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ABSTRACT

Tree ensemble models, such as Gradient Boosted Decision Trees (GBDTs) and
random forests, are widely popular models for a variety of machine learning tasks.
The power of these models comes from the ensemble of decision trees, which
makes analysis of such models significantly harder than for single trees. As a
result, recent work has focused on developing exact and approximate techniques
for questions such as robustness verification, fairness and explainability, for such
models of tree ensembles.
In this paper, we focus on a specific problem of feature sensitivity for additive
decision tree ensembles and build a formal verification framework for it. We start
by showing theoretical (NP-)hardness of the problem and explain how it relates
to other verification problems. Next, we provide a novel encoding of the problem
using pseudo-Boolean constraints. Based on this encoding, we develop a tunable
algorithm to perform sensitivity analysis, which can trade off precision for running
time. We implement our algorithm and study its performance on a suite of GBDT
benchmarks from the literature. Our experiments show the practical utility of our
approach and its improved performance compared to existing approaches.

1 INTRODUCTION

Tree ensemble models, such as gradient boosted decision trees (Friedman, 2001) and random
forests (Breiman, 2001), are now widely used for machine learning tasks in domains ranging from
banking applications (Madaan et al., 2021) to computer vision (Criminisi & Shotton, 2013) to trans-
portation (Podgorelec et al., 2002). The power of these models comes from the ensembling or
boosting which is known to empirically improve performance, unlike single decision trees which are
explainable and simple to understand, but unwieldy to model complex behavior. XGBoost (Chen &
Guestrin, 2016), one such popular tree ensemble learning algorithm, shows remarkable performance
with tree ensembles of size 100, where each tree has depth at most 5 or 6. Of course the tradeoff
with such modeling power is that it becomes difficult to predict and analyze these models, i.e., to
ensure that they are reliable, robust, and behave as expected. This has led to a rich line of work in
the last decade on formalizing and verifying different properties of tree ensembles.

The first such property is robustness checking which asks whether there are adversarial input pertur-
bations that could lead to misclassification. This problem has been addressed by several works over
the past 5 years including Chen et al. (2019b); Einziger et al. (2019); Devos et al. (2021), using dif-
ferent techniques ranging from optimization/MILP-based (Kantchelian et al., 2016) to SMT-solver
based approaches (Ignatiev et al., 2020a). Using SMT-solvers allows one to give guarantees of
soundness and completeness, highly desirable when dealing with reliability issues, but is often less
scalable than purely optimization based approaches. The literature also distinguishes between local
(checking robustness around a given input) and global robustness (checking for all inputs) where the
universal quantifier makes the latter problem significantly harder (Chen et al., 2019b; Leino et al.,
2021). Many techniques also apply approximations (Devos et al., 2021) or look at subclasses (An-
driushchenko & Hein, 2019). Indeed, this is unsurprising since in Kantchelian et al. (2016), it was
shown that a very simple related problem is already NP-hard.

Another property of interest is the sensitivity of a subset of inputs or features. A model is sensitive
to a set of features if by keeping other features fixed and changing those features, the output of the
model changes. In practice, models which are sensitive to a very small subset of features are prone
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to adversarial attacks. This question has also been seen as a way to formalize fairness (e.g., Dwork
et al. (2012)) or causal discrimination (e.g, Galhotra et al. (2017)): sensitive features can be seen
as protected, and changing the decision based only on these features can be seen as being unfair.
This formulation was also adopted in Calzavara et al. (2023), where an approximation algorithm
was provided for the same problem. Further, the generic tool Devos et al. (2021) solves verification
questions including sensitivity/fairness, but provides approximate answers using optimization. A
formal methods approach towards the problem is also provided in Ignatiev et al. (2020a), where
the authors show how the fairness problem can be modeled as a global robustness query and hence
relate the above problems. Another related approach in Törnblom & Nadjm-Tehrani (2020) used
abstract-interpretation techniques for verifying tree ensembles.

In this paper, we launch a deeper investigation into the sensitivity problem for decision tree ensemble
models, both from theoretical and practical perspectives. We start from observing that in most
models and benchmarks we are only interested in checking sensitivity of a fixed few or even just one
input feature. So the first question we ask is whether the problem remains hard even for a bounded
number of features being changed. Second, if we look at tree ensemble training algorithms, like
XGBoost, we observe that the decisions done at leaves, though binary, are derived from real number
values, obtained from confidence. This leads us to ask if we can use these numbers as parameters to
obtain a parametric notion of sensitivity, which can quantify “how sensitive features are” instead of
just saying if they are sensitive or not? Third, we observe that existing encodings of the sensitivity
problem either use one extreme of Boolean reasoning (e.g, SMT solvers in Ignatiev et al. (2020a))
or the other extreme of purely optimization-based reasoning (e.g, MILP solvers in Kantchelian et al.
(2016)). Can we use other forms of powerful reasoning, such as Pseudo-Boolean solvers, that have
shown to be effective in other problems (Mexi et al., 2023) for the sensitivity problem? This forms
the third question that we try to address in this work.

Surprisingly, we show that even for a single feature, the sensitivity problem remains NP-hard. To
show this, we provide a novel reduction from 3CNF-SAT which in fact shows that the problem is
NP-hard even when restricted to decision tree ensembles with trees of depth at most 3. Next, we
introduce a threshold parameter p to define the class change confidence for the sensitivity problem.
In other words, if the output of the classifier is above p threshold, we say that the decision is 1 and
if the output the classifier is below 1− p, we say that decision is 0. This gives a natural tunable ver-
sion of the sensitivity problem. Using this, we formulate the sensitivity problem as pseudo-Boolean
constraints. Our novelty in the encoding includes a new encoding of trees as pseudo-Boolean con-
straints, which is rather different from the encoding of trees done in Ignatiev et al. (2020a) for the
robustness verification problem. Using this novel encoding we model our property so that we can
take advantage of recent advances in pseudo-Boolean solving towards this problem. We then per-
form experiments to illustrate that our algorithm has an order of magnitude better performance than
the state-of-the-art. In sum, our contributions are the following:

1. We formulate a parametric and bounded version sensitivity problem for additive decision
tree ensembles and show that it is NP-complete.

2. We develop a novel encoding of this problem using pseudo-Boolean constraints.

3. We implement our algorithm and show that it outperforms state-of-the-art publicly avail-
able tools in a suite of benchmarks.

We highlight that our hardness results and encoding ideas work for any tree ensemble which aggre-
gates the trees by summing up the individual tree outputs (these are sometimes called additive tree
ensembles, see e.g., Devos et al. (2021)). Such models include GBDTs and random forests which
follow an additive predictive model. In particular, our results are independent of the way by which
the tree ensemble was trained (e.g, gradient boosting etc).

Other related work In addition to the work mentioned above, there are a few other lines of related
work. SMT solvers and solver-based approaches and non-trivial encodings have been widely used
for certifying robustness in neural networks and detailed frameworks such as DeepPoly (Singh et al.,
2019) and α, β-Crown (Zhang et al., 2018; 2022) and some of these could also be related to sensi-
tivity verification. However, there is comparatively less work on using these approaches for decision
tree ensembles, beyond the works mentioned in the introduction. Another rich line of related work
is to train robust tree ensembles. Calzavara et al. (2020), for instance, trains trees to make them more
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evasion aware while Chen et al. (2019a) provides a training method that makes the trees more robust.
Our current focus is on verifying sensitivity but it would also be interesting to extend this to training
insensitive models of tree ensembles. Finally, there is a relation between notions of explainability
such as contrastive explainability and abductive explainability (Ignatiev et al., 2020b) and sensitiv-
ity or fairness. However, there is a marked difference as we focus on global sensitivity based on
given features, while explainability refers to the change of class with respect to or around an input.
However, global notions of contrastive explainability could perhaps be related to our approach.

2 PRELIMINARIES

In the classification setting, given an input space X ⊆ Rd defined over d-dimensional space of
features F , and an output space Y ⊆ R, there exists a unknown function h : X → Y that maps each
element of X to its corresponding correct output in Y . A classifier is a function from X to Y which
approximates h by learning from data. Decision trees and tree ensembles are well-known models of
classifiers.

Decision Trees Formally, a decision tree T is either a leaf n with label n.val ∈ Y or a internal
node n with two children n.yes and n.no decision trees, and a guard n.g, where a guard is a linear
inequality of the form f < v, where f is a feature and v is a constant. Given an input x ∈ X , the
decision tree evaluates it top-down by evaluating the guards along the way to reach a leaf, where it
returns the output value of the leaf encountered. Formally, we define the interpretation of a tree as
follows. For a guard g = f < v, g(x) is true if xf < v, where x = (xf )f∈F . Then, T (x) = T.val,
if T is a leaf, else if T.g(x) is true it is T.yes(x) and if T.g(x) is false, it is T.no(x).

Decision Tree Ensembles Rather than relying on a single tree to approximate the underlying
function, decision tree ensembles utilize multiple trees, each learning different parts of the problem
and then aggregate them to produce a single output. There are many different methods to train
decision tree ensembles, and in this paper, we focus on XGBoost (Chen & Guestrin, 2016), a popular
gradient-boosting algorithm. Formally, an ensemble model c = {T1, ...., Tm} is a set of decision
trees. The ensemble model sums up the results of the member trees. We define the outcome of the
ensemble model c as c(x) = Σmi=1Ti(x). Note that the decision tree ensembles that we consider in
this paper are always additive (even if we do not explicitly mention it), i.e., they aggregate the trees
by summing up the results of individual trees.

Tree Ensemble Classifiers In many real-world applications, the output space Y is finite, meaning
that the set of possible outputs, or commonly known as labels in this scenario, is limited. A tree
ensemble classifier c is a decision tree ensemble with an output space Y = {0, 1, . . . k− 1} where k
is the total number of distinct classes. We will often conflate the tree ensemble classifier c with its
interpretation and write c : X → Y . A binary tree ensemble classifier is a decision tree ensemble
with an output space of size 2.

While learning the tree ensemble classifers from data (as for instance done by XGBoost algorithm
introduced in Chen & Guestrin (2016)) the output c(x) for any input x ∈ X is always a real number.
To obtain a binary output, e.g, in {−1, 1}, one way to set it to 1 if c(x) ≥ 0 and −1 otherwise.
However, a more common approach is to obtain probability values by applying the sigmoid function
to the output of the ensemble. Let c(x) be the raw output of the ensemble for input x. To map this
to a probability space [0, 1], the sigmoid function on c(x), centered at 0 is applied making the new
output: σ(c(x)) = 1

1+e−c(x) . This transformation gives us σ(c(x)), which represents the probability
that the input x belongs to the positive class. The closer σ(c(x)) is to 1, the higher the likelihood
that x is a positive example, and vice versa. Finally, if the output of sigmoid function ≥ 0.5, we
assign it to the positive class (+1) and if the output < 0.5, we assign it to the negative class (-1).

3 THE SENSITIVITY PROBLEM: MODELING AND HARDNESS

We now define the sensitivity problem for tree ensembles. For an input x ∈ X and set of features
F ⊆ F , let xF denote the projection of x onto F . When F = f , we use xf to denote the scalar.
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Definition 3.1. Given a tree ensemble classifier c : X −→ Y , and a set of features F ⊆ F , c is said
to be F -sensitive, if we can find two inputs x, x′ ∈ X such that xF\F = x′F\F and c(x) ̸= c(x′). 1

The sensitivity problem asks whether a given tree ensemble classifier is F -sensitive to a given set of
features F .

One issue with the above definition is that it just requires the two witness inputs to be classified dif-
ferently, but does not take into account their distance from the decision boundary (of the classifier).
As explained earlier, classifier learning algorithms, in fact, provide this information. Consider the
example in Figure 1, where we have a two-tree T1, T2 ensemble c that is trained to be a recommen-
dation system for television shows suitable for children. It is easy to see that α1 = (6, 2, 14) and
α2 = (6, 2, 17) are two inputs such that c(α1) = 0.1−1.2 = −1.1 while c(α2) = 0.7. However, the
pair β1 = (6, 4, 14) and β2 = (8, 4, 14) have c(β1) = 10.1 and c(β2) = −9.9. In a practical setting,
(β1, β2) is a much more interesting pair of inputs since it takes an almost sure positive prediction
to a quite sure negative prediction, which can potentially be very harmful compared to an unsure
prediction getting flipped.

v1 < 10

v2 < 5v3 < 10

0.11.11.21.1

TF

TFTF

v2 < 3

v3 < 15v1 < 7

−1.20.610−10

TF

TFTF

Figure 1: A tree ensemble with two trees T1, T2 having real valued (raw) outputs on leaves

This motivates a more nuanced definition that is parametrized by the difference using the sigmoid
function σ that we want to see in the inputs that witness the change in classification wrt the sensitive
features.
Definition 3.2. Given a tree ensemble classifier c : X −→ Y , sensitive features F ⊆ F and a
parameter p ≥ 0, c is said to be (p, F )-sensitive, if we can find two inputs x, x′ ∈ X such that
(x)F\F = (x′)F\F and σ(c(x)) ≥ 0.5 + p, σ(c(x′)) ≤ 0.5 − p. The (p, F )-sensitivity problem
asks if a given tree ensemble is (p, F )-sensitive wrt a given set of sensitive features F .

It is easy to see that the F -sensitivity problem is a special case of the (p, F )-sensitivity problem.
Hence, for our hardness results, we will focus on the F -sensitivity problem. However, for our
encoding and algorithm in the next section, as well as experimental results later, we will use (p, F )-
sensitivity.

Sensitivity checking for single tree decision models is known to be in polynomial time (Chen et al.,
2019b), but as we show next, this is not the case for general decision tree ensembles. We consider
three variants of the problem, based on the size of the set of sensitive features F : (i) |F | = 1 or the
single feature sensitivity problem, (ii) |F | = k for any fixed constant k which we call the k-sized
subset feature sensitivity problem and (iii) |F | = |F|, the all feature sensitivity problem. Note that
the single feature sensitivity is the same as 1-subset feature sensitivity. Second, the k-sized subset
feature sensitivity problem is only defined if the number of features in the problem instance i.e.,
|F| ≥ k. Finally, note that the all feature sensitivity cannot be seen as k-sized subset sensitivity
problem, since in the latter k is a part of the input, while in the former it is not.

Our main theoretical contribution is to show that all three variants are NP-hard. We start by showing
the NP-hardness of the single feature sensitivity problem and obtain the others as corollaries. Before
going into our proof, we recall that the robustness verification problem for decision tree ensembles
was shown to be NP-hard using a reduction from the so-called evasion problem for decision tree

1We note that this problem has been called causal discrimination in Calzavara et al. (2023) and fairness in
Dwork et al. (2012). While these are valid applications of the definition, the problem is itself closer to the
analysis of sensitive features, and hence, we have called it such. Further, there are many competing definitions
of fairness in the ML literature and while this is certainly one formulation it is not the only one.
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ensembles, which was shown to be NP-hard in Kantchelian et al. (2016) (where, evasion for a given
tree ensemble model c, asks whether there exists an x ∈ X such that c(x) > 0). However, while
evasiveness can potentially be used to show hardness for the all feature sensitivity problem, it cannot
be easily lifted to show single or fixed subset feature hardness. Instead we come up with a novel and
direct reduction from 3CNF-SAT problem to show that single feature sensitivity is already NP-hard.
Theorem 1. The single feature sensitivity problem, i.e., checking whether a given tree ensemble
classifier is F -sensitive for |F | = 1, is NP-hard.

Proof. We will show a reduction from 3CNF-SAT, the classical NP-hard question, which asks given
a Boolean formula in conjunctive normal form (CNF) with 3 variables per clause, whether it is
satisfiable. Given an instance φ of 3CNF-SAT, let cl(φ) be the set of clauses {cl1, cl2, . . . , clm},
with m = |cl(φ)| and let var(φ) denote the set of variables {v1, v2, . . . , vn}, with n = |var(φ)|.
Then from φ we start by creating the formula φ′ = φ∧ (vn+1 ∨ vn+1 ∨ vn+1) which is also a 3CNF
formula with a new variable vn+1 and a new clause clm+1 = (vn+1 ∨ vn+1 ∨ vn+1). Observe that
φ is satisfiable, i.e., there exists an input x ∈ {0, 1}n that satisfies φ iff φ′ is satisfiable, i.e., there
exists an input x′ ∈ {0, 1}n+1 that satisfies φ′. We will now show a reduction to the (single feature)
sensitivity problem. That is, we will construct a decision tree ensemble c with depth 3, such that c
is 1-feature sensitive iff φ′ is satisfiable.

In formula φ′, for every clause cli, we create a depth-3 decision tree Ti as depicted in Figure 2,
where m + 1 = |cl(φ′)|. That is, for each literal (i.e., vi or ¬vi) in the clause, we add a “true”
branch with output 1

|cl(φ′)| , and a “false” branch where we either continue to next literal or return
−1 if there are no more literals left in the clause. For each literal, if it occurs positively as vi (resp.
negatively as ¬vi), the true (resp. false) branch outputs 1

|cl(φ′)| . We form the decision tree ensemble
c using the above decision trees with trees enumerated Ti for i ∈ {1, 2, . . . ,m+1 = |cl(φ′)|}. Note
that in this case, the domain of c, i.e., X = {0, 1}n+1.

Claim. For all x ∈ {0, 1}n+1 we have c(x) = 1 iff φ′(x) = 1, i.e., x satisfies/models φ′.
Proof (of claim): There are 2 possible scenarios for an input x.

• The input satisfies the 3CNF formula φ′, i.e., φ′(x) = 1. In this case, each of the m + 1
clauses are satisfied in the input and thus, for all trees Ti we have Ti(x) = 1

m+1 . Thus,
Σm+1

1 Ti(x) = 1 > 0 =⇒ c(x) = 1.

• The input does not satisfy the 3CNF formula φ′. Thus, there exists a clause which is not
satisfied by the input. Let that clause be clj . By the construction of c, for the corresponding
tree, Tj(x) = −1 and for all i ̸= j, Ti(x) ≤ 1

m+1 . Thus, Σm+1
1 Ti(x) ≤ −1 + m

m+1 =
−1
m+1 < 0 =⇒ c(x) = 0.

Now, we use the above claim to prove hardness of sensitivity. More precisely, we will check sensi-
tivity with respect to the single Boolean variable vn+1. Call the set of all features F and the set for
sensitivity checking F = {vn+1}. To complete the proof, we will show that c is F -sensitive iff φ′

is satisfiable.

v1

v2

v3

1
|cl(ψ)|

1
|cl(ψ)|

1
|cl(ψ)|−1

F T

F T

TF

(a): Clause v1 ∨ v2 ∨ v3

v1

v2

v3

1
|cl(ψ)|

1
|cl(ψ)|

−1
1

|cl(ψ)|

F T

TF

TF

(b): Clause v1 ∨ ¬v2 ∨ ¬v3

Figure 2: Given a formula ψ with |cl(ψ)| clauses, each clause is replaced by a tree above

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In one direction, if c is F -sensitive, by definition, there exist x, x′ ∈ {0, 1}n+1, with x⊥F = x′⊥F
such that c(x) = 1 and c(x′) = 0. Thus we immediately infer that there exists x such that c(x) = 1,
which by the above claim means that x satisfies φ′ and hence φ′ is satisfiable. In the other direction,
if c is not F -sensitive. Then for all x⊥F ∈ {0, 1}n, for all possible choices of xF , x′F , we must
have c(x⊥F , xF ) = c(x⊥F , x

′
F ). But now, if we consider xF = 0, then the decision tree Tm+1

will evaluate to −1 since clm+1[vn+1 7→ 0] = 0. As a result, we can conclude that for any x⊥F ∈
{0, 1}n, we have

∑m+1
1 Ti(x⊥F , 0) ≤ −1 + m

m+1 < 0 and so c(x⊥F , 0) = 0. Thus, for any
xF ∈ {0, 1}, c(x⊥F , xF ) = 0, which implies that for all x ∈ {0, 1}n+1, c(x) = 0. Again appealing
to the claim above, we can conclude that φ′ is not satisfiable.

Thus, we have reduced finding satisfiability of φ′ to checking sensitivity for a feature set of size 1
and hence the latter problem is NP-hard.

We can now infer several interesting corollaries. First, we observe that the above proof can be lifted
from single feature sensitivity to k-sized subset feature sensitivity for any fixed k. Given an arbitrary
instance of the single feature sensitivity problem, we can construct an instance of a k-sized subset
feature sensitivity (for |F | = k) by introducing k − 1 new dummy variables to the problem. These
dummy variables are part of our input to sensitivity checking, but they do not affect the tree’s output
in any way (formally, one way to do this is to have decision tree stumps on these variables that output
0 irrespective of the variables’ values). Thus, checking for sensitivity for k-sized subset of features
will be equivalent to checking for sensitivity for just the first feature in the original instance and
hence, checking sensitivity with respect to a given fixed size of subset of features is also NP-hard.

Corollary 1. For any fixed constant k, the k-sized subset feature sensitivity problem for decision
tree ensembles is NP-hard.

The above argument holds for any k-sized sensitive feature set. But this does not immediately imply
that it can be lifted to the case where all features are sensitive, i.e., |F | = |F|. Indeed, one could
imagine that the all-feature sensitivity problem could be easier. However, by modifying the proof
above, we can show that this problem is also NP-hard. Due to lack of space, we provide this proof
in Appendix A.

Corollary 2. The all feature sensitivity problem for decision tree ensembles is NP-hard.

Finally, an important remark is that our NP-hardness proof requires trees in the ensembles that have
depth 3. This leaves open the intriguing question of whether the (single/k-sized subset/all) sensitivity
problem is NP-hard for tree ensembles where the depth of each tree is at most 2. Unfortunately, our
proofs cannot be extended to this case, since they rely on hardness of 3CNF-SAT, which requires 3
variables per clause which we translate to depth 3 trees. However, 2CNF-SAT is poly-time solvable
and hence not useful to show hardness. We expect that a different technique/reduction/encoding will
be needed to resolve this question and we leave this for future work. We also note that if we fix the
number of trees and vary depth, or if we fix the depth and vary the number of trees NP-hardness
follows, while if we fix both number of trees and depth, then the problem is easy.

Above, we considered hardness results. On the other hand, for all the problems mentioned above,
we can obtain NP upper bounds. To see this, note that given a candidate solution i.e., values of
inputs x and x′ that only differ on the set of sensitive features F , we can trivially run the decision
tree algorithm and check whether it is a valid solution or not, i.e., the decision for x differs from the
decision for x′. Thus, both F -sensitivity and (p, F )-sensitivity problems are in NP hence they are
NP-complete.

4 ENCODING THE SENSITIVITY PROBLEM

In this section, we will consider encoding the problem of sensitivity of binary tree ensemble classifier
X into solving of a set of pseudo-Boolean constraints Boros & Hammer (2002), which are arithmetic
constraints containing only Boolean variables.

First, we observe that the general p-sensitivity problem in Definition 3.2 can be written as the prob-
lem of the search of the p-sensitive pairs of inputs x, x′ for the set of features F as follows.
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∃x, x′,
∧

f ′∈F\F

xf ′ = x′f ′ ∧ σ(c(x)) > 0.5 + p ∧ σ(c(x′)) < 0.5− p

Since the output of the classifiers is via sigmoid function, we compute the inverse of the function to
compute the required gap between the inputs of the sigmoid function. Let δ = log( 0.5+p0.5−p ), which is
the inverse of sigmoid. Let c consists of trees T1, ..., Tm. The problem translates into

∃x, x′,
∧

f ′∈F\F

xf ′ = x′f ′ ∧
m∑
i=1

Ti(x) > δ ∧
m∑
i=1

Ti(x
′) < −δ

Let us start encoding the above constraints using a Pseudo-Boolean encoding.

Encoding inputs The range of feature f is [−∞,∞]. However, c naturally divides the input in
segments, which we define as follows. Let Gf be the set of all guards on feature f in c. Let
Cf = toSortedList({v|f < v ∈ Gf}) and kf = |Cf |. The range of f is divided in kf + 1
segments by Cf . We can encode the segments using kf bits. For 0 ≤ j < |Cf |, let bit b1fj indicate
that feature f is less than Cf [j] in input x and let bit b2fj indicate that feature f is less than Cf [j]
in input x′. We need to include the following constraints, which encode that the boundaries are in
increasing order.

bqfj ⇒ bqf(j+1) (1)

We also need to say for each f /∈ F , x1 and x2 will agree. Therefore, for each j ∈ 1..kf , we add
b1fj = b2fj . (2)

Encoding tree We need to encode the structure of the trees in constraints. For each node n ∈ Ti,
let tqin indicates that the node visited when evaluating Ti(xq). Since the roots of all the trees are
visited, the following bits are always true.

tqiTi
(3)

For each internal node n ∈ Ti, let (f < v) = n.g such that Cf [j] = v for some j. We need to say
that if n is visited, and (f < v) is true then n.yes is visited otherwise n.no is visited.

(tqin ∧ bbfj ⇒ tqi(n.yes)) ∧ (tqin ∧ ¬bbfj ⇒ tqi(n.no)) (4)

For each tree Ti, we may also optionally add the following constraints to help the solver to know
that, at most one leaf of Ti can be visited by the input.∑

n∈Ti.leaves

tqin = 1 (5)

Encoding output We now need to encode the condition that the sum of the tree outputs is greater
than δ for x1 and less than −δ for x2. The label of a leaf n ∈ Ti is a real value with infinite precision.
We discretize this real value into steps of size 1/α, where α is the precision factor in our encoding.
For the encoding of x1, we multiply the leaf value n.val by α and take the ceiling of the result.
This constant integer is then multiplied by the corresponding t1in. The ceiling operation increases
the sum, which is then compared to the bounds derived from the floor of αδ. Similarly, we impose
constraints for the output of x2.

(

m∑
i=1

∑
n∈Ti.leaves

t1in⌈αt.val⌉) > ⌊αδ⌋ ∧ (

m∑
i=1

∑
n∈Ti.leaves

t2in⌊t.val⌋) < ⌈−αδ⌉ (6)

The above equations are the set of pseudo-boolean constraints.

Our encoding of the problem differs significantly from the one presented in Ignatiev et al. (2020a),
which is a direct SMT encoding of trees and their verification query. The problem we address is
similar to the knapsack problem, and the most appropriate encoding for it is through pseudo-Boolean
constraints. Encoding the problem as SMT constraints, as done Ignatiev et al. (2020a), may result
in a loss of structural information, preventing the solver from fully leveraging the pseudo-Boolean
nature of the constraints. We solve these constraints using a pseudo-Boolean solver to check for
p-sensitivity. The results from the solver provide the following guarantees.
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Theorem 2 (Completeness and α-soundness). 1. If conjunction (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧
(6) is unsatisfiable then the classifier c is not (p, F )-sensitive.

2. Otherwise, there is a counterexample pair (x, x′) such that c(x) > 1
1+e−δ+((m+1)/α) and

c(x′) < 1
1+eδ−((m+1)/α) , where δ = log( 0.5+p0.5−p ) and α is the precision parameter of our

analysis.

Proof sketch. Since the floor and ceiling operations are in conservative directions, 1 is true. In case
of satisfiable constraints, there will be exactly m bits that are 1 in the sum in 6. The pre-sigmoid
output in the reported counterexamples will be closer to zero by amount (m + 1)/α in δ, due to m
ceiling/floor operations on the left-hand side of the inequalities and one ceiling/floor operation on
the right-hand side in 6. Therefore, 2 holds.

As we increase α, the precision of our counterexamples improves. Thus, we can prove the following
corollary, which states that if α is sufficiently large, the counterexamples will exhibit no reduction
in gap, in other words, they are precise.
Corollary 3. There is an α such that any counterexample pair (x, x′) will satisfy c(x) > 0.5 + p
and c(x′) < 0.5− p.

Proof Sketch. In the non-approximated constraint
∑m
i=1

∑
n∈Ti.leaves

t1int.val > δ, there must be
a gap between the closest sum to δ and δ. If the gap is bigger than (m + 1)/α, then approximation
has no effect.

5 EXPERIMENTS

In this section, we present our tool, SENSPB, which implements the above method for p-sensitivity
checking. The tool is developed in Python and utilizes Z3 (de Moura & Bjørner, 2008) as its back-
end pseudo-Boolean solver. We also tried a dedicated pseudo-Boolean solver Elffers & Nordström
(2018), but as its performance was similar we kept to Z3. Our tool accepts as input a binary classi-
fier XGBoost model, a set of features for which sensitivity is being assessed, the parameter p, and a
precision parameter α. If the model is not sensitive, the tool outputs “pass”. Otherwise, it returns a
pair of inputs that demonstrate p-sensitivity on the specified features.

To assess our method, we begin by running our tool on a set of XGBoost models from Chen et al.
(2019b). Additionally, to evaluate the performance of our tool, we train XGBoost models with
varying numbers of ensemble trees on 100,000 randomly generated data samples. We did not run
experiments for (additive) Random Forests separately since, from the point of view of our encoding,
they are equivalent to GBDT models. We ran the experiments on an Ubuntu machine with 20
1.3GHz cores, which has 64GB RAM.

There have been several tools (Devos et al., 2021; Törnblom & Nadjm-Tehrani, 2020; Chen et al.,
2019b; Ignatiev et al., 2020a; Calzavara et al., 2023; Kantchelian et al., 2016) that implement dif-
ferent variants of verification for tree ensembles. In our experiment, we compare SENSPB with the
closest approach in VERITAS (Devos et al., 2021) and an SMT based approach presented in Ignatiev
et al. (2020a). We used our own implementation of the SMT based approach with Z3 (de Moura &
Bjørner, 2008) as the SMT solver. We did not compare with Calzavara et al. (2023) as it only sup-
ports random forest trees and we were unable to make it work with XGBoost models. Finally, we did
not include a comparison with Kantchelian et al. (2016) since VERITAS has already demonstrated
superior performance over this tool.

We ran SENSPB on the benchmarks, and the results are presented in Table 1. For each benchmark
ensemble, in one experiment we pick a feature f and run SENSPB on the ensemble to check whether
the classifier is p-sensitive to f . We repeat this experiment over all possible f , and the maximum,
minimum and average time taken by us for termination is reported. We set a timeout of 1 hour for
each experiment. In our experiments, we have set gap p = 0.15 and precision α = 10 × |#Trees|.
For the SMT solver-based approach, our experimental setup is the same as SENSPB and we report
the average time taken. More experiments can be found in Appendix C

VERITAS doesn’t solve the sensitivity problem directly. We instead ask VERITAS to maximise the
difference between the outputs produced by two inputs which differ only in a feature. We define the
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Benchmark Name Details SENSPB time taken (s) SMT#Trees Depth #Feat Min Max Average
Breast cancer robust 4 5 11 2.72 2.81 2.76 2.76
Breast cancer unrobust 4 6 11 2.75 2.82 2.8 2.8
Diabetes robust 20 5 9 3 3.2 3.02 3.443
Diabetes unrobust 20 5 9 3.4 23 5.8 57.2
Cod-rna unrobust 80 4 8 7.2 12.9 8.3 106
Binary MNIST robust 50 6 784 14.6 15.3 14.9 TO
Higgs unrobust 100 8 28 130 TO 1188 TO
IJCNN robust 60 8 23 16 TO 330.7 TO
Synthetic 1 100 6 10 5.36 5.85 5.57 TO
Synthetic 2 125 6 10 6 6.35 6.2 TO
Synthetic 3 150 6 10 7.09 8.19 7.36 TO
Synthetic 4 175 6 10 6.25 6.57 6.37 TO
Synthetic 5 200 6 10 4.40 124.51 16.48 TO

Table 1: Times taken for verifying or countering sensitivity of all singular feature sets. The Min,
Max and Averages in SENSPB times are taken by running the tool with different features of the
benchmark tree ensembles as the sensitive feature. More information on these experiments is avail-
able in Appendix B

Benchmark Name Time Taken (in seconds) Accuracy comparison
SENSPB VERITAS 1x 2x 5x 3600

Breast cancer robust 2.7 2.5 81.82% 81.82% 81.82% 81.82%
Breast cancer unrobust 2.7 2.53 45.45 % 45.45% 45.45% 45.45%

Diabetes robust 3.0 3.2 77.78% 77.78% 77.78% 77.78%
Diabetes unrobust 5.9 198.1 55.56% 66.67% 77.78% 88.89%
Cod-rna unrobust 8.3 346.2 0.00% 0% 25.00% 37.50%

Binary-mnist robust 14.9 TO TO TO TO TO
Higgs unrobust 1188 TO TO TO TO TO
IJCNN unrobust 330 OOM TO TO 0% OOM

Table 2: 1) Runtime Comparison by letting VERITAS run on benchmarks with a timeout of 3600s.
2) Accuracy analysis of VERITAS with the time outs set to different values, depending on the time
it took SENSPB. The percentages recorded represent that fraction of features where VERITAS gave
better than or equivalent results as compared to SENSPB. For Time Analysis, TO implies that VER-
ITAS timed out without reaching an optimal difference, while in the Accuracy measurements, TO
means that VERITAS timed out without producing a single valid solution

bounds found by VERITAS being ”better than” the ones found by SENSPB if the bound found by
VERITAS is greater than 2×gap. Note that this is a very relaxed definition since the bounds found
by VERITAS might have a larger spread but might still be lying in the same output class. Since we
can stop VERITAS anytime and observe the best solution found till then, we considered two kinds of
experiments for fine-grained comparisons between the performance of SENSPB and VERITAS.

Firstly, we asked if we fix a timeout of 3600s, how does the performance of VERITAS compare
with SENSPB, i.e., how long does it take VERITAS to reach an optimal solution? The results are
present in the Time Analysis part of Table 2. For the Binary MNIST robust and Higgs unrobust
benchmark ensembles, VERITAS always times out without producing a single solution. For IJCNN
robust, VERITAS runs out of memory after roughly 900s.

Secondly, we asked if we ran VERITAS for the time relative to the time taken by SENSPB, what is
be the relative performance? Let the time taken by SENSPB be x. We run VERITAS for sensitivity
analysis, one feature at a time, with the following timeouts: x, 2x, 5x and 3600. We look at the
bound produced by VERITAS at the end of the timeout and compare this bound to the bound found
by SENSPB. In the accuracy comparison section of Table 2, we report the percentage of features
in which VERITAS performed better than or equivalent to SENSPB. As expected, on increasing
the time given to VERITAS, it starts performing better on more and more features, e.g., Diabetes
unrobust and Cod-rna unrobust. However, even on running VERITAS for 3600s it leaves out a lot of
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features in which SENSPB performs better. As noted earlier, for three of our largest benchmarks,
VERITAS does not produce a single solution in the time given.

Our experiments clearly demonstrate that our pseudo-Boolean encoding significantly outperforms
both the standard encoding and output configuration-based approaches by an order of magni-
tude. Given that the problem is NP-hard, SMT-based approaches are likely to surpass output
configuration-based methods unless those methods are highly optimized. An SMT solver typically
uses CDCL along with Simplex to solve the problem but may not fully exploit the specialized nature
of our problem, particularly the limited role of arithmetic during bit summation at the output. As a
result, pseudo-Boolean solvers specifically designed for such problems are expected to deliver the
best performance. Our encoding allows us to not only use pseudo-boolean solvers but also provide
new sets of benchmarks for the solvers. The availability of the benchmarks would likely improve
the performances of the solvers.

6 CONCLUSION

In this paper, we investigated the sensitivity problem in two variants, the exact and a parametrized
version. We presented new hardness proofs as well an efficient encoding into pseudo-Boolean con-
straints. Our implementation allowed us to exploit the recent advances in pseudo-Boolean solvers
to solve the p-sensitivity problem. We successfully addressed XGBoost models of practical sizes,
including scores of features, hundreds of trees, and a depth of 6-8. We believe that our work and
especially the pseudo-Boolean encoding opens a new direction for scalable solutions for sensitivity
and general verification problems for tree ensembles. For instance, an immediate extension would
be to consider other tree ensemble models, such as random forests. Another natural future direction
is also towards the question of multiclass labels, e.g., as done in Devos et al. (2024) for robustness
verification.
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A ADDITIONAL THEORETICAL RESULTS

A.1 PROOF FOR COROLLARY 2

The proof of Theorem 1 can be directly lifted with some minor changes to prove Corollary 2. Instead
of checking sensitivity for F = {vn+1}, we check sensitivity for F = F in the same setting. The
first direction holds with the same argument as before. The reverse direction also holds with the
same argument with the following changes.

• x⊥F is empty

• xF ∈ {0, 1}n+1 instead of {0, 1}

However, for the sake of completeness, we give the full proof below:

Proof. As before, we show reduction from 3CNF-SAT. Given an instance φ of 3CNF-SAT, let cl(φ)
be the set of clauses {cl1, cl2, . . . , clm}, with m = |cl(φ)| and let var(φ) denote the set of variables
{v1, v2, . . . , vn}, with n = |var(φ)|. Then from φ we start by creating the formula φ′ = φ ∧
(vn+1 ∨ vn+1 ∨ vn+1) which is also a 3CNF formula with a new variable vn+1 and a new clause
clm+1 = (vn+1 ∨ vn+1 ∨ vn+1). Observe that φ is satisfiable, i.e., there exists an input x ∈ {0, 1}n
that satisfies φ iff φ′ is satisfiable, i.e., there exists an input x′ ∈ {0, 1}n+1 that satisfies φ′. We
will now show a reduction to the (single feature) sensitivity problem. That is, we will construct a
decision tree ensemble c with depth 3, such that c is 1-feature sensitive iff φ′ is satisfiable.

In formula φ′, for every clause cli, we create a depth-3 decision tree Ti as depicted in Figure 2,
where m + 1 = |cl(φ′)|. That is, for each literal (i.e., vi or ¬vi) in the clause, we add a ”true”
branch with output 1

|cl(φ′)| , and a ”false” branch where we either continue to next literal or return
−1 if there are no more literals left in the clause. For each literal, if it occurs positively as vi (resp.
negatively as ¬vi), the true (resp. false) branch outputs 1

|cl(φ′)| . We form the decision tree ensemble
c using the above decision trees with trees enumerated Ti for i ∈ {1, 2, . . . ,m+1 = |cl(φ′)|}. Note
that in this case, the domain of c, i.e., X = {0, 1}n+1.

Claim. For all x ∈ {0, 1}n+1 we have c(x) = 1 iff φ′(x) = 1, i.e., x satisfies/models φ′.
Proof (of claim): There are 2 possible scenarios for an input x.

• The input satisfies the 3CNF formula φ′, i.e., φ′(x) = 1. In this case, each of the m + 1
clauses is satisfied in the input, and thus, for all trees Ti, we have Ti(x) = 1

m+1 . Thus,
Σm+1

1 Ti(x) = 1 > 0 =⇒ c(x) = 1.

• The input doesn’t satisfy the 3CNF formula φ′. Thus, there exists a clause which is not
satisfied by the input. Let that clause be clj . By the construction of c, for the corresponding
tree Tj(x) = −1 and Ti(x) ≤ 1

m+1 for all i ̸= j. Thus, Σm+1
1 Ti(x) ≤ −1 + m

m+1 =
−1
m+1 < 0 =⇒ c(x) = 0.

Now, we use the above claim to prove hardness of sensitivity. More precisely, we will check sensi-
tivity with respect to the singleton Boolean variable vn+1. Call the set of all features F and the set
for sensitivity checking F = F . To complete the proof, we will show that c is F -sensitive iff φ′ is
satisfiable.

In one direction, if c is F -sensitive, by definition, there exist x, x′ ∈ {0, 1}n+1, such that c(x) = 1
and c(x′) = 0. Thus, we immediately infer that there exists x such that c(x) = 1, which by the
above claim means that x satisfies φ′ and hence φ′ is satisfiable. In the other direction, if c is not
F -sensitive. Then for all possible choices of xF , x′F , we must have c(xF ) = c(x′F ). But now, if we
consider xvn+1 = 0, then the decision tree Tm+1 will evaluate to −1 since clm+1[vn+1 7→ 0] = 0.
As a result, we can conclude that for any xF\{vn+1} ∈ {0, 1}n, we have

∑m+1
1 Ti(xF\{vn+1}, 0) ≤

−1 + m
m+1 < 0 and so c(xF\{vn+1}, 0) = 0. Thus, for any xF ∈ {0, 1}n+1, c(xF ) = 0, which

implies that for all x ∈ {0, 1}n+1, c(x) = 0. Again, appealing to the claim above, we can conclude
that φ′ is not satisfiable.
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Thus, we have reduced finding satisfiability of φ′ to checking sensitivity for the whole input feature
set and hence the latter problem is NP-hard.

An interesting question that arises from the above proof is the requirement of the new clause clm+1.
What we require is an input which doesn’t satisfy φ′. If there is no such input, then even when the
decision tree ensemble is insensitive to the set F , the 3CNF formula φ′ can be satisfiable. Thus, to
ensure such an input exists, we add the clause clm+1.

A.2 HARDNESS OF THE DIFFERENTIATING INPUT PROBLEM

From the same construction of trees in Theorem 1, we can show a novel yet interesting problem that
we call the differentiating input problem is also NP-hard.
Definition A.1. Given 2 tree ensemble classifiers c : X −→ Y and c′ : X −→ Y , we say x ∈ X is a
differentiating input for them if c(x) ̸= c′(x). Given 2 tree ensemble classifiers c, c′ : X −→ Y , the
differentiating input problem asks if there exists a differentiating input, i.e., ∃x ∈ X , c(x) ̸= c′(x)?
Corollary 4. The differentiating input problem for decision tree ensembles is NP-Hard.

Proof. We will show a reduction from 3CNF-SAT to this problem. Given an arbitrary 3CNF-SAT
problem, we can create a decision tree classifier that solves this problem. Given an instance φ of
3CNF-SAT, let cl(φ) be the set of clauses {cl1, cl2, . . . , clm}, with m = |cl(φ)|. Then, for each
clause, cli = l1 ∨ l2 ∨ l3 in the 3CNF-SAT problem, create a decision tree, Ti such that Ti(x) = 1

m
if x satisfies the clause and Ti(x) = −1 otherwise. Two examples for the same are shown in
Figure 2(a) and 2(b). The ensemble c = {T1, T2, ..., Tm} outputs a positive class (+1) if and only if
the 3CNF-SAT formula was satisfiable as shown in the proof of Theorem 1.

Finally, we create another tree ensemble c′, which always returns a negative class(-1). Thus, asking
the question of whether there is a differentiating input for these tree ensembles is equivalent to asking
whether the 3CNF-SAT formula was satisfiable, thus completing the hardness proof.

B MORE INFORMATION ON THE EXPERIMENTS

The following table gives the fraction of all the features to which the benchmark trees are singularly
sensitive to.

Benchmark Name Number of Features Ran On Percentage of Sensitive Features
Breast cancer robust 11 18.2
Breast cancer unrobust 11 36.4
Diabetes robust 9 44.4
Diabetes unrobust 9 80
Cod-rna unrobust 8 100
Binary mnist robust 10 0
Higgs unrobust 10 100
IJCNN robust 23 100

Table 3: Percentage of Sensitive Features

C ADDITIONAL EXPERIMENTS

Working on the IJCNN robust benchmark, we try to understand the effects of changing p and α
(one at a time) on the running time of our algorithm. The IJCNN benchmark has 60 trees, with a
maximum depth of 80 and 23 features and is a good representative of the kind of ensembles we
aim to verify. While changing p, we keep the value of α fixed to the value we used in the main
experiments (i.e. 10× |#Trees|). Likewise, while varying α, we keep p fixed to 0.15. We also give
a table detailing the fraction of features where SENSPB performs better than VERITAS.
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p Time (s)
0.1 15.8

0.15 16
0.2 17.0
0.4 1100.0

0.45 923.4

Table 4: Effect of changing gap

α Time (s)
100 16.2675621509552
200 15.795006513595581
500 15.795297384262085
700 16.174979209899902

1000 15.67112421989441
1500 22.39055609703064
2000 19.01390266418457
5000 19.632317543029785

100000 16.586485147476196
1000000 16.71101140975952

Table 5: Effect of changing precision

Benchmark Name VERITASbetter %SENSPBbetter
Breast cancer robust 81.82% 18.18%

Breast cancer unrobust 45.45 % 54.55%
Diabetes robust 77.78% 22.2%

Diabetes unrobust 55.56% 44.44%
Cod-rna unrobust 0.00% 100%

Binary-mnist robust TO 100%
Higgs unrobust TO 100%
IJCNN unrobust TO 100%

Table 6: Comparison between the features where VERITASfinds a better bound than SENSPB. We
first run SENSPBand then run VERITASfor the same amount of time. We look at the best results
produced by VERITASin this time limit and use that value for the comparison.
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