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Abstract

Self-attention heads are characteristic of Trans-001
former models and have been well studied for002
interpretability and pruning. In this work, we003
demonstrate an altogether different utility of004
attention heads, namely for adversarial detec-005
tion. Specifically, we propose a method to006
construct input-specific attention subnetworks007
(IAS) from which we extract three features to008
discriminate between authentic and adversar-009
ial inputs. The resultant detector significantly010
improves (by over 7.5%) the state-of-the-art011
adversarial detection accuracy for the BERT012
encoder on 10 NLU datasets with 11 different013
adversarial attack types. We also demonstrate014
that our method (a) is more accurate for larger015
models which are likely to have more spurious016
correlations and thus vulnerable to adversarial017
attack, and (b) performs well even with modest018
training sets of adversarial examples.019

1 Introduction020

Self-attention heads are characteristic of Trans-021

former models. Individual attention heads are inter-022

pretable in different ways. One, for a token in an023

input sentence, we can visualize the attention paid024

by a head to all other tokens. Such attention pat-025

terns are attractive linguistically and have come to026

define roles for attention heads (Pande et al., 2021).027

Two, the output of attention heads from various028

layers can be probed for their ability to encode in-029

formation related to the “NLP pipeline” (Jawahar030

et al., 2019; Tenney et al., 2019; van Aken et al.,031

2019). Three, attention patterns of heads can repre-032

sent knowledge learnt by a teacher model when dis-033

tilling to a smaller student model (Jiao et al., 2020).034

While individual attention heads are interpretable035

in the above ways, it is found that attention heads036

in models such as BERT are over-provisioned and037

can be pruned. For instance, Michel et al. (2019)038

showed that a model with 16 attention heads per039

layer can be pruned to just one. Voita et al. (2019)040

and Budhraja et al. (2020) have shown similar re- 041

sults with different pruning techniques across tasks. 042

In the above methods, while interpretation of 043

attention heads is input-specific, pruning of heads 044

is input-agnostic. Can these two be combined, i.e., 045

can we prune attention heads in an input-specific 046

manner creating opportunities for interpretation? 047

We explore this idea to identify an altogether differ- 048

ent utility of attention heads - namely adversarial 049

detection which is the task of differentiating be- 050

tween authentic and adversarial inputs. Specifically, 051

we propose a method to obtain an input-specific at- 052

tention subnetwork (IAS), which is a subnetwork 053

where a subset of attention heads is masked with- 054

out affecting the output of the model for that input. 055

Such subnetworks could vary across inputs repre- 056

senting how the model works for each input. This is 057

particularly important for adversarial detection, as 058

adversarial inputs do not reveal themselves in what 059

the model outputs but may leave tell-tale signs in 060

how the model computes this output. 061

In this work, we present a technique to efficiently 062

compute IAS and demonstrate its utility in adversar- 063

ial detection with significantly improved accuracy 064

over all current methods. To this end, we propose 065

three sets of features from IAS. The first feature, 066

Fmask, is simply the attention mask that identifies if 067

an attention head is retained or pruned in IAS. The 068

second feature, Fflip, characterizes the output of a 069

“mutated” IAS obtained by toggling the mask used 070

for attention heads in the middle layers of IAS. The 071

third feature, Flw, characterizes the outputs of IAS 072

as obtained layer-wise with a separately trained 073

classification head for each layer. We train a classi- 074

fier, called AdvNet, with these features as inputs to 075

predict if an input is adversarial. 076

We report results on 10 NLU tasks from the 077

GLUE benchmark (SST2, MRPC, RTE, SNLI, 078

MNLI, QQP, QNLI) and elsewhere (Yelp, AG 079

News, IMDb). For each of these tasks, we first 080

create a benchmark of adversarial examples com- 081
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bining 11 attack methodologies like Word order082

swap (Pruthi et al., 2019), embedding swap (Mrkšić083

et al., 2016), word deletion (Feng et al., 2018), etc.084

In total, the benchmark contains 5,686 adversarial085

examples across tasks and attack types. To the best086

of our knowledge, this dataset is the most exten-087

sive benchmark available on the considered tasks.088

Across all these tasks and attack types, we compare089

our adversarial detection technique against state-of-090

the-art methods such as DISP (Zhou et al., 2019),091

NWS (Mozes et al., 2021), and FGWS (Mozes092

et al., 2021). Our method establishes the best re-093

sults in all tasks and attack types, with an average094

improvement of 7.45% over the best method for095

each task. Our detector achieves an accuracy of096

80–90% across tasks suggesting effective defense097

against adversarial attacks.098

Having established the utility of attention heads099

for adversarial detection, we perform several ab-100

lation studies. First, we compare different combi-101

nations of the features demonstrating that they are102

mutually informative and thus combining them all103

works best. Second, we show that CutMix data104

augmentation (Yun et al., 2019) improves accu-105

racy, demonstrating the first use of this method106

in adversarial detection in NLP tasks. Third, we107

show that the detector is more accurate as the size108

of the language model scales. This is encourag-109

ing because larger language models are expected110

to have increased spurious correlations and thus111

are more vulnerable to adversarial attacks. Fourth,112

we show that the detector performs well even for113

modest training sizes of adversarial examples, sug-114

gesting effective generalization. In summary, we115

propose a novel relation between attention heads116

and adversarial detection. The effectiveness of the117

resultant detector establishes that the mask of atten-118

tion heads captures critical information about how119

a Transformer model works for a given input.120

The rest of the paper is organized as follows. We121

detail our core method of computing IAS in the122

next section. In Section 3 we discuss the features123

from IAS for adversarial detection. We detail the124

experimental setup along with the dataset creation125

process in Section 4. We present our results in126

Section 5 and conclude in Section 6.127

2 Input-Specific Attention Subnetworks128

In this section, we describe Input-specific Atten-129

tion Subnetworks (IAS) and the computational ap-130

proach to identify IAS for a given input.131

2.1 Notation 132

We consider a BERT-style encoder model where 133

each layer consists of multi-headed self-attention 134

and position-wise FFN. Let an input x consist of 135

T tokens each represented by dv-dimensional vec- 136

tors. Let Xj ∈ RT×dv be the representation at the 137

input of the jth layer. Let WQ
ji ,W

K
ji ,W

V
ji be the 138

projection matrices of the ith self-attention head 139

in the jth layer. We define Qji = XjW
Q
ji ,Kji = 140

XjW
K
ji , Vji = XjW

V
ji as the query, key, and value 141

corresponding to the head respectively. Each self- 142

attention head performs a scaled dot-product atten- 143

tion on the query, key, and value to generate the 144

head’s output. The output of all the heads in a layer 145

are concatenated and passed through the FFN. 146

Headji(Xj) = softmax

(
QjiK

T
ji√

dk

)
Vji (1) 147

Layerj(Xj) = concati[Headji(Xj)]W
O
j (2) 148

where dk is the dimensionality of each key vector 149

and WO
j is a learnable parameter. 150

A pre-trained model is fine-tuned on a specific 151

task, such as sentiment classification. Let θ be 152

the set of trainable network parameters which are 153

optimized to minimize a task-specific training loss 154

for each input x: 155

Lθ(x) = LCE(f(x, θ), y), (3) 156

where f(·) is the function computed by the model 157

with parameters θ for input x, LCE is the stan- 158

dard cross-entropy loss function and y is the ex- 159

pected model output for input x. The overall 160

training loss is averaged across all |x| inputs, i.e., 161

Lθ = 1
|x|
∑

x Lθ(x). Let f̂(·) represent the out- 162

put class generated from f(·) and θ∗ be the set of 163

optimal network parameters obtained after training. 164

2.2 Representing IAS 165

In an IAS, a subset of attention heads are pruned. 166

We represent a continuous relaxation of pruning by 167

modifying Eqn. 1 to weigh the output of each head 168

by a scalar gating value gji ∈ [0, 1]. The jth layer 169

of the modified network is given by 170

Layermj (Xj) = concati[gji·Headji(Xj)]W
O
j (4) 171

During inference, we constrain the gating values 172

to be binary to characterize either exclusion or in- 173

clusion of a head: gji is replaced by gbji ∈ {0, 1} 174

which defines the attention mask for the input x: 175

gb(x) = {gbji} ∈ {0, 1}nm, where n is the number 176
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P(negative) = 0.015
P(positive) = 0.985

the acting, costumes, music, 
cinematography and sound are all astounding  

given the production's austere locales.

the acting, costumes, music, 
cinematography and sound are all astuonding 

given the production's austere lcoales.

P(negative) = 0.981
P(positive) = 0.019

Figure 1: The IAS (with active heads in green) com-
puted for two inputs on the SST-2 task, left is authentic
while right is adversarial. Notice how a small adversar-
ial perturbation in the input leads to very distinct sub-
networks being computed. The class predicted by each
IAS agrees with the prediction of the full network.

of layers and m is the number of heads per layer.177

We represent the output class predicted by the IAS178

for an input x by f̂g(x, θ∗, gb). We call the subset179

of attention heads that are assigned a gating value180

of 1 as active heads and note that the active heads181

jointly define a subnetwork, called IAS. We illus-182

trate IAS with an example. Figure 1 shows the183

BERT-Base model with 12 layers and 12 heads per184

layer. For two specific inputs, the corresponding at-185

tention masks are shown with their active heads in186

green. Thus, IAS is input-specific and characterizes187

how the model processes the input in a relatively188

low-dimensional space of [0, 1]144.189

2.3 Computing IAS190

We compute IAS by treating the gating values191

as free variables to optimize the task-specific192

loss (Eqn. 7) for a given input x. In this op-193

timization, the network parameters θ are frozen.194

Each gating value, gji is defined as gji =195

fHC(pji), where pji is the free variable that is196

optimized and fHC is a version of the hard con-197

crete distribution (Louizos et al., 2017) given as198
1

1+eα·(log(1−pji)−log(pji))
, where, α=6 gave the best199

results for our work. Let g be the gating vector200

as optimized by minimizing the loss for a specific201

input. We need to enforce that g is binary. Unlike202

approaches by Voita et al. (2019) and Wang et al.203

(2020), we do not include a regularization term in204

the training objective. Instead, we retain only those205

heads for which the gating values ascend the fastest206

towards 1, as measured after a certain η number207

of epochs. Specifically, each binary value gbji is208

derived from gji after η epochs as: 209

gbji(x) =

{
1, if gji(x) ≥ β ·max(g(x))

0, otherwise
(5) 210

where, β(< 1) is a thresholding parameter and 211

max(g(x)) is the largest among nm gating values. 212

For our work, we set η = 10 and β = 0.8. 213

Two exceptional cases may arise. First, if the bi- 214

nary gating values of all heads in a layer are thresh- 215

olded to 0, then the largest gating value in that layer 216

is forced to 1 to ensure information flows through 217

the network. Second, if the IAS predicts the wrong 218

class for that input, then β is reduced successively 219

in steps of 0.2 until the output of the IAS is correct. 220

For 98% of the inputs, the subnetwork predicted 221

the target class within β = 0.6. 222

3 Model for Adversarial Detection 223

In this section, we explain how we extract features 224

from the IAS and the design of the classifier for 225

adversarial detection. We use the term target class 226

to refer to the class predicted by the complete fine- 227

tuned network for an input. For authentic inputs, 228

this translates to the true class while for adversarial 229

inputs, this refers to the adversarial class that the 230

model is fooled into predicting. 231

3.1 Attention mask Fmask 232

The IAS identifies a subnetwork through which 233

important information flows for a particular input. 234

We hypothesize that this flow could be different 235

for authentic and adversarial inputs. Thus, the first 236

feature we extract, Fmask, is just the pre-activation 237

value p for the gating values of each head in the 238

IAS. Thus, for a BERT-base model with 12 layers 239

and 12 heads per layer, Fmask is a 144 dimensional 240

vector. We also define Fbmask which uses the binary 241

gated values gb instead of the real-values. 242

3.2 Features from flipping heads in IAS Fflip 243

Adversarial inputs rely heavily on the network ar- 244

chitecture and specific parameter combinations to 245

fool the model (Wang et al., 2019). Hence, slight 246

changes to network parameters can render an ad- 247

versarial perturbation non-adversarial. We thus 248

hypothesize (and later illustrate in Section 5.2) that 249

if we flip some of the heads in the IAS, it could sig- 250

nificantly change the output for adversarial inputs 251

but not by as much for authentic inputs. Which 252

heads should we flip? We take motivation from 253

studies that show that middle layers of BERT cap- 254

ture syntactic relations (Hewitt and Manning, 2019; 255
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Goldberg, 2019) and are multi-skilled (Pande et al.,256

2021), making them crucial for prediction. In con-257

trast, the initial layers are responsible for phrase-258

level understanding while the last few layers are259

highly task-specific (Jawahar et al., 2019). Hence,260

we choose to flip the gating values gb of heads in261

the middle layers of IAS, specifically, the middle262

dn3 e layers, i.e., we drop heads that were earlier ac-263

tive and include earlier inactive heads. We denote264

the modified gating vector after flipping as gf .265

gfji =

{
gbji, if j ≤ bn3 c or j ≥ 2dn3 e
1− gbji, if dn3 e ≤ j < 2dn3 e

(6)266

We run each input x through this mutated sub-267

network and obtain a 4-dimensional feature vector,268

Fflip consisting of the predicted class given by269

f̂g(x, θ
∗, gf ), the target class y, the confidence of270

prediction, and a flag asserting equality between271

predicted and target classes.272

3.3 Layer-wise auxiliary features Flw273

Studies (Wang et al., 2020; Xie et al., 2019) have274

shown that intermediate representations of adver-275

sarial inputs diverge from those of authentic inputs276

as we progress into deeper layers. This indicates277

that layer-wise information may be discriminative278

of adversarial inputs. Hence, instead of having a279

single classifier head processing the output of the280

final layer, we propose to train a classifier head at281

the output of each layer and use the classes pre-282

dicted by them as features in adversarial detection.283

Specifically, on the fine-tuned complete model, we284

freeze the standard model parameters to θ∗ and285

train n − 1 classifiers separately with a classifier286

head attached to each of the first n − 1 layers to287

predict the target class. Following the convention288

in Eqn. 7, the training loss for the lth classifier289

head with parameters Ωl on input x is given by:290

LΩl(x) = LCE(f lg(x, θ
∗ ∪ Ωl, {1}nm), y), (7)291

where f lg(·) gives the output class computed by292

the lth classification head of a network with gat-293

ing vector g. The overall training loss is given by294

LΩ = 1
(n−1)|x|

∑
x

∑
l LΩl(x). Let Ω∗ be the set295

of optimal parameters obtained after training.296

Then for a given input, we construct the IAS297

after flipping heads as given by the gating vector298

gf and compute the outputs of the n− 1 layer-wise299

classifiers, i.e., the output of the lth classifier head300

is given by f̂ lg(x, θ
∗ ∪ Ω∗l, gf ). We then create an301

n+ 1 dimensional feature, Flw, which consists of302

0
1

0

1

1-λ
λ

λ.L (1-λ).L

original data

augmented data
ground 

truth

mixed 
labels

Figure 2: Demonstration of CutMix used to mix
patches from two input feature vectors of length L each.

the n− 1 output labels with two other scalars: (a) 303

the number of these outputs that match the target 304

class, and (b) the number of times these outputs 305

change when traversed in the order of layers. 306

In summary, we compute the features as follows. 307

First, the model is fine-tuned on the task. Then, 308

layer-wise classification heads are trained while 309

keeping the model parameters frozen. Thus, given 310

an input, we first optimize and compute IAS from 311

which we extract Fmask. Then, the gating values of 312

the middle layers are flipped and we extract Fflip. 313

Finally, on the IAS with flipped heads, layer-wise 314

classifier outputs are used to extract Flw. 315

3.4 Classifier for adversarial detection 316

We refer to our classifier as AdvNet, which takes as 317

input, an (nm+ n+ 5)-dimensional vector F (x) 318

which is the concatenation of Fmask, Fflip, Flw and 319

generates a binary output classifying if a given in- 320

put is authentic or adversarial. AdvNet consists 321

of two 1-D convolutional layers with ReLU acti- 322

vation, two fully connected layers with sigmoid 323

activation, and a final classification layer with soft- 324

max activation. Since adversarial inputs are slow 325

and computationally expensive to generate, we 326

employ the CutMix algorithm (Yun et al., 2019) 327

for data augmentation. In CutMix, we slice out 328

patches from feature vectors of multiple inputs in 329

the training set, each of which could be authen- 330

tic or adversarial, and combine them to generate 331

new feature vectors. Their respective ground truth 332

labels are mixed in proportion to the length con- 333

tributed by each patch (see Figure 2). Formally, 334

if {xi}Ri=1 is a random subset of training set sam- 335

ples, an augmented feature vector from CutMix 336

is defined by F (x̃) = concati[F (xi)[pi : pi+1]], 337

where 0 = p1 < p2 < ... < pR+1 = nm+ n+ 5 338

and the mixed ground truth label is given by ỹ = 339∑
i yi(pi+1 − pi). Using soft labels by mixing 340

ground truth labels also offers better generalization 341

and learning speed (Müller et al., 2019). 342
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4 Experimental Setup343

4.1 NLU tasks for evaluation344

We choose the following 10 standard NLU tasks345

for performing our experimental studies: SST-2346

(Socher et al., 2013), Yelp polarity (Zhang et al.,347

2015a), IMDb (Maas et al., 2011), AG News348

(Zhang et al., 2015b), MRPC (Dolan and Brockett,349

2005), RTE (Wang et al., 2018), MNLI (Williams350

et al., 2018), SNLI (Bowman et al., 2015), QQP1351

and QNLI (Wang et al., 2018; Rajpurkar et al.,352

2016). We refer the reader to Appendix A for fur-353

ther details on these datasets.354

4.2 Dataset creation355

To perform adversarial detection, we require a356

combined set of authentic and adversarial samples357

for each task. First, we fine-tune a BERT-based358

model for each task using its publicly available359

training set. Then, samples from its test set for360

which the fine-tuned model makes correct predic-361

tions constitute the set of authentic samples for362

that task. Second, we generate adversarial samples363

by attacking the fine-tuned model using a broad364

set of 11 hard attack types to comprehensively365

test AdvNet’s performance and its generalizabil-366

ity to diverse perturbations. The attacks include367

word-level attacks: deletion (Feng et al., 2018),368

antonyms, synonyms, embeddings (Mrkšić et al.,369

2016), order swap (Pruthi et al., 2019), PWWS370

(Ren et al., 2019), TextFooler (Jin et al., 2020) and371

character-level attacks: substitution, deletion, in-372

sertion, order swap (Gao et al., 2018). We use the373

popular TextAttack framework (Morris et al., 2020)374

for implementations of these attacks. Resulting per-375

turbed samples that successfully fool our complete376

fine-tuned model constitute the set of adversarial377

samples for that task. On the combined authen-378

tic and adversarial set, we make a 70-10-20 split379

for creating training, validation and test sets for380

adversarial detection using AdvNet. We will pub-381

licly release this dataset containing a total of 5,686382

adversarial inputs across tasks and attack types.383

4.3 Implementation details384

Our adversarial detection model, AdvNet, contains385

two 1D convolutional layers followed by two fully386

connected layers. The two convolutional layers387

have a kernel size of 3 and generate 32 and 16 out-388

put feature maps. The two fully connected layers389

1quoradata.quora.com/First-Quora-Data
set-Release-Question-Pairs

have output dimensions of 32 and 16 with dropout 390

rates of 0.1. We use the binary cross-entropy loss 391

function and the Adam optimizer with a learning 392

rate of 0.001. We train the model for 100 epochs 393

with early stopping on an NVIDIA K80 GPU. 394

1 2 3 4 5 6 7 8 9 10
Epoch number

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ga
tin

g 
va

lu
e

Progression of gating values over 10 epochs

inactive head
active head

max(g(x))

Figure 3: The trajectory of gating values of individual
heads during the optimization to compute IAS. Only
a few heads (in green) reach the threshold and remain
active in IAS.

Figure 4: Fraction of inputs with a given number of ac-
tive heads from BERT-Base. Notice that in most cases,
only 20-40 heads out of 144 remain active.

5 Results & Discussion 395

In this section, we first analyse the IAS (Section 396

5.1) and the constituent features of AdvNet (Sec- 397

tion 5.2). We then perform a comparative study 398

with state-of-the-art adversarial detection methods 399

(Section 5.3). Lastly, we perform ablation studies 400

to understand the effect of task, model size, fea- 401

ture combinations and training set attacks on the 402

performance of AdvNet (Section 5.4). Unless oth- 403

erwise stated, the plots pertain to experiments on 404

the SST-2 dataset with the BERT-Base model. 405

5.1 Active heads in IAS 406

We first check the number of active heads in IAS 407

for a given input. To do so, we plot the progression 408

5
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Figure 5: Projections with t-SNE on the attention mask for (a) SST-2, (b) AG News, and (c) authentic and adver-
sarial inputs. Projection of attention masks are strongly discriminative of class and weakly of adversarial inputs.

of gating values with epochs when optimizing them409

for a given input (see Figure 3). We observe that410

only a small fraction of heads (shown in green) are411

active at the end of the optimization process, thus412

resulting in a sparse vector. The green curves that413

are below the blue (threshold) line correspond to414

the two exceptional cases discussed at the end of415

Section 2.3. While the above plot was for a single416

randomly selected input, in Figure 4 we show the417

fraction of inputs with a given number of active418

heads for all the datasets used in this work. The419

relatively small modes and the right skew distribu-420

tions imply that the extracted IAS are often sparse.421

5.2 Feature-specific analysis422

We now analyze the individual effectiveness of the423

three features proposed in Section 3.424

Attention mask (Fmask). We first show that the425

attention mask is strongly correlated with the in-426

put’s target class. To do so, we project the binary427

vector g(x) for each authentic input x onto a 2D-428

plane using the t-SNE method (van der Maaten and429

Hinton, 2008) as shown in Figure 5(a), (b). We430

observe that inputs from different classes separate431

into distinctly separate clusters. Thus, the attention432

mask is discriminative of an input’s target class as433

the choice of active heads depends on it. Interest-434

ingly, even if the attention computed for the same435

word location in two distinct inputs are the same,436

the heads attending to each word and responsible437

for generating different output classes are different.438

We present a similar plot with both authentic439

and adversarial inputs in Figure 5(c). We note that440

adversarial inputs group together with the authentic441

inputs whose true class is the same as their adversar-442

ial/target class. Within clusters of the same target443

class, there is a only a moderate distinction between444

adversarial and authentic inputs. But we show in445

further experiments that a better separation is pos-446

sible when the complete nm-dimensional vector is 447

used as opposed to a 2D projection. 448

Features from flipping heads in IAS (Fflip). For 449

each of the datasets, we compute the percentage of 450

authentic and adversarial inputs which generated 451

non-target class predictions. We find that the mu- 452

tated IAS after flipping heads in the middle layers is 453

more likely to predict the correct target class output 454

for an authentic input than an adversarial one. We 455

also study the confidence in these predictions as de- 456

tailed with a CDF plot of the logits in Appendix D. 457

We observe that Fflip predicts the target class with 458

higher confidence in case of authentic inputs than 459

adversarial ones. Specifically, only 9% of authentic 460

inputs had prediction confidence lower than 0.85 as 461

compared to 20% of adversarial inputs. Further, it 462

predicts a non-target class with high confidence for 463

some adversarial inputs. For example, 30% of ad- 464

versarial inputs with prediction confidence higher 465

than 0.85 gave the wrong prediction. In contrast, 466

flipping the initial/final layers of the IAS instead of 467

the middle layers did not significantly change the 468

model prediction for either authentic or adversarial 469

samples, making it difficult it to distinguish them. 470

Layer-wise auxiliary features (Flw). In Figure 6, 471

we plot the distribution of auxiliary output mis- 472

matches (non-target class predictions) across net- 473

work layers. We observe that for most layers, the 474

fraction of authentic inputs having target class pre- 475

dictions is higher than adversarial inputs. The dif- 476

ferences are particularly large for the last few lay- 477

ers. On average across datasets, we observed that 478

52.5% of adversarial inputs generate more than 2 479

auxiliary output predictions that do not match the 480

target class while only 23.1% of authentic inputs do 481

the same. Additionally, when traversing the layer- 482

wise outputs in order, we observed that the output 483

predictions of adversarial inputs switch among pos- 484

sible classes more often than for authentic inputs 485
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Figure 6: Fractions of authentic and adversarial inputs
that generate a non-target class prediction at each layer-
wise classification head.

(see Appendix D). These observations justify the486

features that we include in Flw.487

Based on the above analyses, we have demon-488

strated that all 3 features of IAS are informative489

for adversarial detection. Our results in the next490

section corroborate these findings.491

5.3 Performance on Adversarial Detection492

Following the observations in the previous sec-493

tion, we use AdvNet with the identified features494

for adversarial detection. We compare the per-495

formance of AdvNet with the current state-of-the-496

art approaches for detecting adversarial inputs for497

BERT-based models, viz., FGWS (Mozes et al.,498

2021), NWS (Mozes et al., 2021), DISP (Zhou499

et al., 2019) and FreeLB (Zhu et al., 2019). We500

briefly describe these methods in Appendix C.501

As seen in Table 1, AdvNet significantly outper-502

forms existing approaches across all 10 datasets503

with an average improvement of 7.45%. We re-504

port an improvement of 6.53% for the 3 sentiment505

analysis datasets (SST-2, Yelp, IMDb), 8.05% for506

the 4 NLI datasets (RTE, SNLI, MNLI, QNLI)507

and 6.98% for the 2 paraphrase detection datasets508

(MRPC, QQP) over the respective best methods.509

Another baseline that we compare with is Certi-510

fied Robustness Training (Jia et al., 2019). While511

this work is not aimed at adversarial detection, it512

provides bounds on model robustness for word sub-513

stitution perturbations. For making a comparison514

with our work, we note that the fraction of adver-515

sarial samples that are correctly detected as adver-516

sarial translates to robustness for binary classifica-517

tion tasks. We report robustness of 87% for word518

substitution-based attacks and 81% across all 11519

attacks for IMDb, while the best upper bound ob- 520

tained through certified robustness training is 75%. 521

When comparing across datasets, we observe 522

that AdvNet performs better on simpler sentence 523

labelling datasets like SST-2 and AG News when 524

compared to more complex tasks like RTE and 525

MRPC which require comparison between sen- 526

tences. Existing work (Pande et al., 2021) shows 527

that for simpler tasks, the BERT heads perform 528

discrete non-overlapping roles, while for complex 529

tasks, there is greater overlap in head roles and a 530

few heads perform more than one role. We hypothe- 531

size that this nature implies that the attention masks 532

for different inputs even belonging to the same type 533

(authentic or adversarial) can vary widely. This re- 534

duces the consistency of features across input types 535

making the detection harder. Nevertheless, AdvNet 536

establishes state-of-the-art results across datasets. 537

A detailed analysis of the performance of AdvNet 538

across tasks and attack types is provided in Ap- 539

pendix E. In Appendix F, we perform a defense 540

transferability study to show how the model gen- 541

eralizes well with state-of-the-art performance on 542

unseen attack types. 543

5.4 Ablation Studies 544

We now evaluate how variations in model size, 545

training set size, and the choice of feature com- 546

binations effect performance of AdvNet. 547

Effect of model size. IAS can be computed for 548

Transformer networks of any size. We compare 549

BERT-Small and BERT-Base models in terms of 550

performance of AdvNet as shown in Table 1. We 551

observe that, across datasets, AdvNet performs bet- 552

ter in detecting adversarial inputs fed to the larger 553

BERT-Base model (108M parameters) as opposed 554

to the smaller BERT-Small model (25M parame- 555

ters). The increase in accuracy averaged across 556

tasks is a significant 10.76%. We hypothesize that 557

this is because models with more layers encode 558

more information and allow for a better build-up of 559

semantic information which means that individual 560

heads play more discrete roles. This better perfor- 561

mance for the larger model is encouraging as the 562

more accurate and larger language models are ex- 563

pected to be more vulnerable to adversarial attacks. 564

Effect of training set size. In Figure 7, we show 565

how the performance of AdvNet changes as the 566

amount of training data changes. We observe that 567

AdvNet performs well even when it uses only a 568

fraction of the training set. Specifically, even at 569
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Model SST-2 Yelp AG News MRPC IMDb SNLI RTE MNLI QQP QNLI
FGWS 71.93 78.36 70.41 69.85 75.98 75.41 71.23 60.23 73.52 78.14
NWS 70.31 74.72 65.62 68.02 65.72 71.82 64.27 56.94 70.20 74.58
DISP 68.73 70.15 66.38 62.22 75.23 72.92 66.40 59.34 69.86 76.92

FreeLB 77.60 82.54 75.55 72.41 79.85 79.80 64.29 58.10 65.69 76.40
AdvNet

w/ BERT-Small 78.57 76.72 78.63 75.05 74.09 72.07 73.64 64.26 68.71 74.47
w/ BERT-Base 90.74 87.68 91.78 84.61 81.18 82.50 80.43 72.61 75.27 86.07

Table 1: Comparison of the adversarial detection accuracy of AdvNet using features extracted from fine-tuned
BERT-Small and BERT-Base models with other state-of-the-art approaches for adversarial detection.
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Figure 7: Effect of training set size on accuracy of ad-
versarial detection with AdvNet.

40% of the training examples used, AdvNet out-570

performs the results obtained with existing state-of-571

the-art models on most tasks. This suggests that the572

CutMix data augmentation is effective and the Ad-573

vNet model is sample-efficient. This is particularly574

important because designing adversarial examples575

for each dataset remains a challenging task.

Datasets Fmask Fflip Flw Bin w/o CM
SST-2 82.87 74.07 64.79 85.59 82.23
Yelp 80.23 62.08 66.01 84.30 83.57

AG News 83.11 76.41 57.14 90.47 83.11
MRPC 76.35 68.82 59.40 80.27 77.35
IMDb 74.54 60.00 55.45 73.78 74.23
SNLI 80.83 57.91 58.83 75.64 70.41
RTE 74.44 60.88 56.67 77.21 74.06

MNLI 66.95 51.30 60.00 66.85 69.95
QQP 66.41 61.63 62.64 71.88 64.50
QNLI 79.65 55.69 59.36 81.42 73.11

Table 2: Results on feature combinations.

576
Using different feature combinations. We had577

shown that each of the three features are infor-578

mative in Section 5.2. In Table 2, we report the579

performance of AdvNet by ablating various model580

components. The first 3 columns report accuracies581

when only one of the three features is passed at a 582

time to the model. We observe that Fmask performs 583

better than Fflip and Flw. This suggests that the 584

attention mask is the most important feature input 585

to the model. We analyze the roles of individual 586

gating values using GradCAM (see Appendix G). 587

Next, we test the performance when the boolean 588

attention mask Fbmask is used instead of the real- 589

valued vector Fmask along with Fflip and Flw. The 590

lower accuracy indicates that the real values are 591

more informative. Finally, we test the model perfor- 592

mance when CutMix is not used and conclude that 593

augmenting the training set using CutMix provides 594

higher accuracy as seen in the last row of Table 1 595

which uses all 3 features along with CutMix. 596

In summary, our results show that (a) the 3 IAS 597

features are individually informative, (b) AdvNet 598

significantly improves on baseline methods across 599

datasets, (c) AdvNet performance improves with 600

model size and does not drop much on reducing 601

training sets, and (d) the best performance is with 602

all 3 features along with CutMix augmentation. 603

6 Conclusion and future work 604

In this work, we present an altogether new utility of 605

attention heads in Transformer networks - to detect 606

adversarial attacks. We defined input-specific atten- 607

tion subnetworks (IAS) and proposed a method to 608

compute them efficiently. We extracted 3 features 609

from IAS and showed their utility in distinguish- 610

ing adversarial samples from authentic ones. We 611

demonstrated that our approach significantly im- 612

proves the state-of-the-art accuracy across datasets 613

and attack types. Our work suggests that input- 614

specific model perturbations provide strong sig- 615

nals to interpret Transformer-based models such 616

as large language models. Further, the sparse na- 617

ture of the identified IAS indicate opportunities for 618

input-specific model optimization. 619
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A Datasets used for authentic examples836

The 10 datasets used in this work were listed in Sec-837

tion 4.1. Here, we provide additional details about838

these datasets. SST-2 (Socher et al., 2013), Yelp po-839

larity (Zhang et al., 2015a) and IMDb (Maas et al.,840

2011) are binary sentiment classification datasets.841

AG News (Zhang et al., 2015b) consists of news842

headlines classified into one of 4 categories (world,843

sports, business, sci/tech) and MRPC (Dolan and844

Brockett, 2005) is a paraphrase dataset which con-845

tains sentence pairs with binary labels indicating846

whether they are semantically equivalent or not.847

RTE (Wang et al., 2018), MNLI (Williams et al.,848

2018), SNLI (Bowman et al., 2015) contain sen-849

tence pairs with labels indicating whether one sen-850

tences entails, contradicts or is neutral with respect851

to the other sentence. QQP is again a paraphrase852

dataset but unlike MRPC which contains sentences,853

it contains question pairs taken from Quora with854

binary labels indicating whether they are semanti-855

cally equivalent or not. QNLI contains question-856

context pairs with a binary label indicating whether857

the context sentence contains the answer to the858

question or not.859

B Examples of adversarial attacks860

In Table 3, we provide examples for each of the861

11 attack types that we use to generate adversarial862

inputs for this work.863

C Other methods for Adversarial864

Detection865

We briefly describe the four methods that we com-866

pare with in Table 1.867

• FGWS (Mozes et al., 2021): Here, a word868

frequency-guided approach is used to identify in-869

frequent words in an input sentence and replace870

them with more frequent, semantically similar871

words. Then, the difference in prediction confi-872

dence of the Transformer-based model between873

the original and substituted sentences is consid-874

ered. If this value is above a threshold, the sen-875

tence is predicted to be adversarial.876

• NWS: This is the naive word substitution base-877

line used in Mozes et al. (2021). Here, each878

out-of-vocabulary word in an input sentence is879

replaced with a random word from a set of se-880

mantically related words, following which the881

same process as above is used to predict input882

authenticity.883
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Figure 8: CDF over the target class output logit of the
mutated subnetwork. The large area below the green
curve with logit value<0.5 corresponds to a large num-
ber of adversarial inputs whose mutated subnetworks
predict a non-target class.

• DISP (Zhou et al., 2019): In this approach, a 884

BERT-based perturbation discriminator predicts 885

whether each token in the input sentence is au- 886

thentic or perturbed. If none of the tokens are 887

predicted to be perturbed, the input sentence is 888

considered authentic. 889

• FreeLB (Zhu et al., 2019): This is an adversar- 890

ial training approach where adversarial pertur- 891

bations are added to word embeddings and the 892

resulting adversarial loss is minimized to pro- 893

mote higher invariance in the embedding space. 894

• Certified Robustness Training (Jia et al., 895

2019): This approach uses Interval Bound Prop- 896

agation (IBP) to obtain an upper bound on 897

the worst-case loss resulting from any word 898

substitution-based perturbation. This has been 899

applied to CNN and LSTM-based language mod- 900

els. 901

D Analysing Fflip and Flw 902

In the second column of Table 4, for each of the 903

datasets, we show the percentage of authentic and 904

adversarial inputs which generated non-target class 905

predictions. In Figure 8, we show the CDF over the 906

target class output logit of the mutated subnetwork. 907

Further, in the third column of Table 4 we show 908

the percentage of (authentic, adversarial) inputs 909

whose layer-wise outputs showed more than one 910

switch. These results show that the Fflip and Flw are 911

individually informative. 912

E Adversarial detection accuracy for 913

different attack types 914

In Table 5, we present the breakup of model ac- 915

curacy across individual attack types. We observe 916

11



Attack Type Perturbed Text
Original Text it ’s a charming and often affecting journey.

Word-level attacks
Deletion it’s a _ and often affecting journey.

Antonyms it’s a repulsive and often affecting journey.
Synonyms it’s a charming and often affecting passage.

Embeddings it’s a charming and quite affecting journey.
Order Swap it’s charming and affecting a often journey.

PWWS it’s a entrance and often strike journey.
TextFooler it’s a charming and _ affecting journey.

Original Text a sometimes tedious film.
Character-level attacks

Substitution a sometimes tidious fylm.
Deletion a som_times tedio_s film.
Insertion a sometimeDs tvedious film.

Order Swap a smoetimes tedoius film.

Table 3: Examples of 11 attack types used for adversarial data creation. ‘_’ represents a deleted character and there
is no character present at that position in the adversarial sample.

Dataset (Mutated)
Non-target o/p

(Layer-wise)
Switches>1

SST-2 (12.3, 34.2) (37.9, 54.8)
IMDb (0.33, 2.18) (0.16, 1.45)
Yelp (3.8, 5.3) (0.83, 1.08)

AG News (6.6, 22.8) (3.2, 17.0)
MRPC (21.3, 24.3) (10.3, 8.77)
RTE (24.5, 22.2) (44.2, 50.9)
SNLI (2.83, 96.0) (11.6, 41.0)
MNLI (11.0, 24.8) (24.3, 42.5)
QQP (3.2, 1.3) (6.2, 6.8)
QNLI (5.7, 1.0) (13.8, 11.1)

Table 4: Percentages of (authentic, adversarial) inputs
whose (a) mutated subnetworks generated non-target
class predictions; (b) layer-wise outputs showed more
than one switch.

that for text classification tasks like SST-2, Yelp917

and AG News the accuracy for Embedding and Syn-918

onym swap attack types are much higher compared919

to other datasets. We also note that in case of both920

word and character-level attacks, Deletion and Sub-921

stitution operations are the ones with least detection922

accuracy across almost all datasets. Finally, we ob-923

serve that the performance for detecting adversarial924

inputs generated by PWWS and TextFooler attacks925

remain fairly consistent across datasets.926

F Defense Transferability Analysis 927

Here, we perform a defense transferability study 928

to understand how well the model can perform 929

on unseen attack types. For this purpose, we 930

train AdvNet with samples from only x% of the 931

11 attack types and report results both on the re- 932

maining attack types and the complete test set for 933

x ∈ {25, 50, 75} in Table 6. We observe that even 934

when AdvNet is trained with only 75% of the at- 935

tack types, the test results on new attacks outper- 936

form existing approaches for most datasets, thus 937

showing that our model can generalize to unseen 938

attack methods. Besides, the test accuracies on the 939

complete test set closely agree with those on the 940

new attack types. This indicates that the reduction 941

in accuracy can largely be attributed to a smaller 942

training set than to a lack of defense transferability. 943

G Refereeing heads in adversarial 944

detection 945

In this section, we explore the influence of each gat- 946

ing value in generating the prediction for our adver- 947

sarial detection model. We make use of the Grad- 948

CAM (Selvaraju et al., 2017) approach to identify 949

critical neurons in the input layer of AdvNet that 950

have large gradients from the target class (authentic 951

or adversarial) flowing through them. Among these, 952

we consider neurons that correspond to the gating 953

values, i.e, Fmask and call the heads corresponding 954

to them as refereeing heads. From Figure 9, we 955

observe that word swap attacks like antonyms, syn- 956
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Dataset #Adversarial Word-level attacks Character-level attacks
samples DEL ANT SYN EMBED SWAP PWWS TextFooler SUB DEL INS SWAP

SST-2 739 0.84 0.96 0.95 0.96 0.75 0.81 0.76 0.92 0.80 0.87 0.89
Yelp 589 0.75 0.92 0.92 0.96 0.88 0.80 0.95 0.93 0.77 0.88 0.88

AG News 829 0.88 0.96 0.92 0.96 0.82 0.83 0.84 0.89 0.84 0.85 0.88
MRPC 712 0.75 0.75 0.9 0.72 0.94 0.84 0.82 0.86 0.79 0.76 0.92
IMDb 321 0.80 0.76 0.85 0.89 0.80 0.82 0.81 0.94 0.75 0.96 0.79
SNLI 1262 0.61 0.80 0.78 0.88 0.78 0.76 0.79 0.85 0.88 0.65 0.83
RTE 541 0.75 0.84 0.86 0.87 0.79 0.77 0.73 0.82 0.76 0.82 0.82

MNLI 548 0.67 0.80 0.72 0.85 0.78 0.80 0.76 0.78 0.80 0.86 0.76
QQP 307 0.70 0.82 0.74 0.80 0.75 0.76 0.74 0.78 0.81 0.86 0.77
QNLI 395 0.80 0.90 0.92 0.92 0.90 0.82 0.86 0.82 0.86 0.82 0.82

Table 5: Accuracies across datasets for each attack type. Legend: SUB-substitution, DEL-deletion, SYN-synonym,
EMBED-embedding, INS-insertion, SWAP-order swap. Refer Section 4.1 for descriptions of attack types. The
second column provides the number of adversarial samples generated by us for each task across all 11 attack types.

Dataset 25% 50% 75%
SST-2 (57.8, 58.9) (69.9, 68.4) (82.7, 80.7)
Yelp (63.1, 61.8) (70.3, 69.9) (77.8, 78.4)

AG News (63.7, 62.1) (71.4, 69.9) (83.6, 78.4)
MRPC (63.2, 60.1) (73.2, 74.5) (81.5, 82.3)
IMDb (66.8, 64.8) (71.6, 73.1) (77.4, 79.1)
SNLI (57.9, 57.6) (67.2, 66.6) (73.4, 72.3)
RTE (63.8, 62.4) (70.8, 69.7) (76.4, 75.5)

MNLI (57.4, 58.8) (62.3, 61.3) (67.0, 68.9)
QQP (59.7, 60.2) (64.0, 64.2) (69.0, 69.6)
QNLI (61.8, 60.6) (69.3, 67.2) (75.7, 77.5)

Table 6: Defense transferability study of AdvNet with
varying percentages of attack types included in the train
set. Each tuple contains the test accuracy on new attack
types and on all attack types respectively.

onyms, and embeddings require a greater number957

of refereeing heads, while character-level attacks958

need fewer. This is because character-level changes959

make the token invalid, i.e, the model treats it as960

a unknown token absent in the vocabulary. Since961

this changes the input embedding sequence more962

dramatically, small deviations from standard gating963

patterns are sufficient to mislead the model leading964

to fewer refereeing heads. Since introducing syn-965

onym and embedding based perturbations change966

the embeddings input to the model by a smaller967

extent, larger deviations from the gating pattern968

are required to block or pass selective chunks of969

information to mislead the model.970
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Figure 9: Fraction of refereeing heads used by the ad-
versarial detection model across various adversarial at-
tack types. The split of these across 4 layer subsets is
also shown.
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