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ABSTRACT

Tree ensemble models, such as Gradient Boosted Decision Trees (GBDTs) and
random forests, are widely popular models for a variety of machine learning tasks.
The power of these models comes from the ensemble of decision trees, which
makes analysis of such models significantly harder than for single trees. As a
result, recent work has focused on developing exact and approximate techniques
for questions such as robustness verification, fairness and explainability for such
models of tree ensembles.
In this paper, we focus on a specific problem of feature sensitivity for additive
decision tree ensembles and build a formal verification framework for it, where we
also take into account the confidence of the tree ensemble in its output. We start
by showing theoretical (NP-)hardness of the problem and explain how it relates
to other verification problems. Next, we provide a novel encoding of the problem
using pseudo-Boolean constraints. Based on this encoding, we develop a tunable
algorithm to perform sensitivity analysis, which can trade off precision for running
time. We implement our algorithm and study its performance on a suite of GBDT
benchmarks from the literature. Our experiments show the practical utility of our
approach and its improved performance compared to existing approaches.

1 INTRODUCTION

Tree ensemble models, such as gradient boosted decision trees (Friedman, 2001) and random
forests (Breiman, 2001), are now widely used for machine learning tasks in domains ranging from
banking applications (Madaan et al., 2021) to computer vision (Criminisi & Shotton, 2013) to trans-
portation (Podgorelec et al., 2002). The power of these models comes from the ensembling or boost-
ing, which is known to empirically improve performance, unlike single decision trees, which are
explainable and simple to understand but unwieldy to model complex behaviour. XGBoost (Chen &
Guestrin, 2016), one such popular tree ensemble learning algorithm, shows remarkable performance
with tree ensembles of size 100, where each tree has depth at most 5 or 6. Of course, the tradeoff
with such modelling power is that it becomes difficult to predict and analyze these models, i.e., to
ensure that they are reliable, robust, and behave as expected. This has led to a rich line of work in
the last decade on formalizing and verifying different properties of tree ensembles.

The first such property is robustness checking which asks whether there are adversarial input per-
turbations that could lead to misclassification. This problem has been addressed by several works
over the past 5 years including Chen et al. (2019b); Einziger et al. (2019); Devos et al. (2021), us-
ing different techniques ranging from optimization/MILP-based (Kantchelian et al., 2016) to SMT-
solver based approaches (Ignatiev et al., 2020a). Using SMT-solvers allows one to give guarantees
of soundness and completeness, which is highly desirable when dealing with reliability issues but
is often less scalable than purely optimization-based approaches. The literature also distinguishes
between local (checking robustness around a given input) and global robustness (checking for all
inputs) where the universal quantifier makes the latter problem significantly harder (Chen et al.,
2019b; Leino et al., 2021). Many techniques also apply approximations (Devos et al., 2021) or look
at subclasses (Andriushchenko & Hein, 2019). Indeed, this is unsurprising since in Kantchelian
et al. (2016), it was shown that a very simple related problem is already NP-hard.
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Another property of interest is the sensitivity of a subset of inputs or features. A model is sensitive
to a set of features if by keeping other features fixed and changing those features, the output of the
model changes. In practice, models which are sensitive to a very small subset of features are prone
to adversarial attacks. This question has also been seen as a way to formalize fairness (e.g., Dwork
et al. (2012)) or causal discrimination (e.g, Galhotra et al. (2017)): sensitive features can be seen
as protected, and changing the decision based only on these features can be seen as being unfair.
This formulation was also adopted in Calzavara et al. (2023), where an approximation algorithm
was provided for the same problem. Further, the generic tool Devos et al. (2021) solves verification
questions including sensitivity/fairness, but provides approximate answers using optimization. A
formal methods approach towards the problem is also provided in Ignatiev et al. (2020a), where the
authors show how the fairness problem can be modelled as a global robustness query and hence
relate the above problems. Another related approach in Törnblom & Nadjm-Tehrani (2020) used
abstract interpretation techniques for verifying tree ensembles.

In this paper, we launch a deeper investigation into the sensitivity problem for decision tree ensemble
models, both from theoretical and practical perspectives. We start by observing that in most models
and benchmarks, we are only interested in checking the sensitivity of a fixed few or even just one
input feature. So the first question we ask is whether the problem remains hard even for a bounded
number of features being changed. Second, if we look at tree ensemble training algorithms, like
XGBoost, we observe that the decisions done at leaves, though binary, are derived from real number
values, obtained from confidence. This leads us to ask if we can use these numbers as parameters to
obtain a parametric notion of sensitivity, which can quantify “how sensitive features are” instead of
just saying if they are sensitive or not. Third, we observe that existing encodings of the sensitivity
problem either use one extreme of Boolean reasoning (e.g, SMT solvers in Ignatiev et al. (2020a))
or the other extreme of purely optimization-based reasoning (e.g, MILP solvers in Kantchelian et al.
(2016)). Can we use other forms of powerful reasoning, such as pseudo-Boolean solvers, that have
shown to be effective in other problems (Mexi et al., 2023) for the sensitivity problem? This forms
the third question that we try to address in this work.

Surprisingly, we show that even for a single feature, the sensitivity problem remains NP-hard. To
show this, we provide a novel reduction from 3CNF-SAT which in fact shows that the problem is
NP-hard even when restricted to decision tree ensembles with trees of depth at most 3. Next, we
introduce a threshold parameter p to define the class change confidence for the sensitivity problem.
In other words, if the output of the classifier is above p threshold, we say that the decision is 1 and
if the output the classifier is below 1− p, we say that decision is 0. This gives a natural tunable ver-
sion of the sensitivity problem. Using this, we formulate the sensitivity problem as pseudo-Boolean
constraints. Our novelty in the encoding includes a new encoding of trees as pseudo-Boolean con-
straints, which is rather different from the encoding of trees done in Ignatiev et al. (2020a) for the
robustness verification problem. Using this novel encoding we model our property so that we can
take advantage of recent advances in pseudo-Boolean solving towards this problem. We then per-
form experiments to illustrate that our algorithm has an order of magnitude better performance than
the state-of-the-art. In sum, our contributions are the following:

1. We formulate a parametric and bounded version sensitivity problem for additive decision
tree ensembles and show that it is NP-complete.

2. We develop a novel encoding of this problem using pseudo-Boolean constraints.

3. We implement our algorithm and show that it outperforms state-of-the-art publicly avail-
able tools in a suite of benchmarks.

We highlight that our hardness results and encoding ideas work for any tree ensemble which aggre-
gates the trees by summing up the individual tree outputs (these are sometimes called additive tree
ensembles, see e.g., Devos et al. (2021)). Such models include GBDTs and random forests which
follow an additive predictive model. In particular, our results are independent of the way by which
the tree ensemble was trained (e.g, gradient boosting, etc.).

Other Related Work In addition to the work mentioned above, there are a few other lines of
related work. SMT solvers and solver-based approaches and non-trivial encodings have been widely
used for certifying robustness in neural networks and detailed frameworks such as DeepPoly (Singh
et al., 2019) and α, β-Crown (Zhang et al., 2018; 2022) and some of these could also be related
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to sensitivity verification. However, there is comparatively less work on using these approaches
for decision tree ensembles, beyond the works mentioned in the introduction. Another rich line of
related work is to train robust tree ensembles. Calzavara et al. (2020), for instance, trains trees to
make them more evasion aware while Chen et al. (2019a) provides a training method that makes
the trees more robust. Our current focus is on verifying sensitivity but it would also be interesting
to extend this to training insensitive models of tree ensembles. Finally, there is a relation between
notions of explainability such as contrastive explainability and abductive explainability (Ignatiev
et al., 2020b) and sensitivity or fairness. However, there is a marked difference as we focus on
global sensitivity based on given features, while explainability refers to the change of class with
respect to or around an input. However, global notions of contrastive explainability could perhaps
be related to our approach. As explained above, our approach works for random forests as well. A
caveat is that the classical definition of random forests (Breiman, 2001) computes the final answer
by max-pooling rather than summing up. We believe that our theoretical results and encodings can
also be extended to the max-pool setting, but we leave this for future work. On the other hand, some
famous implementations, such as Scikit-Learn (Pedregosa et al., 2011), do use a weighted average
of the individual tree predictions to make the final decisions, which can be incorporated into our
approach.

2 PRELIMINARIES

In the classification setting, given an input space X ⊆ Rd defined over d-dimensional space of
features F , and an output space Y , which is a discrete subset of R, there exists a unknown function
h : X → Y that maps each element of X to its corresponding correct output in Y . A classifier
is a function from X to Y which approximates h by learning from data. Decision trees and tree
ensembles are well-known models used to define classifiers.

Decision Trees A decision tree T is either a leaf n with label n.val ∈ R or an internal node n with
two children n.yes and n.no decision trees, and a guard n.g, which is a Boolean formula involving
the input features. Typically, the Boolean formula is a linear inequality of the form f < v, where
f is a feature and v is a real constant. Given an input x ∈ X , the (binary) decision tree evaluates it
top-down from the root, by evaluating the Boolean formulae in the guards to determine the child to
go to, and finally reach a leaf, where it returns the output value of the leaf encountered. For instance,
guard g = f < v, g(x) is true if xf < v, where x = (xf )f∈F . This defines the output or outcome
T (x) of tree T on input x ∈ X as follows: T (x) = T.val, if T is a leaf, else, it is recursively
evaluated, i.e., if T.g(x) is true, it is T.yes(x) and if T.g(x) is false, it is T.no(x).

Decision Tree Ensembles Rather than relying on a single tree to approximate the underlying
function, decision tree ensembles utilize multiple trees, each learning different parts of the problem
and then aggregating them to produce a single output. There are many different methods to train
decision tree ensembles, and in this paper, we focus on XGBoost (Chen & Guestrin, 2016), a popular
gradient-boosting algorithm. Formally, an ensemble model c = {T1, . . . , Tm} is a set of decision
trees. The ensemble model sums up the results of the member trees. We define the outcome of
the ensemble model c as c(x) =

∑m
i=1 Ti(x). We will often refer to this value as the model’s raw

output. Note that the decision tree ensembles we consider in this paper are always additive (even if
we do not explicitly mention it), i.e., they aggregate the trees by summing up the results of individual
trees.

Tree Ensemble Classifiers For classification tasks in many real-world applications, the output
space Y is finite, meaning that the set of possible outputs, commonly known as labels in this scenario,
is discretized. A tree ensemble classifier c is a decision tree ensemble with an output space Y =
{0, 1, . . . k − 1} where k is the total number of distinct classes. The output of the tree ensemble
classifier is acquired by first calculating the raw output of the tree ensemble model c(x) ∈ R and
then mapping c(x) to its label from Y . We denote the output of the model as clabel : X → Y .

A binary tree ensemble classifier is a decision tree ensemble with an output space of size 2. To map
the raw output to a binary output, i.e., in {0, 1}, one way is to set the output to 1 if c(x) ≥ 0 and
0 otherwise. However, widely used training methodologies (for instance, the XGBoost algorithm
introduced in Chen & Guestrin (2016)) require us to calculate an intermediate value by applying
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the sigmoid function to the raw output. This can also be interpreted as a measure of the confidence
of the model. and is of interest to us. Let c(x) be the raw output of the ensemble for input x. To map
this to a probability space [0, 1], the sigmoid function is applied on c(x) making the new output:
σ(c(x)) = 1

1+e−c(x) . This transformation gives us σ(c(x)), which represents the probability that
the input x belongs to the positive class (1). The closer σ(c(x)) is to 1, the higher the likelihood
that x is a positive example, and vice versa. To calculate the final output (clabel), if the output of the
sigmoid function is greater than or equal to 0.5, we assign it to the class (1), and if the output is less
than 0.5, we assign it to the class (0).

3 THE SENSITIVITY PROBLEM: MODELING AND HARDNESS

We now define the sensitivity problem for tree ensembles. For an input x ∈ X and set of features
F ⊆ F , let xF denote the projection of x onto F . When F = {f}, we use xf to denote the scalar.
Definition 3.1. Given a tree ensemble classifier c : X −→ Y , and a set of features F ⊆ F ,
c is said to be F -sensitive, if we can find two inputs x, x′ ∈ X such that xF\F = x′F\F and
clabel(x) ̸= clabel(x

′). 1 The sensitivity problem asks whether a given tree ensemble classifier is
F -sensitive to a given set of features F .

One issue with the above definition is that it just requires the two witness inputs to be classified dif-
ferently but does not take into account their distance from the decision boundary (of the classifier).
As explained earlier, classifier learning algorithms, in fact, provide this information. Consider the
example in Figure 1, where we have a two-tree T1, T2 ensemble c that is trained to be a recommen-
dation system for television shows. The input contains three features f1, f2 and f3 that may take
values between 0 and 30 with Y = {0, 1}. It is easy to see that α1 = (6, 2, 14) and α2 = (6, 2, 17)
are two inputs that vary only on feature f3 but have c(α1) = 0.1− 1.2 = −1.1 while c(α2) = 0.7,
i.e., clabel(α1) ̸= clabel(α2). However, the pair β1 = (6, 4, 14) and β2 = (8, 4, 14) varies only in
feature f1 and again has clabel(β1) ̸= clabel(β2), but we notice that c(β1) = 10.1 and c(β2) = −9.9.
In a practical scenario, one may argue that (β1, β2) is a much more interesting pair of inputs since it
takes an almost sure positive prediction to a quite sure negative prediction, which can potentially be
very harmful compared to an unsure prediction getting flipped.

f1 < 10

f2 < 5f3 < 10

0.11.11.21.1

TF

TFTF

f2 < 3

f3 < 15f1 < 7

−1.20.610−10

TF

TFTF

Figure 1: A tree ensemble with two trees T1, T2 having real-valued (raw) outputs on its leaves.

This motivates a more nuanced definition that is parametrized by the difference using the sigmoid
function σ that we want to see in the inputs that witness the change in classification with respect to
the sensitive features.
Definition 3.2. Given a tree ensemble classifier c : X −→ Y , a set of sensitive features F ⊆ F and
a parameter p ≥ 0, c is said to be (p, F )-sensitive, if we can find two inputs x, x′ ∈ X such that
xF\F = x′F\F and σ(c(x)) ≥ 0.5 + p, σ(c(x′)) ≤ 0.5 − p. The (p, F )-sensitivity problem asks if
a given tree ensemble is (p, F )-sensitive with respect to a given set of sensitive features F .

It is easy to see that the F -sensitivity problem is a special case of the (p, F )-sensitivity problem.
Hence, for our hardness results, we will focus on the F -sensitivity problem. However, for our

1We note that this problem has been called causal discrimination in Calzavara et al. (2023) and fairness in
Dwork et al. (2012). While these are valid applications of the definition, the problem is itself closer to the
analysis of sensitive features, and hence, we have called it such. Further, there are many competing definitions
of fairness in the ML literature, and while this is certainly one formulation, it is not the only one.
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encoding and algorithm in the next section, as well as experimental results later, we will use (p, F )-
sensitivity.

Sensitivity checking for single tree decision models is known to be in polynomial time (Chen et al.,
2019b), but as we show next, this is not the case for general decision tree ensembles. We consider
three variants of the problem, based on the size of the set of sensitive features F : (i) |F | = 1 or the
single feature sensitivity problem, (ii) |F | = k for any fixed constant k which we call the k-sized
subset feature sensitivity problem and (iii) |F | = |F|, the all-feature sensitivity problem. Note that
the single feature sensitivity is the same as 1-subset feature sensitivity. Second, the k-sized subset
feature sensitivity problem is only defined if the number of features in the problem instance i.e.,
|F| ≥ k. Finally, the all-feature sensitivity cannot be seen as a specific instance of the k-sized
subset sensitivity problem since in the latter, k is a part of the input, while in the former, it is not.

We will now show that all three variants are NP-hard. We start by showing the NP-hardness of the
single feature sensitivity problem and obtain the others as corollaries. Before going into our proof,
we recall that the robustness verification problem for decision tree ensembles was shown to be NP-
hard using a reduction from the so-called evasion problem for decision tree ensembles, which was
shown to be NP-hard in Kantchelian et al. (2016) (where, evasion for a given tree ensemble model c,
asks whether there exists an x ∈ X such that c(x) > 0). However, while evasiveness can potentially
be used to show hardness for the all-feature sensitivity problem, it cannot be easily lifted to show
single or fixed subset feature hardness. Instead, we come up with a novel and direct reduction from
the 3CNF-SAT problem to show that single feature sensitivity is already NP-hard.

Theorem 1. The single feature sensitivity problem, i.e., checking whether a given tree ensemble
classifier is F -sensitive for |F | = 1, is NP-hard.

Proof. We will show a reduction from 3CNF-SAT, the classical NP-hard question, which asks, given
a Boolean formula in conjunctive normal form (CNF) with 3 variables per clause, whether it is
satisfiable. Given an instance φ of 3CNF-SAT, let cl(φ) be the set of clauses {cl1, cl2, . . . , clm},
with m = |cl(φ)| and let var(φ) denote the set of variables {v1, v2, . . . , vn}, with n = |var(φ)|.
Then from φ we start by creating the formula φ′ = φ∧ (vn+1 ∨ vn+1 ∨ vn+1) which is also a 3CNF
formula with a new variable vn+1 and a new clause clm+1 = (vn+1 ∨ vn+1 ∨ vn+1). Observe that
φ is satisfiable, i.e., there exists an input x ∈ {0, 1}n that satisfies φ iff φ′ is satisfiable, i.e., there
exists an input x′ ∈ {0, 1}n+1 that satisfies φ′. We will now show a reduction to the (single feature)
sensitivity problem. That is, we will construct a decision tree ensemble c with depth 3, such that c
is 1-feature sensitive iff φ′ is satisfiable.

In formula φ′, for every clause cli, we create a depth-3 decision tree Ti as depicted in Figure 2,
where m + 1 = |cl(φ′)|. That is, for each literal (i.e., vi or ¬vi) in the clause, we add a “true”
branch with output 1

|cl(φ′)| , and a “false” branch where we either continue to next literal or return
−1 if there are no more literals left in the clause. This is a slight abuse of notation as our definition
earlier had guards of the form f < v, but this can easily be adapted. Now, for each literal, if
it occurs positively as vi (resp. negatively as ¬vi), the true (resp. false) branch outputs 1

|cl(φ′)| .
We form the decision tree ensemble c using the above decision trees with trees enumerated Ti for
i ∈ {1, 2, . . . ,m+ 1 = |cl(φ′)|}. Note that in this case, the domain of c, i.e., X = {0, 1}n+1.

v1

v2

v3

1
|cl(ψ)|

1
|cl(ψ)|

1
|cl(ψ)|−1

F T

F T

TF

(a): Clause v1 ∨ v2 ∨ v3

v1

v2

v3

1
|cl(ψ)|

1
|cl(ψ)|

−1
1

|cl(ψ)|

F T

TF

TF

(b): Clause v1 ∨ ¬v2 ∨ ¬v3

Figure 2: Given a formula ψ with |cl(ψ)| clauses, each clause is replaced by a tree above.
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Lemma 1. For all x ∈ {0, 1}n+1 we have clabel(x) = 1 iff φ′(x) = 1, i.e., x satisfies/models φ′.

Proof of Lemma 1. There are two possible scenarios for an input x:

• The input satisfies the 3CNF formula φ′, i.e., φ′(x) = 1. In this case, each of the m + 1
clauses is satisfied in the input, and thus, for all trees Ti we have Ti(x) = 1

m+1 . Thus,∑m+1
i=1 Ti(x) = 1 > 0 =⇒ clabel(x) = 1.

• The input does not satisfy the 3CNF formula φ′. Thus, a clause exists that is not satisfied
by the input. Let that clause be clj . By the construction of c, for the corresponding tree,
Tj(x) = −1 and for all i ̸= j, Ti(x) ≤ 1

m+1 . Thus,
∑m+1
i=1 Ti(x) ≤ −1+ m

m+1 = −1
m+1 <

0 =⇒ clabel(x) = 0.

■

Now, we use the above lemma to prove hardness of sensitivity. More precisely, we will check
sensitivity with respect to the single Boolean variable vn+1. Call the set of all features F and the set
for sensitivity checking F = {vn+1}. To complete the proof, we will show that c is F -sensitive iff
φ′ is satisfiable.

In one direction, if c is F -sensitive, by definition, there exist x, x′ ∈ {0, 1}n+1, with x⊥F = x′⊥F
such that clabel(x) = 1 and clabel(x

′) = 0. Thus, we immediately infer that there exists x such that
clabel(x) = 1, which by the above lemma means that x satisfies φ′ and hence φ′ is satisfiable. In
the other direction, if c is not F -sensitive. Then for all x⊥F ∈ {0, 1}n, for all possible choices
of xF , x′F , we must have clabel(x⊥F , xF ) = clabel(x⊥F , x

′
F ). But now, if we consider xF = 0,

then the decision tree Tm+1 will evaluate to −1 since clm+1[vn+1 7→ 0] = 0. As a result, we
can conclude that for any x⊥F ∈ {0, 1}n, we have

∑m+1
i=1 Ti(x⊥F , 0) ≤ −1 + m

m+1 < 0 and so
clabel(x⊥F , 0) = 0. Thus, for any xF ∈ {0, 1}, clabel(x⊥F , xF ) = 0, which implies that for all
x ∈ {0, 1}n+1, clabel(x) = 0. Again, appealing to Lemma 1 above, we can conclude that φ′ is not
satisfiable.

Thus, we have reduced the problem of finding satisfiability of φ′ to that of checking sensitivity for a
feature set of size 1, and hence, the latter problem is NP-hard.

We can now infer some interesting corollaries. First, we observe that the above proof can be lifted
from single feature sensitivity to k-sized subset feature sensitivity for any fixed k. Given an arbitrary
instance of the single feature sensitivity problem, we can construct an instance of a k-sized subset
feature sensitivity (for |F | = k) by introducing k − 1 new dummy variables to the problem. These
dummy variables are part of our input to sensitivity checking, but they do not affect the tree’s output
in any way (formally, one way to do this is to have decision tree stumps on these variables that
output zero irrespective of the variables’ values). Thus, checking for sensitivity for k-sized subset of
features will be equivalent to checking for sensitivity for just the first feature in the original instance
and hence, checking sensitivity with respect to a given fixed size of the subset of features is also
NP-hard.
Corollary 1. For any fixed constant k, the k-sized subset feature sensitivity problem for decision
tree ensembles is NP-hard.

The above argument holds for any k-sized sensitive feature set. But this does not immediately imply
that it can be lifted to the case where all features are sensitive, i.e., |F | = |F|. Indeed, one could
imagine that the all-feature sensitivity problem could be easier. However, by modifying the proof
above, we can show that this problem is also NP-hard. As the proof is very similar, we leave its
details to Appendix A.
Corollary 2. The all-feature sensitivity problem for decision tree ensembles is NP-hard.

Finally, an important remark is that our NP-hardness proof requires trees in the ensembles that have
depth 3. This leaves open the intriguing question of whether the (single/k-sized subset/all) sensitivity
problem is NP-hard for tree ensembles where the depth of each tree is at most 2. Unfortunately, our
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proofs cannot be extended to this case since they rely on the hardness of 3CNF-SAT, which requires 3
variables per clause, which we translate to depth 3 trees. However, 2CNF-SAT is poly-time solvable
and hence not useful for showing hardness. We expect that a different technique/reduction/encoding
will be needed to resolve this question, and we will leave this for future work. We also note that if
we fix the number of trees and vary the depth, or if we fix the depth and vary the number of trees,
NP-hardness follows, while if we fix both the number of trees and depth, then the problem is easy.

Above, we considered hardness results. On the other hand, for all the problems mentioned above, we
can obtain NP upper bounds. To see this, note that given a candidate solution i.e., values of inputs x
and x′ that only differ on the set of sensitive features F , we can evaluate the decision tree top-down
and check whether it is a valid solution or not, i.e., the decision for x differs from the decision for
x′. Thus, both F -sensitivity and (p, F )-sensitivity problems are in NP hence they are NP-complete.

4 ENCODING THE SENSITIVITY PROBLEM

In this section, we will consider encoding the problem of sensitivity of binary tree ensemble classifier
c into solving a set of pseudo-Boolean constraints (Boros & Hammer, 2002), which are arithmetic
constraints containing only Boolean variables.

First, we observe that the general p-sensitivity problem in Definition 3.2 can be written as the prob-
lem of the search of the p-sensitive pairs of inputs x, x′ for the set of features F as follows

∃x, x′,

 ∧
f ′∈F\F

xf ′ = x′f ′

 ∧ σ(c(x)) ≥ 0.5 + p ∧ σ(c(x′)) ≤ 0.5− p

Since the output of the classifiers is via the sigmoid function, we compute the inverse of the function
to compute the required gap between the inputs of the sigmoid function. Let δ = σ−1(0.5 + p) =

log
(

0.5+p
0.5−p

)
, where σ−1 is the inverse of sigmoid. Let c be a decision tree ensemble with m trees

T1, . . . , Tm. The problem translates into

∃x, x′,

 ∧
f ′∈F\F

xf ′ = x′f ′

 ∧
m∑
i=1

Ti(x) ≥ δ ∧
m∑
i=1

Ti(x
′) ≤ −δ

Let us start encoding the above constraints using a pseudo-Boolean encoding.

Encoding inputs The range of feature f is [−∞,∞]. However, c naturally divides the input into
segments, which we define as follows. Let Gf be the set of all guards on feature f in c. Let the set
of thresholds be Cf = {v|f < v ∈ Gf} sorted in ascending order and let kf = |Cf |. The range of f
is divided in kf + 1 segments by Cf . We can encode the segments using kf bits. For 0 ≤ j < |Cf |,
let bit b1fj indicate that feature f is less than Cf [j] in input x and let bit b2fj indicate that feature f
is less than Cf [j] in input x′. We need to include constraints which encode that the boundaries are
in increasing order, as follows

bqfj ⇒ bqf(j+1) (1)

We also need to say for each f /∈ F , x and x′ will agree. Therefore, for each j ∈ {1 . . . kf}, we add

b1fj = b2fj (2)

Encoding tree We need to encode the structure of the trees in constraints. Let tqin indicate that the
node n ∈ Ti is visited when evaluating Ti(xq). Let the root node of Ti be denoted by ri. Since the
roots of all the trees are necessarily visited, the following bits are always true

tqiri (3)

For each internal node n ∈ Ti, let (f < v) = n.g such that Cf [j] = v for some j. We need to say
that if n is visited, and (f < v) is true, then n.yes is visited otherwise, n.no is visited.

(tqin ∧ bqfj ⇒ tqi(n.yes)) ∧ (tqin ∧ ¬bqfj ⇒ tqi(n.no)) (4)
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For each tree Ti, we may also optionally add the following constraints to help the solver to know
that, at most one leaf of Ti can be visited by the input. We denote the set of leaf nodes for a tree Ti
by Ti.leaves ∑

n∈Ti.leaves

tqin = 1 (5)

Encoding output We now need to encode the condition that the sum of the tree outputs is greater
than δ for x and less than −δ for x′. Remember that the label of a leaf n ∈ Ti is a real value with
infinite precision. We discretize this real value into steps of size 1/α, where α is the precision factor
in our encoding. For the encoding of x, we multiply the leaf value n.val by α and take the ceiling of
the result. This constant integer is then multiplied by the corresponding t1in. The ceiling operation
increases the sum, which is then compared to the bounds derived from the floor of αδ. Similarly, we
impose constraints for the output of x′.(

m∑
i=1

∑
n∈Ti.leaves

t1in⌈αt.val⌉

)
≥ ⌊αδ⌋ ∧

(
m∑
i=1

∑
n∈Ti.leaves

t2in⌊αt.val⌋

)
≤ ⌈−αδ⌉ (6)

The above equations are the set of pseudo-Boolean constraints.

Our encoding of the problem differs significantly from the one presented in Ignatiev et al. (2020a),
which is a direct SMT encoding of trees and their verification query. The problem we address is
similar to the knapsack problem, and an appropriate encoding for it seems to be through pseudo-
Boolean constraints. Encoding the problem as SMT constraints, as done by Ignatiev et al. (2020a),
may result in a loss of structural information, preventing the solver from fully leveraging the pseudo-
Boolean nature of the constraints. We solve these constraints using a pseudo-Boolean solver to check
for p-sensitivity. We have the the following guarantees for the result that we obtain.

Theorem 2 (Completeness and α-soundness). 1. If conjunction (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧
(6) is unsatisfiable then the classifier c is not (p, F )-sensitive.

2. Otherwise, there is a counterexample pair (x, x′) such that c(x) ≥ δ − m+1
α and c(x′) ≤

−δ + m+1
α , where δ = log

(
0.5+p
0.5−p

)
and α is the precision parameter of our analysis.

Proof sketch. Since the floor and ceiling operations are in conservative directions, 1 is true. In case
of satisfiable constraints, there will be exactly m bits that are 1 in the sum in (6). The pre-sigmoid
output in the reported counterexamples will be closer to zero by amount (m + 1)/α in δ, due to m
ceiling/floor operations on the left-hand side of the inequalities and one ceiling/floor operation on
the right-hand side in (6). Therefore, 2 holds.

As we increase α, the precision of our counterexamples improves. Thus, we can prove the following
corollary, which states that if α is sufficiently large, the counterexamples will be precise.

Corollary 3. There exists an α such that every counterexample pair (x, x′) satisfying the above
pseudo-Boolean formula will satisfy σ(c(x)) ≥ 0.5 + p and σ(c(x′)) ≤ 0.5− p.

Proof Sketch. In the non-approximated constraint
∑m
i=1

∑
n∈Ti.leaves

t1int.val > δ, consider the
difference between δ and the sum closest to, but less than δ. If this difference is larger than (m +
1)/α, then there can be no extra counterexamples due to the imprecision of the encoding by Theorem
2.

5 EXPERIMENTS

In this section, we present our tool, SENSPB2, which implements the above method for p-sensitivity
checking. The tool is developed in Python and utilizes Z3 (de Moura & Bjørner, 2008) as its backend
pseudo-Boolean solver. We also tried a dedicated pseudo-Boolean solver (Elffers & Nordström,
2018), but its performance was similar, so we kept to Z3. Our tool accepts as input a binary classifier

2https://github.com/Arhaan/SensPB
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Benchmark Name Details SENSPB time taken (s) SMT#Trees Depth #Feat Min Max Average
Breast cancer robust 4 5 11 2.72 2.81 2.76 2.76
Breast cancer unrobust 4 6 11 2.75 2.82 2.8 2.8
Diabetes robust 20 5 9 3 3.2 3.02 3.443
Diabetes unrobust 20 5 9 3.4 23 5.8 57.2
Cod-rna unrobust 80 4 8 7.2 12.9 8.3 106
Binary MNIST robust 50 6 784 14.6 15.3 14.9 TO
Higgs unrobust 100 8 28 130 TO 1188 TO
IJCNN robust 60 8 23 16 TO 330.7 TO
Synthetic 1 100 6 10 5.36 5.85 5.57 TO
Synthetic 2 125 6 10 6 6.35 6.2 TO
Synthetic 3 150 6 10 7.09 8.19 7.36 TO
Synthetic 4 175 6 10 6.25 6.57 6.37 TO
Synthetic 5 200 6 10 4.40 124.51 16.48 TO

Table 1: Times taken for verifying or countering sensitivity of all singular feature sets. The Min,
Max and Averages in SENSPB times are taken by running the tool with different features of the
benchmark tree ensembles as the sensitive feature. More information on these experiments is avail-
able in Appendix B.

XGBoost model, a set of features for which sensitivity is being assessed, the parameter p, and a
precision parameter α. If the model is not sensitive, the tool outputs “pass”. Otherwise, it returns a
pair of inputs that demonstrate p-sensitivity on the specified features.

To assess our method, we begin by running our tool on a set of XGBoost models from Chen et al.
(2019b). Additionally, to evaluate the performance of our tool, we train XGBoost models with
varying numbers of ensemble trees on 100,000 randomly generated data samples. We did not run
experiments for (additive) Random Forests separately since, from the point of view of our encoding,
they are equivalent to GBDT models. We ran the experiments on an Ubuntu machine with 20
1.3GHz cores, which has 64GB RAM.

There have been several tools (Devos et al., 2021; Törnblom & Nadjm-Tehrani, 2020; Chen et al.,
2019b; Ignatiev et al., 2020a; Calzavara et al., 2023; Kantchelian et al., 2016) that implement dif-
ferent variants of verification for tree ensembles. In our experiment, we compare SENSPB with the
closest approach in VERITAS (Devos et al., 2021) and an SMT-based approach presented in Ignatiev
et al. (2020a). We used our own implementation of the SMT-based approach with Z3 (de Moura &
Bjørner, 2008) as the SMT solver. We did not compare with Calzavara et al. (2023) as it only sup-
ports random forest trees and we were unable to make it work with XGBoost models. Finally, we did
not include a comparison with Kantchelian et al. (2016) since VERITAS has already demonstrated
superior performance over this tool, albeit for the problem of local robustness verification.

We ran SENSPB on the benchmarks, and the results are presented in Table 1. For each benchmark
ensemble, in one experiment we pick a feature f and run SENSPB on the ensemble to check whether
the classifier is p-sensitive to f . We repeat this experiment over all possible f , and the maximum,
minimum and average time taken by us for termination is reported. We set a timeout of 1 hour for
each experiment. In our experiments, we have set gap p = 0.15 and precision α = 10 × |#Trees|.
For the SMT solver-based approach, our experimental setup is the same as SENSPB and we report
the average time taken. More experiments can be found in Appendix C.

VERITAS does not solve the sensitivity problem directly. We instead ask VERITAS to maximise the
difference between the outputs produced by two inputs which differ only in a feature. We define the
bounds found by VERITAS being ”better than” the ones found by SENSPB if the difference in the
upper and lower bounds found by VERITAS is greater than 2p. Note that this is a very relaxed defi-
nition since the bounds found by VERITAS might have a larger spread but might still be lying in the
same output class. Since we can stop VERITAS anytime and observe the best solution found till then,
we considered two kinds of experiments for fine-grained comparisons between the performance of
SENSPB and VERITAS.
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Benchmark Name Time Taken (in seconds) Accuracy comparison
SENSPB VERITAS 1x 2x 5x 3600

Breast cancer robust 2.7 2.5 81.82% 81.82% 81.82% 81.82%
Breast cancer unrobust 2.7 2.53 45.45 % 45.45% 45.45% 45.45%

Diabetes robust 3.0 3.2 77.78% 77.78% 77.78% 77.78%
Diabetes unrobust 5.9 198.1 55.56% 66.67% 77.78% 88.89%
Cod-rna unrobust 8.3 346.2 0.00% 0% 25.00% 37.50%

Binary-mnist robust 14.9 TO TO TO TO TO
Higgs unrobust 1188 TO TO TO TO TO
IJCNN unrobust 330 OOM TO TO 0% OOM

Table 2: 1) Runtime Comparison by letting VERITAS run on benchmarks with a timeout of 3600s.
2) Accuracy analysis of VERITAS with the timeouts set to different values, depending on the time
it took SENSPB. The percentages recorded represent that fraction of features where VERITAS gave
better than or equivalent results as compared to SENSPB. For Time Analysis, TO implies that VER-
ITAS timed out without reaching an optimal difference, while in the Accuracy measurements, TO
means that VERITAS timed out without producing a single valid solution.

Firstly, we asked if we fix a timeout of 3600s, how does the performance of VERITAS compare
with SENSPB, i.e., how long does it take VERITAS to reach an optimal solution? The results are
present in the Time Analysis part of Table 2. For the Binary MNIST robust and the Higgs unrobust
benchmark ensembles, VERITAS always times out without producing a single solution. For IJCNN
robust, VERITAS runs out of memory after roughly 900s.

Secondly, we asked if we ran VERITAS for the time relative to the time taken by SENSPB, what
would be the relative performance? Let the time taken by SENSPB be x. We run VERITAS for
sensitivity analysis, one feature at a time, with the following timeouts: x, 2x, 5x and 3600. We
look at the bound produced by VERITAS at the end of the timeout and compare this bound to the
bound found by SENSPB. In the accuracy comparison section of Table 2, we report the percentage
of features in which VERITAS performed better than or equivalent to SENSPB. As expected, on
increasing the time given to VERITAS, it starts performing better on more and more features, e.g.,
Diabetes unrobust and Cod-rna unrobust. However, even on running VERITAS for 3600s, there are
many features in which SENSPB performs better. As noted earlier, for our three largest benchmarks,
VERITAS does not produce a single solution in the time given.

Our experiments clearly demonstrate that our pseudo-Boolean encoding significantly outperforms
both the standard encoding and output configuration-based approaches by an order of magni-
tude. Given that the problem is NP-hard, SMT-based approaches are likely to surpass output
configuration-based methods unless those methods are highly optimized. An SMT solver typically
uses CDCL along with Simplex to solve the problem but may not fully exploit the specialized nature
of our problem, particularly the limited role of arithmetic during bit summation at the output. As a
result, pseudo-Boolean solvers specifically designed for such problems are expected to deliver the
best performance. Our encoding allows us to not only use pseudo-Boolean solvers but also provide
new sets of benchmarks for the solvers. The availability of the benchmarks would likely improve
the performances of the solvers.

6 CONCLUSION

In this paper, we investigated the sensitivity problem in two variants, the exact and a parametrized
version. We presented new hardness proofs as well as an efficient encoding into pseudo-Boolean
constraints. Our implementation allowed us to exploit the recent advances in pseudo-Boolean
solvers to solve the p-sensitivity problem. We successfully addressed XGBoost models of prac-
tical sizes, including scores of features, hundreds of trees, and a depth of 6-8. We believe that our
work, especially the pseudo-Boolean encoding, opens a new direction for scalable solutions for sen-
sitivity and general verification problems for tree ensembles. For instance, an immediate extension
would be to consider other tree ensemble models, such as random forests. Another natural future
direction is also towards the question of multiclass labels, e.g., as done in Devos et al. (2024) for
robustness verification.
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Jérôme Lang (ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 1291–1299. ijcai.org, 2018.
doi: 10.24963/IJCAI.2018/180. URL https://doi.org/10.24963/ijcai.2018/180.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.
org/10.1214/aos/1013203451.

Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: Testing software for dis-
crimination. CoRR, abs/1709.03221, 2017. URL http://arxiv.org/abs/1709.03221.

Alexey Ignatiev, Martin C. Cooper, Mohamed Siala, Emmanuel Hebrard, and João Marques-Silva.
Towards formal fairness in machine learning. In Helmut Simonis (ed.), Principles and Practice of
Constraint Programming - 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium,
September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer Science, pp.
846–867. Springer, 2020a. doi: 10.1007/978-3-030-58475-7\ 49. URL https://doi.org/
10.1007/978-3-030-58475-7_49.

Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and João Marques-Silva. From contrastive to ab-
ductive explanations and back again. In Matteo Baldoni and Stefania Bandini (eds.), AIxIA 2020
- Advances in Artificial Intelligence - XIXth International Conference of the Italian Association
for Artificial Intelligence, Virtual Event, November 25-27, 2020, Revised Selected Papers, vol-
ume 12414 of Lecture Notes in Computer Science, pp. 335–355. Springer, 2020b. doi: 10.1007/
978-3-030-77091-4\ 21. URL https://doi.org/10.1007/978-3-030-77091-4_
21.

Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree ensemble
classifiers. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 2387–2396. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/kantchelian16.html.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 6212–6222. PMLR, 2021. URL http://proceedings.mlr.press/v139/
leino21a.html.

12

http://proceedings.mlr.press/v139/devos21a.html
http://proceedings.mlr.press/v139/devos21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/30093
https://ojs.aaai.org/index.php/AAAI/article/view/30093
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1609/aaai.v33i01.33012446
https://doi.org/10.1609/aaai.v33i01.33012446
https://doi.org/10.24963/ijcai.2018/180
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
http://arxiv.org/abs/1709.03221
https://doi.org/10.1007/978-3-030-58475-7_49
https://doi.org/10.1007/978-3-030-58475-7_49
https://doi.org/10.1007/978-3-030-77091-4_21
https://doi.org/10.1007/978-3-030-77091-4_21
http://proceedings.mlr.press/v48/kantchelian16.html
http://proceedings.mlr.press/v139/leino21a.html
http://proceedings.mlr.press/v139/leino21a.html


Published as a conference paper at ICLR 2025

Mehul Madaan, Aniket Kumar, Chirag Keshri, Rachna Jain, and Preeti Nagrath. Loan default predic-
tion using decision trees and random forest: A comparative study. IOP Conference Series: Mate-
rials Science and Engineering, 1022:012042, 01 2021. doi: 10.1088/1757-899X/1022/1/012042.

Gioni Mexi, Timo Berthold, Ambros M. Gleixner, and Jakob Nordström. Improving conflict
analysis in MIP solvers by pseudo-boolean reasoning. In Roland H. C. Yap (ed.), 29th In-
ternational Conference on Principles and Practice of Constraint Programming, CP 2023, Au-
gust 27-31, 2023, Toronto, Canada, volume 280 of LIPIcs, pp. 27:1–27:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.CP.2023.27. URL https:
//doi.org/10.4230/LIPIcs.CP.2023.27.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision trees: an overview and
their use in medicine. Journal of medical systems, 26:445–463, 2002.
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A ADDITIONAL THEORETICAL RESULTS

A.1 PROOF FOR COROLLARY 2

The proof of Theorem 1 can be directly lifted with some minor changes to prove Corollary 2. Instead
of checking sensitivity for F = {vn+1}, we check sensitivity for F = F in the same setting. The
first direction holds with the same argument as before. The reverse direction also holds with the
same argument with the following changes.

• x⊥F is empty

• xF ∈ {0, 1}n+1 instead of {0, 1}

However, for the sake of completeness, we give the full proof below.

Proof. As before, we show a reduction from 3CNF-SAT. Given an instance φ of 3CNF-SAT, let
cl(φ) be the set of clauses {cl1, cl2, . . . , clm}, with m = |cl(φ)| and let var(φ) denote the set
of variables {v1, v2, . . . , vn}, with n = |var(φ)|. Then from φ we start by creating the formula
φ′ = φ ∧ (vn+1 ∨ vn+1 ∨ vn+1) which is also a 3CNF formula with a new variable vn+1 and
a new clause clm+1 = (vn+1 ∨ vn+1 ∨ vn+1). Observe that φ is satisfiable, i.e., there exists an
input x ∈ {0, 1}n that satisfies φ iff φ′ is satisfiable, i.e., there exists an input x′ ∈ {0, 1}n+1 that
satisfies φ′. We will now show a reduction to the (single feature) sensitivity problem. That is, we
will construct a decision tree ensemble c with depth 3, such that c is 1-feature sensitive iff φ′ is
satisfiable.

In formula φ′, for every clause cli, we create a depth-3 decision tree Ti as depicted in Figure 2,
where m + 1 = |cl(φ′)|. That is, for each literal (i.e., vi or ¬vi) in the clause, we add a ”true”
branch with output 1

|cl(φ′)| , and a ”false” branch where we either continue to next literal or return
−1 if there are no more literals left in the clause. For each literal, if it occurs positively as vi (resp.
negatively as ¬vi), the true (resp. false) branch outputs 1

|cl(φ′)| . We form the decision tree ensemble
c using the above decision trees with trees enumerated Ti for i ∈ {1, 2, . . . ,m + 1 = |cl(φ′)|}.
Note that in this case, the domain of c, i.e., X = {0, 1}n+1. Remember that Lemma 1 says that for
all x ∈ {0, 1}n+1 we have c(x) = 1 iff φ′(x) = 1, i.e., x satisfies/models φ′.

Now, we use Lemma 1 to prove the hardness of sensitivity. More precisely, we will check sensitivity
with respect to the singleton Boolean variable vn+1. Call the set of all features F and the set for
sensitivity checking F = F . To complete the proof, we will show that c is F -sensitive iff φ′ is
satisfiable.

In one direction, if c is F -sensitive, by definition, there exist x, x′ ∈ {0, 1}n+1, such that c(x) = 1
and c(x′) = 0. Thus, we immediately infer that there exists x such that c(x) = 1, which by Lemma
1 means that x satisfies φ′ and hence φ′ is satisfiable. In the other direction, if c is not F -sensitive.
Then for all possible choices of xF , x′F , we must have c(xF ) = c(x′F ). But now, if we consider
xvn+1

= 0, then the decision tree Tm+1 will evaluate to −1 since clm+1[vn+1 7→ 0] = 0. As
a result, we can conclude that for any xF\{vn+1} ∈ {0, 1}n, we have

∑m+1
1 Ti(xF\{vn+1}, 0) ≤

−1 + m
m+1 < 0 and so c(xF\{vn+1}, 0) = 0. Thus, for any xF ∈ {0, 1}n+1, c(xF ) = 0, which

implies that for all x ∈ {0, 1}n+1, c(x) = 0. Again, appealing to Lemma 1, we can conclude that
φ′ is not satisfiable.

Thus, we have reduced finding satisfiability of φ′ to checking sensitivity for the whole input feature
set, and hence, the latter problem is NP-hard.

An interesting question that arises from the above proof is the requirement of the new clause clm+1.
What we require is an input which does not satisfy φ′. If there is no such input, then even when the
decision tree ensemble is insensitive to the set F , the 3CNF formula φ′ can be satisfiable. Thus, to
ensure such an input exists, we add the clause clm+1.

14
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A.2 HARDNESS OF THE DIFFERENTIATING INPUT PROBLEM

From the same construction of trees in Theorem 1, we can show that a novel yet interesting problem,
which we call the differentiating input problem, is also NP-hard.
Definition A.1. Given two tree ensemble classifiers c : X −→ Y and c′ : X −→ Y , we say
x ∈ X is a differentiating input for them if c(x) ̸= c′(x). Given two tree ensemble classifiers
c, c′ : X −→ Y , the differentiating input problem asks if there exists a differentiating input, i.e.,
∃x ∈ X , c(x) ̸= c′(x).
Corollary 4. The differentiating input problem for decision tree ensembles is NP-Hard.

Proof. We will show a reduction from 3CNF-SAT to this problem. Given an arbitrary 3CNF-SAT
problem, we can create a decision tree classifier that solves this problem. Given an instance φ of
3CNF-SAT, let cl(φ) be the set of clauses {cl1, cl2, . . . , clm}, with m = |cl(φ)|. Then, for each
clause cli = l1 ∨ l2 ∨ l3 in the 3CNF-SAT problem, create a decision tree, Ti such that Ti(x) = 1

m
if x satisfies the clause and Ti(x) = −1 otherwise. Two examples for the same are shown in
Figure 2(a) and 2(b). The ensemble c = {T1, T2, ..., Tm} outputs a positive class (+1) if and only if
the 3CNF-SAT formula was satisfiable as shown in the proof of Theorem 1.

Finally, we create another tree ensemble c′, which always returns a negative class(-1). Thus, asking
whether there is a differentiating input for these tree ensembles is equivalent to asking whether the
3CNF-SAT formula was satisfiable, thus completing the hardness proof.

B MORE INFORMATION ON THE EXPERIMENTS

The following table gives the fraction of all the features to which the benchmark trees are singularly
sensitive.

Benchmark Name Number of Features Ran On Percentage of Sensitive Features
Breast cancer robust 11 18.2
Breast cancer unrobust 11 36.4
Diabetes robust 9 44.4
Diabetes unrobust 9 80
Cod-rna unrobust 8 100
Binary mnist robust 10 0
Higgs unrobust 10 100
IJCNN robust 23 100

Table 3: Percentage of Sensitive Features

C ADDITIONAL EXPERIMENTS

We run experiments to understand the effects of changing p and α (separately) on the running time
of our algorithm. For these, we work only on the IJCNN robust benchmark, which has 60 trees,
with a maximum depth of 80 and 23 features and is a good representative of the kind of ensembles
we aim to verify. While changing p, we keep the value of α fixed to the value we used in the main
experiments (i.e. 10× |#Trees|). Likewise, while varying α, we keep p fixed to 0.15. These results
are present in Tables 4 and 5. We also give a table detailing the fraction of features where SENSPB
performs better than VERITAS, see Table 6.

15
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p Time (s)
0.1 15.8
0.15 16
0.2 17.0
0.4 1100.0
0.45 923.4

Table 4: Effect of changing gap

α Time (s)
100 16.26
200 15.79
500 15.79
700 16.17

1000 15.67
1500 22.39
2000 19.01
5000 19.63

100000 16.58
1000000 16.71

Table 5: Effect of changing precision

Benchmark Name VERITAS better %SENSPB better
Breast cancer robust 81.82% 18.18%

Breast cancer unrobust 45.45 % 54.55%
Diabetes robust 77.78% 22.2%

Diabetes unrobust 55.56% 44.44%
Cod-rna unrobust 0.00% 100%

Binary-mnist robust TO 100%
Higgs unrobust TO 100%
IJCNN unrobust TO 100%

Table 6: Comparison between the features where VERITAS finds a better bound than SENSPB. We
first run SENSPB and then run VERITAS for the same amount of time. We look at the best results
produced by VERITAS in this time limit and use that value for the comparison.
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