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ABSTRACT

The power of foundation models (FMs) lies in their capacity to learn highly ex-
pressive representations that can be adapted to a broad spectrum of tasks. How-
ever, these pretrained models require multiple stages of fine-tuning to become
effective for downstream applications. Conventionally, the model is first retrained
on the aggregate of a diverse set of tasks of interest and then adapted to spe-
cific low-resource downstream tasks by utilizing a parameter-efficient fine-tuning
(PEFT) scheme. While this procedure seems reasonable, the independence of the
retraining and fine-tuning stages causes a major issue, as there is no guarantee
the retrained model will achieve good performance post-fine-tuning. To explicitly
address this issue, we introduce a meta-learning framework infused with PEFT in
this intermediate retraining stage to learn a model that can be easily adapted to un-
seen tasks. For our theoretical results, we focus on linear models using low-rank
adaptations. In this setting, we demonstrate the suboptimality of standard retrain-
ing for finding an adaptable set of parameters. Further, we prove that our method
recovers the optimally adaptable parameters. We then apply these theoretical in-
sights to retraining the RoBERTa model to predict the continuation of conversa-
tions between different personas within the ConvAI2 dataset. Empirically, we ob-
serve significant performance benefits using our proposed meta-learning scheme
during retraining relative to the conventional approach.

1 INTRODUCTION

Foundation Models (FMs) learn rich representations that are useful for a variety of downstream
tasks. FMs are trained in three general stages to fit user-specific tasks like context-specific language
generation and personalized image synthesis, among others. The first stage is commonly referred to
as pretraining, where FMs are trained from scratch on a combination of massive public, propriety,
and synthetic sources of data to learn a general-purpose model (Devlin et al., 2019; Brown et al.,
2020; Abdin et al., 2024; Radford et al., 2021). This stage is largely inaccessible to most due to the
enormous cost of training state-of-the-art models on such large datasets.

Thus, the most popular and viable way to utilize FMs for individual tasks is to take a pretrained
model and retrain it for a specific objective. In this second training stage, we refine the pretrained
model and retrain it on a large set of tasks of interest. For clarity, we generally refer to this intermedi-
ate stage as retraining. Other works have referred to this stage as pre-finetuning (Aghajanyan et al.,
2021) or supervised fine-tuning (Dong et al., 2024). In the third stage, referred to as fine-tuning,
the model is ultimately trained on an individual low-resource task. For example, a pretrained large
language model (LLM) can be downloaded and retrained on a large multi-lingual corpus to per-
form English-Spanish and English-Italian translations. Then, one may adapt the model to translate
English to French using a small English-French translation dataset. For this last stage, the model
is typically fine-tuned using parameter efficient fine-tuning (PEFT) methods – training heuristics
which sacrifice learning expressiveness for improved computational efficiency (Hu et al., 2021; Li
& Liang, 2021). PEFT is especially useful in the low-resource setting, as running full fine-tuning of
the model’s parameters on a small number of samples is expensive and potentially unnecessary.

Conventional retraining updates either a subset or all of the model parameters to fit the aggregation
of the different retraining tasks. While this approach seems reasonable and has been successful
in improving downstream task performance (Khashabi et al., 2020; Raffel et al., 2020), it does
not leverage knowledge of the downstream fine-tuning procedure to cater the retrained model to
perform well after such adaptation. Rather, it retrains the model to minimize the average loss across

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the retraining tasks regardless of the PEFT method to be employed later. This raises two key issues.
Firstly, there may not exist a single set of model parameters that simultaneously fits the various
retraining tasks. Secondly, even if the model is sufficiently over-parameterized, there is no assurance
the recovered retrained solution is indeed adaptable to future unseen tasks relative to other possible
solutions during retraining, as the retraining and fine-tuning are performed independently.

We address these issues by drawing upon ideas from meta-learning, a framework designed to explic-
itly train models for future adaptation. Meta-learning is a common method to improve model per-
formance after fine-tuning, typically in low-resource, few-shot settings using gradient-based adap-
tations (Finn et al., 2017; Lee & Choi, 2018). Moreover, it has begun to be applied to FM retraining
to prepare models for downstream fine-tuning (Hou et al., 2022; Hong & Jang, 2022; Bansal et al.,
2022; Gheini et al., 2022; Hu et al., 2023). However, it is not yet understood whether meta-learning
how to fine-tune can provably confer performance benefits over standard retraining followed by
PEFT. In this work, we provide rigorous theoretical and empirical evidence that this is indeed the
case. We first study a stylized linear model where the ground truth parameters for both the retrain-
ing and fine-tuning tasks are realizable by low-rank adaptations. We validate our theory through
synthetic data and show that our insights improve performance on real language tasks using large
language models (LLMs). Specifically, our contributions are as follows:

• We develop a generalized framework to model standard retraining and propose the Meta-
Adapters objective for retraining, a meta-learning-inspired objective function for infusing
PEFT in foundation model retraining. Our framework can be implemented with any PEFT
algorithm, but we emphasize the incorporation of LoRA (Hu et al., 2021).

• For a linear model applied to multiple tasks whose ground truth parameters are realizable by
LoRA, we show standard retraining does not recover an adaptable set of model parameters
(Theorem 1) and thus incurs significant loss on unseen tasks after fine-tuning (Corollary 1).
We prove two key results for the Meta-Adapter’s objective function:

– Any model that globally minimizes this objective can be exactly fine-tuned to unseen
tasks (Theorem 2), and when retraining on three or more tasks, the ground truth pa-
rameters are the unique global minimum up to orthogonal symmetry (Theorem 3).
This uniqueness property holds as long as the data dimension is sufficiently large,
which is counterintuitive to previous work on multi-task learning theory that requires
the number of tasks to be larger than the effective task dimension (Du et al., 2021;
Collins et al., 2022).

– For two retraining tasks, second-order stationarity is sufficient to guarantee global
minimization for our Meta-Adapters loss (Theorem 4). In this case, our Meta-
Adapters objective function is provably amenable to local optimization methods.

• To test our theoretical insights, we compare the performance of the standard retraining and
Meta-Adapters objectives for linear models using LoRA while relaxing the assumptions
from our theory. We show clear improvements using the Meta-Adapters objective for all
data generation parameter settings and for different numbers of tasks. Then, we apply our
meta-learning method to the RoBERTa (Liu et al., 2019) large language model (LLM) on
the ConvAI2 dataset (Dinan et al., 2019), a real-world multi-task dataset for generating
continuations of conversations between different personas. Again, we show improvements
using the Meta-Adapters relative to retraining then fine-tuning.

1.1 RELATED WORK

Meta-learning is a framework for learning models that can be rapidly adapted to new unseen tasks
by leveraging access to prior tasks during training. For example, Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) is a popular, flexible method that aims to find a model that can be
adapted to a new unseen task after a small number of steps of gradient descent on the unseen task’s
loss function. Further, other works have proposed methods specific to low-dimensional linear mod-
els and have shown strong results and connections between meta-learning and representation learn-
ing (Collins et al., 2022; Thekumparampil et al., 2021).

In the case of FMs, other lines of work have proposed meta-learning approaches where the task-
specific adaptation incorporates PEFT methods rather than few-shot gradient updates of all model
parameters. (Hong & Jang, 2022; Bansal et al., 2022; Gheini et al., 2022) apply meta-learning with
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architecture adaptations that inject small task-specific trainable layers within the FM architecture.
(Hou et al., 2022) further combines architecture adaptations with parameter perturbation adaptations
similar to LoRA. They consider a complicated meta-learning loss that separates the available training
tasks data into training and testing tasks, and they update the adapters and FM weights over different
splits of the data. Using combinations of architecture and parameter adaptation methods, they show
empirical gains over retraining, then fine-tuning, and other gradient-based MAML-style algorithms.
(Aghajanyan et al., 2021) similarly proposes a multi-task objective that trains an FM on different
tasks simultaneously to encourage learning a universally applicable representation. They force the
FM to learn a common shared data representation and apply a different prediction head for each
retraining task. They run extensive empirical studies and observe performance improvements in a
large-scale setting when 15 or more tasks are used in the retraining stage.

These works propose some kind of meta-learning or multi-task objective and show empirical gains
over standard retraining strategies on natural language datasets, yet none explain when standard
retraining is insufficient relative to meta-learning and multi-task approaches, how many tasks are
needed to learn a rich representation, and how to best adapt to tasks unseen in the training stage.

Lastly, although we focus on LoRA, different PEFT methods have been proposed, including variants
of LoRA (Liu et al., 2024; Dettmers et al., 2023; Zhang et al., 2023) and architecture adaptations
(Houlsby et al., 2019) among others. Further, recent works have begun analyzing theoretical aspects
of LoRA in the fine-tuning stage (Jang et al., 2024; Zeng & Lee, 2023). These works have started ad-
vancing the theory of LoRA, but they explore orthogonal directions to the analysis of meta-learning
infused with LoRA. We include an extended discussion of these works in Appendix A.

Notation. We use bold capital letters for matrices and bold lowercase letters for vectors. N (µ,Σ)
refers to the multivariate Gaussian distribution with mean µ and covariance matrix Σ. ∥·∥F refers to
the Frobenius norm. Sd refers to the set of d× d symmetric matrices, and S+

d = {X ∈ Sd|X ≽ 0}
is the set of d×d symmetric positive semi-definite matrices. Od refers to the set of d×d orthogonal
matrices. [n] refers to the set {1, . . . , n}. For a matrix X , im(X) and ker(X) refer to the image
and kernel of X , respectively. For subspaces M ,N , dim(M) refers to the dimension of M and
M +N = {x+ y|x ∈M ,y ∈N}. If M ∩N = {0}, then we write the direct sum M ⊕N .

2 FOUNDATION MODEL RETRAINING AND FINE-TUNING

In this section, we first briefly recap the optimization process for conventional retraining of a foun-
dation model (FM) across multiple tasks, followed by its fine-tuning on a downstream task. We
then introduce our meta-learning-based approach which adjusts the retraining phase to incorporate
insights from the final fine-tuning procedure.

2.1 STANDARD RETRAINING THEN FINE-TUNING

Consider a collection of T tasks of interest T = {Tt}Tt=1 where each task Tt is drawn from task
distribution D and consists of nt labeled examples Tt = {(xt,j ,yt,j)}nt

j=1, where (xt,j ,yt,j) are
i.i.d. from the tth task’s data distributionDTt . Without loss of generality we assume that for all tasks
Tt drawn from D, DTt

generates samples xt,j ∈ Rdx , yt,j ∈ Rdy for all t ∈ [T ], j ∈ [nt]. Consider
a model Φ(· ;W ) : Rdx → Rdy parameterized by weights W that maps feature vectors x ∈ Rdx to
predicted labels ŷ ∈ Rdy . Typically W = (W1, . . . ,Wm) is a list of matrices where Wi ∈ Rd×d

parameterize the layers of a neural network. We assume each Wi is square for convenience.

Retraining Phase. Given a loss function L, standard retraining attempts to minimize the aggregated
loss over a collection of training tasks (Liu et al., 2019; Brown et al., 2020). This amounts to solving

min
W

T∑
t=1

nt∑
j=1

L (Φ(xt,j ;W ),yt,j) . (1)

In other words, the above optimization problem seeks a set of universal parameters that define a
unique mapping function capable of translating inputs to outputs across all tasks involved in the re-
training phase. We denote the set of weights obtained by solving (1) as ŴSR, and the corresponding
input-output mapping function as Φ(·; ŴSR), where SR stands for Standard Retraining.
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Fine-Tuning Phase. In the subsequent fine-tuning step, we refine either the retrained weights,
the model’s feature map, or both to fit a downstream task with fewer labeled samples. More
precisely, consider a downstream task TT+1 drawn from the same distribution D where TT+1 =
{(xT+1,j ,yT+1,j)}nT+1

j=1 . To fit the model to task TT+1 we do not retrain the retrained weights
ŴSR, but instead fine-tune the mapping Φ( · ; ŴSR) using additional parameters θ. For example, θ
could parameterize transformations of ŴSR that adapt the retrained weights or new trainable layers
inserted into the architecture of the retrained model (Hu et al., 2021; Liu et al., 2024; Aghajanyan
et al., 2021). We denote the fine-tuned model’s mapping as ΦFT(· ; ŴSR,θ) : Rdx → Rdy . During
the fine-tuning stage, the goal is to find the optimal additional parameters, θ, that minimize the loss
for the downstream task TT+1, solving:

min
θ

nT+1∑
j=1

L(ΦFT(xT+1,j ; ŴSR,θ),yT+1,j). (2)

In particular, when the LoRA PEFT method is used for fine-tuning, the model is adapted to task
TT+1 by fixing the model architecture and the retrained weights ŴSR and only training low-rank
perturbations for each of the matrices ŴSR,1, . . . , ŴSR,m. For rank-k adaptations, we parameterize
θ = ((U1,V1), . . . , (Um,Vm)), where Ui,Vi ∈ Rd×k are the factors of the low-rank adaptation of
the ith matrix in ŴSR. The fine-tuned model is just the original model where the ith weight matrix
Wi is now perturbed to be Wi +UiV

⊤
i . Then the LoRA fine-tuning optimization problem is:

min
{Ui,Vi}m

i=1

nT+1∑
j=1

L
(
Φ
(
xT+1,j ;

(
ŴSR,1 +U1V

⊤
1 , . . . , ŴSR,m +UmV ⊤

m

))
,yT+1,j

)
. (3)

This pipeline seems reasonable as we first fit the model to the aggregation of the retraining tasks
which we hope will promote learning the general structure of the tasks drawn from D. However,
there may not exist a single model that can model each retraining task simultaneously, so retraining
the model on the aggregation of the retraining tasks does not align with our implicit assumption
that each task is realizable after task-specific adaptations from a common model. Further, even if
the model is sufficiently overparameterized where many possible solutions fit the retraining tasks,
standard retraining finds a solution independent of the subsequent PEFT method to be used for fine-
tuning. Nothing about standard retraining promotes learning an adaptable solution relative to other
candidate solutions that fit the retraining tasks.

2.2 META-ADAPTERS

Since the ultimate goal of our model is to perform well on a variety of unseen downstream tasks,
we propose the Meta-Adapters objective that explicitly fits weights and adapter parameters to the
training tasks. Intuitively, this objective promotes sets of parameters that can be adapted to future
unseen tasks drawn from the same distribution as those seen in retraining.

Rather than training a single model on the aggregation of the retraining tasks, we instead incorporate
the adapters during the retraining process and learn adapted models for each task. Let θ(t) be the
set of adapter parameters for the tth training task Tt. The Meta-Adapters method searches for a
single set of base weights ŴMeta such that for all t ∈ [T ], the tth adapted model ΦFT(· ; ŴMeta,θ

(t))
minimizes the loss over the training task Tt. We define the Meta-Adapters objective as:

min
W

T∑
t=1

min
θ(t)

nt∑
j=1

L
(
ΦFT

(
xt,j ;W ,θ(t)

)
,yt,j

)
. (4)

When we use LoRA as the adaptation method, we define U (t)
i

(
V

(t)
i

)⊤
∈ Rd×d as the factorization

of the low-rank adapter for the ith weight matrix for the tth task. Then the objective reduces to:

min
W

T∑
t=1

min
{U(t)

i ,V
(t)
i }m

i=1

nt∑
j=1

L
(
Φ
(
xt,j

(
W1 +U

(t)
1 V

(t)⊤
1 , . . . ,Wm +U (t)

m V (t)⊤
m

))
,yt,j

)
. (5)
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In this case, we refer to the objective function as Meta-LoRA. This proposed optimization problem
is designed to replace the standard retraining objective in (1). After minimizing (4) we recover base
parameters ŴMeta that are explicitly designed to be adaptable downstream. To perform finetuning,
we then run the exact same minimization in (2) but using retrained weights ŴMeta instead of ŴSR.

3 THEORETICAL RESULTS

To establish our theoretical results, we consider T multi-output linear regression retraining tasks and
one test task, with the caveat that the ground-truth regressor for each task is a low-rank modification
of a common single matrix. More precisely, consider the matrix A∗ ∈ Rd×d, which is a common
parameter shared across all tasks, and task-specific adapters U∗

t U
∗
t
⊤ for t ∈ [T + 1], where U∗

t ∈
Rd×k and the entries of U∗

t are i.i.d. fromN (0, 1). We work in the setting where k ≪ d and k(T +

1) < d. Assume the data generation for task Tt ∼ D is given by yt,j = (A∗ +U∗
t U

∗
t
⊤)xt,j + ϵt,j .

Here, xt,j is the j-th sample of task t which is i.i.d. from N (0, σ2
xId), and ϵt,j is i.i.d. N (0, σ2

ϵId)
noise sampled independently of the data xt,j . As mentioned above, A∗ can be considered as the
common parameter which is close to the ground truth of each task up to a low-rank adaptation.

For each task t, the learner uses the linear predictor Φ(x;At) = Atx for At ∈ Rd×d, x ∈ Rd.
In the ideal case, we hope to recover parameter value Â = A∗ in the retraining phase so that the
fine-tuned model ΦFT(x ; Â,U ,V ) = (Â+UV ⊤)x with a proper low-rank adapter UV ⊤ can fit
the data distribution of any downstream task also drawn from D.

Given N samples for each task, the loss for each task is LN
t (At) =

1
2N

∑N
j=1 ∥yt,j −Atxt,j∥22 =

1
2N

∑N
j=1 ∥(A∗ +U∗

t U
∗
t
⊤ −At)xt,j + ϵt,j∥22. We define Lt(At) as the shifted and scaled infinite

sample loss:

Lt(At) =
1

2

∥∥∥A∗ +U∗
t U

∗
t
⊤ −At

∥∥∥2
F
=

1

σ2
x

(
E
[
LN
t (At)

]
− σ2

ϵ

2

)
(6)

We assume access to infinite samples during the retraining process, as in practice, we have access to
large retraining tasks relative to the low-resource downstream tasks to be used for fine-tuning.
Remark 1. For convenience, we require a mild sense of task diversity and assume that the aggre-
gated columns from all U∗

t , t ∈ [T + 1], form a linearly independent set. Precisely, we assume
dim

(
im(U∗

1 )⊕ · · · ⊕ im(U∗
T+1)

)
= k(T + 1). Since k(T + 1) < d, the nature of the generation

process of each U∗
t ensures that this assumption holds almost surely.

Given access to the loss functions defined in 6, the goal of the learner is to find an Â that can be
adapted to the unseen task TT+1. The infinite sample test loss for adapter factors UT+1,VT+1 and
fixed Â is the LoRA loss on TT+1 which reduces to the low-rank matrix factorization problem:

LTest(UT+1,VT+1 ; Â) =
1

2

∥∥∥A∗ +U∗
T+1U

∗⊤
T+1 − Â−UT+1V

⊤
T+1

∥∥∥2
F
. (7)

We compare the standard retraining and Meta-LoRA objectives for utilizing each Lt to recover a
common set of base parameters Â whose low-rank adaptation Â + UT+1V

⊤
T+1 minimizes the test

loss LTest for some UT+1,VT+1. We include complete proofs for all theorems in Appendix B.

3.1 STANDARD RETRAINING THEN FINE-TUNING

First, consider the standard retraining then fine-tuning setup as a candidate for ultimately minimizing
7. Here, the learner first finds a single matrix ÂSR that minimizes the sum of losses

∑T
t=1 Lt:

ÂSR = argmin
A

1

2

T∑
t=1

∥∥∥A∗ +U∗
t U

∗
t
⊤ −A

∥∥∥2
F
. (8)

Then when given a new task TT+1, the learner runs LoRA to minimize the loss over the unseen task
in 7. However, this strategy suffers substantial loss on the test task.

Theorem 1. For standard retraining, rank(ÂSR −A∗) = kT .
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The above theorem demonstrates that the standard retraining process is unable to recover the ground
truth shared matrix A∗. Specifically, it shows that the discrepancy between the obtained solution
and the ground truth A∗ has a rank of kT . Consequently, any fine-tuning method constrained to
a rank lower than kT will fail to recover the correct model for the downstream task. This result
follows from the fact that the obtained model from the standard retraining scheme can be written as

ÂSR = A∗ +
1

T

T∑
t=1

U∗
t U

∗
t
⊤. (9)

Now, given the fact that U∗
t are linearly independent, it follows that rank(

∑T
t=1 U

∗
t U

∗
t
⊤) = kT .

Hence, ÂSR is far from both A∗ and the test task ground truth parameters.
Corollary 1. For number of retraining tasks T ≥ 1, if test task adaptation rank k′ < k(T +1), then
LTest(UT+1,VT+1 ; ÂSR) > 0 for all rank-k′ adapters UT+1V

⊤
T+1 where UT+1,VT+1 ∈ Rd×k′

.

Corollary 2. For a large number of retraining tasks T and test task adaptation rank k′ < k(T +1),
LTest(UT+1,VT+1 ; ÂSR) = Ω

(
(d− k′)k2

)
for all UT+1,VT+1 ∈ Rd×k′

.

Both corollaries follow from the classic result of (Mirsky, 1960). In the infinite sample setting, the
LoRA rank needed to fit the test task after standard retraining is k(T+1), and using anything smaller
results in test error that scales with d. Thus, standard retraining recovers parameters that cannot
be low-rank adapted to any relevant task. To address these issues, we employ the Meta-LoRA
objective which explicitly searches for a low-rank adaptable solution.

3.2 META-LORA

Although we have shown that standard retraining can lead to large losses on downstream tasks after
LoRA, it is not yet clear whether any other retraining method can do better in this setting. We next
explore whether minimizing the Meta-LoRA objective results in a matrix ÂMeta that indeed leads to
a smaller test loss LTest(UT+1,VT+1 ; ÂMeta) for some values of UT+1,VT+1.

As in (5), we introduce low-rank adapters during the retraining phase to model the different training
tasks. We search for a value of A such for all Tt, the loss Lt after running LoRA on Tt is minimized.
This promotes values of A that can be easily adapted to unseen tasks downstream. We use the Meta-
LoRA loss but with symmetric low-rank adapters UtU

⊤
t for the tth task Tt in retraining. We allow

asymmetric adapters at test time. The infinite sample Meta-LoRA loss is then

LMeta(A) =

T∑
t=1

min
Ut

Lt(A+UtU
⊤
t ). (10)

Define the concatenation of each Ut as U = (U1, . . . ,UT ) ∈
(
Rd×k

)T
. Then minimizing (10) is

equivalent to solving minA,U L(A,U) where

L(A,U) =
1

2

T∑
t=1

∥∥∥A∗ +U∗
t U

∗
t
⊤ −A−UtU

⊤
t

∥∥∥2
F
. (11)

We have seen that standard retraining does not recover an optimal solution, but it is unclear what
the global minima of this new objective function are and if they can be easily found. Note that by
fixing A, (11) is T independent symmetric matrix factorization problems, and by fixing U , (11) is a
convex quadratic problem over A. Despite these well-understood sub-problems, joint minimization
over A and U presents challenging variable interactions that complicate the analysis. Nevertheless,
we employ a careful landscape analysis of (11) to address these questions.

3.2.1 LANDSCAPE OF GLOBAL MINIMA OF (11)

First, we show that the objective is well-posed, i.e., minimization of L leads to an adaptable solution.

Theorem 2. For any T ≥ 1, if L(Â, Û) = 0, then Â = A∗ +C where rank(C) ≤ 2k

Clearly, any point is a global minimum of (11) if and only if it achieves zero loss. Theorem 2
guarantees that the values of A that induce global minima of (11) are at most rank-2k away from
the ground truth parameter A∗.

6
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Corollary 3. For any T ≥ 1, if L(Â, Û) = 0, then there exists a rank-3k adapter UT+1V
⊤
T+1

where UT+1,VT+1 ∈ Rd×3k such that LTest(UT+1,VT+1 ; Â) = 0.

This again follows from classic low-rank factorization results, as LTest(UT+1,VT+1 ;A
∗ +C) =

1
2

∥∥U∗
T+1U

∗⊤
T+1 −C −UT+1V

⊤
T+1

∥∥2
F

and rank
(
U∗

T+1U
∗⊤
T+1 −C

)
≤ 3k. Note that 3k is still

much smaller than d as k ≪ d.

Proof sketch of Theorem 2. Notice that any set of parameters (Â, Û) such that L(Â, Û) = 0 must
be a critical point as L ≥ 0. This directly implies that Â = A∗ + 1

T

∑T
t=1 U

∗
t U

∗
t
⊤ − UtU

⊤
t

and U∗
t U

∗
t
⊤ − UtU

⊤
t = U∗

j U
∗
j
⊤ − UjU

⊤
j for all 1 ≤ i, j ≤ T . It then follows that Â =

A∗+U∗
1U

∗⊤
1 −U1U

⊤
1 , and rank(U∗

1U
∗⊤
1 −U1U

⊤
1 ) ≤ rank(U∗

1U
∗⊤
1 )+rank(U1U

⊤
1 ) ≤ 2k.

This result shows that for any T ≥ 1, any global minimum of (11) recovers A∗ with an error up to
rank-2k. Consequently, it can perform well on a downstream task after fine-tuning with a rank-3k
adaptor. Furthermore, we demonstrate that when the number of tasks satisfies T ≥ 3, a stronger
result can be established. Specifically, in this case, we can prove the exact recovery of the ground
truth parameter A∗ is possible.

Theorem 3. If T ≥ 3, then L(Â, Û) = 0 implies Â = A∗ and UtU
⊤
t = U∗

t U
∗
t
⊤ for all t ∈ [T ]

Theorem 3 guarantees that the ground truth parameters are the unique global minimum up to or-
thogonal symmetry when there are three or more tasks, regardless of the ambient dimension or the
number of columns k. This result is surprising, as most theoretical results for multi-task learning
require higher task diversity, typically where the number of tasks T is required to be larger than
the effective task dimension k (Du et al., 2021; Collins et al., 2022). However, we establish this
uniqueness result for the absolute condition T ≥ 3. This implies that exact test task fine-tuning can
be achieved with a rank k-adaptation.

Corollary 4. For any T ≥ 3, if L(Â, Û) = 0, then there exists a rank-k adapter UT+1V
⊤
T+1 where

UT+1,VT+1 ∈ Rd×k such that LTest(UT+1,VT+1 ; Â) = 0.

This follows directly from LTest(UT+1,VT+1 ;A∗) = 1
2

∥∥U∗
T+1U

∗⊤
T+1 −UT+1V

⊤
T+1

∥∥2
F

and
rank

(
U∗

T+1U
∗⊤
T+1

)
= k.

Proof sketch of Theorem 3. We again rely on the fact that a set of parameters that achieves zero loss
must satisfy U∗

t U
∗
t
⊤ − ÛtÛt

⊤
= U∗

sU
∗
s
⊤ − ÛsÛs

⊤
for all t, s ∈ [T ]. Then

U∗
1U

∗T
1 = Û1Û

T
1 +U∗

2U
∗T
2 − Û2Û

T
2 = Û1Û

T
1 +U∗

3U
∗T
3 − Û3Û

T
3 .

Since U∗
1U

∗T
1 ≽ 0, both im(Û2) ⊆ im(Û1) + im(U∗

2 ) and im(Û3) ⊆ im(Û1) + im(U∗
3 ). This

then implies that the image of Û1 is a subset of two key subspaces:

im(U∗
1 ) ⊆ im(Û1) + im(U∗

2 ) and im(U∗
1 ) ⊆ im(Û1) + im(U∗

3 ). (12)

We then make use of a key lemma to prove the result. The proof can be found in Appendix B.3.

Lemma 1. ([im(Û1)⊕ im(U∗
2 )] ∩ [im(Û1)⊕ im(U∗

3 )]) = im(Û1)

Combining Lemma 1 with (12) implies that im(Û1) = im(U∗
1 ). Then applying the same argument

for the other indices shows that im(Ût) = im(U∗
t ) for all t ∈ [T ]. Since U∗

t U
∗
t
⊤ − ÛtÛt

⊤
=

U∗
sU

∗
s
⊤−ÛsÛs

⊤
for all t, s ∈ [T ] and im(U∗

1 )∩im(U∗
2 ) = {0}, it follows that U∗

t U
∗
t
⊤ = ÛtÛt

⊤

for all t ∈ [T ]. Then since ∇AL(Â, Û) = 0, Â = A∗ + 1
T

∑T
t=1 U

∗
t U

∗
t
⊤ − ÛtÛt

⊤
= A∗.

The proof of Theorem 3 relies on the assumption that there are at least three training tasks. This is
necessary to some degree as if there are only two tasks, we can construct ground truth parameters
that have infinite solutions as in the example in Appendix D.1.

Summary. The previous two theorems show that for any T ≥ 1, the set of global minima of the meta
objective is always adaptable to the downstream task. Furthermore, if T ≥ 3, the global minima of
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the meta-objective are the unique ground truth parameters (A∗,U∗
t ) up to orthogonal symmetry of

Ut. In other words, minimizing (11) guarantees the recovery of the ground truth parameters.

3.2.2 ALGORITHMS FOR MINIMIZING (11)

The above results establish that minimizing the meta-objective (11) leads to recovery of the ground
truth parameters, with a small error term when T = 2. However, it is unclear if this minimization
problem can always be solved by local optimization methods.

Theorem 4. If T = 2, then L(Â, Û) = 0 if and only if (Â, Û) is a second order stationary point
(SOSP) of L.

Thus, local optimization algorithms for finding SOSPs, such as perturbed gradient descent and
cubic-regularized Newton method, can efficiently find the minima of the meta-learning objective.

Proof sketch. Clearly if L(Â, Û) = 0, then (Â, Û) is an SOSP. The reverse direction is the chal-
lenging part of the proof. We equivalently prove that if (Â, Û) is a critical point and L(Â, Û) ̸= 0,
then∇2L(Â, Û) has a negative eigenvalue.

Assume for the sake of contradiction that (Â, Û) is an SOSP and L(Â, Û) ̸= 0. Considering L as
a function of the flattened vector [vec(A); vec(U1); vec(U2)], the idea of the proof is to contradict
the assumption that∇2L ≽ 0.

Since ∇2
AL(Â, Û) = TI ≻ 0, we can work with the Schur complement Q =(

∇2L/∇2
AL
)
(Â, Û) as ∇2L(Â, Û) ≽ 0 if and only if Q ≽ 0. Inspection of the condition

∇L(Â, Û) = 0 along with the assumptions L(Â, Û) ̸= 0 and T = 2 gives three key properties:(
Û2Û

⊤
2 − Û1Û

⊤
1

)
x =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
x ∀x s.t.

(
Û2Û

⊤
2 − Û1Û

⊤
1

)
x ̸= 0 (13)

Û2Û
⊤
2 − Û1Û

⊤
1 ̸= U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤ (14)

dimker
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
> 0 (15)

Thus, there is an eigenvector z of U∗
2U

∗
2
⊤ − U∗

1U
∗
1
⊤ with eigenvalue λ ̸= 0 such that z ∈

ker(Û2Û
⊤
2 − Û1Û

⊤
1 ). Assume without loss of generality λ > 0, and consider α ∈ R2k. De-

fine g(· ; z) : R2k → R such that g(α; z) = (α⊗ z)
⊤
Q (α⊗ z), where α = [α1;α2] with

α1,α2 ∈ Rk. Then,

g (α; z) =
∥∥∥Û1α1 + Û2α2

∥∥∥2
2
+ λ

(
∥α1∥22 − ∥α2∥22

)
. (16)

We prove the existence of α ∈ R2k,x ∈ Rd such that g (α;x) < 0 considering two different cases.
Define N− : Sd → Z as the function that returns the number of negative eigenvalues of its input.

Case 1: N−(Û2Û
⊤
2 − Û1Û

⊤
1 ) < k: Then there exists z− ∈ Rd that is a λ−-eigenvector of

U∗
2U

∗T
2 −U∗

1U
∗T
1 , λ− < 0, where z ∈ ker

(
Û2Û

⊤
2 − Û1Û

⊤
1

)
. By (15), we can pick α such that

Û1α1 + Û2α2 = 0, α1,α2 ̸= 0. Then g(α; z) = −g(α; z−) = ∥α1∥22 − ∥α2∥22.

If ∥ᾱ1∥2 ̸= ∥ᾱ2∥2, min{g (α; z) , g(α; z−)} < 0. Else, g (ᾱ; z) = 0, but ∇α1g(ᾱ; z) =

Û⊤
1 (Û1ᾱ1 + Û2ᾱ2) − 2λᾱ2 = −2λᾱ2 ̸= 0. Thus there exists ᾱ in an infinitesimal neighbor-

hood around α where g(ᾱ ; z) < 0.

Case 2: N−(Û2Û
⊤
2 − Û1Û

⊤
1 ) = k: By (15), ∃Γ ∈ Ok such that Û2Γe1 ∈ (im(Û1) ∩ im(Û2)).

Define y = Û2Γe1. Then

k = N−(−Û1Û
⊤
1 ) ≥ N−(yy⊤ − Û1Û

⊤
1 ) ≥ N−(Û2Û

⊤
2 − Û1Û

⊤
1 ) = k.

Thus, N−(yy⊤− Û1Û
⊤
1 ) = k and rank(yy⊤− Û1Û

⊤
1 ) ≤ k, so yy⊤− Û1Û

⊤
1 ≼ 0. Take α such

that Û1α1 = −y and α2 = Γe1. Then y1y
⊤
1 − Û1Û

⊤
1 = Û1(α1α

⊤
1 − I)Û⊤

1 ≼ 0. Therefore
∥α1∥2 ≤ 1. Then g(α; z) = ∥Û1α1 + Û2α2∥22 + λ(∥α1∥22 − ∥α2∥22) = λ(∥α1∥22 − 1) ≤ 0.
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If g(α; z) < 0 we are done. Else, the same analysis from Case 1 will show that ∇g(ᾱ; z) ̸= 0, so
there exists ᾱ in an infinitesimal neighborhood around α where g(ᾱ ; z) < 0.

Summary. We have shown that when T = 2, any optimization algorithm for finding an SOSP
will find a global minimum of the meta-objective (11). Surprisingly, when there are three or more
tasks, numerical experiments (see Appendix D.2) show that adversarially picking U∗

t can result in
specific instantiations of (11) with spurious local minima. In the next section, we perform extensive
numerical experiments for various values of T which show that these spurious minima are almost
never found in practice and vanilla gradient descent is sufficient to minimize (11).

4 EXPERIMENTS

4.1 LINEAR EXPERIMENTS

To test our algorithm, we perform experiments on a synthetic dataset. We generate A∗ ∈ Rd×d

and U∗
t ∈ Rd×k for all tasks t ∈ [T + 1], where the entries of A∗ and each U∗

t are i.i.d.
N (0, 1) random variables. Then we generate N

T samples for each retraining task t ∈ [T ] as
yt,j = (A∗ + U∗

t U
∗
t
⊤)xt,j + ϵt,j , j ∈ [NT ] and N ′ samples for the held-out task as as yT+1,j =

(A∗ +U∗
T+1U

∗⊤
T+1)xT+1,j + ϵT+1,j , j ∈ [N ′], where xt,j ∼ N (0, Id) and ϵt,j ∼ N (0, σ2

ϵId) are
i.i.d. feature and noise vectors respectively.

We apply gradient descent to the Meta-LoRA and standard retraining objectives on the T retraining
tasks and then fine-tune to the (T +1)-th task using LoRA. We use symmetric adapters for the Meta-
LoRA retraining objective and asymmetric adapters during fine-tuning for each retraining method.
We conduct experiments by varying one hyperparameter at a time from the fixed values of d =
10, T = 3, N = 5000, N ′ = 100, k = 1 and σ = 0.1. When T = 2, we use a rank-3 adaptation
during fine-tuning and use a rank-1 adaptation otherwise for both retraining schemes.

We plot the population loss on the test task after training and fine-tuning with Meta-LoRA and
SR+LoRA, respectively, in Figure 1. Meta-LoRA significantly outperforms SR+LoRA for all data
generation parameter settings. We observe from Figure 1b that with more retraining data, Meta-
LoRA performance first improves and then stagnates because of the finite sample noise floor during
the fine-tuning stage. We observe a similar phenomenon in Figure 1c. Figure 1d shows that the
performance of Meta-LoRA improves for T > 2 relative to T = 2 but is agnostic to T once in the
T > 2 regime. Lastly, Figure 1a shows how performance worsens with increasing dimension.

4.2 LLM EXPERIMENTS

To test the Meta-LoRA objective beyond linear models, we perform experiments using the pre-
trained 355 million parameter RoBERTa-Large model on the ConvAI2 dataset. ConvAI2 consists
of conversations between two personas, i.e. people with different personalities. Each persona is
associated with a short list of factual information that guides the content of their responses. We
model learning the dialogue continuations of each individual persona as a different task. A training
sample for a given persona consists of the previous conversation as input and 20 candidate dialogue
continuations, where one of the 20 candidates is the true continuation. We consider the supervised
learning task of selecting the correct continuation. During training, we maximize the log-likelihood
of the correct continuation and minimize the log-likelihood of each of the incorrect continuations
conditioned on the observed conversation history. To run inference given the past conversation and
the 20 possible continuations, we select the continuation with the highest conditional likelihood.

For both the standard retraining and Meta-LoRA objectives, we retrain the model using the T = 10
largest retraining tasks, with an average of 117.4 training samples and 36.5 heldout samples per
retraining task. We select the model from the epoch with the best average accuracy on the heldout
samples and then fine-tune to each of the 10 largest test tasks. For each test task, we take the accuracy
on the heldout data from the best performing epoch. We run 5 random trials for this entire retraining
and fine-tuning process and report the median best heldout accuracy for each task. All training was
done on a single Nvidia A40 GPU, and we report our training hyperparameters in Appendix C.

We compare performance across the test tasks in Table 1. We first minimize the Meta-LoRA objec-
tive using rank-8 adapters on the retraining tasks and denote this model Meta-LoRA-8. In Table 1a,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Varying dimension (b) Varying number of samples for retraining

(c) Varying number of samples for finetuning (d) Varying number of tasks

Figure 1: Evaluating the linear Meta-LoRA algorithm in different settings.

we show this improves performance over standard retraining followed by rank-8 LoRA on the test
test, denoted SR+LoRA. As suggested by Theorem 2, we test if we can improve performance by
increasing the LoRA rank during fine-tuning relative to the rank of the adapters in retraining with
Meta-LoRA. Table 1b shows that the retrained Meta-LoRA-8 model fine-tuned with rank-16 adapta-
tions outperforms both standard retraining followed by rank-16 LoRA as well as the Meta-LoRA-16
model which was retrained and fine-tuned with rank-16 adaptations.

Table 1: Comparison of Meta-LoRA and the SRT+LoRA algorithms on the ConvAI2 dataset

(a) Rank-8 fine-tuning adaptations

Algorithm Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Average
SR+LoRA 43.75 40.00 43.48 41.94 41.03 37.23 42.73 43.20 41.13 40.76 41.52
Meta-LoRA-8 50.00 50.00 47.82 48.39 46.15 41.49 44.55 44.00 42.55 42.68 45.76

(b) Rank-16 fine-tuning adaptations

Algorithm Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Average
SR+LoRA 43.75 43.33 39.13 38.71 39.74 35.11 38.18 39.20 39.72 38.85 39.57
Meta-LoRA-8 50.0 53.33 50.0 50.0 48.72 42.55 45.45 44.80 45.39 44.59 47.48
Meta-LoRA-16 43.75 33.33 36.96 40.32 43.59 39.36 42.73 41.60 40.43 40.13 40.22

5 CONCLUSION

We introduced the Meta-Adapters objective function for retraining an FM on a collection of tasks
in a way that prepares the model for subsequent downstream fine-tuning. We provide theoretical
justifications on the shortcomings of standard retraining as well as where the Meta-Adapters objec-
tive using LoRA (Meta-LoRA) can provably improve performance. Empirically, our Meta-LoRA
objective outperforms standard retraining for adapting to unseen downstream tasks. Future avenues
include extending our theoretical analysis to finite sample settings and to more general adapters.
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A RELATED WORK ON LORA-STYLE PEFT

There is a vast amount of work in developing PEFT methods for FMs. The LoRA algorithm (Hu
et al., 2021) has established itself as a popular and successful PEFT strategy and has inspired various
extensions such as QLoRA, DoRA, and others (Dettmers et al., 2023; Liu et al., 2024; Zhang et al.,
2023). These algorithms are heuristics for mimicking the full finetuning of an FM to a specific
downstream task and have proven to be empirically successful in various settings. However, there is
a lack of theoretical analysis on the adaptability of PFMs under LoRA-style adaptations, the ability
to efficiently optimize LoRA-style objectives, and the kinds of solutions they recover. Some recent
works have attempted to analyze different parts of these theoretical questions.

Convergence of LoRA. (Jang et al., 2024) analyzes the optimization landscape for LoRA for the
Neural Tangent Kernel regime. The authors show that LoRA finetuning converges in this setting
as they prove that the objective function satisfies a strict saddle property, ensuring that there are
no spurious local minima. However, this focuses on the actual ability of LoRA to converge to the
optimal low-rank adapter given an FM, and does not consider the adaptability of the FM in the first
place.

Expressivity of LoRA. (Zeng & Lee, 2023) derives the expressive power of LoRA as a function of
model depth. This work shows that under some mild conditions, fully connected and transformer
networks when respectively adapted with LoRA can closely approximate arbitrary smaller networks.
They quantify the required LoRA rank to achieve this approximation as well as the resulting approx-
imation error.

B PROOFS

B.1 PROOF OF THEOREM 1 AND COROLLARIES 1,2

By definition,

ÂSR = argmin
A

1

2

T∑
t=1

∥∥∥A∗ +U∗
t U

∗
t
⊤ −A

∥∥∥2
F

This optimization problem is just a quadratic function of A, so we can simply solve for the point at
which the gradient is 0. Thus, ÂSR must satisfy:

T∑
t=1

(
A∗ +U∗

t U
∗
t
⊤ − ÂSR

)
= 0

Thus,

ÂSR = A∗ +
1

T

T∑
t=1

U∗
t U

∗
t
⊤

Therefore, rank
(
ÂSR −A∗

)
= rank

(
1
T

∑T
t=1 U

∗
t U

∗
t
⊤
)
= kT . Further,

LTest(UT+1,VT+1 ; ÂSR) =
1

2

∥∥∥A∗ +U∗
T+1U

∗⊤
T+1 − ÂSR −UT+1V

⊤
T+1

∥∥∥2
F

=
1

2

∥∥∥∥∥U∗
T+1U

∗⊤
T+1 −

1

T

T∑
t=1

U∗
t U

∗
t
⊤ −UT+1V

⊤
T+1

∥∥∥∥∥
2

F

≈ 1

2

∥∥U∗
T+1U

∗⊤
T+1 − kI −UT+1V

⊤
T+1

∥∥2
F

for large T

U∗
T+1U

∗⊤
T+1 − kI has d− k eigenvalues of magnitude k, and the rank-k′ factorization UT+1V

⊤
T+1

can only capture k′ of them, so U∗
T+1U

∗⊤
T+1 − kI −UT+1V

⊤
T+1 has at least d− k′ − k eigenvalues

of magnitude k. Thus, LTest(UT+1,VT+1 ; ÂSR) scales as (d−k′−k)k2 ≈ (d−k′)k2 since k ≪ d.
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B.2 PROOF OF THEOREM 2

Proof. Since L(Â, Û) = 0 and L ≥ 0 we must have that∇AL = 0.

Thus, Â = A∗ − 1
T

∑T
j=1

(
ÛjÛj

⊤
−U∗

j U
∗
j
⊤
)

. Plugging this into L gives

0 = L(Â, Û) =
1

2

T∑
t=1

∥∥∥∥∥A∗ +U∗
t U

∗
t
⊤ −

(
A∗ − 1

T

T∑
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
))
−UtU

⊤
t

∥∥∥∥∥
2

F

=
1

2

T∑
t=1

∥∥∥∥∥U∗
t U

∗
t
⊤ −UtU

⊤
t −

1

T

T∑
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
)∥∥∥∥∥

2

F

.

Thus each term of the summation is zero, so for all t, s ∈ [T ],

ÛtÛ
T
t −U∗

t U
∗T
t = ÛsÛ

T
s −U∗

sU
∗T
s .

Combining these results gives that

Â = A∗ − 1

T

T∑
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
)

= A∗ −
(
Û1Û

⊤
1 −U∗

1U
∗⊤
1

)
Let C = −

(
Û1Û

⊤
1 −U∗

1U
∗⊤
1

)
. Then Â = A∗ + C and rank(C) ≤ rank(Û1Û

⊤
1 ) +

rank(U∗
1U

∗⊤
1 ) ≤ 2k

B.3 PROOF OF THEOREM 3

Proof. Since L(Â, Û) = 0, we have that for all t, s ∈ [T ],

ÛtÛ
T
t −U∗

t U
∗T
t = ÛsÛ

T
s −U∗

sU
∗T
s (17)

Applying this to the first three tasks and rearranging gives that

U∗
1U

∗T
1 = Û1Û

T
1 +U∗

2U
∗T
2 − Û2Û

T
2 (18)

= Û1Û
T
1 +U∗

3U
∗T
3 − Û3Û

T
3 . (19)

We first show that im(Û1) = im(U∗
1 ).

Since U∗
1U

∗T
1 ≽ 0, we must have that im(Û2) ⊆ im(Û1) + im(U∗

2 ) and im(Û3) ⊆ im(Û1) +

im(U∗
3 ), as otherwise there would exist a vector on ker

(
Û1Û

T
1 +U∗

2U
∗T
2

)
∩ker(Û2Û

T
2 )⊥ whose

existence contradicts the positive semi-definiteness of U∗
1U

∗T
1 .

Thus,

im(U∗
1 ) ⊆ im(Û1) + im(U∗

2 ) (20)

im(U∗
1 ) ⊆ im(Û1) + im(U∗

3 ) (21)

Using that fact that for subspaces X,Y ,Z, X ⊆ Y =⇒ X +Z ⊆ Y +Z, we can add im(U∗
2 )

and im(U∗
3 ) to both sides of 20 and 21 respectively. This gives that

im(U∗
1 )⊕ im(U∗

2 ) ⊆ im(Û1) + im(U∗
2 ) (22)

im(U∗
1 )⊕ im(U∗

3 ) ⊆ im(Û1) + im(U∗
3 ). (23)
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For t ∈ {2, 3}, we clearly have that dim
(
im(Û1) + im(U∗

t )
)
≤ dim im(Û1)+dim im(U∗

t ) ≤ 2k,
and dim (im(U∗

1 ) + im(U∗
t )) = 2k. Thus,

(im(U∗
1 )⊕ im(U∗

2 )) =
(
im(Û1)⊕ im(U∗

2 )
)

(24)

(im(U∗
1 )⊕ im(U∗

3 )) =
(
im(Û1)⊕ im(U∗

3 )
)

(25)

Lemma 2.
(
[im(Û1)⊕ im(U∗

2 )] ∩ [im(Û1)⊕ im(U∗
3 )]
)
= im(Û1)

Proof. Clearly, im(Û1) ⊆
(
[im(Û1)⊕ im(U∗

2 )] ∩ [im(Û1)⊕ im(U∗
3 )]
)

. To show the converse,

consider x ∈
(
[im(Û1)⊕ im(U∗

2 )] ∩ [im(Û1)⊕ im(U∗
3 )]
)

.

By assumption there exists some a, b, c,d ∈ Rk such that

x = Û1a+U∗
2 b (26)

= Û1c+U∗
3d (27)

Thus,
Û1(a− c) +U∗

2 b−U∗
3d = 0. (28)

By Equation 24, we can write

im(U∗
2 ) = ([im(U∗

1 )⊕ im(U∗
2 )] ∩ [im(U∗

2 )⊕ im(U∗
3 )])

=
(
[im(Û1)⊕ im(U∗

2 )] ∩ [im(U∗
2 )⊕ im(U∗

3 )]
)

Thus, im(Û1) ∩ [im(U∗
2 )⊕ im(U∗

3 )] ⊆ im(Û1) ∩ im(U∗
2 ) = {0}, so

im(Û1) ∩ [im(U∗
2 )⊕ im(U∗

3 )] = {0} (29)

Applying Equation (29) to Equation (28) implies that a = c and b = d = 0. Thus x = Û1a ∈
im(Û1), so

(
[im(Û1)⊕ im(U∗

2 )] ∩ [im(Û1)⊕ im(U∗
3 )]
)
⊆ im(Û1).

Then Equations (20) and (21) combined with Lemma (2) implies that im(U∗
1 ) ⊆ im(Û1) but

dim(im(U∗
1 )) = dim(im(Û1)) = k, so im(U∗

1 ) = im(Û1).

Since the initial assumptions about Û1 and U∗
1 analogously hold for the corresponding matrices for

tasks 2 and 3, by the exact same argument we can show that

im(U∗
t ) = im(Ût) ∀t ∈ [T ]. (30)

Then by equation (17), im(U∗
1 ) ⊇ im

(
Û1Û

T
1 −U∗

1U
∗T
1

)
= im

(
Û2Û

T
2 −U∗

2U
∗T
2

)
⊆ im(U∗

2 ).
Thus,

im
(
Û1Û

T
1 −U∗

1U
∗T
1

)
⊆ im(U∗

1 ) ∩ im(U∗
2 )

= {0}.

Thus Û1Û
T
1 = U∗

1U
∗T
1 . Then by Equation (17), ÛtÛ

T
t = U∗

t U
∗T
t for all t ∈ [T ]. Lastly, since

L(Â, Û) = 0, we have that∇AL(Â, Û) = 0, so

Â = A∗ +
1

T

T∑
t=1

U∗
t U

∗
t
⊤ −UtU

⊤
t = A∗
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B.4 PROOF OF THEOREM 4

Clearly if L(Â, Û) = 0, then (Â, Û) is an SOSP. The reverse direction is the challenging part of the
proof. We equivalently prove that if (Â, Û) is a critical point and L(Â, Û) ̸= 0, then ∇2L(Â, Û)
has a negative eigenvalue.

Assume for the sake of contradiction that (Â, Û) is a critical point and L(Â, Û) ̸= 0. Then,

∇AL(Â, Û) = T (Â−A∗) +

T∑
t=1

(
ÛtÛt

⊤
−U∗

t U
∗
t
⊤
)
= 0 (31)

∇UtL(Â, Û) = 2
(
Â−A∗ + ÛtÛt

⊤
−U∗

t U
∗
t
⊤
)
Ût = 0 (32)

Thus,

Â = A∗ − 1

T

T∑
t=1

(
ÛtÛt

⊤
−U∗

t U
∗
t
⊤
)
. (33)

Define Bt(Û) = ÛtÛt
⊤
−U∗

t U
∗
t
⊤− 1

T

∑T
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
)

. Despite being a slight abuse

of notation, we refer to Bt(Û) as just Bt for the remainder of the proof.

Then (32) equivalently states:
BtÛt = 0. (34)

Note that by construction,
∑T

t=1 Bt = 0.

Considering L as a function of the flattened vector [vec(A); vec(U1); vec(U2)], and let U1 =
[x1 . . . xk], U2 = [y1 . . . yk], we compute the Hessian

∇2L =

 ∇2
AL ∇U1

∇AL ∇U2
∇AL

(∇U1
∇AL)⊤ ∇2

U1
L 0

(∇U2∇AL)⊤ 0 ∇2
U2
L

 (35)

where

∇2
AL = 2Id2

∇U1∇AL = [(x1 ⊕ x1) . . . (xk ⊕ xk)] ∈ Rd2×dk

∇U2∇AL = [(y1 ⊕ y1) . . . (yk ⊕ yk)] ∈ Rd2×dk

∇2
U1
L = 2(A+U1U

⊤
1 −A∗ −U∗

1U
∗
1
⊤)⊗ Ik

+ 2


x1x

⊤
1 + ∥x1∥22 I x⊤

1 x2I + x2x
⊤
1 . . . x⊤

1 xkI + xkx
⊤
1

x⊤
2 x1I + x1x

⊤
2 x2x

⊤
2 + ∥x2∥22 I . . . x⊤

2 xkI + xkx
⊤
2

...
...

. . .
...

x⊤
k x1I + x1x

⊤
k . . . . . . xkx

⊤
k + ∥xk∥22 I


∇2

U2
L = 2(A+U2U

⊤
2 −A∗ −U∗

2U
∗
2
⊤)⊗ Ik

+ 2


y1y

⊤
1 + ∥y1∥22 I y⊤

1 y2I + y2y
⊤
1 . . . y⊤

1 ykI + yky
⊤
1

y⊤
2 y1I + y1y

⊤
2 y2y

⊤
2 + ∥y2∥22 I . . . y⊤

2 ykI + yky
⊤
2

...
...

. . .
...

y⊤
k y1I + y1y

⊤
k . . . . . . yky

⊤
k + ∥yk∥22 I



Note that ⊕ denotes the Kronecker sum defined as X ⊕ Y = I ⊗ X + Y ⊗ I where ⊗ is the
Kronecker product.
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Lemma 3. L(Â, Û) = 0 if and only if Bt = 0 for each t ∈ [T ].

Proof. Since (Â, Û) is a critical point, then plugging Equation (33) into the definition of L gives
that

L(Â, Û) =
1

2

T∑
t=1

∥Bt∥2F .

Thus L(Â, Û) = 0 if and only if Bt = 0 ∀t.

Lemma 4. If ∇2
UL(Â, Û) ≽ 0, then the eigenvectors corresponding to the non-zero eigenvalues

of ÛtÛt
⊤

are the leading non-negative eigenvectors of A∗ +U∗
t U

∗
t
⊤ − Â for all t ∈ [T ].

Proof. Consider the function f̄t(Ut; Â) = 1
2

∥∥∥A∗ +U∗
t U

∗
t
⊤ − Â−UtU

⊤
t

∥∥∥2
F

. f̄t is simply the

tth summand in L where A = Â is fixed and we only consider the variable Ut. Minimising f̄t is
identical to the problem of symmetric matrix factorization.

Using well-known properties of symmetric matrix factorization, since ∇f̄t(Ût) = 0, we must have
that Ût = VtΓ where the columns of Vt are the properly scaled eigenvectors of A∗ +U∗

t U
∗
t
⊤− Â

with non-negative eigenvalues where each column has norm equal to the square root of its corre-
sponding eigenvalue, and Γ ∈ Ok is some orthogonal matrix. Further, if the eigenvectors cor-
responding to the non-zero eigenvalues of ÛtÛt

⊤
are not the leading non-negative eigenvectors,

then ∇2f̄t(Û) ̸≽ 0 by (Zhang et al., 2020). Since ∇2f̄t(Ût) is a diagonal block of ∇2L(Â, Û),
∇2f̄i(Ût) ̸≽ 0 would imply∇2L(Â, Û) ̸≽ 0.

Remark 2. Without loss of generality, we can assume that the eigenvectors corresponding to the

non-zero eigenvalues of ÛtÛt
⊤

are the leading non-negative eigenvectors of A∗ + U∗
t U

∗
t
⊤ − Â

for all i.

Lemma 5.
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
x =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
x for all x ∈ im(Û1) + im(Û2).

Proof. Recall B1 = 1
2

(
Û1Û

⊤
1 −U∗

1U
∗
1
⊤ − Û2Û

⊤
2 +U∗

2U
∗
2
⊤
)

. Then applying first-order sta-
tionarity and the fact that B2 = −B1, we have(

Û2Û
⊤
2 − Û1Û

⊤
1

)
Û1 =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
Û1(

Û2Û
⊤
2 − Û1Û

⊤
1

)
Û2 =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
Û2.

Corollary 5. Û2Û
⊤
2 − Û1Û

⊤
1 and U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤ share an eigenbasis.

Proof. Using the lemma, any non-zero eigenvector-eigenvalue pair of Û2Û
⊤
2 − Û1Û

⊤
1 is also an

eigenvector-eigenvalue pair of U∗
2U

∗
2
⊤ − U∗

1U
∗
1
⊤. Denote the space defined by the span of these

eigenvectors as S. Then all other eigenvectors of U∗
2U

∗
2
⊤ −U∗

1U
∗
1
⊤ are orthogonal to S, so they

are also 0-eigenvectors of Û2Û
⊤
2 − Û1Û

⊤
1 . Thus the two matrices share an eigenbasis.

Corollary 6. dim
(
im Û1 + im Û2

)
≤ 2k−1, i.e., the set of columns of Û1 and Û2 are not linearly

independent.

Proof. Assume for contradiction that the vectors in the set S = {Û1ei | i = 1, . . . , k} ∪ {Û2ei |
i = 1, . . . , k} are linearly independent, where ei is the ith standard basis vector in Rk.

Then note that
(
Û1Û

⊤
1 − Û2Û

⊤
2

)
x ̸= 0 and

(
U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤
)
x ̸= 0 for all x ∈ S. By

Lemma (5), Û1Û
⊤
1 − Û2Û

⊤
2 and U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤ agree for each vector on the 2k-dimensional
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space span(S). But, both rank(Û1Û
⊤
1 −Û2Û

⊤
2 ), rank(U∗

1U
∗
1
⊤−U∗

2U
∗
2
⊤) ≤ 2k by construction.

Then by dimension counting, Û1Û
⊤
1 − Û2Û

⊤
2 and U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤ must send span{S}⊥ to 0.

Thus, Û1Û
⊤
1 − Û2Û

⊤
2 and U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤ agree on the entire basis formed by concatenating

basis vectors of span{S}⊥ with those of span(S). This implies that Û1Û
⊤
1 − Û2Û

⊤
2 = U∗

1U
∗
1
⊤−

U∗
2U

∗
2
⊤ and thus B1 = Û1Û

⊤
1 − Û2Û

⊤
2 −U∗

1U
∗
1
⊤ +U∗

2U
∗
2
⊤ = 0. Then B2 = −B1 = 0 so by

Lemma 3, L(Â, Û) = 0 which is a contradiction.

Lemma 6. U∗
2U

∗
2
⊤ −U∗

1U
∗
1
⊤ has exactly k positive and k negative eigenvalues.

Proof. First, note that U∗
2U

∗
2
⊤ has exactly k positive eigenvalues and k− d eigenvalues of 0. Then

U∗
2U

∗
2
⊤ − (U∗

1 e1)(U
∗
1 e1)

⊤ has rank k + 1 because of the linear independence of the columns of
the combined set of columns U∗

1 and U∗
2 . Further, since we subtract (U∗

1 e1)(U
∗
1 e1)

⊤, we must
be accumulating an additional negative eigenvalue relative to U∗

2U
∗
2
⊤. Continuing this process

shows that subtracting (U∗
1 ej+1)(U

∗
1 ej+1)

⊤ from U∗
2U

∗
2
⊤ −

∑j
t=1(U

∗
1 ei)(U

∗
1 ei)

⊤ contributes
exactly one more negative eigenvalue, since U∗

1 ej+1 can never be written as a linear combination
of {U∗

1 e1, . . .U
∗
1 ek,U

∗
2 e1, . . .U

∗
2 ej} for 0 < j < k. The result then follows from induction.

Lemma 7. rank(Û1) = rank(Û2) = k.

Proof. Assume for contradiction that rank(Û1) = m < k without loss of generality. Since by
Remark (2) we assume the columns of Û1 are the leading k non-negative eigenvectors of A∗ +

U∗
1U

∗
1
⊤ − Â = Û1Û

⊤
1 −B1, this must imply that A∗ +U∗

1U
∗
1
⊤ − Â− Û1Û

⊤
1 = −B1 ≼ 0.

Plugging in the definition of B1 gives that 1
2

(
Û1Û

⊤
1 −U∗

1U
∗
1
⊤ − Û2Û

⊤
2 +U∗

2U
∗
2
⊤
)
≽ 0. Thus,

Û1Û
⊤
1 ≽ U∗

1U
∗
1
⊤ + Û2Û

⊤
2 − U∗

2U
∗
2
⊤ ≽ U∗

1U
∗
1
⊤ − U∗

2U
∗
2
⊤. This contradicts the fact from

Lemma (6) that U∗
1U

∗
1
⊤ −U∗

2U
∗
2
⊤ has k positive eigenvalues.

With this lemma, we will prove the existence of a direction of∇2L with negative curvature. Instead
of directly working with this matrix, we instead use the Schur complement to work with a different
form.
Theorem 5. (Schur Complement) Since ∇2

AL(Â, Û) = 2I ≻ 0, ∇2L(Â, Û) ≽ 0 if and only if

∇2
UL(Â, Û)−

(
∇A∇UL(Â, Û)

)(
∇2

AL(Â, Û)
)−1 (

∇U∇AL(Â, Û)
)
≽ 0.

Define Q = ∇2
UL(Â, Û)−

(
∇A∇UL(Â, Û)

)(
∇2

AL(Â, Û)
)−1 (

∇U∇AL(Â, Û)
)

.

For example, when k = 2 and letting U1 = [x1 x2], U2 = [y1 y2], we have

Q =

[
Q11 Q12

Q⊤
12 Q22

]
,

where

Q11 =

[
2B1 + x1x

⊤
1 + ∥x1∥22 x⊤

1 x2I + x2x
⊤
1

x⊤
2 x1I + x1x

⊤
2 2B1 + x2x

⊤
2 + ∥x2∥22

]

Q12 =

[
−x⊤

1 y1I − y1x
⊤
1 −x⊤

1 y2I − y2x
⊤
1

−x⊤
2 y1I − y1x

⊤
2 x⊤

2 y2I − y2x
⊤
2

]

Q22 =

[
2B2 + y1y

⊤
1 + ∥y1∥22 y⊤

1 y2I + y2y
⊤
1

y⊤
2 y1I + y1y

⊤
2 2B2 + y2y

⊤
2 + ∥y2∥22

]
For brevity, we do not include the full form of Q for general k. However, we can make an easy
simplification that will allow for a much cleaner expression.
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Using Corollaries (5) and (6), there is an eigenvector z of U∗
2U

∗
2
⊤ − U∗

1U
∗
1
⊤ with eigenvalue

λ ̸= 0 such that z ∈ ker
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
. Assume without loss of generality that λ > 0,

and consider α ∈ R2k. Define the function g(· ; z) : R2k → R parameterized by z such that
g(α; z) = (α⊗ z)

⊤
Q (α⊗ z), where we partition α = [α1;α2], α1,α2 ∈ Rk. Then after some

algebra,

g (α; z) =
∥∥∥Û1α1 + Û2α2

∥∥∥2
2
+ λ

(
∥α1∥22 − ∥α2∥22

)
. (36)

We prove the existence of α ∈ R2k,x ∈ Rd such that g (α;x) < 0 considering two different cases.
Define N− : Sd → Z as the function that returns the number of negative eigenvalues of its input.

Case 1: N−
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
< k.

Using Corollary (6), we can pick α such that Û1α1 + Û2α2 = 0, α1,α2 ̸= 0.

Because N−
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
< k, N− (U∗

2U
∗⊤
2 −U∗

1U
∗⊤
1

)
= k, and Û2Û

⊤
2 − Û1Û

⊤
1 and

U∗
2U

∗⊤
2 −U∗

1U
∗⊤
1 share an eigenbasis by Corollary 5, there exists z− ∈ Rd that is a λ−-eigenvector

of U∗
2U

∗T
2 −U∗

1U
∗T
1 , λ− < 0, where z ∈ ker

(
Û2Û

⊤
2 − Û1Û

⊤
1

)
Then for the same choice of α,

sign (g (α; z)) = sign
(
∥α1∥22 − ∥α2∥22

)
sign

(
g
(
α; z−)) = sign

(
∥α2∥22 − ∥α1∥22

)
.

Then if ∥α1∥2 ̸= ∥α2∥2, one of the above expressions is negative and thus Q has a negative
eigenvalue. This then implies∇2L(Â, Û) ̸≽ 0.

Otherwise ∥α1∥2 = ∥α2∥2. Then g (α; z) = 0, but ∇α1
g(α; z) = Û⊤

1

(
Û1ᾱ1 + Û2α2

)
−

2λα2 = −2λα2 ̸= 0. Thus g(α; z) = 0 and ∇g(α; z) ̸= 0 so there exists ᾱ in an infinitesimal
neighborhood around α where g(ᾱ ; z) < 0. Thus Q has a negative eigenvalue so∇2L(Â, Û) ̸≽ 0.

Case 2: N−
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
= k.

Define m = dim
(
im(Û1) ∩ im(Û2)

)
. By Corollary 6, m ≥ 1, so we can select orthogonal matrix

Γ ∈ Ok such that Û2Γe1 ∈
(
im(Û1) ∩ im(Û2)

)
. Define y = Û2Γe1.

Clearly for any B ∈ Sd and R ∈ S+
d , N−(B) ≥ N−(B +R). Then since N−

(
−Û1Û

⊤
1

)
= k

by Lemma (7), we have that

k = N−(−Û1Û
⊤
1 ) ≥ N−(yy⊤ − Û1Û

⊤
1 ) = N−

((
Û2Γe1

)(
Û2Γe1

)⊤
− Û1Û

⊤
1

)
≥ N−

((
Û2Γ

)(
Û2Γ

)⊤
− Û1Û

⊤
1

)
= N−

(
Û2Û

⊤
2 − Û1Û

⊤
1

)
= k,

Thus, N−(yy⊤ − Û1Û
⊤
1 ) = k. But, since y ∈ im(Û1), rank

(
yy⊤ − Û1Û

⊤
1

)
= k. Thus,

yy⊤ − Û1Û
⊤
1 ≼ 0. (37)

Take α such that Û1α1 = −y and α2 = Γe1. Then

y1y
⊤
1 − Û1Û

⊤
1 =

(
Û1α

)(
Û1α

)⊤
− Û1Û

⊤
1 (38)

= Û1

(
α1α

⊤
1 − I

)
Û⊤

1 ≼ 0. (39)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore ∥α1∥2 ≤ 1.

Then g (α; z) =
∥∥∥Û1α1 + Û2α2

∥∥∥2
2
+ λ

(
∥α1∥22 − ∥α2∥22

)
= λ

(
∥α1∥22 − 1

)
≤ 0.

If g (α; z) < 0, then we are done. Otherwise, g (α; z) = 0. Then the same analysis from Case 1
will show that ∇g(α; z) ̸= 0, so there exists ᾱ in an infinitesimal neighborhood around α where
g(ᾱ ; z) is strictly negative. This then implies our desired result.

B.5 DERIVATION OF EQUATION (6)

Recall our generative model x ∼ N (0, σ2
xI), ϵ ∼ N (0, σ2

ϵI), and y = A∗
tx + ϵ, where x and ϵ

are independent. Then,

2E[L1
t (At)] = E

[
∥y −Atx∥22

]
= E

[
∥A∗

tx+ ϵ−Atx∥22
]

= E
[
∥(A∗

t −At)x+ ϵ∥22
]

= E
[(
∥(A∗

t −At)x∥22 + ∥ϵ∥
2
2 + 2ϵ⊤(A∗

t −At)x
)]

= E
[
x⊤(A∗

t −At)
⊤(A∗

t −At)x
]
+ E

[
∥ϵ∥22

]
+ 2E

[
ϵ⊤(A∗

t −At)x
]

= E
[
tr
(
x⊤(A∗

t −At)
⊤(A∗

t −At)x
)]

+ σ2
ϵ + 2E [ϵ]

⊤
(A∗

t −At)E [x] (ϵ, x are independent)

= E
[
tr
(
(A∗

t −At)
⊤(A∗

t −At)xx
⊤)]+ σ2

ϵ (by cyclic property of trace and since E[x] = 0)

= tr
(
(A∗

t −At)
⊤(A∗

t −At)E
[
xx⊤])+ σ2

ϵ

= σ2
x tr

(
(A∗

t −At)
⊤(A∗

t −At)
)
+ σ2

ϵ

= σ2
x ∥A∗

t −At∥2F + σ2
ϵ

Thus, E[L1
t (At)] =

1
2

(
σ2
x ∥A∗

t −At∥2F + σ2
ϵ

)
. Then E[LN

t (At)] = E[L1
t (At)] by linearity of

expectation, so
1

2

∥∥∥A∗ +U∗
t U

∗
t
⊤ −At

∥∥∥2
F
=

1

σ2
x

(
E
[
LN
t (At)

]
− σ2

ϵ

2

)
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C LLM TRAINING HYPERPARAMETERS

Hyperparameter Standard Retraining Meta-LoRA-8 Meta-LoRA-16
Learning Rate 5e-5 3e-5 5e-5

Learning Rate Schedule Linear Linear Linear
Batch Size 6 4 4

Epochs 30 30 30
Optimizer AdamW AdamW AdamW

LoRA Rank N/A 8 16
LoRA Dropout N/A 0.1 .1
LoRA Alpha N/A 16 16

Table 2: Retraining Hyperparameters

Hyperparameter Rank-k LoRA Fine-Tuning
Learning Rate 3e-5

Learning Rate Schedule Linear
Batch Size 6

Epochs 30
Optimizer AdamW

LoRA Rank k
LoRA Dropout .1
LoRA Alpha 16

Table 3: Rank-k LoRA Fine-Tuning Hyperparameters, k ∈ {8, 16}

C.1 NOTE ON NUMBER OF TRAINABLE PARAMETERS

For simplicity assume our model architecture consisted of m layers, where each layer was parame-
terized by a d×d matrix, and we use rank-k adaptations for each layer for our Meta-LoRA objective,
where k ≪ d. Then the standard retraining method uses md2 trainable parameters, while minimiz-
ing the Meta-LoRA objective uses m(d2 + 2kdT ) trainable parameters. Although Meta-LoRA
uses some additional parameters, since k is small relative to d and we work in the setting where
k(T + 1) < d, asymptotically m(d2 + 2kdT ) = O(md2) so the increase in trainable parameters is
minor. After running either of these retraining procedures, the fine-tuning stages are identical and
require the same number of trainable parameters no matter which retraining procedure was run.

D THEORY NOTES

D.1 NON-UNIQUENESS OF GLOBAL MIN FOR T = 2

Consider T = 2, k = 1, d = 2, A∗ = 0, and u∗
t = et for t = 1, 2, where et is the tth standard basis

vector. Clearly the ground truth perturbations u∗
i are orthonormal and thus linearly independent.

The set of global minima of L are (A,U) such that A = 1
T

∑T
t=1

(
u∗
tu

∗
t
⊤ − utu

⊤
t

)
and utu

⊤
t −

u∗
tu

∗
t
⊤ − 1

T

∑T
s=1

(
usu

⊤
s − u∗

su
∗
s
⊤
)

= 0. It is not hard to see that a global minimum follows

from any set values of u1,u2 such that u1u
⊤
1 −u2u

⊤
2 =

[
1 0
0 −1

]
. When properly parameterized,

this system of equations defines a hyperbola where each point corresponds to a global minimum of
L.

D.2 SPURIOUS LOCAL MINIMA

We observe that for T ≥ 3, for certain tasks U∗ = (U∗
1 ,U

∗
2 ,U

∗
3 ), it is possible to find points U

that are local minima, but not global minima. To find these points, we sample true tasks U∗ from a
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Figure 2: Loss does not decrease near these spurious local minima

normal distribution and use a numerical solver to find zeros of the gradient of the reduced loss

L̂(U) =

T∑
t=1

∥∥∥∥∥UtU
⊤
t −U∗

t U
∗
t
⊤ − 1

T

T∑
s=1

(UsU
⊤
s −U∗

sU
∗
s
⊤)

∥∥∥∥∥
2

F

.

Through the Schur complement argument used to prove Theorem 4, we can see that L̂ has a spurious
local minimum only if L has a spurious local minimum.

Typically, these zeros are close to the global minimum. Occasionally, it is possible to find a point Û
with gradients close to 0 and with positive definite Hessians. We then confirm that these are close to
the spurious local minimum through the following argument.

Consider the function
r(U) = vec(U − Û)⊤vec(∇L̂(U)).

Clearly, there is a minimum of L̂ in the δ-ball of Û if r(U) > 0 for all U on the boundary of the
δ-ball. As r is continuous, if for some small enough ϵ, γ > 0 if r(U) > γ > 0 for all U on the
ϵ-net of the boundary of the δ-ball, then there exists a spurious local minimum in the δ-ball around
Û . Numerically, such points and ϵ, δ, and γ can be found which would imply that spurious local
minima exist, barring any errors due to numerical computation. To confirm, we run gradient descent
from this point and observe that the loss stays constant.

E EXAMPLE PSEUDOCODE FOR MINIMIZING (4)

Algorithm 1 Meta-Adapter Training

1: Input: Tasks Tt, t ∈ [T ], learning rate η, number of epochs Ne, batches per epoch Nb

2: Initialize: Model parameters W0,θ
(t)
0 for all t = 1, . . . , T

3: for epoch e = 1 to Ne do
4: for b = 1, . . . , Nb do
5: for t = 1, . . . , T do
6: Load next batch βt,b from Ti
7: Compute gradient g(t) = ∇W ,θ(t)

(∑
(x,y)∈βt,b

L(
(
ΦFT

(
x ;W ,θ(t)

)
,y
))

8: Update adapter parameters: θ(t)
e+1 ← θ

(t)
e − ηegθ(t)

9: end for
10: Update base parameters: We+1 ←We − ηe

∑T
t=1 g

(t)
W

11: end for
12: end for
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