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ABSTRACT

Accurate prediction of binding sites of a given protein, to which ligands can bind,
is a critical step in structure-based computational drug discovery. Recently, Equiv-
ariant Graph Neural Networks (GNNs) have emerged as a powerful paradigm for
binding site identification methods due to the large-scale availability of 3D struc-
tures of proteins via protein databases and AlphaFold predictions. The state-of-
the-art equivariant GNN methods implement dot product attention, disregarding
the variation in the chemical and geometric properties of the neighboring residues.
To capture the variation in properties, we propose GDEGAN (Gaussian Dynamic
Equivariant Graph Attention Network), which replaces simple dot-product at-
tention with adaptive kernels that recognize binding sites. The proposed atten-
tion mechanism captures variation in neighboring residues using statistics of their
characteristic local feature distributions. Our mechanism dynamically computes
neighborhood statistics at each layer, using local variance as an adaptive band-
width parameter with learnable per-head temperatures, enabling each protein re-
gion to determine its own context-specific importance. Our model shows better
predictive performance, outperforming existing methods with relative improve-
ments of 37-66 % in DCC and 7-19 % DCA success rates across COACH420,
HOLO4k, and PDBBind2020 datasets. These advances have direct application
in accelerating protein-ligand docking by identifying potential binding sites for
therapeutic target identification.

1 INTRODUCTION

The functional behavior of proteins is governed mainly by their interaction with other molecules to
modulate their function, such as small-molecule ligands (Du et al., 2016). These interactions are
precise, occurring at well-defined geometric and chemical regions on the protein surface known as
binding sites or pockets. Precisely predicting potential binding sites based on a protein’s 3D struc-
ture is a foundational challenge in rational drug design (Zheng et al., 2013) and structural biology
(Schomburg et al., 2014). The success of models like AlphaFold (Jumper et al., 2021; Abramson
et al., 2024) in accurately predicting protein 3D structures has significantly advanced the capabil-
ities of structure-based drug design methodologies (Tunyasuvunakool et al., 2021; Sadybekov &
Katritch, 2023). Within this field, it is crucial to differentiate between two complementary compu-
tational tasks. The first, protein-ligand binding sites identification from 3D structures of proteins,
is the fundamental challenge of discovering surface pockets capable of binding novel or unknown
ligands. This is particularly vital for the majority of proteins with no known ligands or binding part-
ners. The second, docking (Zhang et al., 2023; Stärk et al., 2022; Lu et al., 2022) builds upon this by
predicting the precise binding pose and orientation of a known ligand within a target site. While his-
torically these have been formidable challenges, both have recently seen significant progress driven
by the application of geometric deep learning (Stärk et al., 2022; Lu et al., 2022; Zhang et al., 2023;
Hussein et al., 2015; Gainza et al., 2020; Méndez-Lucio et al., 2021; Ganea et al., 2022; Satorras
et al., 2021; Zhang et al., 2024; Schütt et al., 2018), leading to powerful new tools for drug discovery.

Ligand Binding Site (LBS) Identification. Over the years, various computational methods from
classical machine learning to deep learning have been successfully employed for LBS identification,
combining proteins’ physical, chemical and geometric information. Earlier approaches, including
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P2Rank (Krivák & Hoksza, 2018), a random-forest based technique that utilized protein surface
information, and Fpocket (Le Guilloux et al., 2009), which depended on Voronoi tessellation and
alpha spheres (Liang et al., 1998) for efficacy, are constrained by the limited expressivity of protein
representation. Early applications of deep learning to this problem, pioneered by Convolution Neural
Networks (CNNs) (LeCun et al., 2002), led to various methods including DeepSite (Jiménez et al.,
2017), DeepPocket (Aggarwal et al., 2021) and DeepSurf (Mylonas et al., 2021) treating proteins as
3D volumetric data and applying 3D CNNs to predict binding regions. However, these voxel-based
approaches under-perform due to their fundamental misalignment with the irregular, sparse nature
of protein structures. More importantly, they are sensitive to the protein’s orientation in 3D space
(Zhang et al., 2024). These limitations motivated representing proteins more naturally as graphs,
where the atoms or residues serve as nodes and the interactions between them are the edges. This
perspective is perfectly suited for Graph Neural Networks (GNNs), and in particular, equivariant
GNNs (Satorras et al., 2021), which have become the standard for 3D geometric deep learning.
By design, these models respect the rotational and translational symmetries of the physical world,
directly addressing the key failure of CNNs. Consequently, modern methods like EquiPocket (Zhang
et al., 2024), which utilize EGNN (Satorras et al., 2021) as backbone, have proven to be powerful
for LBS identification.

Equivariant Graph Neural Networks. Equivariant graph neural networks have progressed in two
directions: scalarization-based models (Satorras et al., 2021; Schütt et al., 2018; 2021; Du et al.,
2023) and high-degree steerable models (Batzner et al., 2022; Batatia et al., 2022; Musaelian et al.,
2023; Qiao et al., 2022; Liao & Smidt, 2023; Liao et al., 2024). The scalarization-based models func-
tion by transforming 3D data, such as coordinates, into scalar characteristics (e.g., distance), hence
enhancing computational efficiency and scalability. Nonetheless, their expressivity is constrained in
contexts such as protein data modeling, where the comprehension of symmetry and spatial relation-
ships is essential for capturing geometric patterns. In contrast, high-degree steerable models operate
directly on rich geometric features (irreducible representations) via the Clebsch-Gordan product,
preserving essential spatial relationships. Despite their robust theoretical foundation and superior
performance, they are computationally intensive, particularly for larger graphs such as proteins Cen
et al. (2024). GotenNet (Aykent & Xia, 2025) presents a solution that balances expressiveness and
computing efficiency by implementing a spherical-scalarization model. Building on this, we adopt
GotenNet (Aykent & Xia, 2025) as the backbone for our model, applying its efficient framework for
processing higher-degree features to the protein-ligand binding site identification task.

Yet even Equivariant GNNs applied to proteins exhibit a critical limitation. While recent E(3)-
equivariant methods, such as EquiPocket, the current state-of-the-art (Zhang et al., 2024) method,
have significantly advanced ligand binding site identification. Their message-passing frameworks
are inherently based on a static, context-agnostic attention mechanism known as dot-product atten-
tion or self-attention, formally expressed as αij ∝ exp(f(hi, hj)), where f quantifies similarity.
These methods employ a globally fixed similarity metric to assess inter-atomic importance, which is
fundamentally misaligned with the nature of proteins, as they are characterized by extreme structural
and chemical heterogeneity.

Our Approach. Our approach is motivated by the key insight that binding sites often appear as
statistically distinct, tightly clustered regions compared to the rest of the protein surface. Exploit-
ing this property, we overcome the aforementioned limitations by replacing dot-product attention
with dynamic, context-aware statistical fitting. Inspired by recent work in probabilistic attention
for non-geometric modalities (Ioannides et al., 2024), we introduce Gaussian Dynamic Attention
mechanism, adapted for the first time to equivariant graph representations. We build upon GotenNet
architecture (Aykent & Xia, 2025) as it already handles the high-degree steerable features efficiently.
Our proposed model GDEGAN, computes attention scores by measuring how statistically probable
a neighboring atom’s features are, given a Gaussian distribution defined by the target atom’s local
neighborhood. By dynamically computing the mean and variance of each atom’s local environ-
ment at every layer, our attention mechanism becomes inherently adaptive. This adaptation to the
emergent local geometry of the protein graphs provides a more powerful and physically grounded
inductive bias, enabling the model to learn more robust representations of complex protein struc-
tures.

Contributions. In this work, we aim to improve on finding the most probable binding candidates for
LBS identification task. We argue that a more powerful approach is to make the attention mechanism
dynamic and context-aware. To this end, we make the following contributions:
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• We introduce Gaussian Dynamic Attention mechanism that characterizes each atom’s
neighborhood using learnable Gaussian parameters. This design preserves E(3)-
equivariance by computing attention from invariant local statistics.

• We investigate the use of high-degree steerable E(3)-Equivariant GNNs to the critical task
of protein-ligand binding site identification, demonstrating their effectiveness in capturing
complex geometries.

• We demonstrate through extensive experiments that our proposed GDEGAN surpasses
state-of-the-art methods on multiple benchmarks and achieves a significant improvement
in inference speed, validating the efficacy and efficiency of our adaptive attention design.

2 PRELIMINARIES

Protein Graph Representation. We represent a protein structure as a geometric graph G =
(V, E ,P), where V denotes the set of N residues, E denotes edges between spatially proximate
residues, and P = {pi ∈ R3}Ni=1 represents the 3D coordinates of Cα atoms. Each node vi ∈ V
is characterized by it’s scaler features hi ∈ Rnd and equivariant features X̃

(l)
i of degree l. Edges

connect residues within a spatial cutoff: E = {(i, j) : ∥pi − pj∥ < rc, i ̸= j}, where rc is set to 10
Å for capturing relevant interactions and nd is initial node feature dimension.

To initialize nodes with dimension nd, we use pre-trained ESM-2 embeddings hi ∈ Rnd , which are
then projected to hidden-dimensional features hd using learned transformations. These embeddings
capture sequence context and evolutionary patterns needed to identify binding sites. Nodes are
labeled binding (yi = 1) or non-binding (yi = 0) based on closeness to ligand atoms during training.
See Appendices A.1 and A.2 for more information on geometric representations and binding site
definitions.

Equivariance and Invariance. In 3D geometric learning, the symmetry of physical laws neces-
sitates that models adhere to the Euclidean group E(3), which includes rotations, reflections, and
translations. A function f is E(3)-equivariant if for rotation/reflection R ∈ O(3) and translation
t ∈ R3, it satisfies f(g · P, h) = g · f(P, h), where g · P = RP+ t denotes the group action on
positions P, and invariant features h. Invariant functions satisfy: f(g ·P, h) = f(P, h), producing
unchanged outputs for scalar quantities.

Task Formulation. Given a geometric protein graph G = (V, E ,P), we formulate the task as
learning an equivariant model f(G, y) to predict the binding probabilities ŷi ∈ [0, 1] for each residue
vi ∈ V .

3 GDEGAN: GAUSSIAN DYNAMIC EQUIVARIANT GRAPH ATTENTION
NETWORK

We enhance GotenNet (Aykent & Xia, 2025) by incorporating a Gaussian dynamic attention module.
Although GotenNet attains superior performance in molecular property prediction via equivariant
tensor attention, its uniform attention approach to atomic neighborhoods constrains its efficacy in
predicting protein-ligand binding sites, where geometric heterogeneity is essential. To address this
limitation, we leverage the observation of binding sites having different geometric patterns, with
varying curvature and chemical properties. This motivates three key modifications: statistical at-
tention that adapts to local variance, protein-specific embeddings, and directed supervision. The
complete architecture of GDEGAN is illustrated in Figure 1.

3.1 EQUIVARIANT GEOMETRIC TENSORS

Here, we describe different representations for both scalars and tensors. Tensor representations are
initialized using spherical harmonics to capture spatial information from rank 0 to Lmax. Edge
geometry is encoded via spherical harmonics: r̃(l)ij = Y (l)(r̂ij) where r̂ij = (pi − pj)/∥pi − pj∥
is the unit vector and Y (l) : S2 → R2l+1 denotes the degree-l spherical harmonics that map the
unit sphere to a (2l + 1) dimensional vector. These basis functions enable the network to process
geometric information while preserving equivariance. For l = 0, r̃(0)ij : scalar invariants; l = 1,

3
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Figure 1: GDEGAN architecture for protein ligand binding site identification. Left: Overview of the
GDEGAN framework showing the integration of protein-specific ESM-2 embeddings with geometric process-
ing through L layers of Gaussian Dynamic Attention. Right: Detailed view of the Gaussian Dynamic Attention
(GDA) module. In this ⊕, · and ◦ denotes addition, dot product and element-wise product respectively. HTR is
inherited from GotenNet (Aykent & Xia, 2025). Soft. stands for Softmax, Agg. for Aggregation.

r̃
(1)
ij : directional vectors; l = 2, r̃(2)ij : quadrupole moments. Where, r̃lij is initialized based on their

relative positions pi and pj of nodes i and j in increasing order of geometric complexity, specifically
r̃ij = {r̃(0), r̃(1), ..., r̃(Lmax)} and .̃ represents the steerable features. Node features comprise of
invariant scalars h ∈ Rnd and equivariant high degree steerable features X̃(l) ∈ R(2l+1)×hd of
degree l ∈ {1, ..., Lmax}. These features transform predictably under E(3) operations, with scalars
remaining invariant and steerable features transforming according to their degree l where hd denotes
node embedding hidden dimensions.

3.2 PROTEIN-AWARE STRUCTURAL EMBEDDINGS DIFFUSED WITH GEOMETRY

Unlike standard molecular GNNs that rely solely on atomic properties, our approach leverages pre-
trained protein representations while incorporating spatial relationships through geometric informa-
tion, allowing efficient message passing for both nodes and edges. Given pre-computed ESM-2 (Lin
et al., 2022) embeddings for each residue hi ∈ Rnd , we construct initial node features through a
two-stage process that combines evolutionary information with local structural context.

Neighborhood-Aware Message Aggregation. For each residue i, we aggregate information from
spatial neighbors:

mi =
∑

j∈N (i)

Wa(hj) ◦
(
ϕ(r̃

(0)
ij )Wrbf

)
◦ φ(r̃(0)ij ) (1)

where N (i) = {j : ∥pi − pj∥ < rc, j ̸= i} defines the spatial neighborhood, ϕ : R → RK

represents K radial basis functions encoding distances, Wrbf ∈ RK×hd projects RBF features,
Wa ∈ Rnd×hd projects node evolutionary features, ◦ denotes element-wise product and φ(r̃

(0)
ij ) is

a smooth cutoff function ensuring differentiability.

Context-Enriched Feature Construction. The final node node features combining self and neigh-
borhood information:

h
(0)
i = Wu (σ (LN [Wh(hi∥mi]Wd)) (2)

where ∥ denotes concatenation, LN is layer normalization for training stability, σ is the activation
function, and Wh,Wd,Wu are learned projections. This formulation enables each residue to in-
corporate both its evolutionary signature and local structural environment.

Geometry-Aware Edge Scaler Features. Edge scaler features are initialized to capture pairwise
relationships enhanced by spatial information:

t
(0)
ij = (h

(0)
i + h

(0)
j ) ◦

(
ϕ(r̃

(0)
ij )We

)
(3)

This symmetric formulation guarantees that tij = tji, preserving consistency in undirected protein
graphs while integrating distance-dependent modulation via RBF-encoded spatial characteristics.

4
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Here, t(0)ij ∈ Red represents the edge of dimension ed, and We denotes a learned transformation
matrix.

High Degree Equivariant Steerable features Initialization. These high degree steerable features
that capture complex geometric information are initialized as 0 initially and are updated during
attention aware feature update module, which will be discussed in the later section.

X̃
(l),(0)
i = 0 ∈ R(2l+1)×hd , ∀l ∈ {1, ..., Lmax} (4)

3.3 GEOMETRY AWARE GAUSSIAN DYNAMIC TENSOR ATTENTION

Unlike standard dot-product attention that treats all nodes uniformly, protein binding sites exhibit
distinct geometric and chemical patterns: binding pockets are characterized by clustered residues
with specific spatial arrangements, while surface regions show more dispersed distributions (Krivák
& Hoksza, 2018). We hypothesize that high local chemical diversity translates to a high variance
in a learned feature space of the surrounding residue. Therefore, local feature variance acts as
a reliable signal for identifying functionally significant transition areas. Our Gaussian Dynamic
Attention exploits this inherent heterogeneity by computing local neighborhood statistics (µi, σ

2
i )

from the ESM-2 features hi, enabling adaptive attention that responds to the local geometric context.
The variance σ2

i modulates attention weights: high variance amplifies attention to capture complex
binding site boundaries, while lower variance reduces unnecessary focus. Further, it is enhanced
by incorporating spatial information. Specifically, for each residue i, with neighborhood N (i) we
compute:

µi =
1

|N (i)|
∑

j∈N (i)

hj (5)

(σi)
2 =

1

|N (i)|
∑

j∈N (i)

(hj − µi)
2 (6)

These statistics provide a distributional summary of the local neighborhood, capturing both the
central tendency and spread of features.

Learnable Gaussian Parameters. We introduce H learnable variance parameter ξ that controls the
temperature of attention for each of the H attention heads. This parameter adaptively modulates
the sensitivity of attention to feature differences, allowing each head to specialize in different scales
of molecular interactions. For molecular graphs, we compute the Gaussian attention score directly
from pairwise node differences:

αij =
exp

(
− ||hj−hi||2

2ξ·(σ2
i+ϵ)

)
∑

k∈N (i) exp
(
− ||hk−hi||2

2ξ·(σ2
i+ϵ)

) (7)

where σ2
i is the neighborhood variance providing context-aware scaling.

Integrating with Equivariant Features. To combine gaussian dynamic attention with equivariant
features we follow GotenNet (Aykent & Xia, 2025) framework for updating both scalar and steerable
features. Given attention scores αij from equation 7 we compute attention-weighted messages and
combine them with geometric encoding:

oij = αij · γv(hj) + (tijWrs) ◦ γs(hj) ◦ φ(r̃(0)ij ) (8)

{osij , {o
d,(l)
ij }

Lmax

l=1 , {ot,(l)ij }
Lmax

l=1 } = split(oij , hd) (9)

Here γv, γs : Rhd → RS·hd are MLPs and Wrs ∈ Red×(S·hd) is a learnable weight matrix. S is
multiplying factor to generate different coefficients for different l values calculated as 1+2×Lmax.
Finally, features are updated maintaining equivariance:

∆hi = ⊕j∈N (i)(o
s
ij) (10)

∆X̃
(l)
i = ⊕j∈N (i)

[
o
d,(l)
ij ◦ r̃(l)ij + o

t,(l)
ij ◦ X̃(l)

j

]
(11)
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Here, each degree l ∈ [1, Lmax] contributes its own component and representations of residues are
updated as follows:

hi ← hi +∆hi, X̃
(l)
i ← X̃

(l)
i +∆X̃

(l)
i (12)

By replacing uniform dot-product attention with geometry-aware Gaussian kernels that adapt to
local feature distributions, GAGDTA enables precise discrimination between binding pockets and
surface regions. This adaptive mechanism proves particularly effective for ligand binding site pre-
diction, where the inherent heterogeneity of protein surfaces from tightly clustered binding pockets
to dispersed surface residues demands context-aware attention patterns, as demonstrated in our ex-
periments Section 4.

3.4 HIERARCHICAL PROCESSING AND EQUIVARIANT REFINEMENT

Following the GAGDTA layer, we adopt GotenNet (Aykent & Xia, 2025) hierarchical tensor refine-
ment (HTR) and equivariant feed-forward (EQFF) modules with minimal modifications to maintain
architectural consistency. To summarize:

Edge refinement via HTR. Edge features are refined using inner products of high-degree steerable
features:

wij = AggLmax

l=1 ⟨X̃
(l)
i Wq, X̃

(l)
j W

(l)
k ⟩, tij ← tij + γw(wij) ◦ γt(tij) (13)

where wij is aggregated similarity between node i and j, Wq,Wk ∈ Red×ed are tensor projection
matrices where, Wq is shared across degree l ∈ [1, ..Lmax] and W

(l)
k is degree specific. γw :

Red → Red and γt : Red → Red are MLPs.

This refinement enriches edge representations with geometric information extracted from steerable
features, enhancing the model’s ability to capture spatial relationships between binding and non-
binding residues.

Channel Mixing via EQFF. This is employed after GADGTA for efficient channel wise interaction
while preserving equivariance:

EQFF(h, X̃(l)) =
(
(h+m1)||(X̃(l) +m2 ◦ X̃(l)Wv)

)
(14)

where (m1,m2) = split(γm((∥X̃(l)Wv∥2)||h)) are modulation factors computed from feature
norms. Wv is learnable weight matrices, ∥ · ∥2 denotes L2 norm and γm is and MLP.

3.5 THEORETICAL PROPERTIES OF GDEGAN

GotenNet (Aykent & Xia, 2025) proves in Appendices A and B that the end-to-end architecture is
E(3)-equivariant. By introducing ESM-embeddings (Lin et al., 2022) as node features, we establish
the following:
Proposition 3.1 (From E(3) to SE(3) Equivariance with Invariant Node Features). We break the
E(3) equivariance by introducing ESM-embeddings because, now node features do not encode chi-
rality information. Therefore, the network maintains SE(3) equivariance but loses reflection equiv-
ariance.

Proof in Appendix B.1.
Proposition 3.2 (Gaussian Attention Preserves SE(3) Equivariance). The Gaussian Dynamic At-
tention mechanism, when applied to invariant scalar features from ESM-embeddings, preserves the
SE(3) equivariance of the message-passing framework.

Proof in Appendix B.2.
Remark 1. The loss of reflection equivariance E(3) → SE(3) occurs at the input level through
ESM embeddings, not through the attention mechanism itself.
Remark 2 (Parameter and Computational Efficiency). The Gaussian Dynamic Attention requires
only O(H) learnable parameters complexity, in contrast to the O(d2) for standard dot-product at-
tention’s key-query projection. Calculating neighborhood statistics incurs merely O(|N(i)|d) op-
erations per node, which is insignificant relative to the O(|N(i)|d2) for conventional dot-product
attention. This results in O(d)-fold reduction in computational complexity with negligible parame-
ter overhead and a significant decrease in inference time, as shown in Appendix Table 3.

6
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Table 1: Experimental results of baseline models and our framework measured by DCC and DCA success
ratesa. The table presents comparative results across three benchmark datasets. Bold values indicate the best
performance in each metric.

Methods Param
(M)

Failure
rate ↓

COACH420 HOLO4Kk PDBbind2020

DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑

Fpocketb \ 0.000 0.228 0.444 0.192 0.457 0.253 0.371
P2rankb \ 0.000 0.366 0.628 0.314 0.621 0.503 0.677
DeepSiteb 1.00 \ \ 0.564 \ 0.456 \ \
Kalasantyb 70.6 0.120 0.335 0.636 0.244 0.515 0.416 0.625
DeepSurfb 33.1 0.054 0.386 0.658 0.289 0.635 0.510 0.708
RecurPocketb 21.2 0.075 0.354 0.593 0.277 0.616 0.492 0.663

GATb 0.03 0.110 0.039(0.005) 0.130(0.009) 0.036(0.003) 0.110(0.010) 0.018(0.001) 0.088(0.011)
GCNb 0.06 0.163 0.049(0.001) 0.139(0.010) 0.044(0.003) 0.174(0.003) 0.018(0.001) 0.070(0.002)
GCN2b 0.11 0.466 0.042(0.098) 0.131(0.017) 0.051(0.004) 0.163(0.008) 0.023(0.007) 0.089(0.013)

SchNetb 0.49 0.140 0.168(0.019) 0.444(0.020) 0.192(0.005) 0.501(0.004) 0.263(0.003) 0.457(0.004)
Egnnb 0.41 0.270 0.156(0.017) 0.361(0.020) 0.127(0.005) 0.406(0.004) 0.143(0.007) 0.302(0.006)
EquiPocketb 1.70 0.051 0.423(0.014) 0.656(0.007) 0.337(0.006) 0.662(0.007) 0.545(0.010) 0.721(0.004)

GotenNet 2.20 0.049 0.464(0.007) 0.624(0.014) 0.454(0.001) 0.691(0.005) 0.553(0.008) 0.705(0.007)

GDEGAN 1.90 0.032 0.580(0.008) 0.707(0.009) 0.560(0.013) 0.788(0.011) 0.675(0.010) 0.826(0.011)
1 aThe standard deviation is indicated in brackets. b Results from the EquiPocket (Zhang et al., 2024) paper. k holo4k contains

multi chains and complex with multiple copies, presenting a strong distribution shift.

3.6 TRAINING OBJECTIVE

We formulate binding site prediction as a multi-task learning problem that jointly optimizes local-
ization accuracy and geometric understanding of protein-ligand interactions.

Protein Ligand Binding Site Prediction. For biding site identification we use Dice Loss LDice
following (Aggarwal et al., 2021; Zhang et al., 2024) to address inherent class imbalance, then
compute ŷi = Sigmoid(MLP (h

(L)
i ) are predicted binding probabilities after L layers, yi ∈ {0, 1}

are ground truth labels, and ϵ = 1 prevents division by zero. The Dice coefficient naturally handles
imbalanced classes by focusing on the overlap between predictions and ground truth rather than
individual classification accuracy.

Auxiliary Directional Loss. To enhance geometric understanding, we extract directional infor-
mation from the learned equivariant features and supervise it with ground truth ligand directions.
The l = 1 steerable features X̃

(1)
i ∈ R3×hd inherently encode directional information. We ex-

tract predicted directions as: d̂i =
X̃

(1)
ichannel

∥ X̃
(1)
ichannel∥2+ϵ

. Here, X̄(1)
ichannel = 1

hd

∑hd

k=1 X̃
(1)
i,k ∈ R3

averages across feature channels to obtain a single direction vector. The ground truth direction
dtrue
i points from residue i to the nearest ligand heavy atom: dtrue

i =
p∗

lig−pi

∥p∗
lig−pi∥2

, where p∗
lig =

argminp∈L ∥p − pi∥2. Here, L denotes the set of ligand atom positions. We compute directional
loss LDir using cosine similarity between true and predicted directions. Hence, the training objective
of our GDEGAN becomes L = LDice + LDir.

4 EXPERIMENTS

4.1 DATASETS AND BASELINE METHODS COMPARED

We utilize the datasets benchmark settings of EquiPocket (Zhang et al., 2024) for LBS identification.
scPDB (Desaphy et al., 2015) is the widely utilized dataset used for training and validation, which
contains the proteins’ 3D structures and ligands. PDBbind2020 (Wang et al., 2004), COACH420
and HOLO4K Krivák & Hoksza (2018) are three diverse datasets used to evaluate our method. The
detailed discussion on datasets can be found in Appendix C.1. We compare GDEGAN with several
categories of methods, as seen in Table 1, with further information provided in Appendix C.2.
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Table 2: Ablation Study.

Methods EQc ADLd ESMe COACH420 HOLO4K PDBbind2020

DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
GotenNet E(3) No No 0.454(0.007) 0.624(0.014) 0.464(0.001) 0.691(0.005) 0.553(0.008) 0.705(0.007)
GotenNet+ADL E(3) Yes No 0.485(0.004) 0.642(0.011) 0.468(0.004) 0.732(0.004) 0.592(0.010) 0.748(0.003)
GotenNet+ESM SE(3) No Yes 0.543(0.008) 0.693(0.006) 0.520(0.011) 0.753(0.004) 0.637(0.005) 0.760(0.004)
GotenNet(full) SE(3) Yes Yes 0.556(0.002) 0.703(0.005) 0.529(0.011) 0.749(0.006) 0.649(0.005) 0.801(0.014)

GDEGAN+ESM SE(3) No Yes 0.572(0.001) 0.702(0.002) 0.532(0.010) 0.769(0.006) 0.652(0.010) 0.810(0.011)
GDEGAN(full) SE(3) Yes Yes 0.580(0.008) 0.707(0.009) 0.560(0.013) 0.788(0.011) 0.675(0.010) 0.826(0.011)

1 cEquivariance of the Model. d Auxiliary Directional Loss. e Node Features generated through ESM-2 (Lin et al., 2022). GotenNet computes
dot-product attention while GDEGAN computes gaussian dynamic attention.

4.2 EVALUATION METRICS

We used well established metrics DCC, DCA and Failure rate (Chen et al., 2011) for LBS iden-
tification, detailed in Appendix C.3. We assess localization accuracy through DCC (Distance from
Center of Center), measuring the Euclidean distance between predicted and true binding site centers,
DCA (Distance to Closest Atom), measuring the minimum distance from the predicted center to any
ligand atom, and Failure rate as percentage of proteins without any predicted binding site. Predic-
tions are considered successful when DCC or DCA falls below the standard 4Å threshold, which
captures typical protein-ligand interaction distances. During inference on novel proteins where the
number of binding pockets are unknown, we employ mean-shift clustering (Comaniciu & Meer,
2002) on high-scoring residues (ŷi > τ ) following (Krivák & Hoksza, 2018) to automatically iden-
tify multiple binding pockets.

4.3 IMPLEMENTATION DETAILS

True Center

[29.175, 16.424, 

-1.952]

Predicted Center

[28.720, 14.130, 

-1.129]

Figure 2: Visualization of Protein ‘PDB:1u72(A)’.
Left: Model prediction (red) vs true center (green) with
coordinates. Right: Predicted residues: True Positive
(green), False Positive (red), False Negative (blue).

We used 4 layers of GDEGAN with hid-
den dimensions as 128 throughout the model,
Lmax = 2 for steerable features, attention
heads as 8, and edge spatial cutoff rc is set to
10Å. We trained our model using the AdamW
Optimizer (Loshchilov & Hutter, 2019) for 100
epochs, selecting the best checkpoints based on
the validation set. LayerNorm, TensorLayer-
Norm and Dropouts (Aykent & Xia, 2025) were
applied in each layer with SiLU activation. The
learning rate was initially set to 0.0005 with
Cosine Scheduler and weight decay with value
0.05. We trained our model on NVIDIA H100
NVL GPU with a batch size of 16. All the hy-
perparameters were selected based on the vali-
dation dataset, which is the 10% of the training
dataset. More details are provided in Appendix D.

4.4 RESULTS AND ATTENTION PATTERS ANALYSIS

The experimental results shown in Table 1 indicate substantial improvements across all bench-
marks. GDEGAN attains the highest DCC success rate across all test datasets, with significant
enhancements of 37.1%, 66.17%, and 23.8% over EquiPocket’s DCC success rate for COACH420,
HOLO4k, and PDBbind2020, respectively. For DCA metrics, we achieve enhancements of 7.7%,
19.0%, and 14.5% compared Equipocket’s DCA. GDEGAN decreases the failure rate to 3.2%, in
contrast to 5.1% for EquiPocket and 4.9% for GotenNet. Figure 2 illustrates the visualization of both
predictions: the centroid and probable binding site candidates from our model. The comparison of
inference speeds for our method is presented in Appendix C.4.

We visualize learned attention patterns for both Gaussian dynamic attention (GDEGAN) and dot
product attention (GotenNet) as shown in Figure 3. The binding site attention sub-matrix on the
left of GDEGAN shows higher values on binding site residues (darker red) and relevant neighbors
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(dark yellow), suggesting strong local clustering, which demonstrates the adaptive nature of the
method. This aligns with the claim that GDEGAN’s Gaussian kernels impose localization by au-
tomatically nullifying distant interactions, concentrating the model’s representational capability on
statistically relevant neighborhoods. Meanwhile, the attention sub-matrix on the left of GotenNet
shows a typical pattern of dot product attention capturing binding sites, but with less concentration
on relevant neighbors. The attention values with reduced peak magnitudes in GDEGAN indicate
optimal allocation of attention instead of indiscriminate distribution.

Attention Pattern (GDEGAN) Attention Pattern (GotenNet(full))

Figure 3: Attention Patters Visualizations of Protein ‘PDB:3c2f(A)’. Left: On the left we show the attention
patterns of GDEGAN, and on the Right: attention patterns of GotenNet(full).

4.5 ABLATION STUDY

Table 2 presents the component-wise ablation results. Using ESM embeddings (GotenNet+ESM)
instead of atomic numbers embeddings (GotenNet) improves the results by 15.61% DCC and 9.27%
DCA averaged across datasets, indicating evolutionary information helps capture better binding re-
gions than a purely geometric approach. Gaussian attention (GDEGAN+ESM) improves the results
over dot-product attention (GotenNet+ESM) by 3.33% DCC and 3.32% DCA and both the tech-
niques (full) with auxiliary directional loss as directional supervision further improves the results
by an average of 2% DCC and 3.5% DCA respectively averaged across datasets. Critically, on
the more structurally diverse HOLO4K dataset, GDEGAN(full) achieves a 2.4% DCC improvement
over GotenNet(full), compared to only 1.5% on the more homogeneous COACH420 dataset, demon-
strating that statistical adaptation provides greater benefits as structural heterogeneity increases. No-
tably, ESM features provide the largest enhancement, Gaussian attention’s contribution grows with
data complexity, validating our hypothesis that adaptive statistical kernels better handle protein het-
erogeneity than uniform similarity measures.

5 CONCLUSION AND LIMITATIONS

This study presents GDEGAN, an enhancement of GotenNet (Aykent & Xia, 2025), which substi-
tutes dot-product attention with Gaussian Dynamic Attention, specifically developed for the detec-
tion of protein-ligand interaction sites. This simple yet efficacious change demonstrates enhance-
ments of 42.36% and 13.73% in DCC and DCA, respectively, averaged across all datasets in com-
parison to the prevailing state-of-the-art approach, EquiPocket (Zhang et al., 2024). Unlike previous
methods that utilize atom-level information (Jiménez et al., 2017; Zhang et al., 2024; Aggarwal
et al., 2021), our approach depends on residue-level information, hence improving efficiency in both
training and inference due to a reduction in input graph size.

Our method is proposed to find the binding center by predicting probable binding site candidates
instead of performing docking, a logical progression is to utilize our predictions to limit the docking
search space. Even though the training data is limited in size and data points have well-defined pock-
ets with a single ligand, our approach can generalize better. Our method would benefit more from
training on more diverse data points with multi-ligand interacting pockets. Given that GDEGAN
predicts binding sites Future research should methodically assess whether our statistical attention
scores indicate ligand binding locations and predict binding affinity based on local feature coher-
ence.
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A GEOMETRIC GRAPH FORMULATION AND BINDING SITE
REPRESENTATIONS

A.1 REPRESENTATION OF PROTEINS

The 3D structure of a protein is defined by the spatial coordinates of atoms associated with every
amino acid, organized according to its amino acid sequence. For computational efficiency and bio-
logical relevance in detecting probable binding site candidates, we represent each amino acid residue
by its Cα atom position pi ∈ R3, which provides a stable backbone reference point consistent across
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all amino acid types. We formalize a protein structure as a geometric graph G = (V, E) that cap-
tures both topological and spatial information necessary for binding site identification. Nodes in
the geometric graph V = {(pi, hi)}Ni=1 represent residue-feature pairs. The edges are established
from each residue i to all residues j within a cutoff radius: E = {(i, j) : ∥pi − pj∥ < rc, i ̸= j},
where we set rc = 10 Å based on typical interaction distances in protein binding sites following
(Zhang et al., 2024). Rather than encoding raw physicochemical properties, we leverage learned
representations that capture both evolutionary conservation and structural context. Specifically, for
each residue i, we extract a feature vector hi ∈ Rd from the pretrained ESM-2 (Lin et al., 2022)
model, which encodes evolutionary information and sequence context.

A.2 BINDING SITE DEFINITION AND REPRESENTATION.

Protein binding sites are the critical regions where ligands, or other molecules interact with proteins
in the biological process. We define binding sites based on proximity to known ligand positions
from crystal structures, surrounded by the atoms of the protein. A residue is classified as belonging
to the binding site when any of its constituent atoms lies within a threshold distance dbind from any
ligand atom. Formally, a residue i is considered part of a binding site as:

yi =

{
1 if mina∈Ai,b∈L ∥pa − pb∥ < dbind
0 otherwise

(15)

where Ai represents all atoms of residue i, L represents all ligand atoms. dbind represents the
binding distance threshold taken as 4Å following (Zhang et al., 2024; Krivák & Hoksza, 2018;
Jiménez et al., 2017).

B PROOFS

B.1 PROOF OF PROPOSITION 3.1

Proof. Considering the GDEGAN architecture with ESM embeddings as node features. We show
that the network maintains SE(3) but not E(3) equivariance.

ESM embeddings are invariant scalars. ESM embeddings hi ∈ Rnd encode amino acid sequence
information and evolutionary patterns. These are scalar features that do not transform under any
spatial transformation. For any transformation g = (R, t) where R ∈ SO(3) (rotation) and t ∈ R3

(translation):
h′
i = hi ∀g ∈ SE(3) (16)

Loss of reflection equivariance. Consider a chiral moleculeM and its mirror imageM′ obtained
by reflection P . Both have identical ESM embeddings: hi = h′

i (same amino acid sequence) and
identical pairwise distances: ∥xi − xj∥ = ∥x′

i − x′
j∥, but different chirality. Since the network

cannot distinguish betweenM andM′ based on invariant features alone, it cannot be equivariant
under reflections.

B.2 PROOF OF GAUSSIAN DYNAMIC ATTENTION EQUIVARIANCE 3.2

Here we prove that our Gaussian Dynamic Attention mechanism maintains SE(3) equivariance:

B.2.1 GAUSSIAN ATTENTION MECHANISM

Our Gaussian attention computes attention weights as:

αij =
exp

(
− ||hj−hi||2

2ξ·(σ2
i+ϵ)

)
∑

k∈N (i) exp
(
− ||hk−hi||2

2ξ·(σ2
i+ϵ)

) (17)

where hi, hj ∈ Rnd are invariant scalar features from ESM embeddings, σ2
i is the neighborhood

variance, and ξ is the learnable temperature.
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B.2.2 PROOF OF SE(3) EQUIVARIANCE

Proof. Invariance of scalar features. The ESM embeddings hi are invariant under SE(3) transfor-
mations, because they encode sequential and evolutionary information, not geometric co-ordinates:

g(hi) = hi (18)

Invariance of attention weights. Since hi and hj are invariant:

∥g(hj)− g(hi)∥2 = ∥hj − hi∥2 (19)

The neighborhood variance σ2
i computed from invariant features is also invariant:

σ2
i =

1

|N (i)|
∑

k∈N (i)

∥hk − µi∥2 (20)

where µi is the neighborhood mean. Under g ∈ SE(3), both remain unchanged.

Therefore:

αg
ij = exp

(
− ||hj − hi||2

2ξ · (σ2
i + ϵ)

)
= αij (21)

Hence, Gaussian Dynamic Attention mechanism preserves SE(3) equivariance by maintaining in-
variant attention weights while allowing equivariant features to transform appropriately under ro-
tations. The scalar nature of ESM embeddings ensures that reflection equivariance is not required,
reducing E(3) to SE(3) as stated in Proposition 3.1.

C EXPERIMENTS

C.1 DATASETS

scPDB (Desaphy et al., 2015) comprises 17,594 protein-ligand complex structures from the 2017
release, representing 4,782 unique proteins and 6,326 ligands. We used the most frequently used
dataset for LBS identification (Stepniewska-Dziubinska et al., 2020; Jeevan et al., 2024) for training
and validation, with a split of 90 : 10. Final dataset was preprocessed using the steps described in
EquiPocket (Zhang et al., 2024). PDBbind2020 Wang et al. (2004) contains experimentally deter-
mined binding affinity data paired with structural information. We utilize the refined subset as per
(Zhang et al., 2024), consisting of 5,316 complexes selected for structural quality from the larger
general set of 14,127 complexes. The refined set enforces strict quality criteria, including resolu-
tion better than 2.5Å and complete ligand electron density. COACH420 and HOLO4K serve as
independent test sets following Krivák & Hoksza (2018). COACH420 contains 420 protein-ligand
complexes with diverse binding site architectures, while HOLO4K comprises 4,288 structures. Both
datasets use the MLIG subsets following (Aggarwal et al., 2021; Jiménez et al., 2017) containing
biologically relevant ligands as defined by the original curation. Notably, HOLO4K presents sig-
nificant distribution shift challenges as it contains numerous multi-chain assemblies and oligomeric
proteins absent from typical training sets. We have split the HOLO4K dataset into per-chain com-
ponents and aggregated the predictions in our evaluated results. For all datasets, we exclude solvent
molecules and apply standard preprocessing, such as removing hydrogen atoms. Structures with
missing coordinates or ambiguous ligand positions are filtered during preprocessing using rDkit
(Tosco et al., 2014).

C.2 BASELINE METHODS COMPARED

We compare GDEGAN with different categories of methods proposed for LBS identification. Tradi-
tional Machine Learning-based: Fpocket (Le Guilloux et al., 2009), and P2rank (Krivák & Hoksza,
2018). CNN-based: DeepSite (Aggarwal et al., 2021), Kalasanty (Stepniewska-Dziubinska et al.,
2020), and RecurPocket (Li et al., 2022). Topological Graph-based: GAT Veličković et al. (2018),
GCN Kipf & Welling (2017), and GCN2 (Chen et al., 2020). Spatial Graph-based: SchNet (Schütt
et al., 2018), EGNN (Satorras et al., 2021), and Equipocket (Zhang et al., 2024). High-degree steer-
able method: GotenNet (Aykent & Xia, 2025).
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C.3 EVALUATION METRICS

DCC (Distance from Center to Center). For each predicted binding site center p̂i and true binding
site center pj , DCC measures the Euclidean distance between centers:

DCC = ∥p̂i − pligand∥2 (22)

where p̂i ∈ R3 represents the i-th predicted center and pj ∈ R3 the j-th ground truth center.

DCA(Distance to Closest Atom). This metric evaluates whether predictions are within the actual
binding region by measuring the minimum Euclidean distance from a predicted center to any ligand
atom:

DCA = min
b∈L
∥p̂i − pb∥2 (23)

where L represents all ligand atoms.

For both metrics predictions are considered successful if they are within a standard threshold τ ,
which in this case we have taken as 4Å following Aggarwal et al. (2021); Le Guilloux et al. (2009);
Mylonas et al. (2021); Zhang et al. (2024).

Success RateDCC/DCA =
|{Predicted sites | DCC/DCA < τ}|

|{True sites}|
(24)

Failure Rate =
|{Proteins | |predicted centers| = 0}|

|{Proteins}|
(25)

where | · | denotes set cardinality and τ = 4Å is the standard threshold for successful prediction.

We have used DCC/DCA success rate and Failure rate as the evaluation metrics to compare from
the sate-of-the-art methods.

C.4 COMPUTATIONAL EFFICIENCY ANALYSIS

We evaluate the inference speed on 100 proteins for each model and present the duration in seconds
(s) in Table 3. GDEGAN demonstrates substantial enhancements, with inference time about 1.9
seconds, in contrast to GotenNet’s 4.12 seconds and Equipocket’s 37 seconds.

Table 3: Inference time comparison across methods.

Method Time (s/100 proteins) Speedup Type

GDEGAN (Ours) 1.90 1.00× Reside Level Nodes

GotenNet 4.12 0.46× Reside Level Nodes

EquiPocketp 37.00 0.05× Atom Level Nodes

Fpocketp 23.00 0.08× Geometry Based

Kalasantyp 86.00 0.02× 3D-CNN Based
DeepSurfp 641.00 0.003× 3D-CNN Based

p Results from the EquiPocket (Zhang et al., 2024) paper.

D TRAINING HYPER-PARAMETERS SELECTION

This section presents the hyperparameters for training as outlined in Table 4, selected based on
the validation data, which comprises 10% of the training dataset. These hyperparameters can be
employed to ensure reproducibility. We will release the full code based on the acceptance of the
work.

E DECLARATION ON THE USE OF LARGE LANGUAGE MODELS

In this work, we have utilised tools like Grammarly to check any grammatical oversight, and these
tools are powered by LLMs.
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Table 4: Hyperparameter selection and reproducibility details.

Hyperparameter Search Space
Learning Rate {0.003, 0.0003, 0.0005}
Minimum Learning Rate 1e-6
Batch Size {8, 16, 32}
Optimizer {Adam, AdamW}
Learning rate scheduler Cosine Annealing Warm Restarts
Warmup Epochs 10
Maximum Epochs 150
Early Stopping Patience 30
Gradient clipping {10, 15 }
Weight Decay {0.01, 0.05}
Dropout Rate {0.1, 0.2, 0.5}
Node hidden dimension 128
Edge dimension (ed) 128
Edge refinement dimension 128
Lmax 2
Number of Layers {2, 4, 6}
Number of RBFs 32
Maximum number of neighbors 32
Number of attention heads {4, 8}
Activation Function {ReLU, SiLU}
τ 0.5
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