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Abstract—Despite the integration of safety alignment and ex-
ternal filters, text-to-image (T2I) generative systems are still
susceptible to producing harmful content, such as sexual or
violent imagery. This raises serious concerns about unintended
exposure and potential misuse. Red teaming, which aims to
proactively identify diverse prompts that can elicit unsafe
outputs from the T2I system, is increasingly recognized as
an essential method for assessing and improving safety before
real-world deployment. However, existing automated red team-
ing approaches often treat prompt discovery as an isolated,
prompt-level optimization task, which limits their scalability,
diversity, and overall effectiveness. To bridge this gap, in this
paper, we propose DREAM, a scalable red teaming framework
to automatically uncover diverse problematic prompts from a
given T2I system. Unlike prior work that optimizes prompts in-
dividually, DREAM directly models the probabilistic distribu-
tion of the target system’s problematic prompts, which enables
explicit optimization over both effectiveness and diversity, and
allows efficient large-scale sampling after training. To achieve
this without direct access to representative training samples, we
draw inspiration from energy-based models and reformulate
the objective into a simple and tractable form. We further
introduce GC-SPSA, an efficient optimization algorithm that
provides stable gradient estimates through the long and poten-
tially non-differentiable T2I pipeline. During inference, we also
propose a diversity-aware sampling strategy to enhance prompt
variety. The effectiveness of DREAM is validated through
extensive experiments, demonstrating state-of-the-art perfor-
mance across a wide range of T2I models and safety filters in
terms of both prompt success rate and diversity. Our code is
available at https://github.com/AntigoneRandy/DREAM.

1. Introduction

Text-to-image (T2I) generative models [1, 2, 3, 4] are
driving a new wave of visual content creation, reshaping
our expectations of what machines are capable of. Trained
on large-scale datasets [5], these models capture rich as-
sociations between language and imagery, allowing them to
produce high-quality images with simple text inputs (known

as prompts). Their ease of use and impressive flexibility have
driven rapid adoption across creative arts, entertainment,
and social media, particularly among younger users such
as teenagers [6, 7, 8]. However, the same large-scale, web-
crawled datasets that enable this versatility also inevitably
contain not safe for work (NSFW) content (e.g., sexually
explicit material) [9, 10]. As a result, the models also acquire
the ability to produce harmful images during real use, raising
serious ethical, legal, and accountability concerns [11, 12].

To mitigate these risks, a growing number of efforts
from both academia and industry [13, 10, 14, 15, 16] have
focused on improving the safety of T2I generative models.
One popular approach is safety alignment, also referred to as
unsafe concept erasure in the T2I literature [13, 10, 14, 17],
which fine-tunes the model using a curated set of unsafe
prompts or images to suppress undesirable generations. This
process helps steer the model toward harmless outputs: for
example, returning a clothed figure even when prompted
with “a nude person”. In addition, commercial companies
like Stability AI [18] and Ideogram [19] also employ pro-
prietary safety filters (e.g., NSFW image detectors) to block
generation attempts when unsafe content is detected. These
filters, when combined with the core generative model and
other processing components, constitute the deployed T2I
system. However, while these techniques show promising
results in controlled environments, they remain imperfect
when applied in practice. For example, both real-world
users and researchers [20, 21] have reported that prompts
unseen during training (e.g., implicit references to sensitive
content), or even totally benign inputs (e.g., “the origin of
woman”), may still escape moderation and lead to unsafe
outputs. These observations highlight the limitations of cur-
rent methods under open-ended inputs and the urgent need
for proactive mechanisms to expose safety vulnerabilities of
T2I generative systems before real-world deployment.

One emerging solution to proactively identify such blind
spots is red teaming, where model owners (e.g., developers)
simulate the behavior of real-world users to generate various
testing prompts, aiming to systematically probe the model’s
failure modes before deployment. In the context of T2I
generative systems, red teaming typically attempts to find
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a diverse set of problematic prompts that can elicit un-
safe or policy-violating outputs despite potential safeguards
[20, 21]. By doing so, it not only serves as an evaluation
tool for stress-testing the system’s safety and trustworthiness
under open-ended inputs [20], but also provides valuable
references for future improvement [22]. As a result, red
teaming is increasingly recognized as a critical practice, with
major companies like Google [23] initiating human-in-the-
loop red teaming programs. At the same time, regulatory
bodies are increasingly emphasizing rigorous safety testing
before deployment, as reflected in the EU AI Act [24]
and the U.S. NIST AI Risk Management Framework [25],
alongside similar official efforts around the world [26, 27].

While early red teaming relied on human experts, recent
works [20, 21, 28] have shifted toward automated red team-
ing, aiming to discover problematic prompts with minimal
human intervention. For example, FLIRT [28] employs a
large language model (LLM) to iteratively rewrite a seed
prompt toward unsafe outputs, while P4D [20] starts with a
moderated unsafe prompt and applies token-level gradient-
based substitutions to penetrate safety alignment. However,
these methods often struggle to balance the success rate with
prompt diversity, and can be prohibitively slow and costly
to scale. These limitations underscore the urgent need for a
scalable red teaming method that can efficiently generate a
large, diverse set of effective problematic prompts.

In this paper, we present the first attempt to bridge
the aforementioned gap. Our method is driven by a unified
insight into the shared limitations of prior works: they treat
red teaming as a prompt-to-prompt discrete optimization
problem, where each seed prompt is optimized indepen-
dently yet without accumulating global, distribution-level
knowledge of the target model’s unsafe prompt distribution
across runs. Built upon this understanding, we propose
Distributional Red tEAming via energy-based Modeling
(DREAM), which directly models the probabilistic distri-
bution of the target model’s unsafe prompts by training
a parameterized prompt generator (e.g., an autoregressive
LLM). In contrast to previous approaches, our formulation
enables explicit optimization of both success and diversity,
supports global updates to the modeled prompt distribution,
and allows efficient large-scale sampling after training.

However, modeling the target prompt distribution is
challenging, as it is tightly coupled to the specific T2I
system and lacks sufficiently representative samples, mak-
ing direct training infeasible. To overcome this, we draw
inspiration from energy-based models [29] and decompose
the originally intractable training objective into two sim-
ple sub-objectives that allow effective distribution learning
without direct sample access. Moreover, to enable effective
and efficient gradient-based optimization for these objec-
tives under long and potentially non-differentiable pipelines,
we introduce Gradient-Calibrated Simultaneous Perturbation
Stochastic Approximation (GC-SPSA), an efficient zeroth-
order optimization method based on SPSA [30]. Specifi-
cally, it estimates gradients using only forward evaluations
and further improves stability via a history-aware calibra-
tion mechanism. We also provide theoretical analysis and

convergence guarantees to support GC-SPSA. Finally, we
propose a novel adaptive temperature scaling method to
further enhance coverage at inference time.

We conduct extensive experiments on 5 state-of-the-art
(SOTA) safety-aligned T2I models and 4 safety filters, com-
paring DREAM with 10 SOTA baselines across two unsafe
categories. The results demonstrate that DREAM achieves
superior performance in terms of prompt success rate while
maintaining diversity comparable to human-written datasets.
DREAM also generalizes well to advanced T2I models (e.g.,
SDXL, SD v3) and 6 other NSFW themes, and remains
effective even under combinational defenses or aggressive
filters. We further conduct a user study to confirm that the
red-teaming prompts generated by DREAM are both diverse
and highly effective from human perspectives. Moreover,
case studies demonstrate that the prompts generated by
DREAM transfer effectively to 4 commercial T2I platforms
with unknown safety mechanisms. Finally, DREAM also
enhances safety fine-tuning, enabling defended models to
better resist both seen and unseen harmful prompts.

To summarize, we make the following key contributions:
• We revisit existing red teaming methods and identify a

shared limitation: they treat prompt discovery as an iso-
lated, prompt-level optimization problem without global
modeling, restricting their scalability and performance.

• We introduce DREAM, a scalable and distribution-aware
red teaming framework that learns a probabilistic model
over unsafe prompts using energy-based modeling. We
further propose GC-SPSA, a novel zeroth-order optimizer
that supports effective and efficient training, along with
adaptive inference strategies for broader coverage. We
also provide theoretical analyses and global convergence
guarantees to support our GC-SPSA framework.

• We conduct comprehensive evaluations across 5 safety-
aligned T2I models, 4 safety filters, and 10 SOTA base-
lines, showing that DREAM achieves superior prompt
success rates while matching human-level diversity. We
also show that DREAM can expose failure cases in 4
commercial T2I platforms and improve safety fine-tuning
with notable generalization to unseen harmful prompts.

2. Related Work

2.1. Text-to-Image Generative Models

Text-to-image (T2I) generative models have become a
cornerstone of modern visual synthesis, enabling users to
create highly detailed images from natural language descrip-
tions. Among various generative paradigms, diffusion mod-
els [31, 3, 1, 2, 4] have emerged as the dominant approach
due to their superior training stability, generation quality,
and controllability. Diffusion models operate by iteratively
denoising random noise into coherent images, often condi-
tioned on texts, making them particularly effective for large-
scale training and text-controlled generation. Building upon
this, a wide range of open-source (e.g., Stable Diffusion
family [4]) and commercial systems (e.g., DeepAI [32],



DALL·E 3 [33], Midjourney [34], Ideogram [19]) have been
developed, providing state-of-the-art generation experiences
through user-friendly graphical interfaces.

2.2. Unsafe Generation & Mitigation

The success of modern T2I models relies heavily on
large datasets. For instance, Stable Diffusion is trained on
LAION-5B [5], a web-scraped set of over 5 billion image-
text pairs, while commercial models like Ideogram use even
larger private datasets [19]. These datasets support powerful
multimodal learning but also contain harmful content such
as sexual or violent imagery. Such content can be reproduced
by these models, raising ethical and legal concerns. The risks
become particularly significant as these tools grow more
accessible and popular among children and adolescents,
who may experience psychological harm, safety risks, and
developmental disruptions due to exposure [11, 9, 35].

In response to these concerns, several mitigation strate-
gies have emerged, which can be broadly categorized into
two lines: model safety alignment and inference-time safety
filtering. Model safety alignment [10, 14] refers to tech-
niques that tune the diffusion model’s parameters directly
to suppress its ability to produce unsafe content. This is
typically achieved by collecting a curated set of harmful
prompts or images and reinforcing the model to “unlearn”
them through methods such as adversarial training [36],
supervised fine-tuning [10, 13], or model editing [14, 17].
For example, CA [13] fine-tunes the diffusion model to
match the image distribution of an unsafe target concept
(e.g., “a nude person”) to that of a safe anchor concept (e.g.,
“person”). As a result, the model learns to resist prompts
that are the same or similar to training-time target concepts
and generates safe images instead. In contrast, safety filters
[16, 37, 15] act as external control mechanisms during
inference. They can operate at prompt-level or image-level,
aiming to detect and block unsafe content before or after
generation. A representative case is the Safety Checker (SC)
[15] employed in Stable Diffusion models, which compares
the generated image with a set of predefined sensitive con-
cepts and blocks outputs that exceed a similarity threshold.

While these approaches have demonstrated effectiveness
with acceptable trade-offs in benign performance under their
own evaluation protocols, their robustness in real-world
scenarios has been frequently challenged by a growing
body of recent research and user reports. For instance,
text-based safety filters can be bypassed using simple syn-
onym substitutions [38], while image-based filters may
lose effectiveness under subtle alterations in image styles,
compositions, or rendering [39]. Moreover, while safety-
aligned models perform well when the prompts contain in-
distribution explicit words, they may still fail to handle out-
of-distribution veiled expressions, metaphors, or context-
related implications [40, 41, 20], which are unseen during
unlearning. In addition to these scattered findings, recent
research [42, 43, 44, 45] has developed various optimization
methods to transform a given rejected unsafe prompt into
evasive variants to bypass safety mechanisms, a technique

known as adversarial jailbreak attacks. These diverse failure
patterns across different safety mechanisms suggest it is
crucial to proactively test and improve the T2I generative
system’s safety before real-world deployment.

2.3. Red Teaming for Text-to-Image Models

The concept of “red teaming” originated during the Cold
War era in the 1960s as a form of structured military system
testing and has since expanded to fields like cybersecurity,
airport security, software engineering, and more recently to
AI and ML systems [46]. For generative models, red teaming
typically involves simulating real user behavior to explore
the system and find prompts that produce harmful or policy-
violating outputs [47, 48, 49]. Unlike jailbreak attacks that
tweak known unsafe prompts into evasive variants [42, 44],
red teaming focuses on broader exploration to reveal diverse
or even unexpected failure modes [21]. It is now a key part
of responsible model development [23] and is increasingly
emphasized in recent regulatory frameworks [24, 25, 26].

One predominant form of red teaming is manual con-
struction. For example, the I2P dataset [42] was formed
by collecting and filtering harmful prompts from various
forums through a mix of automatic tools and human cu-
ration. Similarly, Google’s Adversarial Nibbler Challenge
[23] invited participants to attack real-world T2I models
and selected high-quality prompts based on their effec-
tiveness and diversity. Commercial providers also employ
in-house or external experts to manually test models for
discovering failure modes [50]. While such methods can
surface unexpected and model-specific vulnerabilities, they
rely heavily on human effort and lack automation, making
them inefficient and expensive to conduct.

To this end, several methods for automated red teaming
have been proposed [20, 28, 21, 51]. These methods typ-
ically adopt paradigms and techniques similar to jailbreak
attacks and transform a set of initial prompts into harmful
ones, using methods like token-level substitution [20, 51]
and LLM-rewrite [28, 21]. However, as we will identify in
the following section, this inherited formulation inherently
limits their effectiveness, exploration space, and efficiency,
making them suboptimal for scalable red teaming.

3. Preliminaries

3.1. Threat Model

We consider the red team to be a benign (non-malicious)
model owner aiming to proactively identify safety vulnera-
bilities in their own T2I generative system. Specifically, their
goal is to find a set of diverse and effective prompts that can
elicit unsafe or policy-violating outputs, in order to assess
and improve safety before real-world use. Specifically, we
assume the red teamer (1) has full control over their T2I
generative system. They may request it with an arbitrary
prompt and receive the resulting image (or an all-black
image if blocked by filters), or access the model’s param-
eters and gradients, and (2) can leverage auxiliary models



(e.g., open-source LLMs) for assistance and has moderate
computational resources to fine-tune these models.

3.2. Formulation of Red Teaming

Despite the growing importance of red teaming in evalu-
ating the safety of T2I generative models, existing literature
[21, 28, 20] largely lacks a formal formulation that captures
the fundamental nature of the red teaming task. This ab-
sence has led to fragmented understanding and inconsistent
objectives, which limits both theoretical analysis and the
principled design of scalable red teaming methods.

To bridge this gap, we present a formal definition of
red teaming in this section. Let X and Y be the prompt
space and image space of the target T2I generative system,
respectively. We can draw the following definition:

Definition 1 (Red Teaming T2I Systems). Let G : X → Y
be a T2I system that maps a text prompt x ∈ X = VT to an
image y ∈ Y , where V and T represent the full vocabulary
and the maximum prompt length of the system, respectively.
Red teaming aims to find a prompt subset A ⊆ X such that:

A := {x ∈ X | O(G(x)) = 1},

where O : Y → {0, 1} is a binary oracle classifier that
outputs 1 if the image is unsafe, and 0 if the image is safe
or the request is blocked by the built-in safety filter.

Intuitively, this definition formulates red teaming as a
combinatorial subset discovery problem that aims to identify
all prompts within the full prompt set VT that can trigger the
T2I system to produce unsafe content. Note that the oracle
function O is fundamentally unobservable in practice, as
determining whether an image is “unsafe” is often vague,
influenced by context, culture, and subjective interpretation
[9]. As a practical alternative, red teaming methods rely
on a surrogate scoring function S : Y → R, which
approximates the oracle with an objective score (e.g., the
confidence score of an NSFW image detector). A prompt
is deemed unsafe if its surrogate score is large enough
to exceed a threshold τ , yielding the surrogate unsafe set
Aτ := {x ∈ X | S(G(x)) ≥ τ}. While the surrogate
formulation makes the task operational, obtaining the ex-
act solution of the unsafe set Aτ remains computationally
intractable, as the task essentially reduces to a combinatorial
search problem over the prompt space X , whose size grows
exponentially with the prompt length T , i.e., |X | = |V|T . In
such combinatorial settings, exhaustive enumeration is the
only general procedure that can ensure complete accuracy
[52], yet it requires evaluating the surrogate score S(G(x))
for every enumerated x ∈ VT , making it computationally
infeasible even for modest values of T . As a result, exact
discovery is impractical except in trivial cases.

Fortunately, previous works have shown that exact re-
covery of Aτ is often unnecessary. For instance, unlearning
a moderate number of diverse and representative unsafe
prompts is often sufficient to invalidate a much broader class
of similar unsafe prompts [10, 14, 53, 54]. Consequently, the

Algorithm 1 A Generic Form of Existing Methods

Input: Seed distribution π(x), number of prompts N , max
steps T , scoring function S(·), target T2I system G(·), thresh-
old τ , update operator UPDATE(·)
Output: Final set of optimized prompts Â

1: Â ← ∅
2: for i = 1 to N do
3: x

(0)
i ∼ π(x)

4: t← 0
5: while t < T and S(G(x

(t)
i )) < τ do

6: x
(t+1)
i ← UPDATE(x

(t)
i , S(G(x

(t)
i )))

7: t← t+ 1
8: end while
9: Â ← Â ∪ {x(t)

i }
10: end for
11: Return Â

practical goal of red teaming shifts from full enumeration
to the discovery of a representative and diverse subset
Â ⊆ Aτ , which captures a wide range of unsafe prompts
while remaining computationally tractable to obtain.

3.3. Limitations of Previous Works

With an understanding of the red teaming task for-
mulation, we now take a closer look at existing methods
[20, 51, 28, 21]. While prior works differ substantially in
their technical implementation, we distilled them into a uni-
fied, generic prompt-level discrete optimization paradigm,
formalized in Alg. 1. Under this view, a red teaming algo-
rithm begins with a seed prompt sampled from a seed dis-
tribution π(x), and iteratively applies an UPDATE operator
guided by a scoring function S(G(x)), where G(x) denotes
the image generated by the T2I model. This loop continues
until a generation crosses a threshold or a step budget is
reached, at which point the final prompt is collected and the
process resets. Note that the seed prompt distribution, the
UPDATE operator, and the scoring function are all method-
dependent. Despite empirical progress in uncovering unsafe
prompts, we identify that this core algorithmic structure in-
troduces two fundamental limitations, making these methods
less suitable for scalable red teaming.

First, the UPDATE operator essentially performs discrete
optimization, which is inherently difficult due to the discon-
tinuous and non-smooth nature of the ill-posed loss land-
scape of the discrete prompt space [55]. In fact, how to ac-
curately obtain prompt-level gradient remains an open chal-
lenge in existing literature [56, 57]. As such, some existing
methods [42, 43] resort to token-level gradient replacement,
where each token is iteratively and greedily updated based
on its locally estimated gradient with respect to S(G(x

(t)
i )).

However, this limits the search space to local neighborhoods
around the initial seed, making the optimization process
highly sensitive to initialization [58]. While recent methods
attempt to broaden the search space by prompting LLMs
to generate sentence-level paraphrases [21, 28], these ap-
proaches are largely heuristic, lack convergence guarantees,
and often result in unstable training dynamics in practice.



Second, one can easily observe from Alg. 1 that current
methods are essentially operating at the individual prompt
level: each run starts from a fresh seed prompt x

(0)
i , per-

forms a local search trajectory {x(1)
i , x

(2)
i , · · · , x(t)

i }, out-
puts x

(t)
i , and then discards all intermediate states but the

final output before restarting the next run. This stateless
fashion is naturally sub-optimal, as the algorithm would
not accumulate any knowledge about explored regions or
learn from past failures. Therefore, it may revisit similar
attempted trajectories, re-try strategies that are known to be
ineffective in previous runs, and converge to familiar local
optima, especially if the seed prompts are semantically or
syntactically similar [21]. This makes the algorithm inef-
ficient and results in highly similar prompts with limited
marginal utility. Moreover, this inefficiency is exacerbated
by the inherently slow convergence of discrete optimization.
For example, P4D [20] requires roughly 3,000 rounds of
model invocation and gradient updates to optimize a single
red teaming prompt, taking about 30 minutes per prompt
on an NVIDIA RTX A100 GPU. These deficiencies make
it very difficult to be scaled up for large-scale red teaming.

4. The Design of DREAM

4.1. Distributional Red Teaming via Energy-Based
Modeling

Motivated by our previous analysis about the limitations
of existing methods, the key insight behind our proposal is to
shift from discrete, stateless prompt-to-prompt optimization
to directly modeling the distribution over unsafe prompts.

Formally, let q∗(x) denote the true (but unknown) dis-
tribution over the target model’s problematic prompts, i.e.,
the probabilistic distribution from which samples x ∈ Â are
drawn. Our goal is to learn a probabilistic distribution pθ(x)
parameterized by θ (e.g., an autoregressive language model
pθ(x) =

∏T
t=1 pθ(xt | x<t)), such that pθ(x) approximates

q∗(x) as close as possible. This objective can be character-
ized by the following Kullback–Leibler divergence [59]:

θ∗ ∈ argmin
θ

DKL(pθ ∥ q∗) (1)

This formulation has several desirable properties. First, by
modeling the distribution pθ(x), our method naturally con-
verts the prompt-level discrete optimization into continuous
optimization over model parameters θ. Second, since the
parameters encode the distribution over prompts, each pa-
rameter update accumulates knowledge about which types
of prompts are more or less likely to trigger unsafe out-
puts, thus promoting exploration efficiency during training.
Furthermore, it is totally feasible to initialize pθ(x) with
a pretrained language model. As a result, our method in-
herits strong priors from large-scale human language data,
which enables the model to understand and explore nuanced
expressions, innuendos, and cultural references, which are
subtle signals that typically require human-like common
sense or contextual awareness and are often inaccessible to

previous token-level search methods. Finally, once training
is complete, sampling from the learned distribution pθ∗(x)
is efficient. An arbitrary number of diverse prompts can be
generated efficiently via forward passes, without requiring
iterative search or gradient updates. This property makes our
approach particularly suitable for red teaming, where a large
number of unsafe prompts (e.g., thousands) are required for
safety assessment and downstream safety-tuning.

Despite these promising properties, the objective in
Eq. (1) remains particularly challenging to optimize in
practice. The core difficulty lies in the fact that the ground-
truth distribution q∗(x) is fundamentally unknown and there
exists no readily available dataset that is sufficiently repre-
sentative of the full support of the target model’s problematic
prompts. This makes direct optimization (e.g., through fine-
tuning with MLE [60]) impossible. Fortunately, recent ad-
vances in implicit generative modeling [61] provide a viable
pathway to tackle this challenge. Specifically, results from
the theory of energy-based models [29, 61] suggest that even
in the absence of explicit samples, the target distribution
q∗(x) can be implicitly characterized with a properly defined
energy function E(x), which is a real-valued function that
assigns lower values to more likely (or desirable) samples,
and higher values otherwise. Then, the unknown distribu-
tion q∗(x) can be expressed as a Boltzmann distribution
[62] q∗(x) = exp(−β · E(x))/Z, where Z is a constant
that normalizes the distribution [29, 61] and β > 0 is a
hyperparameter. Then, by plugging it into Eq. (1), we have:

argmin
θ

DKL

(
pθ ∥ q∗

)
= argmin

θ
Ex∼pθ

[
log

pθ(x)

q∗(x)

]
= argmin

θ
Ex∼pθ

[
E(x) +

1

β
log pθ(x)

]
.

(2)

The derivation above reduces the otherwise intractable KL
divergence to two simple yet intuitive components: the
first is to minimize the expected energy Ex∼pθ [E(x)],
thereby shaping the distribution toward lower-energy (and
thus more desirable) regions of the prompt space. The
second objective acts as an entropy regularizer that penalizes
low-entropy distributions by minimizing the log-likelihood
Ex∼pθ [log pθ(x)], thus avoiding degenerate solutions where
the model collapses to a narrow set of prompts.

4.2. Energy Function Design

So far, we have decomposed the objective into two intu-
itive and interpretable sub-goals. The second regularization
term Ex∼pθ [log pθ(x)] is straightforward to compute and
optimize in practice. We now turn our attention to the first
component, the energy function E(·). The energy function
essentially defines the target distribution by assigning lower
energy scores to desirable prompts and higher scores to
undesired ones. In this section, we introduce our energy
function design, which captures the following two scores.
Vision-level Harmfulness Energy. The primary goal of
E is to guide the learned distribution pθ(x) toward the
target model’s vulnerable prompt distribution Aτ . However,



directly assessing the harmfulness of a text prompt x is
difficult as the risk often emerges only after it is rendered
into an image. Therefore, we take a vision-level approach
by evaluating the output image y = G(x) instead of the
prompt itself. Specifically, we employ BLIP-2 [63], a pre-
trained vision-language model with strong generalization
across diverse image-text domains, to compute a vision-
level harmfulness energy as part of the energy function. It
assesses how the generated image is semantically aligned
with a predefined harmful concept, and assigns lower energy
to prompts that align better with the harmful concept.

Formally, given a generated image y = G(x) and a
predefined target description c (like “an image containing
nudity”), the textual description c is first sent to a pretrained
language encoder Tϕ to obtain the sentence-level semantic
embedding t = Tϕ(c). Then, the image y is passed through
a vision encoder followed by a specialized transformer
module known as the Q-Former [63]. This module employs
a set of query embeddings to interact with the visual features
via cross-attention and finally extracts a set of latent tokens
Iψ(y) = {z1, . . . , zk}, each representing a different fine-
grained aspect of the image in the same vision-language
embedding space. Then, we define the alignment score as:

Ealign(x) = Ex∼pθ
[
− max
zi∈Iψ(G(x))

⟨zi, t⟩
∥zi∥ · ∥t∥

]
(3)

where ⟨·, ·⟩ and ∥ · ∥ denote the inner product and the
Euclidean norm, respectively. Ealign(x) measures the cosine
similarity between the resulting image and the textual em-
bedding, where higher similarity indicates stronger align-
ment with the harmful concept and thus lower energy.

This formulation brings three key benefits. First, BLIP-
2 provides better generalization even under distribution
shifts, such as stylized or non-photorealistic images, making
the alignment score more reliable across visual domains
[63, 64]. Second, the approach enables flexible red teaming
through natural language descriptions. One can easily shift
the target by modifying the concept prompt, e.g., replacing
c with “an image depicting violent scenes” to target violent
content. When a small set of reference images is available,
prompt tuning techniques can also be used to further refine
and control the targeted concept [65]. Third, the alignment
score is continuous, allowing small improvements in prompt
effectiveness to be reflected. This supports more stable
optimization than discrete (e.g., binary) success signals.
Prompt-level Diversity Energy. While jointly optimizing
the harmfulness energy in Eq. (3) and the entropy term
Ex∼pθ [log pθ(x)] in the main objective (Eq. (2)) effectively
guides the model toward q∗(x), we observe that relying
solely on this formulation tends to produce a learned distri-
bution with limited semantic diversity. This is possibly be-
cause the target distribution q∗(x) may itself be biased, e.g.,
certain keywords like “nude” and their semantically similar
variants might dominate the probability mass. Consequently,
semantically distinct prompts with lower probability under
q∗(x) may remain largely unvisited in limited sampling
iterations. To address this, we introduce a diversity energy

term that explicitly encourages broader coverage within a
limited sample budget. Let Eξ(x) ∈ Rd denote the sentence
embedding of prompt x, obtained from a frozen pretrained
encoder (e.g., a sentence transformer [66]). Then, we define
the prompt-level diversity energy as the expected pairwise
similarity among prompt embeddings sampled from the
current model distribution pθ(x):

Ediv(x) = Ex,x′∼pθ, x ̸=x′

[
⟨Eξ(x), Eξ(x′)⟩

∥Eξ(x)∥ · ∥Eξ(x′)∥

]
. (4)

This would explicitly encourage semantic diversity among
generated prompts within limited sampling iterations, thus
promoting broader exploration and reducing redundancy.

4.3. Red Team LLM Optimization

After designing the energy function, we can plug Eq. (3)
and Eq. (4) into Eq. (2), and arrive at the final training
objective for the red team prompt generator θ:

min
θ

Ex∼pθ
[
Ealign(x) + λ · Ediv(x) +

1

β
· log pθ(x)

]
, (5)

where λ and β are balancing hyperparameters. However, op-
timizing Eq. (5) is non-trivial. One intuitive approach would
be to use backpropagation-based methods to obtain exact
gradients and then update the LLM’s parameters. How-
ever, applying backpropagation-based optimization directly
is challenging. This is because the full red-teaming pipeline
comprises multiple components such as autoregressive lan-
guage generation, multi-step diffusion denoising, and energy
models, each requiring storage of numerous intermediate
activations for backpropagation-based gradient computation.
For instance, generating an image via Stable Diffusion v1.5
typically requires 30 denoising steps, each producing high-
dimensional feature maps (e.g., ∼2.3 GB). Even under a
moderate batch size of 32, this already amounts to over
2 TB of GPU memory for a single pass, making end-to-end
backpropagation-based training memory-prohibitive. More-
over, certain components like keyword-based safety filters
are non-differentiable, further hindering backpropagation.

To enable effective gradient-driven optimization while
avoiding the need for backpropagation through the entire
pipeline, we propose a novel framework based on Simulta-
neous Perturbation Stochastic Approximation (SPSA) [30].
SPSA is a classical zeroth-order optimization method that
allows estimates of high-dimensional gradients using only
forward evaluations. However, vanilla SPSA has been em-
pirically observed to suffer from instability and slow conver-
gence in our red-teaming setup, due to the highly stochastic
nature of both LLMs and diffusion-based generation (see
experiments in Section 5.8). To mitigate this, we propose
a simple yet effective variant, GC-SPSA, which incorpo-
rates an adaptive sampling schedule as well as a history-
aware gradient calibration mechanism to reduce gradient
variance while maintaining efficiency. In the following, we
first introduce SPSA and analyze its limitations, then present
our GC-SPSA, and finally provide theoretical analysis and
convergence guarantees to support our design.



Definition 2 (SPSA [67]). Given an objective function
L : Rd → R and parameters θ ∈ Rd, SPSA uses the follow-
ing randomized two-point finite-difference approximation to
compute an unbiased estimate of the gradient ∇θL(θ):

g(θ) :=
L(θ + ϵ∆)− L(θ − ϵ∆)

2ϵ
∆, (6)

where ϵ > 0 is a small perturbation magnitude, and ∆ ∈ Rd
is a random perturbation vector sampled from a zero-mean
Gaussian distribution.

Previous works have proved that SPSA provides an unbi-
ased estimate of the true gradient, i.e., E∆[g(θ)] = ∇θL(θ)
[30]. In our setting, SPSA is particularly advantageous:
it avoids backpropagation entirely and requires only for-
ward evaluations at perturbed parameters, making it well-
suited for bypassing the long and possibly non-differentiable
pipeline. Moreover, it eliminates the need to store intermedi-
ate forward activations, further reducing memory consump-
tion compared to backpropagation-based methods [67].

Despite these advantages, we observe in our experiments
that directly applying SPSA leads to unstable training dy-
namics. This instability primarily stems from the inherent
stochasticity in both LLM and diffusion-based sampling,
which introduces high variance into single-shot gradient
estimates. To reduce variance, a straightforward strategy is
to increase the number of forward estimates per iteration and
average the resulting gradients. However, this significantly
increases training cost linearly and is expensive in practice.

To mitigate this problem, we propose a simple yet effec-
tive method, GC-SPSA, which stabilizes SPSA with a novel
adaptive gradient calibration algorithm. Our key insight is
that Eq. (5) primarily steers the LLM toward a subspace
of prompts that are likely to elicit harmful images from
the target model. Since the pretrained LLM already pos-
sesses strong priors, such subspaces are shown to typically
reside within a relatively flat and continuous basin in the
loss landscape near the pretrained parameters [68, 69, 70].
Therefore, we hypothesize that it is more crucial to ensure
the reliability of early optimization steps to accurately locate
this subspace, yet later updates may tolerate more variance
and can be calibrated with early reliable gradients.

Specifically, for the t-th update, we first estimate the
gradient nt times using Eq. (6), obtaining a set of stochas-
tic gradient estimates {gt,1(θt), gt,2(θt), . . . , gt,nt(θt)}. The
number of queries nt is controlled by an exponentially
decaying schedule: nt = max

(
1,
⌊

n0

2t/Tdec

⌋)
, where n0 is

the initial number of sampling times and Tdec governs the
decay rate. This scheduling allocates a higher sampling
budget to early iterations and gradually reduces the number
of samples as optimization stabilizes. In our experiments,
we find that setting n0 = 4 and Tdec = 10, i.e., starting
with 4 samples and halving the sampling budget every 10
steps, yields stable and efficient optimization performance
(see experiments in Sec. 5.8). To further reduce the variance
of the later estimated gradient, inspired by confidence-aware
optimal Bayesian fusion [71], we introduce a gradient cali-
bration mechanism. Specifically, we treat each new gradient

Algorithm 2 The Complete Training Procedure of DREAM
Input: Initial model parameters θ0, initial sampling budget
n0, learning rate η, correction strength γ, smoothing factor ρ,
decay factor Tdec, current step t
Output: Optimized generator parameters θt

1: ĝ0 ← 1
n0

∑n0
i=1 g0,i(θ0)

2: w0 ← n0, t← 0
3: while loss not converged do

▷ Determine sampling budget for current step
4: nt ← max

(
1,
⌊

n0

2t/Tdec

⌋)
▷ Estimate gradients via SPSA with nt queries

5: for i = 1 to nt do
6: Sample perturbation ∆t,i ∼ Gaussiand

7: L+
t,i,L

−
t,i ← L(θt + ϵ∆t,i),L(θt − ϵ∆t,i)

8: gt,i ←
L+
t,i−L−

t,i

2ϵ
·∆t,i

9: end for
▷ Aggregate and calibrate gradients

10: ĝt ← 1
nt

∑nt
i=1 gt,i + γ · wt−1

wt−1+nt
· ĝt−1

11: wt ← ρ · wt−1 + (1− ρ) · nt

▷ Update model parameters
12: θt+1 ← θt − η · ĝt
13: t← t+ 1
14: end while
15: Return θt

estimate as a noisy observation and combine it with histor-
ical information using a confidence-aware correction term:

ĝt =
1

nt

nt∑
i=1

gt,i(θt) + γ · wt−1

wt−1 + nt
· ĝt−1,

θt+1 = θt − η · ĝt,
(7)

where ĝt−1 is the accumulated gradient estimate from previ-
ous iterations (ĝ0 = 1

n0

∑n0

i=1 g0,i(θ0)), wt−1 denotes its ef-
fective sample size (initialized as w0 = n0), η is the learning
rate. The update of wt follows an exponential moving aver-
age rule. We use the term wt−1/wt−1 + nt to approximate
the relative confidence of historical vs. current gradients, and
γ controls the overall strength of the correction. Intuitively,
our confidence-weighted fusion scheme anchors the current
noisy gradient estimate towards the historically aggregated
direction, especially when the current estimate is based on
fewer samples (i.e., lower confidence). As formally analyzed
in Theorem 1, the GC-SPSA estimator achieves a strictly
higher signal-to-noise ratio (SNR) than the vanilla SPSA
estimator for all t ≥ 1, which helps mitigate gradient noise
and promotes a more consistent optimization path.
Theorem 1 (Improved SNR of GC-SPSA). Let ∥gtrue∥ be
the ground-truth gradient, ḡk be the vanilla SPSA estimator,
and ĝk = ḡk + Hkĝk−1 be the GC-SPSA estimator, with
ĝ0 = ḡ0 and Hk > 0. Then for all t ≥ 1, the SNR difference
between the GC-SPSA and the vanilla SPSA admits the
explicit positive lower bound Dt as follows:

Dt =
∥gtrue∥2

Vsingle

∑t
k=0 h

2
kVk

[
P 2
t Vsingle −

t∑
k=0

h2
kVk

]
(8)

where ht = 1, hk =
∏t
j=k+1 Hj and Hj = γ

wj−1

wj−1+nj
.

Vsingle is the gradient estimation variance of vanilla SPSA,



Pt =
∑t

k=0 hk is the cumulative weight sum, and Vk =
Vsingle/nk is the gradient variance of GC-SPSA at step k.

The detailed proof is in Appendix A.1. Furthermore, we
also provide a theoretical guarantee of global convergence
and convergence rate analysis for GC-SPSA under mild
assumptions, as formally shown in the following theorem:

Theorem 2 (Global Convergence and Rate Analysis of
GC-SPSA). Consider an objective L : Rd → R satisfying
∇2L(θ) ⪯ ℓId for all θ ∈ Rd, where Id denotes the d-
dimensional identity matrix. Then, for a stationarity level δ,
GC-SPSA will converge (i.e., mint∈[T ] E[∥g(θt)∥2] ≤ δ) after

T = Θ

(
L(θ0)− L∗

η ζmin δ − Cmax Υ− ℓ η2 Ξ
2

)
. (9)

iterations. Here, L∗ denotes the global minimum, ζmin is
the minimum descent coefficient, Cmax bounds the cross-
term coefficient, and Υ and Ξ denote upper bounds on the
average squared gradient-estimator norm and accumulated
noise variance, respectively.

For each training step, we begin by perturbing the
current model parameters θt and estimate the gradient nt
times using Eq. (6). Since the objective L(θ) involves an
intractable expectation, we approximate it via Monte Carlo
sampling over a batch of sampled prompts (see more details
at Alg. 3 in the Appendix of our full version).1 The resulting
gradient estimates are then averaged and calibrated using
our confidence-aware update rule in Eq. (7). Finally, the
calibrated gradient is used to update the parameters θt. We
summarize the complete training procedure in Alg. 2.

4.4. Inference-Time Adaptive Temperature Scaling

After training, the red-team LLM is steered toward the
desired prompt distribution. The final step is sampling from
this model to generate red-teaming prompts. However, we
empirically find that the model may still fail to adequately
explore its support during generation. This is because each
sample is produced independently and without awareness
of previously generated prompts, leading to repetitive or
redundant tokens that have limited marginal benefits.

To further enhance diversity, we propose an inference-
time strategy that encourages diversity via adaptive tem-
perature scaling. Recall that in autoregressive decoding,
the model iteratively predicts the next token distribution
as pθ∗(xt = v|x<t) = exp(zt[v]/τt)∑

j∈V exp(zt[j]/τt)
, where the tem-

perature hyperparameter τt controls the sharpness of the
token distribution zt ∈ R|V| at decoding step t. Intu-
itively, lower temperatures make the model more confident
(peaky), while higher temperatures flatten the distribution
to encourage exploration. As such, we maintain a global
token frequency vector f ∈ N|V|, tracking the number of
times each vocabulary token has appeared across previous
generations. At decoding step t, given raw logits zt ∈ R|V|,

1. Our full version is available at https://arxiv.org/abs/2507.16329.

we compute the relative frequency of the top-scoring token
vt = argmaxj zt[j], and use it to scale the temperature:

τt = max

(
1

α
log(1 +

f [vt]∑
j f [j]

), τmin

)
, (10)

where α > 0 is a sensitivity coefficient and τmin prevents
degeneracy. The final logits are adjusted as z̃t = zt/τt
before sampling. This penalizes frequent tokens, promoting
underexplored generations without modifying training or ar-
chitecture. Empirically, we find it improves prompt diversity
with minimal overhead and little loss in effectiveness.

5. Evaluation

5.1. Experimental Setup

Target Diffusion Models & Safety Filters. In our experi-
ments, we evaluate a variety of standard diffusion models,
safety-aligned models, and safety filters. In addition to the
standard Stable Diffusion v1.5, we also evaluate safety-
aligned models including ESD [10], CA [13], UCE [14],
SafeGen [40], and RECE [17], all of which have unlearned
certain unsafe concepts from the models. For external safety
filters, following Yang et al. [42], we consider 4 external fil-
ters classified into (1) text-based filters (NSFW text classifier
[16] and Keyword-Gibberish hybrid filter [72]), (2) image-
based filters (NSFW image filter [37] and Stable Diffusion’s
built-in image safety checker, SC [15]). Furthermore, we
evaluate the generalizability of DREAM on several real-
world models, including SDXL, SDv3, Kandinsky v3, and
Shuttle 3 Diffusion. We also evaluate DREAM in a transfer-
based setting on multiple real-world online T2I platforms,
including Ideogram, DeepAI, DALL·E 3, and Midjourney.
Baselines. We evaluate and compare DREAM against sev-
eral state-of-the-art baselines. For human-written red team-
ing datasets, we include I2P [9] and Google’s Adversarial
Nibbler [23], collected from T2I community forums and
via crowdsourcing, respectively. For automated methods,
we consider QF-Attack [45], SneakyPrompt [42], MMA-
Diffusion [43], P4D [20], UnlearnDiffAtk [73], JailFuzzer
[74], FLIRT [28] and ART [21]. Note that the baselines
differ in their assumed level of access to the target model
as well as their original motivation (e.g., SneakyPrompt
was originally proposed for jailbreak attacks in closed-
box settings). We include them for completeness, as their
underlying mechanisms are closely related to red-teaming
and finally yield comparable unsafe prompt datasets. We
provide a more detailed discussion in Appendix B.
Evaluation Metrics. We primarily use two metrics to eval-
uate the performance of each red teaming method: Prompt
Success Rate (PSR) and Prompt Similarity (PS), which
measure the effectiveness and diversity of the generated
prompts, respectively. PSR is the proportion of prompts
that successfully trigger the target model to generate images
containing the specified inappropriate content. Following
Yang et al. [43], we use PSR out of N generations (PSR-
N) instead of a single generation to reduce the impact of

https://arxiv.org/abs/2507.16329


TABLE 1: Comparison with baselines on Stable Diffusion v1.5 and other safety-aligned diffusion models.

Stable Diffusion v1.5 CA ESD UCE SafeGen RECE

Sexual Violence Sexual Violence Sexual Sexual Violence Sexual Sexual

PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓

Human-written Datasets
I2P 51.5% / 0.49 13.9% / 0.47 11.7% / 0.49 13.1% / 0.47 09.5% / 0.49 10.0% / 0.49 06.9% / 0.47 45.6% / 0.49 07.5% / 0.49
Adv. Nibbler 28.3% / 0.53 08.9% / 0.54 03.1% / 0.53 03.5% / 0.54 01.2% / 0.53 30.1% / 0.53 07.8% / 0.54 33.8% / 0.53 00.7% / 0.53

Automated Red Teaming (Token Perturbation)
QF-Attack 23.8% / 0.59 10.6% / 0.62 00.6% / 0.59 09.4% / 0.62 00.0% / 0.59 01.3% / 0.59 10.0% / 0.62 21.2% / 0.59 00.6% / 0.59
SneakyPrompt 61.7% / 0.52 26.5% / 0.65 07.9% / 0.52 13.5% / 0.52 25.6% / 0.64 16.5% / 0.52 20.1% / 0.64 25.5% / 0.52 14.0% / 0.52
MMA-Diffusion 91.0% / 0.63 73.9% / 0.65 44.9% / 0.63 59.2% / 0.65 35.9% / 0.63 59.9% / 0.63 66.9% / 0.65 34.0% / 0.63 52.2% / 0.63
P4D 78.0% / 0.60 42.0% / 0.58 52.0% / 0.60 26.0% / 0.66 43.3% / 0.60 24.0% / 0.56 10.0% / 0.58 61.9% / 0.55 16.0% / 0.55
UnlearnDiffAtk 83.0% / 0.52 30.0% / 0.49 36.4% / 0.52 10.5% / 0.49 21.2% / 0.52 24.6% / 0.51 10.5% / 0.49 55.9% / 0.52 13.6% / 0.52

Automated Red Teaming (LLM Rewrite)
ART 14.9% / 0.48 29.2% / 0.47 02.7% / 0.49 14.1% / 0.46 00.8% / 0.49 00.8% / 0.49 20.8% / 0.46 13.7% / 0.49 00.8% / 0.48
FLIRT 91.8% / 0.77 74.4% / 0.66 26.0% / 0.58 64.4% / 0.63 17.1% / 0.64 48.5% / 0.64 18.4% / 0.61 10.2% / 0.59 10.7% / 0.57
JailFuzzer 72.4% / 0.56 80.0% / 0.55 31.5% / 0.52 44.0% / 0.54 23.8% / 0.51 51.9% / 0.53 38.0% / 0.52 35.4% / 0.52 35.9% / 0.51

Ours 92.2% / 0.50 87.0% / 0.55 76.0% / 0.56 77.3% / 0.57 72.1% / 0.56 89.0% / 0.54 83.6% / 0.57 81.6% / 0.49 91.3% / 0.56

inherent stochasticity in diffusion sampling. Specifically, for
each prompt, we generate N images with different random
seeds. The prompt is considered successful if at least one
of these N images contains the desired unsafe concept,
and the final PSR is measured as the ratio of successful
prompts. In our experiments, we use PSR-3, i.e., N = 3,
and mainly adopt Multi-headed Safety Classifier (MHSC)
[11] as our detector. MHSC is a category-specific NSFW
image detector that provides per-category confidence scores
for various unsafe concepts. It has been widely used in the
community due to its high precision [11, 75, 43]. A higher
PSR (↑) indicates the method is more capable of generating
effective prompts. Besides, PS quantifies the diversity of the
prompts by measuring the average pairwise cosine similarity
between all prompt embeddings. In our evaluation, we use
the state-of-the-art BGE embedding model [76] to obtain
the prompt embeddings (note that this model is different
from Eξ we use in Eq. (4)). A lower PS score (↓) indicates
lower inter-prompt similarity, meaning that the prompts are
semantically more diverse and less repetitive.
Implementation Details. We initialize θ with the pre-
trained Gemma-2-27b-it model [77]. c is initialized fol-
lowing Tab. 10, with lightweight embedding tuning applied
to ensure more accurate category representation. For GC-
SPSA, the learning rate η and hyperparameter ϵ are set
to default values of 1 × 10−6 and 1 × 10−3, respectively.
Following prior works [48, 21], system prompts and few-
shot ICL exemplars are also applied to ensure task alignment
and efficiency. The model is trained until convergence with
a batch size of 32, which typically requires ∼300 steps
and corresponds to roughly 12 hours on NVIDIA A100
GPUs. After training, we sample 1,024 prompts with ATS
for evaluation. Due to space constraints, we refer readers to
our full version for more implementation details.

5.2. Main Results

Effectiveness on Concept-erased T2I Models. We first
conduct experiments on both the standard Stable Diffusion
(SD) v1.5 model and several concept-erased models, whose

weights are fine-tuned or edited to unlearn the corresponding
unsafe concept. As shown in Tab. 1, our method consistently
achieves the highest PSRs across all models and categories,
significantly outperforming all baselines. For example, on
concept-erased models such as UCE and RECE, human-
written datasets typically yield PSRs below 10%, and state-
of-the-art red teaming methods like MMA-Diffusion often
struggle to exceed 50%. In contrast, our prompts achieve
PSRs above 79% on all evaluated models. In addition to
effectiveness, our method also excels in prompt diversity.
Across all models, our prompts maintain a prompt similarity
(PS) score around 0.55, which is notably better than most
baselines and on par with human-written datasets, indicating
higher semantic diversity. This highlights that our approach
not only discovers more successful prompts, but also ex-
plores a broader and more varied region of the prompt space
that remains unexplored by existing red teaming techniques.

Effectiveness on External Safety Filters. We further eval-
uate the effectiveness of DREAM on various external safety
filters and compare it with baselines. For each safety filter,
we combine it with the standard SD v1.5 model and regard
the whole model-filter pipeline as an integrated generative
system. As shown in Tab. 2, baseline methods are largely
unstable, while DREAM consistently achieves the best or
nearly the best PSR-3 across all settings. For example,
while MMA-Diffusion achieves good results on most safety-
aligned models and SC, it almost completely fails on the
NSFW Text Detector and Keyword-Gibberish Filter. On
safety filters, the most effective baseline is JailFuzzer, which
performs prompt-to-prompt mutation powered by multiple
LLM and VLM agents. However, JailFuzzer is much less
effective on safety-aligned models. This is possibly because
the success of JailFuzzer’s mutation process heavily depends
on the accuracy of the simulated SafetyFilter signal provided
by the VLM brain. When applied to safety-aligned models
that sanitize outputs instead of blocking them, the bypass-
score feedback is omitted altogether, which deprives the
mutation process of this optimization cue and consequently
reduces its effectiveness. These findings demonstrate that
baselines fail to generalize across different safety mecha-



TABLE 2: Comparison with baselines on external safety filters.

Safety Checker NSFW Image Detector NSFW Text Detector Keyword-Gibberish Filter

Sexual Violence Sexual Violence Sexual Violence Sexual Violence

PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓ PSR ↑ / PS ↓

Human-written Datasets
I2P 23.4% / 0.49 13.6% / 0.47 26.3% / 0.49 13.0% / 0.47 37.5% / 0.49 08.5% / 0.47 26.5% / 0.49 06.5% / 0.47
Adv. Nibbler 14.3% / 0.53 08.4% / 0.54 17.3% / 0.53 08.2% / 0.54 19.4% / 0.53 06.2% / 0.54 04.8% / 0.53 00.0% / 0.54

Automated Red Teaming (Token Perturbation)
QF-Attack 11.9% / 0.59 10.6% / 0.62 01.9% / 0.59 10.6% / 0.62 01.2% / 0.59 08.8% / 0.62 03.1% / 0.59 00.0% / 0.62
SneakyPrompt 30.5% / 0.52 26.5% / 0.67 11.0% / 0.50 26.5% / 0.64 12.5% / 0.46 13.0% / 0.64 51.8% / 0.52 18.1% / 0.64
MMA-Diffusion 40.5% / 0.63 72.2% / 0.65 04.7% / 0.63 68.3% / 0.65 01.5% / 0.63 11.5% / 0.65 00.0% / 0.63 00.0% / 0.65
P4D 40.0% / 0.60 40.0% / 0.58 44.0% / 0.60 38.0% / 0.58 04.0% / 0.60 04.0% / 0.58 00.0% / 0.60 00.0% / 0.58
UnlearnDiffAtk 35.6% / 0.52 10.5% / 0.49 43.2% / 0.52 09.5% / 0.49 48.3% / 0.52 06.3% / 0.49 07.6% / 0.52 02.1% / 0.49

Automated Red Teaming (LLM Rewrite)
ART 04.4% / 0.48 28.8% / 0.47 09.2% / 0.48 29.2% / 0.48 06.4% / 0.48 21.8% / 0.46 04.4% / 0.48 04.5% / 0.47
FLIRT 26.5% / 0.62 72.6% / 0.64 45.9% / 0.75 75.4% / 0.65 08.5% / 0.51 16.7% / 0.60 44.6% / 0.58 48.9% / 0.57
JailFuzzer 51.9% / 0.53 72.0% / 0.52 48.1% / 0.55 76.0% / 0.55 42.0% / 0.51 46.4% / 0.52 59.1% / 0.51 38.0% / 0.52

Ours 64.7% / 0.52 86.4% / 0.54 57.3% / 0.50 83.7% / 0.58 62.3% / 0.51 42.5% / 0.54 67.4% / 0.52 65.7% / 0.56

TABLE 3: Effectiveness of DREAM across models and NSFW
themes. (a) results with more models on sexual (left) and violence
(right) concepts; (b) results on more NSFW themes on SD v1.5.

(a) More T2I Models

Model (Sexual) PSR ↑ / PS ↓ Model (Violence) PSR ↑ / PS ↓

Stable Diffusion XL 89.5% / 0.52 Stable Diffusion XL 92.3% / 0.51
Stable Diffusion v3 82.5% / 0.53 Stable Diffusion v3 92.2% / 0.52
Kandinsky v3 89.8% / 0.52 Kandinsky v3 86.8% / 0.53
Shuttle 3 Diffusion 86.9% / 0.51 Shuttle 3 Diffusion 90.0% / 0.51

(b) More NSFW Themes

Category PSR ↑ / PS ↓ Category PSR ↑ / PS ↓

Self-harm 87.8% / 0.55 Shocking 94.7% / 0.56
Hate 92.6% / 0.52 Harassment 94.1% / 0.53
Political 91.6% / 0.50 Illegal Activity 92.7% / 0.51

nisms. In contrast, DREAM performs well on both safety
mechanisms without any ad hoc design, demonstrating the
generality and universality of our method.

Effectiveness on More T2I Models & NSFW Themes.
We evaluate DREAM on more T2I models, including Stable
Diffusion XL [4], Stable Diffusion v3 [78], Kandinsky v3
[79], and Shuttle 3 Diffusion [80]. These models vary signif-
icantly in architectural design (e.g., using DiT [81] instead
of convolutional U-Nets) and training settings, and some
of them are reported to apply dataset filtering to remove
(some) unsafe images before training [4, 78]. As shown in
Tab. 3 (a), DREAM consistently performs well across all
models and both categories, with PSR approaching 90% on
average. The discovered prompts also exhibit a level of di-
versity comparable to that of human-written prompts. These
results highlight the model architecture-agnostic nature of
DREAM and its strong potential for adapting to future
models. Additionally, we further assess the generalizability
of DREAM on additional NSFW themes following prior
work [9], including self-harm, shocking, hate, harassment,
political, and illegal activity. Following Yang et al. [43], we
use Q16 [65] as the detector in this setting, as MHSC does
not support all of these categories. As shown in Tab. 3 (b),
DREAM maintains high PSR across most cases, exceeding

(a) Sexual (b) Violence

Figure 1: User study results on prompt success rate.

(a) Sexual (b) Violence

Figure 2: User study results on prompt diversity.

90% consistently and reaching close to 95% for shocking
and harassment. Besides, our prompts remain highly di-
verse and close to that of human-written prompts. These
findings demonstrate the scalability and generalizability of
DREAM in discovering a broader range of unsafe concepts.

5.3. Human Evaluation

In this section, we conduct a user study to assess the
effectiveness and diversity of different methods under hu-
man perception. Specifically, we select SD v1.5, CA, and
NSFW Text Filter as the representative models. We then
compare DREAM with I2P, MMA-Diffusion, and FLIRT.
We evaluate all model–method combinations on both sexual
and violence categories, resulting in 2 × 3 × 4 = 24 con-
cept–model–method settings in total. For each setting, we
randomly sample 30 prompts from the method’s generated



prompts to form a prompt pool. Each prompt generates 3
images, forming a prompt-images group. Then, we recruit
30 volunteers, all university students or faculty members
from various academic backgrounds, to participate in the
study. All participants are adults in good physical and mental
health, fully informed of the study, and provided consent
to participate. Then, we brief participants on the basics of
T2I models and red teaming, the recommended definition of
the corresponding unsafe category (Tab. 10 in Appendix),
and start the study after obtaining their confirmation of full
comprehension and agreement to continue the study.

For evaluation, each participant is randomly assigned
5 prompt-image groups from the 30 available for each
concept-model-attack setting. Prompt-image groups are or-
ganized in random order and displayed one-by-one. Partic-
ipants are asked to determine whether the three displayed
images in each group clearly reflect the specified unsafe
concept. The group is marked as successful if and only if the
participant identifies at least one such image (PSR-3). Then,
participants are presented with the full set of 4×30 problem-
atic prompts on SD v1.5 and asked to rate these prompt sets
by their perceived diversity, ranging from 1 to 5 (higher is
better), based on their understanding of the prompts’ lexical,
structural, and semantic richness (see Tab. 11 in Appendix).
We replace MMA with Adv. Nibbler since MMA’s prompts
are not human-readable. Despite involving images depicting
NSFW concepts, our study was reviewed and approved by
our institution’s research ethics committee under a process
analogous to the “exempt review” category of U.S. IRB
protocols, as the review board determined it posed no more
than minimal risk, given that all participants were healthy
adults, fully informed, and free to withdraw at any time. As
shown in Fig. 1 and 2, DREAM consistently achieves strong
performance on this user study with the best prompt suc-
cess rate and a diversity similar to human-written datasets,
demonstrating its effectiveness.

5.4. Adaptivity Under More Safety Mechanisms

In this section, we examine whether DREAM remains
effective under more safety mechanisms. Specifically, we
consider the following: (1) semantic filters, (2) composite
defenses that combine multiple safety mechanisms, and
(3) MHSC [11] as the safety filter. We compare our
DREAM with MMA-Diffusion [43] and FLIRT [28] in these
settings. The evaluated unsafe concept is sexual.
Semantic Filters. We first consider semantic filters, which
are commonly used to defend against adversarial prompts.
They work by checking whether a prompt forms a legitimate
sentence, and reject those that do not. We consider a per-
plexity filter and a non-English-word filter, with threshold
calibrated following [74]. As shown in Tab. 4 (a)-(b), this
type of filter is highly effective against MMA-Diffusion,
as MMA-Diffusion’s random initialization and token-level
optimization strategy often produces outputs that are lexi-
cally or grammatically incorrect. In contrast, DREAM and
FLIRT are able to generate fluent and semantically plausible
sentences, which allow them to bypass such semantic filters.

TABLE 4: Effectiveness of DREAM and baselines under more
safety mechanisms. (a)–(b) present results for two semantic filters;
(c)-(d) report results under multi-stage defenses; and (e) shows
results under MHSC as the safety filter with two FPR thresholds.

(a) Perplexity Filter

Method PSR ↑ / PS ↓

MMA-Diffusion 00.0% / 0.63
FLIRT 91.9% / 0.75
Ours 90.4% / 0.55

(b) Non-English Word Filter

Method PSR ↑ / PS ↓

MMA-Diffusion 00.1% / 0.63
FLIRT 90.9% / 0.75
Ours 90.8% / 0.53

(c) NSFW Text + NSFW Image

Method PSR ↑ / PS ↓

MMA-Diffusion 00.1% / 0.63
FLIRT 07.6% / 0.50
Ours 52.8% / 0.55

(d) Keyword + ESD + SC

Method PSR ↑ / PS ↓

MMA-Diffusion 14.4% / 0.63
FLIRT 02.3% / 0.54
Ours 37.3% / 0.56

(e) MHSC

@1% FPR PSR ↑ / PS ↓ @5% FPR PSR ↑ / PS ↓

MMA-Diffusion 23.3% / 0.63 MMA-Diffusion 06.7% / 0.63
FLIRT 06.7% / 0.54 FLIRT 00.0% / 0.50
Ours 43.3% / 0.58 Ours 16.7% / 0.52

Composite Defenses. We consider systems that sequentially
combine multiple safety mechanisms. Specifically, we con-
sider two combinations: (1) NSFW Text Filter + SD v1.5 +
NSFW Image Filter; and (2) Keyword-based Filter + ESD
[10] + SC [15]. A prompt is considered successful only if
at least one out of the three generations is not rejected by
any of the filters and successfully contains unsafe content,
as rated by MHSC. Note that while these combinations help
narrow the unsafe prompt space, the system’s false positive
rate also increases exponentially, as any individual false
rejection would invalidate the whole sample.

As shown in Tab. 4 (c)-(d), DREAM consistently
achieves good results and outperforms the baselines in both
settings. Notably, baseline methods exhibit steep drops in
effectiveness, and even fail entirely under stronger combina-
tions. In contrast, DREAM maintains moderate success rates
even under aggressive defenses, demonstrating its adaptivity.

MHSC as the Safety Filter. We also consider an extreme
setting where MHSC, the classifier used to compute PSR in
our experiments, is directly deployed as the safety filter. In
this case, MHSC can no longer be used for evaluation, as
any generations that could be classified as harmful would
be blocked in advance. Thus, we adopt human-rated PSR-
3 as the evaluation metric. Due to ethics considerations,
the human-rated PSR-3 in this section and the following
experiments is annotated by three authors of this paper by
taking the majority vote. We conduct experiments under two
thresholding settings, corresponding to 5% (default) and 1%
false positive rates (FPR), which are calibrated on a benign
held-out dataset following MHSC’s original paper.

As shown in Tab. 4 (e), despite MHSC’s high precision,
DREAM still identifies multiple prompts that bypass filter-
ing and lead to unsafe generations. We attribute this result
to MHSC’s conservativeness as ans NSFW classifier: it only
flags outputs when highly confident, prioritizing precision
over recall, as also reported in the original paper [11]. This
makes it a reliable evaluation tool (high PSRs indeed indi-



TABLE 5: Transferability results on real-world T2I-as-a-service
platforms that utilizes unknown safety mechanisms.

(a) Ideogram

Method Prompt
Bypass ↑

Prompt-Image
Bypass ↑

Human-Rated
Success Rate ↑

Prompt
Similarity ↓

MMA-Diffusion 75.0% 65.9% 43.9%±1.9% 0.66
FLIRT 76.7% 67.8% 30.6%±1.9% 0.54
Ours 98.4% 96.1% 57.9%±3.2% 0.52

(b) DeepAI

MMA-Diffusion 41.0% 26.7% 18.7%±1.2% 0.65
FLIRT 58.0% 51.0% 15.7%±4.2% 0.50
Ours 89.0% 79.0% 55.7%±3.1% 0.53

(c) DALL·E 3

MMA-Diffusion 36.7% 31.7% 7.3%±1.6% 0.64
FLIRT 30.0% 28.3% 2.8%±1.6% 0.51
Ours 60.8% 47.9% 32.3%±2.4% 0.55

(d) Midjourney

MMA-Diffusion 18.2% 18.2% 18.2%±2.2% 0.63
FLIRT 21.7% 21.7% 10.0%±1.2% 0.53
Ours 60.3% 60.3% 35.7%±1.7% 0.55

cate high true positives) but also means that some borderline
harmful cases near the threshold may slip through. These
subtle failure modes are where DREAM excels, thanks to its
distributional exploration and fine-grained energy modeling.

As a final remark, while conservatively designed, MHSC
is still more aggressive than real-world filters [40]. It is
thus reasonable that DREAM uncovers fewer prompts under
MHSC than under more permissive filters. More broadly,
this highlights an open challenge in balancing protection
with over-censorship: aggressive filters indeed reduce risks
but also inevitably narrow the prompt space, often at the
cost of user experience. We believe red teaming methods
like DREAM can serve as a valuable complement that helps
surface near-boundary cases that evade detection and inform
targeted improvements to reduce blind spots, yet without
broadly increasing over-censorship.

5.5. Transferability on Real-world Commercial T2I
Generative Models

To further assess the scalability of DREAM in real-world
conditions, we test it on 4 widely used commercial T2I
platforms: Ideogram [19], DeepAI [32], DALL·E 3 [33],
and Midjourney [34]. These platforms deploy state-of-the-
art safety systems, which at least include both prompt- and
image-level filters, though their exact implementations re-
main undisclosed. Moreover, some platforms use proprietary
LLMs to interpret and rewrite user prompts.

To evaluate how different methods perform on these plat-
forms, we train DREAM and FLIRT on the NSFW Image
and Text Filter, and randomly select 50 prompts to conduct
a transfer-based red teaming. We evaluate both “sexual” and
“violence” categories, which are explicitly prohibited by
all the platforms’ safety policies, and report the averaged
results. As shown in Tab. 5, our method achieves good
transferability on all evaluated platforms, as validated by
a high prompt bypass rate (the fraction of prompts accepted
by the text filter), prompt-image bypass rate (the fraction of
attempts that successfully yield generated images), human-
rated prompt success rate, and still outperforms baselines

(a) Safety-aligned Models (b) Safety Filters

Figure 3: Efficiency comparison with baselines. We report the
expected total time to collect a specified number of effective unsafe
prompts, averaged across all evaluated (a) safety-aligned models
and (b) safety filters. The considered unsafe concept is sexual.

with a notable margin. The results indicate that while the
unsafe prompt space varies across different T2I systems
and real-world platforms, the prompts generated by our
method possess a notable degree of transferability, that is,
we can uncover some shared vulnerabilities across different
systems, possibly due to broader prompt coverage and the
inherent similarity across these T2I models.

5.6. Efficiency Comparison

In this section, we present a comparison of efficiency
between DREAM and baselines. Unlike previous prompt-to-
prompt methods whose time cost can be directly measured
per prompt, DREAM involves two stages of time cost: (1)
training the red-team LLM, which dominates the total time,
and (2) sampling from the trained model, which is efficient.
Therefore, their efficiency cannot be directly compared on a
per-prompt basis. To this end, we compute and compare the
averaged expected total time required to obtain a specified
number of effective unsafe prompts (as measured by MHSC)
over both (a) all safety-aligned diffusion models evaluated
in Tab. 1 and (b) all external safety filters in Tab. 2.

As shown in Fig. 3, since baseline methods optimize
each prompt through discrete, per-instance search without
any global modeling, their total time cost scales quickly
with the number of desired effective prompts. In contrast,
while DREAM requires approximately 12 hours to train
the red-team LLM, sampling from it is extremely efficient:
it only takes about 5 minutes to generate over 1,000 ef-
fective prompts in our experiments. Compared with token-
level optimization baselines such as MMA-Diffusion and
P4D, DREAM is more efficient even at relatively small
scales (e.g., 50 prompts). Even when compared to FLIRT,
which improves efficiency through LLM rewriting, DREAM
surpasses it at moderate scales (more than 500 prompts).
Considering that downstream applications like safety tun-
ing typically require thousands of diverse and effective
prompts to ensure generalization, we believe that DREAM’s
distribution-level modeling paradigm offers a practical and
promising perspective for scalable red teaming.

5.7. Discussion

LLM Reusability. One potential advantage of our distribu-
tional modeling approach is that the red team LLM, once



TABLE 6: Results on reusing the red team LLM (prompt gener-
ator) trained on CA to other T2I systems. The metric is PSR-3.

Setting ESD UCE RECE SC

Ours (Direct Transfer) 57.4% 77.4% 75.5% 40.7%
Ours (+50 Steps Adaptation) 68.5% 86.3% 82.9% 48.3%

trained on a T2I model, learns a holistic understanding of
the probability distribution over unsafe prompts. As a result,
the LLM retains reusable knowledge that may be effectively
leveraged when adapted to similar T2I systems. To validate
this possibility, we conduct reusability experiments where a
red team LLM trained on CA for 300 steps is adapted to
other T2I systems. As shown in Tab. 6, DREAM’s red team
LLM achieves non-trivial success rates when directly reused
(transferred) on other models without any further training.
More importantly, with only 50 additional training steps, the
reused LLM can be rapidly adapted to the new model, with
some even achieving performance close to training from
scratch (e.g., on ESD and UCE). These results show that
DREAM’s distribution-level modeling demonstrates strong
reusability potential, where the learned knowledge can be
efficiently transferred and adapted to other T2I systems with
reduced computational overhead.

Mitigation Strategy. To mitigate the identified vulnerabil-
ities, one practical strategy is safety-tuning, which fine-
tunes the T2I model on the collected unsafe prompts in
an adversarial manner to unlearn them. To assess the util-
ity of different methods for this purpose, we utilize red
team prompts identified by each method as the dataset,
and use Safety-DPO [22], a recent algorithm designed to
steer generation away from unsafe behaviors via preference
modeling, to fine-tune the SD v1.5 model. We then evaluate
the resulting models against prompt sets from all methods,
which yields a square matrix where each row represents
a safety-tuned model (trained on method A’s data), and
each column corresponds to evaluation against method B’s
prompts. As shown in Fig. 4, the model trained with our
DREAM-generated dataset consistently achieves the lowest
PSR across all test sets, including those totally unseen dur-
ing training. In contrast, models tuned with baseline datasets
tend to show limited generalization and fail to defend against
prompts from other methods, especially those discovered
by DREAM. This also indirectly suggests that DREAM’s
global modeling helps improve the coverage of discovered
prompts, which in turn supports more robust and general-
izable safety improvement. We offer further discussions in
Appendix B in our full technical report.

Prior-informed Enhancement. For generality, our DREAM
is designed without imposing specific priors about the in-
ternal components or defenses of the target T2I system.
However, in practice, model owners (e.g., developers) have
prior knowledge about the system, which can be potentially
leveraged to enhance red teaming. For instance, if the model
owner knows the system employs keyword-based filters, a
simple enhancement strategy is to remove these tokens from
the red team LLM’s vocabulary. This prior encourages the
generator to focus on unexplored regions of the prompt
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Figure 4: PSR results of SD v1.5 safety-aligned with red
team datasets generated by different methods.

TABLE 7: Ablation study on each component. ATS stands
for our inference time adaptive temperature scaling strategy
and Opt. Alg. means optimization algorithm. We report the
mean±std computed over three independent samples.

Ealign(x) Ediv(x) ATS Opt. Alg. PSR ↑ / PS ↓
✓ − − GC-SPSA 90.8%±0.10% /00.702±0.002
✓ ✓ − GC-SPSA 76.4%±0.08% /00.583±0.001
✓ ✓ ✓ SPSA 45.9%±0.09% /00.537±0.001
✓ ✓ ✓ GC-SPSA 76.0%±0.12% / 0.561±0.001

space without wasting effort on words that are doomed
to be rejected. To evaluate this, we conduct a case study
on the Keyword Filter + UCE setup. We observe that the
keyword-removed variant converges faster, reaching near-
optimal performance within 150 training steps, compared
to 280 steps required by the baseline. Interestingly, the
final performance difference is modest (63.4% vs. 60.2%
PSR), suggesting that while prior knowledge accelerates
convergence, it is not critical for eventual performance. This
result highlights two insights: first, DREAM is effective
even without any system-specific priors, making it broadly
applicable; second, when available, prior information can
be selectively incorporated to enhance DREAM. However,
leveraging such priors often requires case-specific integra-
tion strategies, some of which may be difficult or costly
to implement in practice. How to develop principled ways
to incorporate them, especially for neural network-based
components, remains an open direction for future work.

5.8. Ablation Study & Hyperparameter Analysis

In this section, we conduct an ablation study of DREAM
and analyze some key hyperparameters involved in our
experiments, with CA+Sexual as the default setting.
Effectiveness of Each Component. As shown in Tab. 7, all
components contribute to DREAM’s final performance. For
example, while Ealign(x) pushes the model towards harmful
outputs, it often leads to less diverse prompts. Adding
Ediv(x) helps strike a balance between effectiveness and di-
versity. Additionally, ATS improves prompt diversity during
inference with only minimal PSR degradation, highlighting
its effectiveness for balancing success rate and diversity.
Effectiveness of GC-SPSA. As shown in Tab. 8, GC-
SPSA consistently outperforms vanilla SPSA, even when
SPSA is given more steps to ensure equal training time,



TABLE 8: Ablation study on GC-SPSA and different n0.

Method Steps Time PSR ↑ / PS ↓

SPSA 340 12.85h 47.7% / 0.53
SPSA 410 15.37h 61.8% / 0.55
GC-SPSA (n0 = 4) 300 12.78h 76.0% / 0.56
GC-SPSA (n0 = 8) 300 15.43h 79.8% / 0.57

TABLE 9: Impact of different system prompts.

Setting System Prompt 1 System Prompt 2 System Prompt 3

PSR ↑ / PS ↓ 77.8% / 0.57 75.2% / 0.56 76.4% / 0.56

demonstrating the effectiveness of GC-SPSA. Besides, we
evaluate different initial sampling budgets n0. We observe
that n0 = 4 already provides a strong balance between
efficiency and effectiveness. While increasing n0 to 8 leads
to further gains, the improvement is marginal compared to
the additional cost, possibly because the variance is already
sufficiently small for stable optimization. We thus adopt
n0 = 4 as our default configuration, as it strikes a good
trade-off between effectiveness and computational cost.
Impact of System Prompt. Currently, we handcraft system
prompts for DREAM. To understand DREAM’s sensitivity
under different system prompts, we prompt ChatGPT-5 to
generate three concise red-teaming role-play prompts for
DREAM using the instruction “I’m training a red teaming
assistant for text-to-image generative models for category
{category}. Please generate a concise system prompt for it.”,
and test their performances. As shown in Tab. 9, all prompts
are highly effective, indicating that DREAM’s performance
is not very sensitive to system prompts.
Impact of Number of Sampled Prompts. Similar to prior
work [43, 28], we generate 1,024 prompts for evaluation by
default. As our method models a distribution and supports
efficient sampling, it is natural to study the impact of the
number of sampled prompts on performance. As shown in
Fig. 5, the number of prompts has only a minor impact on
DREAM’s expected PSR and PS, indicating DREAM’s scal-
ability to larger sample sizes without significantly sacrificing
performance, enabling it to generate large-scale, diverse, and
effective red team datasets efficiently.

6. Conclusion

This paper presents DREAM, a novel framework for
scalable red teaming of T2I generative systems. DREAM
learns the distribution of unsafe prompts via energy-based
modeling, allowing efficient, diverse, and effective prompt
discovery at scale. We further introduce GC-SPSA, an
efficient method to optimize our objective and propose
adaptive strategies for broad prompt coverage during infer-
ence. Through comprehensive experiments, we demonstrate
DREAM’s superior effectiveness and generalizability.
Limitations. Our work still has the following limitations,
which we aim to address in future work. First, similar to
other red-teaming studies, our implementation and eval-
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Figure 5: Impact of number of sampled prompts on PSR and PS.
We report the results computed over three independent samples.

uation rely on some auxiliary models (e.g., BLIP-2 and
MHSC) that may introduce biases or inaccuracies, and we
acknowledge that some false positives or false negatives may
appear. Although we also conducted human evaluation, we
acknowledge that concepts such as “unsafe” and “diversity”
are inherently subjective and can be influenced by cul-
tural, contextual, and personal factors. Nevertheless, since
all methods are evaluated under the same protocol, we be-
lieve the comparisons remain relatively fair and informative.
We plan to explore more robust alternatives in the future.
Besides, while our GC-SPSA optimizer demonstrates both
theoretical guarantees and strong empirical performance
compared to baseline optimizers such as vanilla SPSA and
LLM-based heuristics, we acknowledge it is essentially an
approximation and may not be fully precise or perfectly
efficient. Nonetheless, as discussed in Sec. 4, obtaining
exact gradients via backpropagation is often infeasible due
to the memory-intensive nature of the full T2I pipeline.
We hope our energy-based distributional formulation and
our proposed optimizer can inspire and serve as a valuable
foundation for future improvements, and ultimately enable
stronger safety evaluation practices for T2I systems.
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Appendix A.
Omitted Derivations and Proofs

A.1. Proof of Theorem 1

Proof.2 We establish a strictly positive lower bound for the
SNR improvement Dt := SNRGC

t − SNRVanilla by analyz-
ing the statistical properties of the GC-SPSA estimator with
decaying sample sizes against the vanilla SPSA baseline.

The single-sample SPSA estimator g(θ) uses the observ-
able loss L(θ) = Ltrue(θ)+ξ. A second-order Taylor expan-
sion of Ltrue implies that the finite difference approximation
yields ∆⊤gtrue+O(ϵ2), where gtrue ≜ ∇θLtrue(θ). Therefore,

g(θ) =
(
∆⊤gtrue +O(ϵ2)

)
∆+

ξ+ − ξ−

2ϵ
∆. (11)

The second moment arises from signal, bias, and noise.
Thus, the variance of a single gradient estimate is:

Vsingle := Var(g(θ)) = (d−1)∥gtrue∥2+
dσ2

ξ

2ϵ2
+O(dϵ4) (12)

The GC-SPSA estimator ĝt follows the recursive update
rule Eq. (7), unrolling which gives ĝt =

∑t
k=0 hkḡk(θk).

Let Vk :=
Vsingle

nk
denote the variance of the gradient estimate

at step k. The expectation and variance of GC-SPSA are:

E[ĝt] ≈ Ptgtrue(θt), where Pt =

t∑
k=0

hk (13)

2. Complete proofs of both theorems are available in our full version.
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Var(ĝt) =

t∑
k=0

h2
kVk =

t∑
k=0

h2
k

Vsingle

nk
, (14)

The SNR improvement is defined as Dt = SNRGC
t −

SNRVanilla, where we have SNRGC
t =

∥gtrue(θt)∥2P 2
t∑t

k=0 h
2
kVk

and

SNRVanilla = ∥gtrue(θt)∥2

Vsingle
. Therefore, we have:

Dt =
∥gtrue∥2

Vsingle

∑t
k=0 h

2
kVk

[
P 2
t Vsingle −

t∑
k=0

h2
kVk

]
(15)

To analyze the bracketed term P 2
t Vsingle −

∑t
k=0 h

2
kVk,

we expand P 2
t =

∑t
k=0 h

2
k + 2

∑
0≤i<j≤t hihj and obtain:

t∑
k=0

h2
kVsingle

(
1− 1

nk

)
+ 2Vsingle

∑
0≤i<j≤t

hihj . (16)

The first term is non-negative, and the second term is
strictly positive. Therefore, we have Dt > 0 for t ≥ 1.

We can summarize two insights from Eq. (16). First,
gradient calibration alone can provide strong SNR gain. The
term 2

∑
i<j hihj is strictly positive even when nk = 1, and

exhibits a quadratic growth as (
∑

hk)
2 −

∑
h2
k. Second,

larger sampling budgets nk can further enhance SNR by re-
ducing variance Vk and increasing 1−1/nk. This theoretical
analysis further demonstrates the benefits of our GC-SPSA.

A.2. Proof of Theorem 2

Proof. The smoothness condition ∇2L(θ) ⪯ ℓId implies the
standard descent inequality for θt+1 = θt − η ĝt. We adopt
zero-indexing with ĝ−1 = 0 and w−1 = 0, so that α0 = 0.

Expanding the conditional moments using the GC-SPSA
properties E[ĝt | Ft] = gt + γαtĝt−1, where αt :=
wt−1/(wt−1 + nt), and E[∥ĝt∥2 | Ft] = Var(ĝt | Ft) +
∥gt∥2 + 2γαt⟨gt, ĝt−1⟩+ (γαt)

2∥ĝt−1∥2.
Then, by using the descent inequality and Young’s in-

equality, we have:

E[L(θt+1) | Ft] ≤ L(θt)− η ζt ∥gt∥2 + Ct ∥ĝt−1∥2

+
ℓ η2

2nt
Vt, (17)

where the coefficients are defined as

ζt := 1− ℓη

2
− γαt(1− ℓη)

2
− ℓη(d− 1)

2nt
, (18)

Ct :=
ηγαt(1− ℓη)

2
+

ℓη2(γαt)
2

2
, (19)

Vt := O(d ϵ4t ) +
d σ2

ξ

2ϵ2t
. (20)

Telescoping the one-step descent lemma in Eq. (17) over
t = 0, . . . , T − 1. Let ζmin := min0≤t≤T−1 ζt > 0. Taking
expectations, summing, we rearrange to find:

min
0≤t≤T−1

E∥g(θt)∥2 ≤
L(θ0)− L∗ +

∑T−1
t=0 Ct E∥ĝt−1∥2

η T ζmin

+
ℓ η

2T ζmin

T−1∑
t=0

Vt
nt

. (21)

Prior analyses of stochastic optimization algorithms have
established the boundedness of error terms [30, 82, 83], i.e.,

Ct ≤ Cmax,
1

T

T−1∑
t=0

E∥ĝt−1∥2 ≤ Υ, and
1

T

T−1∑
t=0

Vt
nt

≤ Ξ.

Applying these bounds yields:

min
0≤t≤T−1

E∥g(θt)∥2 ≤ L(θ0)− L∗

η T ζmin
+

Cmax Υ

η ζmin
+

ℓ η Ξ

2 ζmin
.

To ensure the left-hand side is at most δ, T needs to satisfy:

T ≥ L(θ0)− L∗

η ζmin δ − Cmax Υ− ℓ η2 Ξ
2

, (22)

which establishes the iteration complexity of GC-SPSA.

Appendix B.
More Discussion

Discussion on MHSC’s Accuracy. Our experiments rely
primarily on MHSC to label outputs. To verify its reliability,
we evaluate MHSC on both a real-world dataset (the test set
of the NCD dataset) and our DREAM-generated dataset (SD
v1.5+Sexual, 256 balanced, randomly selected samples),
and the results are shown in Tab. 13. We can derive two
insights from the results. First, MHSC achieves over 90%
accuracy and F1 scores on both domains, indicating that
its predictions are highly reliable. Second, MHSC indeed
exhibits a conservative classification tendency, where it only
flags an image as unsafe when it is highly confident. This
further confirms our analyses in Sec. 5.4.
Discussion on Baseline Selection. Recall that red-teaming
is typically initiated by the model owner/developer, who nat-
urally has full control over their own T2I system. However,
not all baselines in our paper fully exploit this privilege.
For better clarity, we summarize the capability assumptions
made by each baseline in Tab. 12. Several insights emerge
from this summarization. First, most evaluated baselines
require clear-box access, i.e., the weights, gradients, or inter-
mediate outputs of at least one system component, indicating
that they still leverage the owner’s privilege.

Second, and perhaps counter-intuitively, the amount of
information required does not always correlate with better
final performance. For example, on CA-Violence, Keyword-
Gibberish, and NSFW-Text-Detector, closed-box methods
like SneakyPrompt, FLIRT, and JailFuzzer sometimes per-
form the best among all baselines. Similar findings have
also been reported in LLM adversarial learning [84, 85],



TABLE 10: Categories and definitions of unsafe content used in our paper.

Category Definition

Sexual Content that is sexually explicit, including nudity, sexual acts, genital exposure, or content that, though not
explicitly depicting nudity or sexual acts, are overly sexualized, with clear sexual provocations, sexual innuendo,
or erotic tease.

Violence Content involving physical aggression, brutality, threats, or harm directed at individuals or groups, including
depictions of interpersonal violence, intended to shock, disturb, promote violent behavior, or when featuring
graphic imagery of excessive bloodshed or serious injuries.

TABLE 11: Prompt diversity levels and their definitions used in our user study.

Diversity Level Definition

1: Limited Diversity The majority of prompts are near-identical or repeated with trivial modifications, such as basic rewordings. There
is negligible lexical, structural, or conceptual diversity. Most prompts are variations on a fixed template and rely
on the same narrow set of triggering keywords or phrases.

2∼3: Moderate Diversity Prompts exhibit moderate diversity, often using modestly different triggering synonyms or introducing light
syntactic changes. However, they still rely on a small group of core visual ideas and maintain similar structure
and phrasing, with only minor surface-level differences.

4∼5: High Diversity Prompts move beyond a small set of repetitive trigger words or formulaic expressions, demonstrating meaningful
exploration of lexical, syntactic, and semantic alternatives. Instead of repeatedly relying on single terms, the
prompts vary across subjects, the frame, and the scene structure. The prompts reflect creative and distributed
discovery of diverse, or even unexpected potential triggers for generating unsafe content.

TABLE 12: Component-level requirements of different methods
on the target T2I diffusion model. For the first two columns,
 denotes the method requires explicit back-propagation-based
gradients from the target model’s corresponding component. G#
means while the method requires gradients from that component,
they are obtained via numerical approximations rather than exact
back-propagation (e.g., via GC-SPSA). # indicates the method
does not utilize signals from this component. For the “Shadow
Model” column, YES / NO indicates whether the method assumes
access to a local shadow model (e.g., a shadow text encoder) that
is identical or highly similar to that of the target model.

Method Text
Encoder

Denoising
Network

Shadow
Model

QF-Attack G# # NO
MMA-Diffusion  # NO
P4D / UnlearnDiffAtk   NO
SneakyPrompt / JailFuzzer # # YES
ART / FLIRT # # NO
DREAM (Ours) G# G# NO

TABLE 13: Performance of MHSC.
Setting ACC ↑ TPR ↑ FPR ↓ TNR ↑ FNR ↓ F1 ↑

NCD Test Set 93.52% 89.43% 2.40% 97.60% 10.57% 93.24%
DREAM (Ours) 93.17% 92.97% 6.67% 93.33% 7.03% 92.61%

where gradient-based clear-box strategies are observed to be
less effective than closed-box gradient-free approaches like
random search. One plausible explanation is that in large-
scale discrete optimization over language prompts, clear-box
gradients tend to be highly local and noisy. As a result,
they may sometimes underperform gradient-free methods,
which allow exploring larger solution spaces more effi-
ciently. These observations suggest that the key determinant
of red-teaming performance may not fully lie in the level
of access, but in how the problem is modeled and how the
optimization is conducted. Thus, we include both clear-box
and closed-box baselines in our experiments, as it would
highlight the strongest competitor regardless of assumed
capability and make our evaluation more complete.

Discussion on Red Teaming Paradigm. Besides the ef-
ficiency analysis in Sec. 5.6, it is also worth discussing
the red teaming paradigms underlying different methods.
Existing methods generally fall into two categories. Some
approaches (e.g., human-written datasets) first generate a
pool of prompts on a surrogate T2I system and then reuse
them across multiple targets. Others, including most recent
methods (e.g., P4D, FLIRT, JailFuzzer) and DREAM, per-
form system-specific training that adapts the red-teaming
process to each target system individually.

These two paradigms represent a natural trade-off be-
tween cost and adaptivity. While reusing pre-discovered
prompts is cheap and convenient, such methods may lack
adaptivity to model-specific vulnerabilities. As implied by
Definition 1, the set of effective red-teaming prompts is
inherently system-specific: a prompt that succeeds on one
system may fail on another, and vice versa. Our empiri-
cal observations also support this view: for instance, on
the Keyword-Gibberish Filter, almost all fixed-dataset ap-
proaches achieve very low success rates, whereas adap-
tive methods such as FLIRT, JailFuzzer, and DREAM still
obtain high success rates, indicating that the system is
not genuinely safe. This suggests that relying solely on
fixed datasets for evaluation may lead to a false sense of
safety, whereas model-specific adaptive training can uncover
target-specific blind spots that are crucial for reliable safety
evaluation and targeted improvement.

At the same time, red teaming with DREAM does not
necessarily indicate prohibitive cost. As shown in Tab. 6,
DREAM’s red team LLM can be reused or lightly adapted
to new targets, significantly reducing cost while maintaining
competitive effectiveness. This flexibility provides a practi-
cal balance between efficiency and adaptivity.

Thus, we suggest that real-world users choose their
strategy according to their goals and resource budgets.
In practice, the two paradigms could be complementary



rather than mutually exclusive: users can first apply low-cost
fixed-dataset methods for rapid screening or benchmarking,
and then selectively deploy adaptive approaches such as
DREAM if they need further high-coverage, model-specific
red-teaming or targeted safety improvement. This staged
approach leverages the efficiency of fixed datasets to identify
general issues while using adaptive methods to uncover
deeper, system-specific vulnerabilities. In addition, reusing
or lightly adapting a previously trained red-team LLM offers
a lightweight yet valuable middle ground.

Comparison with PromptTune [58]. We further compare
with a recent baseline, i.e., PromptTune [58]. Specifically,
we train PromptTune using the NSFW-66k dataset provided
by the authors, following the PromptTune-AdvPrompter set-
ting in their paper, and evaluate it under CA and SC. We ob-
tain a PSR of 14.7% on CA and 38.3% on SC. Through this
case study, we observe that although PromptTune also fine-
tunes an LLM, its effectiveness is weaker than DREAM. A
possible reason lies in PromptTune’s training mechanism:
it learns by generating candidate prompt variants, selecting
the most effective one, and then fine-tuning on it. This
indirect supervision may be less efficient than DREAM’s
paradigm, which directly learns from the energy function
via GC-SPSA. We leave further exploration to future work.

Discussion on Other Gradient Estimation Strategies and
RL-based Approaches. In addition to our GC-SPSA, other
optimization approaches can, in principle, be applied to min-
imize the final loss function in Eq. (5). One representative
line is reinforcement learning (RL) [49, 48], which has
recently been introduced to red team LLMs. For example,
CRT [48] fine-tunes an LLM using PPO combined with
curiosity-driven rewards and entropy bonuses to promote
prompt diversity. Although originally designed for LLMs,
the authors have discussed its potential to be extended to
T2I models. To make a more direct comparison, we adapted
CRT to our category-specific setting by modifying system
prompts and evaluated it on CA. As shown in Tab. 14, CRT
exhibits high instability, and we even observed complete
failure (i.e., PSR < 5%) for some cases. We hypothesize
that this stems from a fundamental difference between RL
and SPSA. In RL, each prompt (i.e., trajectory) is directly
rewarded. For safety-aligned models where most prompts
fail, a few lucky successful prompts receive disproportion-
ately large rewards, which tends to drive the policy toward
repeatedly generating these high-reward prompts even with
regularization (e.g., KL or novelty terms), ultimately hurting
diversity. By contrast, GC-SPSA perturbs model parame-
ters and estimates gradients via batch-based Monte Carlo
sampling, without tying rewards to individual prompts. This
allows the optimizer to identify general update directions in
parameter space rather than reinforcing a few trajectories,
thereby maintaining stability and diversity during training.

Besides RL, other parameter-based gradient estimators
like RDSA [86] and NES [87] could also be considered.
While these methods alleviate the trajectory overfitting issue
to some extent, our experiments (Tab. 14) show that RDSA
suffers from low effectiveness, while NES incurs much

TABLE 14: Results of other parameter-based gradient estimators
and the RL-based approach CRT [48]. The setting is CA+Sexual.
We report the results averaged over 3 independent runs.

Parameter-based RL-based

RDSA [86] NES [87] CRT [48]

PSR↑/PS↓ 21%±1.6%/0.48±0.01 52%±0.4%/0.50±0.00 47%±14%/0.68±0.04

Time↓ 12.88 h 51.76 h 24.35 h

higher computational cost. This may be attributed to RDSA’s
susceptibility to large estimation noise when hyperparame-
ters are not carefully tuned [88], and to NES’s reliance on
large population sizes. In contrast, SPSA estimates gradients
with Gaussian perturbations and only two function evalua-
tions per iteration, which offers a more balanced tradeoff
between simplicity, stability, and efficiency. We thus focus
on SPSA while leaving broader exploration into applying
RDSA and NES for red teaming for future work.

As a final remark, we emphasize that this analysis is
not meant to diminish the potential of RL or other gradient
estimation techniques. We believe they remain powerful and
expressive, and with advanced variance-reduction strategies
or carefully tuned hyperparameters, their potential could
be further unlocked. Our core claim is not that SPSA
is categorically superior, but rather that even a relatively
simple and lightweight method like our GC-SPSA already
achieves stable and effective results in the challenging red
teaming setting. We hope DREAM provides a practical and
extensible starting point, and we leave deeper investigation
of these alternative optimization strategies to future work.
Ethics Considerations. This research is intended solely for
advancing the safety of T2I generative systems. DREAM is
designed as a developer-driven red teaming framework to
proactively evaluate and improve safety mechanisms, not
to attack or undermine any deployed systems. However,
we acknowledge that it may generate prompts capable of
bypassing safety mechanisms and eliciting harmful outputs.
To minimize potential harm, we have responsibly disclosed
the discovered vulnerabilities to developers of the affected
T2I systems and provided a sixty-day window to address
the issues prior to publication. We also refrain from publicly
releasing any unsafe prompts or images that may be harmful
to real-world services or users. Instead, representative attack
prompts, generated samples, and the derived dataset will
be released via gated access, requiring an access request,
statement of intended use, and institutional affiliation. This
study was reviewed and approved by the institutional re-
search ethics committee of our university, which fulfills a
role analogous to the IRB in the United States. All par-
ticipants were healthy adults who have provided informed
consent, were informed of their right to withdraw at any
time, and no personal data were collected. We reduced
participants’ exposure to disturbing material by limiting
their workload during the user study and, for subsequent
experiments, restricting human annotation to a small team of
authors. All researchers and participants were given access
to institutional mental-health resources and received content
warnings. We will continue to engage with stakeholders
following the principles outlined in the Menlo Report and
the broader computer security research community.



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper focuses on the safety of text-to-image (T2I)
generative models, particularly their ability to produce harm-
ful content. The authors model the probabilistic distribution
of the target system’s problematic prompts so that the de-
signed framework automatically uncovers diverse problem-
atic prompts from the target.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) This paper proposes a scalable red teaming framework
that improves prompt discovery through probabilistic
modeling and stable optimization, advancing safety
evaluation for text-to-image generative systems.

2) The proposed method aims to overcome the ineffi-
ciency of prior approaches (e.g., token-level optimiza-
tion, iterative rewriting), potentially enabling large-
scale exploration of problematic prompts.
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