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Abstract

Effective extraction of the world knowledge in LLMs for complex decision-making
tasks remains a challenge. We propose a framework PIANIST for decomposing
the world model into seven intuitive components conducive to zero-shot LLM
generation. Given only the natural language description of the game and how input
observations are formatted, our method can generate a working world model for
fast and efficient MCTS simulation. We show that our method works well on two
different games that challenge the planning and decision making skills of the agent
for both language and non-language based action taking, without any training on
domain-specific training data or explicitly defined world model.

1 Introduction

Recent studies have shown how LLMs, trained on massive
amounts of online data, can be used as a world model to
conduct planning [1, 2]. However, using LLMs as world
models have not been as well explored in multi-agent,
partial information settings such as in language games
and other board games. These settings present unique
challenges due to (1) the complexity of all the possible
action, (2) partial observablity, and (3) other, possibly
adversarial or stochastic, agents. These complexities mean
that directly using the LLM as a policy for planning is not
as feasible [3]. More related works in App. D.

In this work, we introduce a framework PIANIST that al-
lows us to use the LLM to more easily learn and plan with
a PIANIST world model. Specifically, PIANIST sepa-
rates the world model into seven different components that
we use the LLM to generate. This includes the forward
transition function, the action function, and the informa-
tion partition function, all of which we prompt the LLM
to generate in the form of code, which is easily executable
and verifiable. We show that our method works well on
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Figure 1: Overview of PIANIST. Start-
ing with just the game description, the
LLM generates a complete multi-agent,

partial information world model, which
can then be used for planning via search.

two different games — one card based, and one discussion based — showing strong performance from

LLM-agents that use our framework.



2 Background

2.1 Decision problem formulation

We formulate decision making tasks as a partially observable Markov decision process (POMDP)
with an explicit environment actor which makes it more LLM-friendly to model.

Problem definition. Given a state space S and action space 4, a policy function ¢ in policy
space ® maps states to probability distributions over actions, ¢ : S — A.A. An environment
E=(S,A,N,T,R, A, ¢.) includes the state and action spaces, actors A/, a transition function
T:S%x A— S, areward function R : S x A — RWI for actor rewards, and an action function
A: S8 — N, P(A) determining legal actions. The environment actor’s policy ¢, handles stochastic
transitions, allowing for both deterministic and stochastic, single or multi-agent settings. In partial
information settings, an information partition function P : S x A/ — Z maps hidden states to
information sets. Then the policy ¢ maps from information sets to action distributions, ¢ : Z — AA.

Goal. Given an environment &, the goal for each actor 7 € N is to find a policy ¢} that maxi-
mizes their cumulative reward, given that other players are also playing their optimal policy ¢* ,:

¢; = argmax, : Z(S a)er R;(s,a)|, where 7 = (sg, ag, ...) is the simulated trajectory

E
TN(¢'L;¢*_,
according to the strategic profile (¢;, ¢_;) and the transition function T', with a; ~ ¢(a|s;) and
St+1 = T'(s¢, at). ¢ is commonly known as a Nash equilibrium, since no player ¢ has any incentive
to individually deviate from their optimal policy ¢;.

2.2 Decision-making games

We evaluate the performance of OMEGAZERO compared to other algorithms, both rule based and
deep reinforcement learning based, on two board games representing games of two different genres.

GOPS (Goofspiel) is a multi-round, two-player simultaneous action game commonly studied in
game theory [4, 5]. Each player is dealt identical hands of cards numbered 1 to k, and a shuffled
prize deck, also numbered 1 to k, is revealed one card at a time. Both players simultaneously play a
card from their hand; the higher card wins the prize, and both cards are discarded. After k£ rounds,
players sum the values of their won prize cards, and the higher total determines the winner. Good
players anticipate future moves and assess the value of each prize. Long-horizon games challenge
LLM agents, as they struggle to connect near-term actions with long-term outcomes.

Taboo (2-player text version) is a cooperative game where one player is the clue-master and the other
is the guesser. The clue-master is given a target word and a list of taboo words they cannot use in
their clues. Each round, the clue-master makes a statement, and the guesser responds with one guess.
The game ends when the guesser correctly identifies the word, makes five guesses, or the clue-master
accidentally uses a taboo word. If a taboo word is used, the team scores 0; otherwise, the score is five
minus the number of guesses. A good clue-master anticipates the guesser’s thought process to help
narrow down the options. The novelty of each word adds to the challenge.

3 Methodology
3.1 PIANIST: Extracting LLM World Knowledge

We present a new framework for extracting world knowledge from LLMs by dividing the world
model into seven intuitive components that the LLM can understand. With this extracted model,
we can apply model-based reinforcement learning techniques like MCTS or TD-learning. Most
components are generated by prompting the LLM with the game description and a predefined Python
parent template class. See App. C for examples of LLM generated models.

» 7: Information sets. The agent observes information sets, and we provide code for representing
them along with a natural language game description as an interface between the real world and the
agent. This and the game description are the only game-specific information given.

» S: Hidden states. The agent records any relevant hidden information here.

e N: Actors. Used to specify what the actor names are for the action function and reward function.

» A: Action function. For large action spaces, the function returns the top k£ most likely actions. For
language actions, an LLM generates the top k text options. See section 3.3 for details.



* T, R: Transition-reward function. Combining state prediction and reward assignment for each
player minimizes LLM errors. Deterministic transitions further reduce generation errors.

* P: Information partition function.

* [ : 7 — S: Information realization function. This maps information sets to their most likely
hidden states, enabling the agent to simulate transitions between hidden states.

Together, we have the Partition function, Information set space, Action space function, N players,
Information realization function, State space, and Transition-reward function, or PIANIST for short.
If the LLM generates incorrect code, we use a reflexion approach to correct it and regenerate [6, 7].
We choose to learn hidden states and transitions because it’s more intuitive for the LLM to understand
actions and transitions at hidden states rather than at information sets.

3.2 Integrating PIANIST with Search

Our pseudocode for PIANIST-guided MCTS is in Alg. 1, with a diagram in Fig. 2, and further
details in App. A. During MCTS, we sample a realization of the observed information set using
the information realization function. A trajectory is then simulated by selecting the action with
the highest UCT value (eq. 1) for the acting player. Since actors cannot distinguish hidden states
within the same information set, UCT values are averaged across all states in that set, weighted
by visit counts, preventing the use of hidden information. The simulation continues until a state s
with unexplored actions is reached, where a random unexplored action a is chosen. The transition
function provides the next state s’ and reward 7, which are recorded. The action function, partition
function, and value heuristic are used to record the actions, information set, and value estimate for s’.
A random rollout or LLM-generated heuristic computes the value estimate. Backpropagation is then
performed from s’ up the tree using the backpropagation equation (eq. 3).
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Figure 2: Integrating PIANIST components with MCTS. The realization function samples a
hidden state for simulation, while the transition, action, and partition functions are used to expand
new states. States are selected based on UCT values, aggregated across information sets for partial
information. Though the diagram shows values for a single player, in practice, values for all players
are inferred and updated simultaneously. See App. A for details and Fig. 3 for generation order.

3.3 Handling language actions

Language-based games are particularly challenging for traditional RL methods due to their need
for language abilities and extensive semantic knowledge. In these games, the action space for
language-based actions, such as discussion, is practically infinite, consisting of all possible word and
token combinations. Current search methods are only effective in finite action spaces. Additionally,
RL methods alone cannot inherently understand language or be trained to do so through self-play.
We address this by utilizing LLMs to propose likely high-level dialogue actions for players. This
allows us to (1) prune improbable actions and (2) focus on a few high-level strategy categories,




reducing the search space. The LLM only suggests possible actions, while the search algorithm
assigns probabilities, mitigating the bias issue commonly found in LLM decision making [8].

4 Experiments

We evaluated our model against three different opponents. For the ground-truth models, we used
ground truth models with MCTS search, combined with a random-rollout value heuristic, and played
them against our LLM-generated agent, which also uses an LLM-generated value heuristic. Ground-
truth include the true S, A, N, T, R, A models used during actual gameplay. For LLM as policy,
we directly queried the LLM for actions in ReAct style [9], which includes a thought phase before
action. For human opponents, we recruited 10 individuals to play 30 games of 6-card GOPS and 30
games of Taboo. In Taboo (a cooperative game), we paired each agent with a human-crafted model
as the teammate (guesser), as the clue-giver role is more difficult. In GOPS, the two agents played
directly against each other. We report both win rate and score for both games. In GOPS, win rate
refers to whether a player had a higher score than their opponent, while score represents the point
difference based on how many score cards were won. In Taboo, win rate measures whether the team
guessed the word on the first try, and score is based on how quickly the team guessed the correct
word. Note the possibility for tieing in GOPS.

As shown in Table 1, PIANIST performs similarly to ground-truth models, indicating that the
LLM can generate an accurate world model using our framework. Additionally, Table 2 shows that
our world model helps the agent plan more effectively than directly querying the LLM for actions.
However, our agent struggles to consistently beat humans at GOPS and Taboo, highlighting the need
for further research on improving LLM agents for complex decision-making environments on both
action and language games (Table 3). Overall, despite using LLMs to generate its world model
zero-shot, our agent demonstrates strong performance, showcasing the effectiveness of PIANIST
in extracting world knowledge for tree search. This suggests that future work could explore more
nuanced adaptations of the framework to balance decision-making performance across different
games, potentially enabling more robust generalization in varied multi-agent environments.

Table 1: PIANIST vs Ground truth models, comparing performance when we replace ground truth
models with LLM generated models.

. PIANIST Ground-truth
Game Setting # games
Winrate Score Winrate Score
GOPS 6-card 300 52.34+62% -0.21 48.7+1.9% 0.21
12-card 300 473+29% -0.07 47.0+£5.7% 0.07

Taboo as clue giver 15 60.0£8.7% 3.53 53.3%£129%  3.06

Table 2: PIANIST vs LLM as Policy, where the LLM directly chooses which actions to take [9].

Game Setting # games PIANIST LLM-policy
Winrate Score Winrate Score
GOPS 6-card 30 66.61+9.4% 0.3 33.349.4% -0.3
12-card 30 60.0+8.2% 0.2 33.3+9.4% -0.2

Taboo as clue giver 15 60.0+£8.7% 3.53 533£129% 3.2

Table 3: PIANIST vs the Humans. Humans were given the same prompt as the LLM before play.

. PIANIST the humans
Game Setting # games
Winrate Score Winrate Score
GOPS 6-card 40 54.94+83% 237 40.1+7.1% -2.41

Taboo as clue giver 15 60.0+£8.7% 3.53 86.7£8.7% 4.33
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A MCTS Details

The Monte Carlo Tree Search (MCTS) process, illustrated in Figure 2, simulates possible future game
states by expanding nodes in a search tree. Each node corresponds to a state, and edges correspond to
actions. MCTS operates by iteratively simulating trajectories (denoted as 7) from the current realized
hidden state until an unexpanded state is reached. The steps involved in MCTS include four key
phases: selection, expansion, simulation, and backpropagation.

A.1 Upper Confidence Bound for Trees (UCT) and Action Selection

At each node, the next action a* is selected according to the Upper Confidence Bound for Trees
(UCT) formula, given by Equation (1):

a*=argmax | E |r;+Vi(s)+C
a

o (s | s',r=T(s,a) (D

In this equation:

* a” is the action that maximizes the expression.

* srepresents the current state, and s’ is the next state reached after taking action a.

* 7r; is the immediate reward for agent ¢ when transitioning from state s to s’.

* V;(s’) is the value function that estimates the future reward from the next state s’ for agent
i.

* 7 is the discount factor, which balances immediate and future rewards.

* n(s) is the number of visits to the current state s, while n(s’) is the number of visits to the
next state s’.

* (' is a constant controlling exploration versus exploitation, and log n(s)/n(s’) encourages
exploring less-visited actions.

* T(s, a) represents the transition dynamics, mapping the current state and action to the next
state and reward.

A.2 Probability Distribution Over the Information Set

Since our MCTS handles partial observability, a probability distribution is defined over the information
set 5, which contains all possible hidden states s that are consistent with the observed information.
This distribution is given by:

n(s)

) = ()

@

Where:

* P(s) is the probability of being in state s within the information set I.

* n(s) is the visit count of state s, and the denominator normalizes over all possible states
!/
s e l;.

A.3 Backpropagation

After simulating a trajectory 7, MCTS backpropagates the results of the simulation to update the
value estimates and visit counts for all state-action pairs (s, s’) along the trajectory. This update is
performed using Equation (3):

Vi e N Vi(s) «+ Vi(s) + % (ri +9Vi(s") = Vi(s)), n(s) < n(s)+1 3)



Algorithm 1: Monte Carlo Tree Search for Partial Information with Information Sets

Input: Initial information set hg, number of iterations M
Output: Best action a*
Function Select (node):
while node is non-terminal do
if all node.actions have been tried then
| node < BestChild(node);
end
else
a = random untried action;
return node, a;
end

end
return node (terminal state);
Function Expand (parent, a):
s < T(parent.s, a);
Create new node child with parent parent and child.s < s;
child.actions, child.actor < A(s);
child.h < P(s);
child.values + EstimateValues (child);
return child,
Function EstimateValues (node):
Use random rollout or some other value heuristic to estimate the value of state node.s for
each player;
return estimated values;
Function Backpropagate (node):
next_values = node.values;
while node is not null do
node < parent of node;
Update node.values with the next_values;
end
Function BestChild (root):
| return child of root with highest average reward;
Function InformationSet (node, h):
Generate the updated information set h’ for node based on observed actions and outcomes
within h;
return h/;
Function Realize(h):
nodes < all nodes in graph with node.h = h;
if nodes is empty then
| Create a new node node with node.h = h and node.s = I(h) and add to graph
end
else
\ node <— RandomChoice(nodes);
end
return node;
begin
fori =1to N do
root < Realize(hgy);
node, a < Select (root);
child < Expand (node, a);
Backpropagate (child);
end
a* < BestChild(root);

end




Here:

* Vi(s) is updated for agent ¢ by adding a fraction of the difference between the expected

future reward (given by r; + vV;(s’)) and the current value estimate V;(s).

* 7; is the reward obtained from transitioning between s and s’.

* ~ is the discount factor, which balances immediate and future rewards.

* n(s) is incremented to reflect that the state s has been visited once more.
This backpropagation process ensures that the value estimates V;(s) are refined based on simulated
outcomes, allowing the MCTS process to converge on more accurate policies over time.

By iteratively simulating trajectories, selecting actions, expanding nodes, and backpropagating
rewards, MCTS effectively balances exploration and exploitation, making it a powerful search
algorithm for solving decision-making problems in partially observable environments.

B PIANIST Generation details

PIANIST Generation graph

(/ )

‘ Realization func.’ 4 Partition func. ,

- /

Figure 3: Directed generation graph for PIANIST. We display the sequential generation order for
the various components of PIANIST, with dependencies shown by directed arrows. Generating and
testing objects in this order minimizes the probability of execution failure. The initial information
set representation is given by the environment to allow an unified interface with the environment.
Modularization also means we can test each component individually.

10



C Example PIANIST models generated by gpt-4o

Example LLM Generated Forward Dynamics Model (GOPS)

class CustomForwardTransitor (ForwardTransitor):
23
Custom forward transitor for the Game of Pure Strategy (GOPS)

Implements the game logic for transitioning between states.
IE)

def _transition(self, state: HiddenState, action: int, actor: int) -> Tuple[HiddenState, Dict[
int, floatll:

ERE)

Transits to the next state given the current state, actor, and action taken by the actor.

Args:
state: current HiddenState
action: card played by the actor
actor: actor that is taking the action (0 for player 0, 1 for player 1)

Returns:

next_state: updated HiddenState

rewards: reward of the transition for each player
23
# Copy current state variables to modify them
player_O_hand = state.player_O_hand
player_1_hand = state.player_1_hand
prize_deck = state.prize_deck
player_O_played_cards = state.player_0_played_cards
player_1_played_cards = state.player_1_played_cards
played_prize_cards = state.played_prize_cards
player_O_cumulative_score = state.player_O_cumulative_score
player_1_cumulative_score = state.player_1_cumulative_score
contested_points = state.contested_points

# Record the action taken by the actor
if actor ==

player_0O_played_cards += (action,)

player_O_hand = player_O_hand - frozenset([action])
elif actor == 1

player_1_played_cards += (action,)

player_1_hand = player_1_hand - frozenset([action])

# If both players have played cards, determine the winner

if player_O_played_cards and player_1_played_cards:
player_O_card = player_O_played_cards[-1]
player_1_card = player_1_played_cards[-1]

if player_O_card > player_1_card:
# Player 0 wins the round
if contested_points > O:
player_O_cumulative_score += contested_points + played_prize_cards[-1]
contested_points = 0
else:
# Award the prize card if it exists
if prize_deck:
prize_card = prize_deck.pop()
player_O_cumulative_score += prize_card
played_prize_cards += (prize_card,)
else:
contested_points = 0 # No prize card to award
elif player_1_card > player_O_card:
# Player 1 wins the round
if contested_points > O:
player_1_cumulative_score += contested_points + played_prize_cards[—l]
contested_points = 0
else:
# Award the prize card if it exists
if prize_deck:
prize_card = prize_deck.pop()
player_1_cumulative_score += prize_card
played_prize_cards += (prize_card,)
else:
contested_points = 0 # No prize card to award
else:
# Cards are equal, points are contested
contested_points += 1

# Prepare rewards dictionary
rewards = {0: player_O_cumulative_score, 1: player_1_cumulative_score}

# Initialize new state at the point of return

new_state = HiddenState(
player_O_hand=player_O_hand,
player_1_hand=player_1_hand,
prize_deck=prize_deck,
player_0_played_cards=player_O_played_cards,

11



player_1_played_cards=player_1_played_cards,
played_prize_cards=played_prize_cards,
player_O_cumulative_score=player_O_cumulative_score,
player_1_cumulative_score=player_1_cumulative_score,
contested_points=contested_points

)

return new_state, rewards

Example LLM Generated Value Heuristic Function (GOPS)

class CustomValueHeuristic(ValueHeuristic):
335
Custom value heuristic for evaluating the state of the GOPS game.
This heuristic estimates the expected rewards based on the cards in hand
and prize cards available.

Attributes:
player_O_weight: Weight given to Player 0’s score.
player_1_weight: Weight given to Player 1’s score.

def _evaluate(self, state: HiddenState) -> tuplel[dict[int, float], dict]:

R R}

Evaluates the state

Args:
state: current hidden state of the game

Returns:
values: estimated values of the state for each player
notes: additional notes about the evaluation
IER)
player_O_value = self._estimate_value(state.player_O_hand, state.prize_deck)
player_1_value = self._estimate_value(state.player_l_hand, state.prize_deck)

values = {
0: player_O_value + state.player_O_cumulative_score,
1: player_1_value + state.player_1_cumulative_score

notes = {
’player_O_hand’: state.player_O_hand,
’player_1_hand’: state.player_1_hand,
’prize_deck’: state.prize_deck,
’player_O_value’: player_O_value,
’player_1_value’: player_1_value

return values, notes

def _estimate_value(self, hand: FrozenSet[int], prize_deck: FrozenSet[int]) -> float:
293

Estimates the potential value of a player’s hand based on available prize cards.

Args:
hand: The player’s hand of cards.
prize_deck: The current prize deck cards.

Returns:

estimated value for the player’s hand.
IER)

if not prize_deck:
return 0.0 # No prize cards left to claim

# Count the number of prize cards that can be won
prize_values = [prize for prize in prize_deck if prize in hand]

# If the player has cards that can win the prize cards, sum their values
value = sum(prize_values)

# Optionally, apply a strategic factor or heuristic for more complex evaluations
return value

12




Example LLM Generated Actor-Action Selection Model (GOPS)

class CustomActorActionEnumerator (ActorActionEnumerator):
13
Custom enumerator for the Game of Pure Strategy (GOPS) that determines which player can act

and what actions they can take.
13

def _enumerate(self, state: Hashable) -> tuple[Optionall[int], frozenset]:
39

Enumerates the acting player and their available actions based on the current game state.
The first player in the player order is always returned.

Args:
state: current state (expected to be a HiddenState)

Returns:

actor: the acting actor (either O or 1 for players).

actions: set of actions that the actor may take (cards they have left in their hand).
39
if not isinstance(state, HiddenState):

raise ValueError("State must be an instance of HiddenState.")

# Determine the acting player (always the first player in the order for this game)
actor = self.player_order[0]

# Get the actions available to the acting player
if actor == 0:

actions = state.player_O_hand
else:

actions = state.player_1_hand

return actor, frozenset(actions)

Example LLM Generated Information Realization Function (GOPS)

class CustomInformationPrior(InformationPrior):
23

Custom implementation of InformationPrior for the Game of Pure Strategy (GOPS).

This class maps an information set, which may represent a state of the game where players have

played certain cards, to a corresponding hidden state.
13

def _get_prior_state(self, information_set: Hashable) -> HiddenState:
23
Returns a hidden state corresponding to the given information set. This implementation
generates a hidden state based on the current observed state.

It assumes that the information_set contains relevant details such as played cards and
hands.

IER)

# Placeholder for actual extraction of information from the information set.

# The actual implementation would depend on the structure of information_set.

player_0O_hand = information_set.player_O_hand

player_1_hand = information_set.player_1_hand

prize_deck = information_set.prize_deck

player_0O_played_cards = information_set.player_O_played_cards
player_1_played_cards = information_set.player_1_played_cards
played_prize_cards = information_set.played_prize_cards
player_O_cumulative_score = information_set.player_O_cumulative_score
player_1_cumulative_score = information_set.player_1_cumulative_score
contested_points = information_set.contested_points

# Create and return the hidden state

return HiddenState(
player_0O_hand=player_O_hand,
player_1_hand=player_1_hand,
prize_deck=prize_deck,
player_0O_played_cards=player_O_played_cards,
player_1_played_cards=player_1_played_cards,
played_prize_cards=played_prize_cards,
player_O_cumulative_score=player_O_cumulative_score,
player_1_cumulative_score=player_1_cumulative_score,
contested_points=contested_points,

13



D Related Work

LLMs for text agents. Large language models (LLMs) have demonstrated significant emergent
capabilities, such as zero-shot prompting and complex reasoning [10, 11, 12, 13, 14, 15]. They
also possess extensive world knowledge [16], which has spurred increasing efforts to use LLMs
for decision-making in text agents [17]. One notable paradigm is ReAct [18], which employs an
observation-reasoning-acting loop for agent planning with LLMs. Building on ReAct, Reflexion [7]
incorporates self-reflection to enhance reasoning capabilities. Other works in this domain have
utilized feedback [19, 20], memory [21], and tool use [22, 23] to further enhance agent performance.
Our proposed method, OMEGAZERO, integrates these components to design an agent capable of
systematic analysis and strategic decision-making. Typical prompting techniques for text agents
include Chain-of-Thought [24], Tree-of-Thought [2], and Graph-of-Thought [25].

LLMs and planning. Recent works have proposed planing using the LLM as a world model [1, 26].
These works have mostly centered around using the LLM as a forward transition function (dynamics
model) by querying the LLM for the next state [2], or using a planning language to describe plans
[27]. Other works have explored using LLMs to guide the MCTS search process by using the LLM
as a policy [3, 28]. We build upon these works by investigating what kind of world model is more
conducive to extracting world knowledge from the LLM and combining it with MCTS.

Skill learning with LLMs. Recent works have explored the possibly of LLMs learning skills through
learning a textual short and long term memory [7, 29], or textual insights extracted from the memories
[30]. Due to the length of trajectories in our game setting and the numerical nature of the data, it is
difficult to learn textual memories, so we learn high level strategies instead. We also explore how
to acquire simulational self-play feedback in multiagent settings. Using LLMs to learn a functional
reward model has also been applied to great success on single-agent robotic tasks [31, 32]. We build
upon their work by introducing a new improvement method that can help learn a better reward model,
and exploring how function learing can be applied to multiagent settings with simulated feedback.

Al in strategy games. Al has been applied to great success in board games. AlphaGo and MuZero
demonstrated the power of combining MCTS, deep learning, and feedback generation using self-play
in games such as Go, Chess, and Shogi [33, 34]. Language models can also be trained on human
in-game discussion data and integrated with another separately trained action planner to play board
games with dialogue [35]. We build upon the Al for games literature by showing that LLMs can
accomplish both (1) the training of a value heuristic like that in AlphaGo through self-play more
efficiently than RL and (2) dialogue generation in discussion games with no human examples. These
adversarial environments are not just limited to board games. For example, there has been recent
interest on creating LLM-agents that can negotiate [36, 37], which our method can also be applied to.
Traditionally the solution to searching over a large action space has been to bucket similar actions
together, such as possible raises in poker [38]. We leverage the inherent distribution in the LLM to
suggest the top most probable, yet distinct, actions instead.
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E Prompts used to generate components

P: Information Function Generation Prompt (Taboo)

SYSTEM PROMPT:

You are a programmer developing an accurate game engine. Your task is to implement parts of the
game simulator in Python. The simulator models simultaneous actions as sequential ones with
partial observation. When players $1, ..., k$ take simultaneous actions, they do so
sequentially without seeing the actions of previous players. These actions are first recorded

in a ‘HiddenState‘ object before being revealed. Do not repetitively generate Hidden state.
If new state is generated, construct at return statement. ‘ObservedState‘ and ‘HiddenState®
should be under ‘@dataclass(frozen=True)‘. Use tuple instead of list to make sure that

vectors are frozen.
wun

HUMAN PROMPT:

from typing import Optional, Tuple
clue_word: str # The actual clue word (hidden from guesser)
taboo_words: Tuple[str, ...] # Taboo words (hidden from guesser)
taboo_word_used: bool # Whether a taboo word was used
guesses: Tuple[str, ...] # Guesses made (hidden from clue-master)
clue_master_statements: Tuple[str, L] # Statements made (hidden from guesser)

wun

An observed state (information set) in the game is defined as follows:
win

Q@dataclass (frozen=True)

class ObservedState:

clue_word: Optionall[str] # The word the guesser needs to guess
taboo_words: Optionall[tuple[str, ...]] # List of taboo words the clue-master cannot use
guesses: tuple[str, ...] = tuple() # List of words guessed by the guesser
clue_master_statements: tuplel[str, ...] = tuple() # Statements made by the clue-master
taboo_word_used: bool = False # Flag to indicate if a taboo word was used

game_over: bool = False # Flag to indicate if the game is over

score: int = 5 # Initial score, will decrease based on guesses

actor: str = "clue_master" # Indicates whose turn it is: "clue_master" or '"guesser"

nnn

Write an information function ‘CustomInformationFunction® for this game that inherits from the ¢

InformationFunction‘ class. Include all docstings from the parent class:
i

class InformationFunction(AbstractLogged) :
23

Abstract class for mapping hidden states to information sets
335

def get_information_set(self, state: Hashable, actor: Hashable) -> Hashable:
39

Returns the observed state (information set) for the state
Args:
state: current state

actor: actor that is observing the state

Returns:
information_set: information set for the state
293

return self._get_information_set(state=state, actor=actor)

@abstractmethod
def _get_information_set(self, state: Hashable, actor: Hashable) -> Hashable:
33

Returns the observed state (information set) for the state

Args:
state: current state
actor: actor that is observing the state

Returns:

information_set: information set for the state
23

pass
W

The player names are defined as follows:
{’guesser’, ’clue_master’}

non
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A: Action Function (Taboo)

SYSTEM PROMPT:

win

You are a programmer developing an accurate game engine. Your task is to implement parts of the
game simulator in Python. The simulator models simultaneous actions as sequential ones with
partial observation. When players $1, ..., k$ take simultaneous actions, they do so
sequentially without seeing the actions of previous players. These actions are first recorded

in a ‘HiddenState‘ object before being revealed. Do not repetitively generate Hidden state.

If new state is generated, construct at return statement. ‘ObservedState‘ and ‘HiddenState®
should be under ‘@dataclass(frozen=True)‘. Use tuple instead of list to make sure that

vectors are frozen.
nnn

HUMAN PROMPT:

Taboo (2-player text version) is a two player cooperative dialogue game where 1 player is the clue
-master and 1 player is the guesser. The clue master is given the clue-word and a list of
taboo words. Each discussion round the clue master makes one statement to the guesser, but
cannot use any of the taboo words in their statements. The guesser can then guess one word.
This continues until either the guesser guesses the word, the guesser has guess five times
already, or the clue-master has spoken one of the taboo words. If the clue-master uses any of

the taboo words, the team score is 0. Otherwise, the score is five minus the number of words
guesser has guessed.

nun

wnn

A hidden state in the game is defined as follows:
wnn
class HiddenState:

from dataclasses import dataclass

from typing import Optional, Tuple

clue_word: str # The actual clue word (hidden from guesser)
taboo_words: Tuple[str, ...] # Taboo words (hidden from guesser)
taboo_word_used: bool # Whether a taboo word was used

guesses: Tuplel[str, -] # Guesses made (hidden from clue-master)
clue_master_statements: Tuple[str, - # Statements made (hidden from guesser)

wnn

Write an actor-action enumerator ‘CustomActorActionEnumerator‘ for this game that inherits from
the ‘TextActorActionEnumerator‘ class. Include all docstings from the parent class:

wnn

class TextActorActionEnumerator (ActorActionEnumerator):
IER)
Abstract class for an actor action enumerator that can enumerate textual actions (such as
dialogue and code)susing an LLM
IER)

model: LLMModel

def __init__(self, model: LLMModel, max_actions: int, player_order: Tuple[Hashable] = tuple())

super () .__init__(player_order)
self .model = model
self.max_actions = max_actions

def enumerate(self, state: Hashable)->tuple[Optional[Hashablel, set]:
23
Enumerates a (single) actor that may take actions at the state and the actions that the
actor may take.
If multiple actors may take actions at this state (simultaneous state), the first actor in
the player order is returned.

Args:
state: current state

Returns:
actor: the acting actor. -1 for environment, None for terminal state
actions: set of actions that the actor may take

23

actor, actions = self._enumerate(state)

assert len(actions) <= self.max_actions

return actor, set(actions)

Q@abstractmethod
def _enumerate(self, state: Hashable)->tuple[Optional[Hashable], frozenset]:
23
Enumerates a (single) actor that may take actions at the state and the actions that the
actor may take.
If multiple actors may take actions at this state (simultaneous state), the first actor in
the player order is returned.

Args:
state: current state

Returns:

actor: the acting actor. -1 for environment, None for terminal state
actions: set of actions that the actor may take

16




For textual actions, the actions will be generated by prompting the LLM model with a
system message and a user message, using the generate_k_responses method. An example
of a system prompt is "You are the clue giver in the game of Codenames. The rules of
Codenames are ...". An example of a user prompt is "State of game: ... Please give a
clue as a single tuple (word, number), nothing else."

23

pass

def generate_k_responses(self, sys_prompt: SystemMessage, user_prompt: HumanMessage, k: int =
-1)->list[str]:

39

Generates k responses given the system prompt and user prompt

Args:
sys_prompt: system prompt
user_prompt: user prompt
k: number of responses to generate, -1 if set to self.max_actions

Returns:
responses: list of responses
IER)
if k == -1:
k = self.max_actions
return [self.model.generate([sys_prompt, user_prompt]) for _ in range(k)]

i
The player names are defined as follows:

{’guesser’, ’clue_master’}
W'
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I: Information Realization Function (Taboo)

SYSTEM PROMPT:

win

You are a programmer developing an accurate game engine. Your task is to implement parts of the
game simulator in Python. The simulator models simultaneous actions as sequential ones with
partial observation. When players $1, ..., k$ take simultaneous actions, they do so
sequentially without seeing the actions of previous players. These actions are first recorded

in a ‘HiddenState‘ object before being revealed. Do not repetitively generate Hidden state.

If new state is generated, construct at return statement. ‘ObservedState‘ and ‘HiddenState®
should be under ‘@dataclass(frozen=True)‘. Use tuple instead of list to make sure that

vectors are frozen.
nnn

HUMAN PROMPT:

Taboo (2-player text version) is a two player cooperative dialogue game where 1 player is the clue
-master and 1 player is the guesser. The clue master is given the clue-word and a list of
taboo words. Each discussion round the clue master makes one statement to the guesser, but
cannot use any of the taboo words in their statements. The guesser can then guess one word.
This continues until either the guesser guesses the word, the guesser has guess five times
already, or the clue-master has spoken one of the taboo words. If the clue-master uses any of

the taboo words, the team score is 0. Otherwise, the score is five minus the number of words
guesser has guessed.

i
A hidden state in the game is defined as follows:
class HiddenState:

from dataclasses import dataclass

from typing import Optional, Tuple

clue_word: str # The actual clue word (hidden from guesser)
taboo_words: Tuple[str, ...] # Taboo words (hidden from guesser)
taboo_word_used: bool # Whether a taboo word was used

guesses: Tuple[str, ...] # Guesses made (hidden from clue-master)
clue_master_statements: Tuple[str, - # Statements made (hidden from guesser)

wun

An observation in the game is defined as follows:
i

@dataclass(frozen=True)

class ObservedState:

clue_word: Optionall[str] # The word the guesser needs to guess
taboo_words: Optionall[tuple[str, ...]] # List of taboo words the clue-master cannot use
guesses: tuplel[str, ...] = tuple() # List of words guessed by the guesser
clue_master_statements: tuple[str, ...] = tuple() # Statements made by the clue-master
taboo_word_used: bool = False # Flag to indicate if a taboo word was used

game_over: bool = False # Flag to indicate if the game is over

score: int =5 # Initial score, will decrease based on guesses

actor: str = "clue_master" # Indicates whose turn it is: "clue_master" or "guesser"

wnn

Write an information prior ‘CustomInformationPrior‘ for this game that inherits from the ¢

InformationPrior‘ class. Include all docstings from the parent class:

wnn

class InformationPrior(AbstractLogged) :
I

Abstract class for mapping an information set to a hidden state.

This is particularly useful when you do not have an empirical distribution over the hidden
states for that information set
23
def __init__(self, rng: np.random.Generator = np.random.default_rng()):
self.rng = rng
super () .__init__()

def get_prior_state(self, information_set: Hashable) -> Hashable:
23

Returns the prior state for the information set. Can be stochastic
[ER)

return self._get_prior_state(information_set=information_set)

Q@abstractmethod
def _get_prior_state(self, information_set: Hashable) -> Hashable:
23
Returns a hidden state corresponding to the given information set (observed state). Since
an information set can often map to multiple hidden states, this function may return
results stochastically. For states involving simultaneous actions, it defaults to

returning the hidden state where no simultaneous actions have been taken yet.
IER)

pass
wn

The player names are defined as follows:

{’guesser’, ’clue_master’}
won

18




S: Hidden States (Taboo)

SYSTEM PROMPT:
win

You are a programmer developing an accurate game engine. Your task is to implement parts of the
game simulator in Python. The simulator models simultaneous actions as sequential ones with
partial observation. When players $1, ..., k$ take simultaneous actions, they do so
sequentially without seeing the actions of previous players. These actions are first recorded

in a ‘HiddenState‘ object before being revealed. Do not repetitively generate Hidden state.
If new state is generated, construct at return statement. ‘ObservedState‘ and ‘HiddenState®
should be under ‘@dataclass(frozen=True)‘. Use tuple instead of list to make sure that

vectors are frozen.
nnn

HUMAN PROMPT:

Taboo (2-player text version) is a two player cooperative dialogue game where 1 player is the clue
-master and 1 player is the guesser. The clue master is given the clue-word and a list of
taboo words. Each discussion round the clue master makes one statement to the guesser, but
cannot use any of the taboo words in their statements. The guesser can then guess one word.
This continues until either the guesser guesses the word, the guesser has guess five times
already, or the clue-master has spoken one of the taboo words. If the clue-master uses any of

the taboo words, the team score is 0. Otherwise, the score is five minus the number of words
guesser has guessed.

wn
o

An observed state (information set) in the game is defined as follows:
o

@dataclass(frozen=True)

class ObservedState:

clue_word: Optionall[str] # The word the guesser needs to guess
taboo_words: Optionall[tuple[str, ...]] # List of taboo words the clue-master cannot use
guesses: tuple[str, ...] = tuple() # List of words guessed by the guesser
clue_master_statements: tuple[str, A tuple() # Statements made by the clue-master
taboo_word_used: bool = False # Flag to indicate if a taboo word was used

game_over: bool = False # Flag to indicate if the game is over

score: int = 5 # Initial score, will decrease based on guesses

actor: str = "clue_master" # Indicates whose turn it is: "clue_master" or '"guesser"

wun

The player names are defined as follows:
{’guesser’, ’clue_master’}

won
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T: Transition-Reward Function (Taboo)

SYSTEM PROMPT:
win

You are a programmer developing an accurate game engine. Your task is to implement parts of the
game simulator in Python. The simulator models simultaneous actions as sequential ones with
partial observation. When players $1, ..., k$ take simultaneous actions, they do so
sequentially without seeing the actions of previous players. These actions are first recorded

in a ‘HiddenState‘ object before being revealed. Do not repetitively generate Hidden state.
If new state is generated, construct at return statement. ‘ObservedState‘ and ‘HiddenState®
should be under ‘@dataclass(frozen=True)‘. Use tuple instead of list to make sure that

vectors are frozen.
nnn

HUMAN PROMPT:

Taboo (2-player text version) is a two player cooperative dialogue game where 1 player is the clue
-master and 1 player is the guesser. The clue master is given the clue-word and a list of
taboo words. Each discussion round the clue master makes one statement to the guesser, but
cannot use any of the taboo words in their statements. The guesser can then guess one word.
This continues until either the guesser guesses the word, the guesser has guess five times
already, or the clue-master has spoken one of the taboo words. If the clue-master uses any of

the taboo words, the team score is 0. Otherwise, the score is five minus the number of words
guesser has guessed.

nun

wnn

A hidden state in the game is defined as follows:
wnn
class HiddenState:

from dataclasses import dataclass

from typing import Optional, Tuple

clue_word: str # The actual clue word (hidden from guesser)
taboo_words: Tuple[str, ...] # Taboo words (hidden from guesser)
taboo_word_used: bool # Whether a taboo word was used

guesses: Tuplel[str, -] # Guesses made (hidden from clue-master)
clue_master_statements: Tuple[str, - # Statements made (hidden from guesser)

wun

Write a forward transitor ‘CustomForwardTransitor‘ for this game that inherits from the ¢

ForwardTransitor¢ class. Include all docstings from the parent class:

wnn

class ForwardTransitor (ABC):
IR

Abstract class for a forward dynamics transition model

23

Q@abstractmethod

def _transition(self, state: Hashable, action: Hashable, actor: Hashable) -> Tuple[Hashable,
dict[Hashable, float]]:

IR}

Args:
state: current state

action: action taken by the actor

actor: actor that is taking the action. -1 for environment

Returns:
next_state: next state

rewards: reward of the transition for each player
IER)

pass

def transition(self, state: Hashable, action: Hashable, actor: Hashable)->Tuple[Hashable, dict
[Hashable, float]]:
293

Transits to the next state given the current state, actor, and action taken by the actor.
Transitions are deterministic, with all randomness handled by the environment actor
and the actions it takes. If multiple actors take actions at this state, record their

actions down one transition step at a time.

Args:
state: current state

action: action taken by the actor

actor: actor that is taking the action. -1 for environment

Returns:
next_state: next state
rewards: reward of the transition for each player

Hint:
Initialize the new_state at the point of returning, avoid creating the new_state copy
prematurely.
IR
state, rewards = self._transition(state, action, actor)
return state, rewards

wun

The player names are defined as follows:
{’guesser’, ’clue_master’}

wn
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F Language action examples

Example proposed possible dialogue actions

Clue word: barefoot
Taboo word: shoes, socks, summer, beach

Action 1: You might feel the ground directly under your feet when you don’t wear any
footwear.

Action 2: It’s a way to enjoy nature by feeling the earth, grass, or sand without anything
covering your feet.
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