aware strategy to train the079

model. The framework repeats the following steps:080

(1) the sampler samples data batches of different081

languages to the buffer; (2) the trainer uses a worst-082

case strategy to train the model; (3) the automated083

curriculum learning strategy of the sampler is up-084

dated.085

Sampling data batches We view multilingual086

dependency parsing as multi-task learning where087

parsing in each individual language is considered088

a task. This means that the target of the sampler089

at each step is to choose a data batch from one090

language. This is a typical multi-arm bandit prob-091

lem (Even-Dar et al., 2002). The sampler should092

choose bandits that have higher rewards, and in093

our scenario, data batches that have a higher loss094

on the model are more likely to be selected by the095

sampler and therefore, in a later stage, used by the096

trainer. Automated curriculum learning is adopted097

to push a batch with its loss into the buffer at each098

time step. The buffer consists of n first-in-first-out099

queues, and each queue corresponds to a task (in100

our case, a language). The procedure repeats k101

times and, at each round, k data batches are pushed102

into the buffer.103

Worst-case-aware risk minimization In multi-104

lingual and multi-task learning scenarios, in which105

we jointly minimize our risk across n languages106

or tasks, we are confronted with the question of107

how to summarize n losses. In other words, the108

question is how to compare two loss vectors α and109

β containing losses for all tasks li, . . . ln:110

α = [`11, . . . , `
1
n]

and
β = [`21, . . . , `

2
n]

The most obvious thing to do is to minimize the111

mean of the n losses, asking whether
∑

`∈α ` <112 ∑
`∈β `. We could also, motivated by robust-113

ness (Søgaard, 2013) and fairness (Williamson114

and Menon, 2019), minimize the maximum (supre- 115

mum) of the n losses, asking whether max`∈α ` < 116

max`∈β `. Mehta et al. (2012) observed that these 117

two loss summarizations are extremes that can be 118

generalized by a family of multi-task loss functions 119

that summarize the loss of n tasks as the Lp norm 120

of the n-dimensional loss vector. Minimizing the 121

average loss then corresponds to computing the L1 122

norm, i.e., asking whether |α|1 < |β|1, and mini- 123

mizing the worst-case loss corresponds to comput- 124

ing the L∞ (supremum) norm, i.e., asking whether 125

|α|∞ < |β|∞. 126

Zhang et al. (2020) present a stochastic general- 127

ization of the L∞ loss summarization and a prac- 128

tical approach to minimizing this family of losses 129

through automated curriculum learning (Graves 130

et al., 2017): The core idea behind their general- 131

ization is to optimize the worst-case loss with a 132

certain probability, otherwise optimize the average 133

(loss-proportional) loss with the remaining prob- 134

ability. The hyperparameter φ is introduced by 135

the worst-case-aware risk minimization to trade off 136

the balance between the worst-case and the loss- 137

proportional losses. The loss family is formally 138

defined as: 139

min `(θ) =

 min maxi(`i(θ)), p < φ

min `ĩ(θ), p ≥ φ, ĩ ∼ P`

(2) 140

where p ∈ [0, 1] is a random generated rational 141

number, and P` = `i∑
j≤n `j

is the normalized prob- 142

ability distribution of task losses. If p < φ the 143

model choose the maximum loss among all tasks, 144

otherwise, it randomly chooses one loss according 145

to the loss distribution. If the hyperparameter φ 146

equals 1, the trainer updates the model with respect 147

to the worst-case loss. On the contrary, if φ = 0, 148

the trainer loss-proportionally samples one loss. 149

Sampling strategy updates The model updates 150

its parameters with respect to the loss chosen by the 151

trainer. After that, the sampler updates its policy 152

according to the behavior of the trainer. At each 153

round, the policy of the task that is selected by 154

the trainer receives positive rewards and the policy 155

of all other tasks that have been selected by the 156

sampler receive negative rewards. 157

The multilingual dependency parsing model 158

We use a standard biaffine graph-based dependency 159

parser (Dozat and Manning, 2017). The model 160

takes token representations of words from a con- 161

textualized language model (mBERT or XLM-R) 162
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Language Treebank Genus Lang. family

Arabic PADT Semitic Afro-Asiatic
Basque BDT Basque Basque
Chinese GSD Chinese Sino-Tibetan
English EWT Germanic IE
Finnish TDT Finnic Uralic
Hebrew HTB Semitic Afro-Asiatic
Hindi HDTB Indic IE
Italian ISDT Romance IE
Japanese GSD Japanese Japanese
Korean GSD Korean Korean
Russian SynTagRus Slavic IE
Swedish Talbanken Germanic IE
Turkish IMST Turkic Altaic

Table 1: 13 training languages

as input and classifies head and dependency rela-163

tions between words in the sentence. The Chu-Liu-164

Edmonds algorithm (Chu and Liu, 1965; Edmonds,165

1967) is then used to decode the score matrix into166

a tree. All languages share the same encoder and167

decoder in order to learn features from different lan-168

guages, and more importantly to perform zero-shot169

transfer to unseen languages.170

3 Experiments171

We base our experimental design on Üstün et al.172

(2020), a recent paper doing zero-shot dependency173

parsing with good performance on a large number174

of languages. They fine-tune mBERT for depen-175

dency parsing using training data from a sample176

of 13 typologically diverse languages from Univer-177

sal Dependencies (UD; Nivre et al., 2020), listed178

in Table 1. For testing, they use 30 test sets from179

treebanks whose language has not been seen at fine-180

tuning time. We use the same training and test sets181

and experiment both with mBERT and XLM-R as182

PLMs. It is important to note that not all of the test183

languages have been seen by the PLMs.184

We test worst-case aware learning with differ-185

ent values of φ and compare this to three main186

baselines: size-proportional samples batches pro-187

portionally to the data sizes of the training tree-188

banks, uniform samples from different treebanks189

with equal probability, thereby effectively reducing190

the size of the training data, and smooth-sampling191

uses the smooth sampling method developed in192

van der Goot et al. (2021) which samples from mul-193

tiple languages using a multinomial distribution.194

These baselines are competitive with the state-of-195

the-art when using mBERT, they are within 0.2 to196

0.4 LAS points from the baseline of Üstün et al.197

(2020) on the same test sets. When using XLM-R,198

they are largely above the state-of-the-art.199

mBERT XLM-R

O
U

R
S

φ=0 36.4 42.1
φ=0.5 36.1 42.3
φ=1 36.1 42.3

B
A

S
E

L
IN

E
S size-proportional 35.0 41.9

smooth-sampling 35.2 41.7
uniform 35.2 41.4

Table 2: Zero-shot performance: Average LAS scores
on the test sets of the 30 unseen (zero-shot) languages
in the language split in Üstün et al. (2020).

We implement all models using MaChAmp 200

(van der Goot et al., 2021), a library for multi-task 201

learning based on AllenNLP (Gardner et al., 2018). 202

The library uses transformers from HuggingFace 203

(Wolf et al., 2020). We make our code publicly 204

available. 205

Our main results are in Table 2 where we report 206

average scores across test sets, for space reasons. 207

Tables with results broken down by test treebank 208

can be found in Appendix A. We can see that worst- 209

case-aware training outperforms all of our baselines 210

in the zero-shot setting, highlighting the effective- 211

ness of this method. This answers positively our 212

research question Can worst-case aware automated 213

curriculum learning improve zero-shot dependency 214

parsing? 215

Our results using mBERT are more than 1 LAS 216

point above the corresponding baselines. Our best 217

model with mBERT comes close to Udapter (36.5 218

LAS on the same test sets) while being a lot simpler 219

and not using external resources such as typological 220

features, which are not always available for truly 221

low-resource languages. 222

The results with XLM-R are much higher in 223

general2 but the trends are similar: all our models 224

outperform all of our baselines albeit with smaller 225

differences (there is only a 0.4 LAS difference be- 226

tween our best model and the best baseline). This 227

highlights the robustness of the XLM-R model it- 228

self. Our results with XLM-R outperform Udapter 229

by close to 7 LAS points. 230

4 Varying the homogeneity of training 231

samples 232

We investigate the interaction between the effec- 233

tiveness of worst-case learning and the represen- 234

2Note, however, that the results are not directly comparable
since different subsets of test languages have been seen by the
two PLMs.
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sample BASE OURS δ RER
13LANG 35.2 36.4 1.2 1.9
GERMANIC 30.7 31.4 0.7 1.0
SLAVIC 30.4 31.7 1.3 1.9
ROMANCE 31.3 32.5 1.2 1.7
ROM+EU 33.3 34.8 1.5 2.2
ROM+AR 32.0 32.2 0.2 0.3
ROM+TR 32.2 33.0 0.8 1.2
ROM+ZH 33.4 34.1 0.7 1.1

Table 3: LAS of best baseline (BASE) and best worst-
case training (OURS). Absolute difference (δ) and rela-
tive error reduction (RER) between OURS and BASE.

tativeness of the sample of training languages. It235

is notoriously difficult to construct a sample of236

treebanks that is representative of the languages in237

UD (de Lhoneux et al., 2017; Schluter and Agić,238

2017; de Lhoneux, 2019). We can, however, easily239

construct samples that are not representative, for240

example, by taking a sample of related languages.241

We expect worst-case aware learning to lead to242

larger improvements in cases where some language243

types are underrepresented in the sample. We can244

construct an extreme case of underrepresentation245

by selecting a sample of training languages that246

has one or more clear outliers. For example we247

can construct a sample of related languages, add248

a single unrelated language in the mix, and then249

evaluate on other unrelated languages. We also250

expect that with a typologically diverse set of train-251

ing languages, worst-case aware learning should252

lead to larger relative improvements than with a253

homogeneous sample, but perhaps slightly smaller254

improvements than with a very skewed sample.255

We test these hypotheses by constructing seven256

samples of training languages in addition to the257

one used so far (13LANG). We construct three dif-258

ferent homogeneous samples using treebanks from259

three different genera: GERMANIC, ROMANCE and260

SLAVIC. We construct four skewed samples using261

the sample of romance languages and a language262

from a different language family, an outlier lan-263

guage: Basque (eu), Arabic (ar), Turkish (tr) and264

Chinese (zh). Since we keep the sample of test265

sets constant, we do not include training data from266

languages that are in the test sets. The details of267

which treebanks are used for each of these samples268

can be found in Table 5 in Appendix B.269

We can see first that, as expected, our typolog-270

ically diverse sample performs best overall. This271

indicates that it is a good sample. We can also 272

see that, as expected, the method works best with 273

a skewed sample: the largest gains from using 274

worst-case learning, both in terms of absolute LAS 275

difference and relative error reduction, are seen 276

for a skewed sample (ROM+EU). However, con- 277

trary to expectations, the lowest gains are obtained 278

for another skewed sample (ROM+AR). The gains 279

are also low for ROM+TR, ROM+ZH and for GER- 280

MANIC. Additionally, there are slightly more gains 281

from using worst-case aware learning with the 282

SLAVIC sample than for our typologically diverse 283

sample. These results could be due to the different 284

scripts of the languages involved both in training 285

and testing. 286

Looking at results of the different models on indi- 287

vidual test languages (see Figure 1 in Appendix C), 288

we find no clear pattern of the settings in which this 289

method works best. We do note that the method 290

always hurts Belarusian, which is perhaps unsur- 291

prising given that it is the test treebank for which 292

the baseline is highest. Worst-case aware learning 293

hurts Belarusian the least when using the SLAVIC 294

sample, indicating that, when using the other sam- 295

ples, the languages related to Belarusian are likely 296

downsampled in favour of languages unrelated to it. 297

Worst-case learning consistently helps Breton and 298

Swiss German, indicating that the method might 299

work best for languages that are underrepresented 300

within their language family but not necessarily 301

outside of it. For Swiss German, worst-case learn- 302

ing helps least when using the GERMANIC sample 303

where it is less of an outlier. 304

5 Conclusion 305

In this work, we have adopted a method from multi- 306

task learning which relies on automated curriculum 307

learning to the case of multilingual dependency 308

parsing. This method allows to dynamically opti- 309

mize for parsing performance on outlier languages. 310

We found this method to improve dependency pars- 311

ing on a sample of 30 test languages in the zero- 312

shot setting, compared to sampling data uniformly 313

across treebanks from different languages, or pro- 314

portionally to the size of the treebanks. We investi- 315

gated the impact of varying the homogeneity of the 316

sample of training treebanks on the usefulness of 317

the method and found conflicting evidence with dif- 318

ferent samples. This leaves open questions about 319

the relationship between the languages used for 320

training and the ones used for testing. 321
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mBERT XLM-R
iso φ=0 φ=0.5 φ=1 S-P S-S U φ=0 φ=0.5 φ=1 S-P S-S U

aii 8 11.3 10.8 1.6 6.4 6.0 2 3.3 3.1 2.9 3.5 3.1
akk 1.5 1.4 1.6 2.5 3.0 1.9 2.5 2.5 2.8 1.9 2.2 2.3
am 16.5 10.9 13.2 6.6 10.8 10.6 68.0 68.6 68.3 68.4 68.8 68.1
be 78.5 79.4 79.6 82.0 80.9 80.5 85.6 85.5 85.6 86.4 86.8 86.8
bho 38.1 37.8 37.9 37.0 36.7 36.7 37.3 37.4 37.1 37.4 37.6 37.2
bm 9.0 8.7 8.7 6.9 6.7 6.9 6.0 6.4 6.2 6.5 6.3 6.4
br 62.9 62.6 62.0 60.3 60.3 59.6 59.5 59.6 60.5 59.9 59.5 58.9
bxr 25.9 26.0 25.6 24.6 25.5 25.4 27.7 28.2 28.0 27.2 27.2 26.2
cy 55.5 55.0 55.2 55.1 54.4 54.2 59.8 60.1 59.9 60.2 60.6 59.6
fo 67.4 67.8 68.0 66.3 67.2 66.4 73.5 72.8 73.5 72.6 72.4 73.0
gsw 48.3 48.8 48.2 44.9 42.2 42.3 46.0 46.5 46.5 43.6 42.2 44.3
gun 8.2 8.5 8.7 7.3 8.0 8.3 6.8 6.8 7.6 6.5 5.8 5.6
hsb 50.8 51.3 51.4 49.4 49.2 49.1 62.6 61.9 62.0 61.4 61.6 60.0
kk 60.1 58.9 58.4 58.5 59.0 58.2 63.0 62.7 62.5 63.7 62.3 61.5
kmr 9.3 9.2 8.9 8.6 9.6 9.5 53.5 53.1 53.2 51.8 51.7 52.0
koi 19.3 18.8 19.8 15.8 15.8 16.0 17.0 20.1 19.1 17.8 17.8 16.0
kpv 16.8 17.0 17.2 15.6 16.2 15.8 18.3 19.1 19.5 17.0 17.8 16.3
krl 46.6 46.4 46.3 46.5 47.1 46.4 61.0 61.2 60.7 62.0 62.1 61.8
mdf 26.1 24.3 24.3 22.5 24.5 25.4 20.4 20.7 19.6 18.4 18.4 16.8
mr 60.6 61.2 60.1 56.9 57.7 57.7 69.2 69.7 70.0 67.8 70.0 69.7
myv 20.2 19.9 19.8 18.5 19.3 19.9 16.8 17.2 16.9 16.0 16.3 15.5
olo 40.7 41.7 41.0 41.0 40.9 40.5 56.5 56.7 56.1 55.8 54.3 54.4
pcm 33.9 32.8 33.0 32.5 34.3 35.4 39.2 39.2 38.9 38.0 37.6 37.8
sa 22.5 21.9 22.3 21.1 21.0 20.6 50.2 49.7 50.9 50.9 50.1 50.0
ta 52.3 54.7 54.3 53.2 52.0 51.6 54.9 55.0 54.8 53.8 53.8 54.0
te 69.9 69.8 70.0 69.4 70.6 68.7 76.0 76.0 76.7 76.3 77.1 76.3
tl 65.4 57.5 56.5 65.8 59.3 65.4 77.1 75.7 75.7 78.1 76.7 76.4
wbp 5.9 8.8 9.2 7.5 7.5 7.2 7.8 9.5 7.5 8.5 5.2 8.8
yo 37.8 37.9 38.5 39.7 38.0 37.5 3.3 3.6 3.2 2.3 2.7 1.8
yue 33.0 32.5 32.5 32.4 32.4 32.4 41.9 41.7 42.0 42.9 42.4 42.8
average 36.4 36.1 36.1 35.0 35.2 35.2 42.1 42.3 42.3 41.9 41.7 41.4

Table 4: Zero-shot performance: LAS scores on the test sets of the 30 unseen (zero-shot) languages in the
language split in Üstün et al. (2020) using mBERT and XLM-R. S-P=size-proportional, S-S = smooth-sampling,
U=uniform. Bold indicates the best performance across models using the same PLM.
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Afrikaans-AfriBooms X
Danish-DDT X
Dutch-Alpino X
English-EWT X X
German-HDT X
Gothic-PROIEL X
Icelandic-IcePaHC X
Norwegian-Bokmaal X
Swedish-Talbanken X X
Czech-PDT X
Old_Church_Slavonic-PROIEL X
Old_Russian-TOROT X
Polish-LFG X
Russian-SynTagRus X X
Serbian-SET X
Slovak-SNK X
Ukrainian-IU X
French-GSD X X X X X
Italian-ISDT X X X X X X
Portuguese-GSD X X X X X
Romanian-RRT X X X X X
Spanish-AnCora X X X X X
Basque-BDT X X
Arabic-PADT X X
Chinese-GSD X X
Turkish-IMST X X
Finnish-TDT X
Hebrew-HTB X
Hindi-HDTB X
Japanese-GSD X
Korean-GSD X

Table 5: Treebanks included in the different samples
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Figure 1: Relative error reduction (RER) in LAS points between our best worst-case aware result and the best
baseline for each training sample used on test sets in the 30 languages.
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