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Abstract

In open-world scenarios, where both novel classes and domains may exist, an ideal
segmentation model should detect anomaly classes for safety and generalize to new
domains. However, existing methods often struggle to distinguish between domain-
level and semantic-level distribution shifts, leading to poor out-of-distribution
(OOD) detection or domain generalization performance. In this work, we aim to
equip the model to generalize effectively to covariate-shift regions while precisely
identifying semantic-shift regions. To achieve this, we design a novel generative
augmentation method to produce coherent images that incorporate both anomaly
(or novel) objects and various covariate shifts at both image and object levels. Fur-
thermore, we introduce a training strategy that recalibrates uncertainty specifically
for semantic shifts and enhances the feature extractor to align features associated
with domain shifts. We validate the effectiveness of our method across benchmarks
featuring both semantic and domain shifts. Our method achieves state-of-the-art per-
formance across all benchmarks for both OOD detection and domain generalization.
Code is available at https://github.com/gaozhitong/MultiShiftSeg.

1 Introduction

Semantic segmentation, a fundamental task in computer vision, has become indispensable in various
real-world applications, such as autonomous driving [35]. Recent progress in deep learning-based
semantic segmentation has exhibited promising results under the assumption of consistent distribu-
tions between the training and testing data. However, these models often falter when faced with
distributional shifts. Consequently, research on semantic segmentation under distributional shifts
has garnered significant attention in recent years. Some studies approach this challenge from a
generalization perspective, aiming to train networks to adapt to data with covariate distribution shifts,
such as novel domains [9, 45]. Another line of research focuses on training models to discern (or
detect) test data exhibiting semantic distributional shifts, such as anomalies or unfamiliar objects, to
ensure reliable predictions [5, 4]. In real-world situation, both types of distribution shifts often occur
jointly. This leaves us with the question: Can a model jointly handle both kinds of distribution shift?

To address this question, we assess the ability of current domain generalization techniques [9, 45] to
detect unknown objects and that of out-of-distribution detection techniques [31, 42, 46] to generalize
to unknown domains. Interestingly, we find that models trained using domain generalization tech-
niques, such as domain randomization or whitening transformation, often fail to identify unknown
objects, and sometimes even perform worse than the baseline without domain generalization. Fur-
thermore, we observe that models trained using out-of-distribution detection techniques struggle to
generalize to unknown domains, exhibiting overly high uncertainty towards objects experiencing
domain shifts compared to baseline methods without OOD training. While one intuitive approach is

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/gaozhitong/MultiShiftSeg


+ OOD Training

Ours

RobustNet

78.57
82.41

78.96

85.07

75

80

85

90
Segmentation Results (mACC) %

Baseline RobustNet RPL Ours

RPL

+ DG Training

Original Image

3.92 4.39

77.84 82.41

0

50

100
OOD Detection Results (AP) %

Baseline RobustNet RPL Ours

(a) (b)

Semantic Shift

Covariate Shift

Im
ag
e

G
en
er
at
io
n

Foggy day Kigali | chairClear night Istanbul | animal

(c)

Figure 1: We study semantic segmentation with both semantic-shift and covariate-shift regions. (a)
Training for Out-of-distribution (OOD) detection alone [31] yields high uncertainty for both types of
shifts, whereas training for domain generalization (DG) alone [9] tends to produce low uncertainty
for both. Our method effectively differentiates between the two, generating high uncertainty only
for semantic-shift regions. (b) We achieve strong performance in both OOD detection and domain-
generalized semantic segmentation. (c) This is achieved by coherently augmenting original images
(first row) with both covariate and semantic shifts (second row).

to combine existing anomaly segmentation and domain generalization techniques during training,
we note that current domain generalization strategies primarily address image-level shifts, whereas
anomaly segmentation focuses on object-level semantic differences. Consequently, the resulting
models tend to generalize well to image-level variations, such as changes in weather but struggle
with object-level shifts. They often misinterpret any object-level distribution shift as a semantic
anomaly, assigning high uncertainty scores to known objects that exhibit covariate changes, such as
color variations in cars or changes in pedestrian attire, as demonstrated in Fig. 1. These experiments
underscore the challenge of differentiating and jointly handling different types of distribution shifts.

In this work, we jointly study both semantic and covariate distribution shifts. That is, we aim to equip
the model to generalize effectively to covariate-shift regions while precisely identifying semantic-shift
regions. To achieve this, we design a novel generative augmentation method to produce coherent
images that incorporate both anomaly (or novel) objects and various covariate shifts at both image and
object levels. Furthermore, we introduce a training strategy that re-calibrates uncertainty specifically
for semantic shifts and enhances the feature extractor to align features associated with domain shifts 1.

Specifically, we first introduce a novel data augmentation technique that employs a semantic-to-image
generation model to create data that encompasses both covariate and semantic shifts at various
levels, allowing the model to learn the essential differences between the shift types. Additionally, we
introduce a learnable, semantic-exclusive uncertainty function trained using a relative contrastive loss.
We adopt a two-stage training paradigm designed to balance the integration of these enhancements
while minimizing their potential interference. A noise-aware training strategy further complements
this approach, employing online, pixel-wise selection to mitigate noise in the generated images.
Altogether, our approach not only boosts the model’s generalization across domain shifts but also
ensures a high level of uncertainty in response to semantic shifts.

We validate the effectiveness of our method across benchmarks featuring both semantic and domain
shifts, including RoadAnomaly [30], SMIYC [5], ACDC-POC [12] and MUAD [15] benchmarks.
Our results demonstrate that our method achieves state-of-the-art performance across all benchmarks,
employing different segmentation backbones for both OOD detection and known class segmentation.

In summary, our contributions are: (1) We study semantic segmentation under both semantic and
domain shifts, revealing limitations in methods focused on a single shift; (2) We introduce a coherent-
generative augmentation method that augments training data with both shifts; (3) We propose a
two-stage, noise-aware training pipeline to optimally leverage augmented data, learning a semantic-
exclusive uncertainty function while aligning features for domain shifts.

2 Related Work

Anomaly Segmentation (a.k.a. dense out-of-distribution detection). The task aims to detect anoma-
lies or unknown objects by producing pixel-level uncertainty maps. One approach uses generative

1In this work, we use ’domain shift’ and ’covariate shift’ interchangeably.
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models to learn training distributions and detect anomalies through reconstruction differences [30, 48],
but this often requires additional networks, resulting in slower inference. Other methods use auxiliary
OOD data to train models to distinguish known from unknown instances [46, 6, 31, 42, 36, 18].
Among these, Entropy Maximization [6] uses entire images from COCO [29] as OOD proxies,
maximizing softmax entropy on these samples. PEBAL [46] improves upon this by cutting out OOD
object instances, pasting them into training images, and using an energy function as the uncertainty
score. To reduce artifacts in the pasted OOD region, [52] proposes using a style transfer model to
align the pasted region with the background. RPL [31] further regularizes embedding similarity
between COCO background pixels and training images. Beyond improvements in OOD proxies
and uncertainty functions, recent methods explore the use of the Mask2Former architecture [8],
such as RbA [36], Mask2Anomaly [42], and EAM [18]. Our method follows this second approach,
generating OOD data with a semantic-to-image model to reduce artifacts and further introducing a
learnable uncertainty function to enhance both OOD detection and known class segmentation. It is
architecture-agnostic, compatible with both pixel-based and mask-based segmentation backbones.

Domain Generalization for Semantic Segmentation The task aims to train a model on one or
more source domains that can perform well on unseen target domains. Existing techniques focus either
on introducing specialized model architectures, such as those incorporating normalization [39] or
whitening transformations [9, 41, 27], or on designing domain randomization techniques [45, 50, 23].
Most domain randomization methods rely on image transformation rules or style transfer [45, 50].
Recently, Jia et al. [23] proposed a semantic-to-image model that generates images across diverse
domains. Orthogonally, Bi et al. [3] explore architectural changes with Mask2Former. Our approach
belongs to the domain randomization category, generating images with both domain and semantic
shifts simultaneously to improve the model’s ability to distinguish between these shifts.

Segmentation Under Multiple Distribution Shifts Early works [51, 2] demonstrated the necessity
and feasibility of addressing both semantic segmentation under domain shifts and anomaly segmen-
tation. However, these problem settings remain in their early stages (e.g., image-level anomalies)
and may not fully capture the true challenges. More recent benchmarks, such as RoadAnomaly [30],
SMIYC [5], and MUAD [15], include domain and semantic shifts that better reflect real-world sce-
narios. Some recent studies [16] have explored the effects of domain shifts on anomaly segmentation
benchmarks and proposed a test-time adaptation pipeline to address the problem. In this work, we
aim to further bridge the gap by investigating the core challenges of adopting domain generalization
techniques and simultaneously enhancing model performance in both areas.

Generative-based Data Augmentation This technique is widely used to expand training datasets
and prevent overfitting [14, 38, 20, 23, 12]. Unlike rule-based augmentation methods, which focus
on image-level changes, generative methods can introduce more object-level variations. Among
these works, [12, 33] are the most related to ours, using a text-guided inpainting pipeline to generate
anomalies or novel objects. However, this local generation process risks creating inconsistencies
between the patch and its background. Additionally, they either focus on generating novel objects
within the same domain [12] or use separate pipelines for domain and semantic shifts [33]. In contrast,
our method generates multiple distribution shifts in a single process, preserving the global context of
the image and ensuring a more natural integration of novel objects.

3 Method

3.1 Problem Formulation and Method Overview

We consider the problem of semantic segmentation under multiple distribution shifts. Formally, we
define the training distribution as PXY in X × YH×W

in , where X = R3×H×W represents the three-
dimensional input space of images with H ×W pixels, and Yin = [1, C] denotes the semantic label
space at each pixel. The test distribution is denoted as QXY ∈ X × YH×W

test . There are two common
types of distribution shifts: covariate shifts—where the input distribution changes (QX ̸= PX ) but
the label space remains the same —and semantic shifts, which involve alterations to the label space,
including the introduction of novel categories (Ytest ̸= Yin). We consider the possibility of both
types of distribution shifts occurring during testing.
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Figure 2: Method Overview: (a) A novel generative-based data augmentation strategy that supple-
ments training data with both covariate and semantic shifts in a coherent manner. (2) A semantic-
exclusive uncertainty function with two-stage noise-aware training to encourage invariant feature
learning for covariate-shift regions while maintaining high uncertainty for semantic-shift regions.

Our goal is to learn a model capable of jointly identifying semantic-shift regions and generalizing well
under covariate shifts. This involves two primary challenges: (1) Enabling the model to distinguish
between the two types of distribution shifts, and (2) ensuring the model responds appropriately to each
type. To address the first challenge, we introduce a novel generative-based data augmentation strategy
that supplements training data with both covariate and semantic shifts in a coherent manner. To tackle
the second challenge, we propose a semantic-exclusive uncertainty function with a decoupled training
strategy. This encourages the model to learn invariant features for covariate-shift regions while
maintaining high uncertainty for semantic-shift regions. Below, we first introduce our generative-
based augmentation strategy (Section 3.2), followed by the model training pipeline (Section 3.3).

3.2 Coherent Generative-based Augmentation

To distinguish between covariate and semantic shifts, we design a coherent generative-based data
augmentation (CG-Aug) pipeline that enriches the training data with realistic and diverse distribution
shifts. The pipeline consists of two stages: The first stage uses zero-shot semantic-to-image generation
to create a variety of synthetic data, while the second stage automatically filters out low-quality
synthetic data. We describe the details of each stage below.

Zero-Shot Semantic-to-Image Generation. To generate more realistic and diverse OOD data
for segmentation, we propose a generation process that first cut-and-pastes the semantic mask of
novel objects to the training labels and then leverages a semantic-to-image generation model to create
corresponding augmentation images. By exploiting powerful image generation models, this process
is able to produce images with a wide range of covariate shifts and augments the training images with
both covariate and semantic shifts in a coherent manner. We detail our process below.

Formally, given training set Dtr := {(xn, yn)}Nt
n=1 with (xn, yn) ∼ PXY , we introduce an auxiliary

OOD set Do := {yom}Na
m=1 with object masks yom ∈ YH×W

out . Subsequently, using a pretrained
semantic-to-image generative model G : (Yin ∪ Yout)

H×W → RH×W , we generate an augmented
image as

xaug = G(yaug, t) with yaug = y ⊕ yo, (1)
where t is a text prompt and ⊕ denotes the pasting operation. Here we adopt a pretrained Control-
Net [53] as G to instantiate the semantic-to-image generation process. Thanks to the powerful prior
encoded in Stable Diffusion [43], this process allows us to generate images with more diverse styles
than a task-specific semantic-to-image generation model, therefore creating rich covariate shifts.
Moreover, we leverage the text prompt t to produce more diversity in the augmented images by
specifying the space, time, and weather, and to enhance the OOD object generation by indicating the
class of the pasted objects, via a set of templates (see Appendix A.1 for details).
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Auto-Filtering. While generative-based augmentation can produce more diverse and realistic
distribution shifts than rule-based augmentation, we observed it to often yield inaccurate or noisy
rendering for the OOD objects. This might be caused by the fact that these objects appear rarely, or
their cut masks are inconsistent with the surroundings. To cope with this, we design an automatic
filtering process that identifies generation failures where no object is generated, or a known-category
object is incorrectly generated. To achieve this, we leverage pretrained segmentation models to check
the region size or its semantic class, and assign a quality score to each generated image. We then
filter out the images with low-quality scores (see Appendix A.2 for details).

We perform the above image generation process offline before model training, and the resulting syn-
thetic data is used alongside standard augmentation strategies, such as mixup and AnomalyMix [46],
during training. Below, we denote our augmented dataset as Daug = {(xn, yn, x

aug
n , yaugn )}Nt

n=1.

3.3 Model Training

Given the augmented dataset, we aim to train a segmentation model with recalibrated uncertainty
output, generating high OOD scores for semantic-shift regions and performing robustly under
covariate shifts. To achieve this, we propose a learnable uncertainty function and develop a stage-
wise learning strategy that initializes the uncertainty function before fine-tuning the entire model.
Our training process integrates a relative contrastive loss and a noise-aware data selection scheme,
enabling the model to effectively align both the feature space and the OOD output scores. We note that
our method is generic and can be applied to pixel-wise models (e.g. DeepLabv3+ [7]) or mask-wise
models (e.g. Mask2Former [8]).

3.3.1 Semantic-Exclusive Uncertainty Recalibration

Learnable Uncertainty Function. Suppose we have a neural network with its feature extractor
f(x) ∈ RM×F , where M is the number of pixels (or masks), and F is the feature dimension. We
introduce a learnable linear projection W o ∈ RF×C , with W o

c denotes W o[: c] for short. For a
pixel-wise prediction model, we adopt the energy function form and parameterize it into a learnable
uncertainty function

u(x) = log
∑
c

exp f(x)W o
c . (2)

For a mask-based segmentation network, we use the adapted maximum softmax probability (MSP)
defined in [8] as the uncertainty function, and parameterize it with W o, leading to

u(x) = max
c

(
softmax (f(x)W o

c )
T · g(x)

)
. (3)

Here g(x) ∈ (0, 1)M×H×W is the sigmoid output of the mask head. For both cases, we initialize
the projection function W o as the class weight W in of the pretrained segmentation network. The
corresponding uncertainty score corresponds to the original energy score (or MSP score).

Relative Contrastive Loss. We train the uncertainty function using a novel relative contrastive loss,
which encourages higher uncertainty in unknown-class regions compared to known-class regions,
while ensuring that regions with and without covariate shifts exhibit similar levels of uncertainty.

Formally, for each batch of data {(xn, yn, x
aug
n , yaug

n )}Bn=1, where B is the batch size, we define the
following pixel index sets: Ωin = {i : y(i) ∈ Yin}, representing inlier pixel indices from the original
training images; Ωaug = {i : yaug(i) ∈ Yin}, representing inlier pixel indices from the augmented
training images (covariate-shift set); and Ωout = {i : y(i) /∈ Yin} ∪ {i : yaug(i) /∈ Yin}, representing
outlier pixel indices from both original and augmented images (semantic-shift set). Here, y(i) (or
yaug(i)) denotes the label of pixel i. Our contrastive loss is defined as

Lunc =
∑

o∈Ωout,i∈Ωin

τλ1(uo−ui)+
∑

o∈Ωout,c∈Ωaug

τλ2(uo−uc)+
∑

c∈Ωaug,i∈Ωin

mc,i ·τλ3(−(uc−ui)), (4)

where τλ(x) = max(λ−x, 0) is the margin-based contrastive loss, which encourages the input value
to exceed λ. The first two terms promote larger uncertainty gaps between unknown-class and known-
class regions, while the third term encourages smaller uncertainty gaps between covariate-shifted and

5



original data. For the third term, we calculate gaps only between pairs of original and augmented
images, with mc,i ∈ {0, 1} indicating whether pixel (c, i) is paired in the dataset. The three margin
values (λ1, λ2, λ3) introduce priors on the uncertainty gaps, and are set based on the initial average
distance. Our method remains robust across a wide range of margin values (cf. Table 6).

Compared to existing OOD losses that either maximize uncertainty only for unknown data [31] or
supervise known and unknown data separately [46, 42], our loss supervises the relative distance
between them, making it more robust to hyperparameters and simpler to train (cf. Sec.4.5).

3.3.2 Two-Stage Noise-Aware Training

We now present our two-stage training procedure, which sequentially learns the uncertainty function
and the feature extractor f(x) of the segmentation network. Specifically, we first freeze the pre-
trained segmentation network and learn the semantic-exclusive uncertainty function using the relative
contrastive loss defined in Eq. 4. We then fine-tune the feature extractor with both the contrastive and
standard segmentation loss to improve the feature representations of both known and OOD classes.

Despite the offline filtering process, the generated images may still contain regions that are inconsistent
with the label masks. To address this, we introduce a pixel-wise sample selection scheme during
training, based on the ’small loss’ criterion [1]. Specifically, we compute and rank the cross-entropy
loss for each pixel, selecting pixels with smaller losses for backpropagation while ignoring those with
larger losses. Formally, our selective cross-entropy loss is defined as

Lseg(y, p, η) =
∑
i

ηi
∑
c

yci log p
c
i , (5)

where pi and yi represent the pixel-wise softmax score and one-hot label, respectively, and ηi ∈ {0, 1}
indicates whether a pixel is selected for backpropagation. We determine the percentage of selected
pixels per batch by visualizing the selection map of a small number of samples, ensuring that visibly
incorrect patterns are excluded (see Figure 4 for an example). For models using the Dice loss, such
as mask-based ones, we use a similar scheme to remove pixels with a large loss (cf. Appendix A.3).

For the original data, which we assume to be noise-free, we set ηi = 1 for all pixels. This corresponds
to using the standard cross-entropy loss. We denote the segmentation loss for the original data as
Lin

seg and for the generated augmentation data as Laug
seg . The overall loss function can be written as

L = Lunc + β1L
in
seg + β2L

aug
seg . (6)

Here, β1 and β2 ensure that the three loss terms are on the same scale.

In summary, our semantic-exclusive uncertainty function, trained through a decoupled parameter
training approach and relative contrastive loss, enables the model to fully leverage the generated
distribution-shift data. Our noise-aware learning strategy enhances the model’s robustness against
generation errors. Together, these components of our training pipeline equip the model to effectively
learn both domain generalization and accurate OOD detection, ensuring robust performance in
dynamic open-world scenarios.

4 Experiments

In this section, we evaluate our method’s performance in jointly handling anomaly segmentation
and domain generalization using several datasets that include both domain and semantic shifts:
RoadAnomaly [30], SMIYC [5], ACDC-POC [12], and MUAD [15]. We first introduce the datasets
in Sec.4.1 and describe the experimental setup in Sec.4.2. The results are presented in Sec.4.3 and
Sec.4.4, followed by an ablation study in Sec. 4.5.

4.1 Datasets

Following the literature [5, 31, 8], we train our model on the Cityscapes dataset [11] and evaluate its
performance on the test sets described below. Based on the evaluation goals, we divide these datasets
into two groups. Examples from each dataset are shown in Fig. 3.

Anomaly Segmentation Datasets: (a) The Road Anomaly dataset [30] includes 60 images of
real-world road anomalies such as animals, rocks, and obstacles, featuring various driving conditions
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Table 1: Results on anomaly segmentation benchmarks: RoadAnomaly, SMIYC-RA21 and
SMIYC-RO21. Our method achieves the best results under both backbones (Best results in Bold).

RoadAnomaly SMIYC - RA21 SMIYC - RO21

Method Backbone AUC ↑ AP ↑ FPR95 ↓ AP↑ FPR95 ↓ AP ↑ FPR95 ↓
Maximum softmax [21]

DeepLabv3+

67.53 15.72 71.38 27.97 72.05 15.72 16.60
ODIN [28] - - - 33.06 71.68 22.12 15.28
Mahalanobis [26] 62.85 14.37 81.09 20.04 86.99 20.90 13.08
Image resynthesis [30] - - - 52.28 25.93 37.71 4.70
SynBoost [13] 81.91 38.21 64.75 56.44 61.86 71.34 3.15
Maximized entropy [6] - 48.85 31.77 85.47 15.00 85.07 0.75
PEBAL [46] 87.63 45.10 44.58 49.14 40.82 4.98 12.68
Dense Hybrid [17] - 31.39 63.97 77.96 9.81 87.08 0.24
RPL+CoroCL [31] 95.72 71.61 17.74 83.49 11.68 85.93 0.58
Ours 96.40 74.60 16.08 88.06 8.21 90.71 0.26

Mask2Anomaly [42]

Mask2Former

- 79.70 13.45 88.7 14.60 93.3 0.20
RbA [36] - 85.42 6.92 90.90 11.60 91.80 0.50
M2F-EAM [18] - 69.40 7.70 93.75 4.09 92.87 0.52
Ours 97.94 90.17 7.54 91.92 7.94 95.29 0.07

and covariate shifts. (b) The SMIYC benchmark [5] consists of RoadAnomaly21 (10 validation, 100
test images) and RoadObstacle21 (30 validation, 327 test images), with anomaly objects and domain
shifts. These datasets provide masks for anomaly objects, allowing us to evaluate our method’s
performance on anomaly segmentation under distribution shifts.

Joint Anomaly Segmentation and Domain Generalization Datasets: (a) The ACDC-POC
dataset [12] is based on the original ACDC Validation set [44] with generated anomaly objects
via inpainting [12]. It contains 200 images with domain shifts including various weather and night
scenes. (b) The MUAD dataset [15] is a synthetic dataset containing various driving environments
and anomaly objects. We use the challenge test set as in [49], which contains 240 images with
domain shifts at both object and image levels, and anomaly objects such as animals and trash cans.2
These two datasets contain both known-class annotations and unknown object masks, enabling us to
evaluate our method jointly for anomaly segmentation and domain generalization.

4.2 Experimental Setup

Performance Measure: For evaluation of anomaly segmentation, we use the Area Under the Receiver
Operating Characteristics curve (AUROC), the Average Precision (AP), and the False Positive Rate
at a True Positive Rate of 95% (FPR95). For evaluation of known class segmentation, we use the
mean intersection-over-union (mIoU) and the mean accuracy (mAcc).

Implementation Details: We build our method on two segmentation backbones: (a) DeepLabv3+ [7]
and (b) Mask2Former [8]. We maintain the network architecture, pretrained models, segmentation
loss, and training pipeline the same as in previous work [31, 42] to make a fair comparison. We use
the SMIYC validation set for model selection and maintain the same model for evaluation across all
test sets. We refer the reader to Appendix A for other training details.

4.3 Results on Anomaly Segmentation Benchmarks

We present the performance of our method on anomaly segmentation benchmarks, including Road-
Anomaly and SMIYC (RA21 and RO21). As shown in Table 1, our method achieves state-of-the-art
performance on both DeepLabv3+ and Mask2Former-based models. With the same backbone, it out-
performs RPL [31] by 3% on RoadAnomaly and 5% on SMIYC, and surpasses Mask2Anomaly [42]
by 10% on RoadAnomaly and 3% on SMIYC. Recent methods, M2F-EAM [18] and RbA [36],
use a more powerful Swin Transformer backbone, while ours uses ResNet-50, as Mask2Anomaly.
M2F-EAM also uses Mapillary Vistas [37] as additional dataset for training. Despite these unfair
comparisons, our method still outperforms both on most metrics, demonstrating its effectiveness.

2Since we use Cityscapes as the training set, the unknown object set differs from that used in [49].
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Table 2: Results on ACDC-POC and MUAD. Our model achieves the best performance in both
anomaly segmentation (AP↑ , FPR↓ ) and domain-generalized segmentation (mIoU↑ , mAcc↑
). Anomaly segmentation methods typically perform worse than the baseline for known class
segmentation, while domain generalization methods fall below the baseline on OOD detection. (Best
results are in bold; results below baseline are in blue.)

Method Backbone Technique ACDC-POC MUAD

OOD DG AP↑ FPR95 ↓ mIoU↑ mAcc↑ AP↑ FPR95 ↓ mIoU↑ mAcc↑
Baseline [7]

DeepLabv3+

- - 3.92 55.50 46.89 78.57 1.34 72.78 29.47 68.63
RuleAug [45] - ✓ 2.09 72.79 48.60 81.79 0.99 81.08 29.42 69.22
RobustNet [9] - ✓ 4.39 62.65 47.41 82.41 2.27 58.64 32.18 72.02
PEBAL [46] ✓ - 20.67 14.35 45.59 81.28 7.81 47.56 29.08 66.41
RPL [31] ✓ ✓ 77.84 1.20 46.35 78.96 27.70 24.45 29.86 71.60
OOD + RuleAug [45] ✓ ✓ 80.65 1.30 46.76 73.08 20.97 20.37 27.83 63.02
Ours ✓ ✓ 82.41 1.01 54.12 85.07 36.08 18.74 31.33 73.13
Mask2Anomaly [42]

Mask2Former
✓ - 73.77 3.60 47.32 83.10 39.32 41.24 23.43 61.91

OOD + RuleAug [45] ✓ ✓ 82.82 0.79 50.36 82.83 25.43 41.15 26.27 67.51
Ours ✓ ✓ 90.42 0.46 51.75 83.16 45.65 24.70 28.44 73.77
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Figure 3: Comparison of Uncertainty Maps. Our method robustly detects anomalies under covariate
shifts across five datasets (first five columns) and generated data (last column). The previous method
RPL [31] failed to distinguish domain from semantic shifts, producing high uncertainty in both cases.

In Fig. 3, we visualize the uncertainty map output by our method using the DeepLabv3+ architecture.
Compared to the previous state-of-the-art method, RPL [31], our model assigns higher uncertainty
scores to anomalous objects and lower uncertainty scores to covariate shifts. This highlights the
efficacy of our method in distinguishing between domain shifts and semantic shifts.

4.4 Results on ACDC-POC and MUAD

We then extend our evaluation to the ACDC-POC and MUAD datasets, assessing both anomaly
segmentation performance and known-class domain generalization performance. For a comprehen-
sive comparison, we include both previous state-of-the-art OOD detection techniques and domain
generalization techniques [9, 45]. Additionally, we trained a DG+OOD combination method by
combining naive OOD training with contrastive loss and rule-based data augmentation (denoted as
OOD+RuleAug). A DeepLabv3+ model with standard training is used as a baseline method. 3

The results are shown in Table 2, where our model achieves the best results for both out-of-distribution
detection and domain generalization, demonstrating its capacity in jointly handling both types of
distribution shifts. By comparison, previous methods fall short in either known class segmentation
or OOD detection. Specifically, we find that: (a) Previous works that mainly focus on domain
generalization (RobustNet [9], RuleAug [45]) generally improve the known class segmentation
results, but their performance in OOD detection is affected, sometimes worse than the baseline.
(b) Previous works that mainly focus on OOD detection (such as PEBAL [46]) perform poorly

3For all compared methods, except RuleAug, we used the official pretrained models provided by the respective
authors and performed re-inference to obtain the results. For RuleAug, we applied a combination of color
jittering, Gaussian blur, etc., as suggested in [45]. For further details, please refer to the Appendix A.5
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Table 3: Impact of CG-Aug and Training Strategy. The proposed coherent generative-based
augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for
short). Our fine-tuning strategy makes better use of the data and further boosts the performance.

RoadAnomaly SMIYC-RA Val SMIYC-RO Val

Training Aug. AP↑ FPR95 ↓ AP↑ FPR95 ↓ AP↑ FPR95 ↓
M2A [42] Default 79.70 13.45 94.50 3.30 88.60 0.30
M2A [42] Ours 85.47 22.38 97.96 1.55 89.80 0.12
Ours Ours 90.17 7.54 97.31 1.04 93.24 0.14

on domain generalization, sometimes worse than the baseline. Furthermore, their OOD detection
performance may also be affected by the domain shift. (c) Previous works that jointly handle image-
level DG and OOD (RPL [31] and OOD+RuleAug) may not fully distinguish object-level domain
shifts. Our method leveraging diverse augmentations and a dedicated decoupled training strategy
enables the model to jointly handle OOD detection and domain generalization.

In Appendix C.1, we provide additional results on individual domain shifts (fog, rain, snow, night) and
per-class evaluation. Furthermore, we compare our method with other DG methods on the original
ACDC dataset in Appendix C.4, where we show superior domain generalization performance.

4.5 Analysis and Ablation Study

We conduct ablation studies to evaluate the design of our components. We begin by analyzing the
effectiveness of our proposed modules: the coherent generative-based augmentation (CG-Aug) and
our model training strategy. We then proceed with a detailed examination of each module’s design.

Impact of CG-Aug and Training Strategy We evaluate the decoupled contributions of our data
augmentation and training strategies in Table 3. Starting with a recent anomaly segmentation method,
Mask2Anomaly [42], we first replace its original OOD data, which utilizes cut-and-pasted COCO
images, with our proposed CG-Aug. As shown in Row #2, this substitution results in consistent
performance improvements across all datasets. This demonstrates the efficacy of introducing data
with both semantic and domain shifts in a coherent way. Next, we replace their training strategy
with ours, leading to further gains in performance. This indicates that our training strategy is more
effective in leveraging the generated data. Additionally, we present and discuss similar experiments
using RPL [31] as a baseline. For more details, please refer to Appendix Table 7.

Table 4: Ablation Study of CG-Aug. Generating
data with both Semantic-shift (SS) and Domain-
shift (DS) in a coherent manner achieves better
results than other variations. The experiments were
conducted using the Mask2Former backbone and
evaluated on the RoadAnomaly dataset.

AUC↑ AP↑ FPR95↓
POC [12] (SS) 95.43 83.66 10.33
DS or SS 95.90 87.64 9.28
DS and SS 96.47 89.08 8.16

CG-Aug (Ours) 97.94 90.17 7.54

Ablation Study of our CG-Aug The pro-
posed CG-Aug generate semantic-shift and
domain-shift jointly in a coherent way. To eval-
uate the design, we compare with three varia-
tions: (1) Semantic-Shift Only (SS): Generate
images with semantic shift using POC [12]. (2)
Domain-shift or Semantic-shift (DS or SS): Cre-
ate a mixed dataset with either domain shifts
(DS) using our semantic-mask-to-image process
or semantic shifts (SS) using POC. (3) Domain-
shift and Semantic-shift (DS and SS): First gener-
ate DS data, then inpaint unknown objects. The
second and third methods can be seen as apply-
ing [33] to our problem in two ways. Results
in Table 4 show that: adding domain shift data
significantly improves performance over semantic-shift-only data. Jointly generating DS and SS in
one image yields better results than generating them separately. Our method, which generates both
DS and SS in one step, achieves the best performance, ensuring more coherence without artifacts
and outperforming the two-step approach. We include more comparison results with POC [12] in
Appendix C.3.
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Table 5: Abaltion Study of Our Training Pipeline: Learnable Uncertainty Function (Learnable-UF),
Relative Contrastive Loss (RelConLoss), and Noise-aware Sample Selection (Selection). Experiments
are conducted under DeepLabv3+ architecture.
Learnable-UF RelConLoss Selection SMIYC-RA Val SMIYC-RO Val MUAD ACDC -POC

AP↑ FPR95 ↓ AP↑ FPR95 ↓ AP↑ FPR95 ↓ mIoU↑ mAcc↑ AP↑ FPR95 ↓ mIoU↑ mAcc↑
✗ ✓ ✓ 89.34 7.51 94.96 0.21 24.10 25.73 31.67 72.16 77.92 2.00 53.43 84.46
✓ ✗ ✓ 91.01 5.78 94.95 0.20 20.49 24.58 32.68 73.86 75.67 1.60 53.22 84.32
✓ ✓ ✗ 91.64 4.18 96.07 0.15 20.24 22.57 31.73 71.88 77.99 1.27 54.26 85.30
✓ ✓ ✓ 93.82 3.94 95.20 0.19 36.08 18.74 31.33 73.13 82.41 1.01 54.12 85.07
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Figure 4: (a) Visualization of Our Selection Maps. Our selection strategy effectively identifies
and removes generation errors (highlighted with boxes). (b) Analysis of Our Two-Stage Training.
The first stage of training the uncertainty function boosts baseline performance, and second-stage
fine-tuning further improves performance, achieving better results than single-stage training.

Ablation study of our Training Design We evaluate our training design in Table 5. In Row #1,
we replace our Learnable Uncertainty Function (Learnable-UF) with a fixed energy function. In
Row #2, we substitute our Relative Contrastive Loss (RelConLoss) with an absolute contrastive
loss [46, 31, 42], which directly supervises the uncertainty score value rather than the relative gap
between two uncertainty scores. In Row #3, we remove the Sample Selection module. Compared to
our complete method, presented in the final row, these modifications result in decreased performance
in both OOD detection and domain generalization, highlighting the effectiveness of our module
design. A visualization of the sample selection process is shown in Figure 4 (a).

In Figure 4(b), we evaluate the effectiveness of our Stage-wise Training pipeline. Starting from a pre-
trained baseline model, our first stage—fine-tuning only the learnable uncertainty function—doubles
the performance on SMIYC-RA/RO datasets, demonstrating that the initial uncertainty function
is often sub-optimal and can be significantly improved using fixed features [24]. A second-stage
feature fine-tuning further boosts performance. Additionally, our two-stage approach outperforms
single-stage fine-tuning with a learnable uncertainty function, showing that training directly with
uncalibrated uncertainties can disrupt feature learning and degrade OOD detection performance.

We also demonstrate the robustness of our method under a range of hyperparameters (loss margins and
selection ratio) in Appendix B.1, and evaluate the impact of generated dataset size in Appendix B.2.

5 Conclusion

In this work, we have studied semantic segmentation under multiple distribution shifts, finding that
prior methods focusing separately on domain generalization and anomaly segmentation may not
effectively handle these complex shifts. To tackle this, we have introduced a coherent generative data
augmentation approach that enriches training data with both domain and semantic shifts. Additionally,
we have proposed a learnable uncertainty function, trained in a stage-wise manner, to fully utilize the
data and produce uncertainty scores specifically for semantic shifts. One limitation of our method is
its reliance on the quality of the generative model. While we mitigate generation failures through
offline autofiltering and online sample selection, some impact remains, such as lower performance
for classes the generative model struggles with and potential limitations in scaling up the generated
data (see Appendix E for details).
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A Implementation Details

A.1 Zero-Shot Semantic-to-Image Generation

We adopt a pretrained semantic-to-image generation model, ControlNet 1.0 [53], provided by the
official GitHub repository4, for our generation process. This model is based on Stable Diffusion [43]
and fine-tuned on ADE20K [54, 55]. It takes two main inputs: a semantic mask and a text prompt.

To obtain our pasted semantic mask, we first convert the masks from Cityscapes labels to ADE20K
labels, then overlay this with auxiliary out-of-distribution (OOD) object masks. Specifically, we
use the mask labels from ADE20K that belong to the ’thing’ categories, excluding those with labels
shared with Cityscapes.

Our text prompts have two parts: one part specifies the domain shifts, and the other specifies the
OOD objects. For domain-shift prompts, we use the template “An image sampled from various
stereo video sequences taken by dash cam in {PLACE} in a {WEATHER} {TIME}”,
where we define PLACE as a set of 100 cities worldwide, WEATHER as [’cloudy’, ’rainy’,
’snowy’, ’foggy’, ’clear’], and TIME as [’day’, ’night’]. Additionally, we improve
the OOD object generation by indicating the specific class of pasted objects in the prompt with
the template: “There is a {OOD} accidentally staying on the road.”, where OOD is the
class name of the pasted object. This further contextualizes the generated scene to reflect realistic
anomaly scenarios.

A.2 Auto-Filtering of Failed Generations

The generation process can be noisy, particularly when generating image regions for pasted OOD
object masks. By nature, these objects are anomalies within the scenes, appearing rarely, and their cut
masks may exhibit shapes or poses inconsistent with their surroundings. As a result, the generated
objects may deviate significantly in shape from the intended mask, be overlooked (blending into
the surroundings), or be incorrectly generated as more common objects within the scene. Such
discrepancies make the raw augmented image-label pairs too noisy for direct training.

To address these issues, we design an automatic filtering process to identify generation failures, such
as cases where no object is generated or a known-category object is incorrectly produced. If the
generated object is present and does not belong to a known category, we retain the image while
revising the corresponding mask for the generated novel object. Otherwise, we discard the image
and regenerate it. To implement this, we use the Segment-Anything Model (SAM), providing the
bounding box location of the pasted mask as input to obtain a segmentation. We then compare the
SAM output with the original mask, identifying it as a failure case if the Intersection over Union
(IoU) is very low (below 0.7). Additionally, we employ a pre-trained segmentation model to produce
an uncertainty score for the generated objects, filtering out those with very low uncertainty scores,
as these are likely to have been misgenerated into a known-category object. This comprehensive
filtering process effectively enhances the quality of the training dataset, making it better suited for
effective model training.

A.3 Training Details on Mask2Former Backbone

Following Mask2Anomaly [42], we train Mask2Former [8] using a combination of dice loss and
binary cross-entropy (BCE) loss for the mask prediction head, and cross-entropy loss for the class
prediction head. For the dice and BCE losses, we modify the sampling strategy for generated images
to implement the sample selection process described in Sec. 3.3. Specifically, we compute the
pixel-level BCE loss and select pixels with lower BCE losses for backpropagation in both the dice
and BCE loss calculations. Since most generation errors occur at the pixel level, we do not apply
sample selection for the mask-wise class prediction in the mask prediction head.

We maintain the same model architecture as Mask2Anomaly, which includes a ResNet-50 [19]
backbone, a pixel decoder, a Transformer [47] decoder, and a global mask attention mechanism that
independently distributes attention between foreground and background. As in Mask2Anomaly, we
keep the ResNet backbone frozen while training the remaining model components, and we employ the

4https://github.com/lllyasviel/ControlNet/tree/main
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AdamW [34] optimizer with its default learning rate and scheduler. For our method, the uncertainty
loss margins are set to λ1 = 0.7, λ2 = 0.5, and λ3 = 0.2, and we use a selection ratio α = 0.8. The
loss weights β1 and β2 are set to 10 for both. We use a batch size of 8 for all experiments and train
the model on a single NVIDIA A40 48GB GPU.

A.4 Training Details on DeepLabv3+ Backbone

For the DeepLabv3+ backbone, we follow the setup in RPL [31], using DeepLabv3+ with WideRes-
Net38 pretrained by Nvidia. The backbone remains fixed, and only the ASPP layers are fine-tuned.
We use the Adam [25] optimizer with a learning rate of 1.0e-6. For our method, the contrastive
margins λ1, λ2, λ3 are set to 10,5,5, the selection ratio is 0.8. The loss weights are 50 and 10 for β1

and β2 respectively. The batch size is set to 8, and all experiments are conducted on two NVIDIA
A40 48GB GPUs.

A.5 Rule-Based Augmentation

As a typical approach to domain generalization, we implement Rule-Based Augmentation as outlined
in [45], using a set of image transformations. Specifically, we apply the following transformations,
with their application probabilities indicated in parentheses: color jittering (0.5), Gaussian blur (0.5),
random sharpness adjustment (0.5), random contrast adjustment (0.5), random equalization (0.5),
random resizing (0.5), random rotation (0.5), random horizontal flipping (0.75), and random cropping
(1.0).

B Additional Ablation Studies

B.1 Impact of Hyperparameters

Loss Margins Our relative contrastive loss 4 includes three terms, each with a margin value λ
controlling the distance penalty limits. These margins are set based on the average uncertainty scores
from the training set. Specifically, we compute the differences in uncertainty scores between unknown
vs. original known data, unknown vs. augmented known data, original known vs. augmented known
data, and set the differences as margins for these distance respectively. Moreover, our two-stage
training framework first trains the uncertainty function based on the existing model, allowing this
function to adapt to different scales. This provides flexibility in parameter setting even without prior
knowledge.

In Table 6, we evaluate the model’s robustness across a wide range of hyperparameter variations.
Our default loss margins are [λ1, λ2, λ3] = [10, 5, 5]. We start by scaling them by 0.1 and 10 and
conduct experiments using (1, 0.5, 0.5) and (100, 50, 50), respectively. As shown in Table 6(a), the
uncertainty function adjusted to these scales with minimal impact on the results. Further analysis,
such as changing the second and third parameters individually, showed that while the relative sizes of
the three contrastive losses have some impact, the effect remains minor(see Table 6(b) and Table 6(c)).
Ensuring that the parameters are set within an order of magnitude does not affect the results much.

Table 6: Impact of Loss Margins. We examine model robustness across various loss margins by
evaluating margin scale impacts in (a) and analyzing effects of individual margins in (b) and (c).
Results are reported on SMIYC-RA Val(AP & FPR) and MUAD (mIoU) using the DeepLabv3+
architecture.

(a) Impact of margin scales.

Margins Scale AP↑ FPR↓ mIoU↑
[1,0.5,0.5] x 0.1 93.81 5.16 32.50
[10, 5, 5] x 1 93.82 3.94 31.33
[100,50,50] x 10 95.73 2.17 29.61

(b) Impact of margin λ2.

λ2 AP↑ FPR↓ mIoU↑
3 92.34 3.27 31.75
5 93.82 3.94 31.33
7 91.52 4.27 31.28

10 91.75 4.85 30.91

(c) Impact of margin λ3.

λ3 AP↑ FPR↓ mIoU↑
3 92.53 3.27 32.24
5 93.82 3.94 31.33
7 92.45 3.21 31.73
10 92.08 3.96 31.56
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Selection Ratio We determine the selection ratio for our sample selection process by visualizing the
selection map of a small batch of data under several choices to ensure that visibly incorrect patterns
are removed. To examine the impact of selection ratio to our method, we conducted experiments
with selection ratios ranging from 0.6 to 0.9, as detailed in Figure 5 (a). The results show that while
including too many pixels (1.0) introduces noise, and including too few (0.6) removes useful regions,
the model performance is stable within a wide range (0.7 to 0.9), demonstrating the robustness of the
model to this hyperparameter.

(a) (b) (c)
Anomaly Score
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Figure 5: (a) Impact of Sample Selection Ratio. We report both anomaly segmentation
performance(AP↑, FPR↓ on SMIYC-RA Val) and known class segmentation performance (mIoU↑
on MUAD). Experiments are conducted under DeepLab v3+ architecture. (b) Impact of Generated
Data Size. We observe an improvement of performance with the increase of generated data size with
the same evaluation under Mask2Former architecture.

B.2 Impact of the Size of Generated Dataset

By default, we generate our distribution-shift dataset at the same size as Cityscapes. To analyze the
impact of the generated dataset size, we scale it to 2x and 3x the size of the Cityscapes training set.
As shown in Fig. 5(b), there is a significant improvement from dataset sizes 0 to 1, demonstrating the
effectiveness of our generated data, with further gains observed as the dataset size increases.

B.3 Impact of CG-Aug and Training Strategy for RPL

We evaluate the decoupled contributions of our data augmentation and training strategies with
RPL [31] in Table 7. Similar to Table 3, we first replace its original OOD data, which utilizes cut-and-
pasted COCO images, with our proposed CG-Aug in Row#2. However, we find the improvement is
not as significant. This may be due to certain aspects of RPL’s loss and training design being less
suitable for our scenario. Firstly, RPL relies on the original network’s predictions to supervise a
learnable residual part. Since the original network does not generalize well to data with domain-
shift, this results in imprecise supervision. Secondly, the RPL uncertainty loss focuses solely on
increasing uncertainty for unknowns, without adequately addressing the known classes, particularly
for augmented images. Additionally, restricting the trainable parameters to a residual block may limit
the model’s ability to learn more complex patterns, thereby reducing overall effectiveness.

Next, we replace their training strategy with ours, leading to consistent performance improvement.
Those results demonstrate that effectively utilizing the generated training data with multiple distribu-
tion shifts remains an open question. Our work takes a step towards analyzing the shortcomings of
existing training designs, offering novel and effective strategies for better handling this data.

C Additional Quantitative Results

C.1 Additional Results on ACDC-POC

Performance under Individual Domain Shifts In addition to the main Table 2, we present the
ACDC-POC results with domain-specific splits to provide a more detailed analysis of our method
across different types of domain shifts. As shown in Table 8, our method outperforms previous
state-of-the-art methods (RPL [31] and Mask2Anomaly [42]) across four domains—fog, rain, snow,
and night—on most metrics in both OOD detection and known-class segmentation.

17



Table 7: Impact of CG-Aug and Training Strategy. We evaluate our proposed coherent generative-
based augmentation on the previous OOD method, RPL [31], the improvement is not obvious.
However, with our training strategy, the performance has largely improved. This demonstrates our
training method can effectively utilize the generated training data with multiple distributions.

RoadAnomaly SMIYC-RA Val SMIYC-RO Val

Training Aug. AP↑ FPR95 ↓ AP↑ FPR95 ↓ AP↑ FPR95 ↓
RPL [31] Default 71.61 17.74 88.55 7.18 96.91 0.09
RPL [31] Ours 72.46 21.85 83.50 23.88 93.30 0.51
Ours Ours 74.60 16.08 93.82 3.94 95.20 0.19

Table 8: Results on ACDC-POC Datasets with specific domain-shift types: Fog, Rain, Snow and
Night. Our model achieves the best performance in both anomaly segmentation (AP↑, FPR↓ ) and
domain-generalized segmentation (mIoU↑, mAcc↑ ).

Fog Rain Snow Night

Method AP↑ FPR95 ↓mIoU↑mAcc↑ AP↑ FPR95 ↓mIoU↑mAcc↑ AP↑ FPR95 ↓mIoU↑mAcc↑ AP↑ FPR95 ↓mIoU↑mAcc↑
RPL [31] 88.3 0.6 71.2 93.4 67.4 1.9 50.9 88.0 75.1 2.5 49.0 84.5 74.3 0.8 24.4 51.2
Ours (DeepLabv3+) 89.7 0.7 69.1 94.3 73.6 1.7 59.9 92.5 77.9 2.0 55.4 89.3 83.7 0.8 35.4 65.3
M2A [42] 83.9 0.9 67.3 94.3 75.9 1.7 53.2 91.0 71.0 2.3 45.2 86.4 75.8 3.9 29.5 61.8
Ours (Mask2Former) 90.5 0.9 69.7 94.2 91.3 0.3 54.5 91.2 90.7 0.6 51.5 86.7 88.7 0.4 31.8 61.6

Per-Class Segmentation Results We evaluated per-class segmentation results and compared them
with the baseline DeepLabv3+ [7] model. Results are presented in Table 9. Our method improves
segmentation performance (mIoU) across most categories. However, performance in fence, pole,
and traffic sign remains similar (with differences of less than 1%), and performance on vegetation
decreases by 3%, likely due to poor generation quality for this class.

Table 9: Per-class segmentation results. We present the segmentation performance (mIoU) for each
known class on the ACDC-POC dataset. Compared to the baseline model (DeepLabv3+ [7]), our
method improves performance in most categories.
Method road sidewalk building wall fence pole traffic light traffic sign
DeepLabv3+ [7] 77.57 37.7 63.55 17.46 31.22 49.42 64.24 52.78
Ours 85.75 58.16 74.8 40.79 29.43 50.81 71.69 53.01

vegetation terrain sky person rider car truck bus
DeepLabv3+ [7] 75.75 10.58 81.12 54.17 19.37 77.89 50.76 50.74
Ours 72.82 30.21 81.35 62.77 32.17 79.99 49.41 49.33

train motorcycle bicycle
DeepLabv3+ [7] 30.33 13.77 22.05
Ours 38.08 29.19 38.52

C.2 Comprehensive Metric Results on SMIYC

To provide a comprehensive analysis of our method, we complement the main metrics (AP, FPR) with
component-wise metrics (sIoU, PPV, F1) on the SMIYC benchmark. The results are summarized
in Table 10. As shown, our method outperforms RPL [31] and Mask2Anomaly [42] across most
evaluation metrics.

C.3 Comparison with POC [12]

We present additional comparison results of our CG-Aug method against POC [12] across six
datasets. Following the experimental setup in POC [12], we replace the default OOD data (COCO) in
Mask2Anomaly [42] with our CG-Aug. As shown in Table 11, our method outperforms both POC
variations on most datasets. Notably, for FS-Static [4], where OOD objects are introduced through
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Table 10: Comprehensive Metric Results on SMIYC. We present the results of our method across
pixel-wise metrics (AP, FPR) and component-wise metrics (sIoU, PPV, and F1). Compared to recent
methods RPL [31] and Mask2Anomaly [42], our method achieves superior or comparable results.
Method Backbone SMIYC-RA SMIYC-RO

AP↑ FPR95 ↓ sIoU↑ PPV↑ F1↑ AP↑ FPR95 ↓ sIoU↑ PPV↑ F1↑
RPL [31] DeepLab v3+ 83.49 11.68 49.76 29.96 30.16 85.93 0.58 52.61 56.65 56.69
Ours 88.06 8.21 56.15 34.66 37.83 90.71 0.26 48.13 66.73 58.02
M2A [42] Mask2Former 88.70 14.60 60.40 45.70 48.60 93.30 0.20 61.40 70.30 69.80
Ours 91.92 7.94 58.74 45.77 48.74 95.29 0.07 59.43 73.51 68.70

cut-and-paste, COCO achieves the best performance; however, this setup lacks the ability to reflect
realistic OOD objects encountered in real-world scenarios.

Table 11: Comparison of our CG-Aug with POC. Following the experimental setup in POC [12],
we replace the default OOD data (COCO) in Mask2Anomaly [42] with our CG-Aug, and compare
with two versions of POC. Our method outperforms both POC variations on most datasets.

Road Anomaly SMIYC-RA21 (val) SMIYC-RO21 (val) ACDC-POC FS-L&F (val) FS-Static (val)

Mask2Anomaly+ AP↑ FPR↓ AP↑ FPR↓ AP↑ FPR↓ AP↑ FPR↓ AP↑ FPR↓ AP↑ FPR↓
COCO 79.70 13.45 94.50 3.30 88.6 0.30 73.77 3.60 69.41 9.46 90.54 1.98
POC-c [12] 82.3 36.7 93.8 2.1 95.3 0.3 74.5 7.6 68.8 11.4 87.4 3.1
POC-alt [12] 78.0 24.6 92.1 8.4 96.0 0.1 72.0 8.4 73.0 9.2 87.0 2.1
CG-Aug (Ours) 85.47 22.38 97.96 1.55 89.80 0.12 86.17 1.05 76.56 10.17 85.70 7.16

C.4 Comparison with DG Methods on the Original ACDC Dataset

To assess the effectiveness of our method in domain generalization, we conducted additional com-
parisons with several recent approaches, including IBN [39], IterNorm [22], IW [40], ISW [10],
ISSA [27], and CMFormer [3], on the ACDC [44] dataset. As shown in Table 12, our method outper-
forms all ResNet-based methods in the Fog, Rain, and Snow domains, achieving comparable results
in the Night domain. Among Mask2Former-based methods, our approach also surpasses ISSA [27],
which similarly uses a ResNet backbone. However, there remains a notable performance gap between
our method and CMFormer [3], likely due to CMFormer’s use of the Swin Transformer [32] as the
backbone for Mask2Former.

Table 12: Domain generalization performance comparison between our method and other DG
methods. Results from other methods are taken from CMFormer [3]. All methods are trained on the
Cityscapes [11] dataset and tested on the ACDC [44] dataset. Results are shown in mIoU (%).

Method Backbone Fog Night Rain Snow Mean

IBN[39]

ResNet

63.8 21.2 50.4 49.6 43.7
Iternorm[22] 63.3 23.8 50.1 49.9 45.3
IW[40] 62.4 21.8 52.4 47.6 46.6
ISW[10] 67.5 33.2 55.9 53.2 52.5
Ours 74.84 30.33 61.15 57.80 55.95
ISSA[27]

Mask2Former
67.5 33.2 55.9 53.2 52.5

CMFormer[3] 77.8 33.7 67.6 64.3 60.1
Ours 70.85 29.39 54.54 52.97 51.61

D Visualization of Generated Data

In Fig. 6, we provide additional visualization examples of our generated images (row 2), corresponding
selection maps (row 3), and the loss maps used to produce the selection map (row 4). Below each
column, we display the weather, time, and location prompts that guide the model in generating
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diverse covariate shifts, as well as the OOD prompts used to generate objects. As shown, our method
effectively generates images with both domain and semantic shifts, with the novel objects blending
seamlessly into the background (e.g. pose and lighting). Additionally, our sample selection process
effectively filters out some generation errors (highlighted in red boxes).
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Figure 6: Visualization of Generated Images. Row 1: Original images from Cityscapes. Row 2:
Generated images featuring both semantic and domain shifts. Row 3: Selection map used to calculate
selected cross-entropy loss during training. Row 4: Cross-entropy loss map used to produce the
selection map (excluding the OOD regions, which are not involved in known class segmentation loss
calculation). Below each column, we display the weather, time, and location prompts that guide the
model in generating diverse covariate shifts, along with the OOD prompts for object generation. Red
boxes highlight generation errors.

E Discussion of Generation Failures and Their Impact

A limitation of our method is its reliance on the quality of the generative model. Although we apply
offline auto-filtering and online sample selection to minimize the impact of generation failures during
training, some issues may still arise. Specifically, we observe that generation failures typically occur
in the following scenarios: (a) remote scenes, (b) small objects, and (c) text-related elements. These
limitations highlight the current constraints of generative models and suggest areas for future research.
Below, we discuss the impact of generation failures:

Impact on Class-Specific Learning: Generation failures can adversely affect specific classes. As
shown in Table 9, we evaluated per-class segmentation results and compared them with the baseline
model on Cityscapes. Performance in categories—such as fence, pole, and traffic sign—remains
similar (differences of less than 1%), and vegetation shows a 3% decrease, likely due to lower
generation quality for these classes.

Performance Saturation: We observe that performance tends to saturate with increasing amounts
of generated data. Experiments with dataset scaling from 1.0x to 2.0x and 3.0x Cityscapes sizes, as
shown in Figure 5, indicate that while performance improves with larger dataset size, it eventually
plateaus. This saturation may result from an interplay between the benefits of additional data and the
adverse effects of generation failures.

F Societal Impacts

Enhancing OOD detection in autonomous vehicles can significantly improve safety by enabling these
systems to better recognize and respond to novel and unexpected situations, thereby reducing the risk
of accidents. Improved robustness to domain shifts also contributes to greater resilience and safety
across diverse driving scenarios. However, improved OOD detection may lead to an over-reliance
on autonomous systems, potentially reducing the vigilance of human drivers or passengers in semi-
autonomous vehicles. Additionally, unintended biases in OOD detection systems could result in
unsafe responses to certain situations, particularly if training data does not sufficiently cover diverse
scenarios, potentially compromising safety in rare but critical cases.
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tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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