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Abstract
We consider the question of learnability of distri-
bution classes in the presence of adaptive adver-
saries – that is, adversaries capable of intercepting
the samples requested by a learner and applying
manipulations with full knowledge of the samples
before passing it on to the learner. This stands in
contrast to oblivious adversaries, who can only
modify the underlying distribution the samples
come from but not their i.i.d. nature. We formu-
late a general notion of learnability with respect
to adaptive adversaries, taking into account the
budget of the adversary. We show that learnability
with respect to additive adaptive adversaries is a
strictly stronger condition than learnability with
respect to additive oblivious adversaries.

1. Introduction
In the distribution learning problem, a learner receives i.i.d.
samples from an unknown distribution p belonging to a
known class of distributions C, and is tasked with producing
an accurate estimate of p. Distribution learning is one of
the most fundamental and well studied problems in learning
theory (Kearns et al., 1994; Devroye & Lugosi, 2001); see
also the survey of Diakonikolas (2016).

The above formulation of the problem is referred to as the
realizable case – where the learner can take advantage of
the strong prior knowledge that indeed, the unknown distri-
bution p they receive samples from is precisely a member of
the distribution class C. This assumption is dropped in the
agnostic setting, where the learner must be able to handle
receiving samples from a distribution outside of C, but must
produce an estimate close to the best approximation by a
member of C. An alternative formulation of this requirement
is that the learner must be robust to an oblivous adversary:

An oblivious adversary can modify the unknown dis-
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tribution the learner’s samples come from, with full
knowledge of the learner’s algorithm and p itself, but
cannot change the i.i.d. nature of the samples.

While all realizably learnable classes are agnostically learn-
able in the PAC setting (Vapnik & Chervonenkis, 1971;
Haussler, 1992), the recent study of Ben-David et al. (2023)
demonstrates that there is a separation in the distribution
learning setting. They give an example of a realizably learn-
able class that is not learnable in the presence of an oblivous
adversary. On the other hand, they also provide a positive
result: a realizable learner for a class can be converted to
a learner robust to oblivious adversaries restricted to only
additive corruptions.1

It is a natural question to consider how the situation changes
in the presence of an adaptive adversary:

An adaptive adversary receives i.i.d. samples drawn
from the unknown distribution p, and can modify indi-
vidual samples with full knowledge of the samples, the
learner’s algorithm, and p itself.

Indeed, the study of robustness with respect to adaptive
adversaries is increasingly relevant to modern settings that
examine machine learning algorithms from a worst-case,
security perspective (Chen et al., 2017; Carlini & Wagner,
2017; Diakonikolas et al., 2019; Tramèr et al., 2020; Carlini
et al., 2024).

Ben-David et al. (2023) focus entirely on the oblivious set-
ting, and do not investigate the implication of their results
to the adaptive setting. First, it is trivial to observe that their
negative result (learnability does not imply robust learnabil-
ity with an oblivious adversary) carries over to the adaptive
case. This is because adaptive adversaries can simulate
oblivious adversaries, and are thus stronger (see Table 1 for
a full summary of the situation). The remaining unresolved
question is whether their algorithmic results can be extended
to the adaptive setting:

Are realizably learnable distributions learnable in
the presence of an adaptive additive adversary?

1This model is sometimes called Huber contamination.
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Subtractive Additive

Oblivious No Yes
(Ben-David et al., 2023, Theorem 2.1) (Ben-David et al., 2023, Theorem 1.7)

Adaptive No No
⇒: implied by above Answered by this work, Theorem 4.1

Table 1. Does learnability imply learnability with respect to [oblivious|adaptive], [subtractive|additive] adversaries?

The present paper answers this question in the negative. We
show that additive corruptions are strictly more powerful in
the adaptive model than in the oblivious model.

To prove the result, we examine the relationship between
subtractive and additive adversaries, and show that a general
sufficient condition for the existence of adaptive subtractive
adversaries also implies the existence of adaptive additive
adversaries. This close relation between the additive and
subtractive adversaries stands in contrast to the oblivious
setting, where there subtractive adversaries are strictly more
powerful than additive. We show that given an adaptive
subtractive adversary, we can construct an adaptive additive
adversary by inverting the subtractive adversary: instead
of adding sample points that the subtractive learner would
have deleted from a sample from a different distribution.

1.1. Results and techniques

Additive adversaries can only add points, and subtractive
adversaries can only remove points.2

Informally, a class is robustly learnable in the presence of
an adversary if it admits a learner satisfying the following:
given a sufficiently large (corrupted) sample, the learner is
capable of driving error arbitrarily close to α · η, where η
is the fraction of samples added/removed by the adversary,
and α is any absolute constant.

The following is our main result.

Theorem 1.1 (Informal version of Theorem 4.1). There
exists a class of distributions C that is realizably learnable,
yet the class is not robustly learnable in the presence of an
adaptive additive (or subtractive) adversary.

In contrast, recall that the main algorithmic result of Ben-
David et al. (2023) says that every realizably learnable class
is also robustly learnable in the presence of an oblivious
additive adversary.

To obtain this result, we first develop a general technique for
showing that a class is not learnable with respect to adaptive

2We defer a more formal definition of our adversary models to
Section 3.2.

manipulations from an adversary V . This technique, based
on a recent result of Ben-David & Lechner (2025), says the
following:

Theorem 1.2 (Informal version of Theorem 5.2). If for
a class of distributions C, there exists some p ∈ C and a
meta-distribution Q over elements of C, such that

1. dTV(p, q) is bounded below by some constant, for all
q in the support of Q; and

2. A sample S ∼ V (pm) and a sample S′ ∼ V (qm)
where q ∼ Q cannot be reliably distinguished,

then learning C with respect to adversary V is hard.

These results can be found in Section 5. We use this result
to show that in the adaptive case (in contrast to the oblivious
case), additive and subtractive robustness are closely related
(Section 6). In particular, we show that if the conditions
(1.) and (2.) of Theorem 5.2 are satisfied by a class C and a
subtractive adversary Vsub, then C is not robustly learnable
with respect to adaptive additive adversaries (Theorem 6.1).

Next, in Theorem 7.1 we show that fulfilling this condition
for a subtractive adversary Vsub and a class C also implies
the existence of a single adaptive additive adversary Vadd

that is successful against every learner for C; we refer to
such an adversary as a universal adversary.

The main result is first formally introduced in Section 4. We
use a realizably learnable class Cg which was used to show
a separation between agnostic and realizable learnability in
(Ben-David et al., 2023). We then construct a subtractive
adaptive adversary Vsub,η and show that it meets the condi-
tions (1.) and (2.) for Theorem 5.2. We then use our results
from Section 6, to show that this also implies that Cg is not
adaptively additively robustly learnable. In particular, we
also show that there is both, a universal additive adversary
Vadd and a universal subtractive adversary Vsub,η for Cg.
We introduce both the class Cg and the adversary Vsub,η in
Section 4, before delving into technical details. We then
motivate each of the subsequent sections, by the results we
will get for Cg and the adversary Vsub,η within that section.
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We finally prove the main theorem at the end of the paper in
Section 7.1.

2. Related work
As already mentioned, our work directly follows up on,
and addresses an open problem of, Ben-David et al. (2023).
Their work shows that learnability implies robust learn-
ability under an oblivious additive adversary but not under
an oblivious subtractive adversary. They explicitly asked
whether their algorithms which are effective under an oblivi-
ous additive adversary can be extended to handle an adaptive
additive adversary. We answer this question in the negative:
learnability does not imply robust learnability under an adap-
tive additive adversary.

Recent works of Blanc, Lange, Malik, Tan, and
Valiant (Blanc et al., 2022; Blanc & Valiant, 2024) also
study the relationship of adaptive and oblivious adversaries.
They show impressively generic results: for a broad range
of statistical tasks, given an algorithm that works against an
oblivious adversary, this can be converted to an algorithm
that works against an adaptive adversary by simply drawing
a larger dataset and randomly subsampling from it. This
seems to suggest that any distribution which is learnable un-
der an oblivious adversary should also be learnable under an
adaptive adversary, which would contradict our main result.
However, there is no contradiction: the size of the “larger
dataset” their approach requires depends logarithmically on
the support size of the distribution, and we focus on distribu-
tions with unbounded support. Thus our results imply that
some dependence on the domain size is unavoidable for this
reduction to go through for the task of distribution learning.

One recent work of Canonne et al. (2023) shows a gap
between the sample complexity of robust Gaussian mean
testing with adaptive and oblivious adversaries: they show
that the adaptive adversary is strictly more powerful, neces-
sitating an increase in the sample complexity. Their focus is
on a testing problem, whereas we study a distribution learn-
ing problem. They show a polynomial gap in the sample
complexity for a natural problem, whereas we show an infi-
nite gap in the sample complexity of a somewhat contrived
problem.

Robustness is a traditional topic of study within the field of
Statistics, see, for example, the classic works (Tukey, 1960;
Huber, 1964). Within Computer Science, distribution learn-
ing has been studied since the work of Kearns et al. (1994),
inspired by Valiant’s PAC learning model (Valiant, 1984).
Many subsequent works have studied algorithms for learn-
ing particular classes of distributions, see, e.g., (Chan et al.,
2013; 2014a;b; Li & Schmidt, 2017; Ashtiani et al., 2020).
A recent line of work, initiated by (Diakonikolas et al.,
2016; Lai et al., 2016), studies computationally-efficient

algorithms for robust estimation of particular classes of mul-
tivariate distributions, see, e.g., (Diakonikolas et al., 2017;
Steinhardt et al., 2018; Diakonikolas et al., 2018; Kothari
et al., 2018; Hopkins & Li, 2018; Diakonikolas et al., 2019;
Liu & Moitra, 2021; 2022; Bakshi et al., 2022; Jia et al.,
2023) and (Diakonikolas & Kane, 2022) for a reference. We
focus on understanding broad and generic connections be-
tween learnability and robust/agnostic learnability, without
consideration for computation, in contrast to those works
that focus on computation and particular classes of distribu-
tions.

3. Setup
3.1. Preliminaries

We consider learning over a domain X . We denote the
set of all distributons over X as ∆(X ). We assume an
i.i.d. generating process of sample sets S. If S is a sam-
ple of size m i.i.d. drawn from a distribution p, we will
denote this as S ∼ pm. Furthermore, we note that we
consider samples S to be multi-sets, that is, we consider
samples to be randomly shuffled/order invariant, but assume
that repeated elements are counted. For example, we as-
sume that S = {0, 1, 1} = {1, 0, 1}, but {1, 0, 0} ≠ {1, 0}.
In a slight abuse of notation we will use set-operations
on samples S, again assuming that elements are repeated.
That is {a, b, b, c} ∪ {a, b, d, d} = {a, a, b, b, c, d, d} and
{a, b, b, c} \ {a, b, d, d} = {b, c}.

We let X ∗ =
⋃∞

i=0 X i, where Xm is the set of multi-sets
over X of size m. We usually refer to learning with respect
to a concept class of distributions C ⊂ ∆(X ). Further-
more, we consider distribution learning with respect to total
variation distance dTV : ∆(X ) × ∆(X ) → [0, 1] defined
by

dTV(p, q) = sup
B⊂X :B measurable

|p(B)− q(A)| =

=
1

2

∫
x∈X

|dp(x)− dq(x)|.

We study the PAC learnability of distribution classes in the
presence of adaptive adversaries. We start by giving the
definition of PAC learnability of a class of distribution in the
realizable case, i.e., without the presence of any adversary.

Definition 3.1 ((Realizable) PAC learnability). A class of
distributions C is (realizably) PAC learnable, if there exists a
learner A and a sample complexity function mre

C : (0, 1)2 →
N, such that for every p ∈ C and every ε, δ ∈ (0, 1) and
every m ≥ mre

C (ε, δ), with probability 1− δ,

dTV(A(S), p) ≤ ε

where S ∼ pm.
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3.2. Adaptive adversaries

An adaptive adversary is a function V : X ∗ → X ∗ from
samples to samples.3 We allow this function to be random-
ized. We refer to the probability measure of V (S) by pV (S).
When considering S to be generated by some distribution
pm, we will sometimes refer to the distribution of V (S) by
V (pm) in a slight abuse of notation.

We now introduce two main classes of adaptive adversaries,
additive adversaries, who can only add additional sample
points S′

1 to the sample, i.e., Vadd(S) = S∪S′
1 and subtrac-

tive adversaries, who can only delete some sample points
S′
2 from the input sample, i.e., Vsub(S) = S \ S′

2. We will
also introduce a notion of budget, which limits the amount
of manipulation of an adversary.

Additive adaptive adversaries We say that adaptive ad-
versary V is additive, if for every S ∈ X ∗, we have
S ⊂ V (S). We denote the class of all adaptive additive
adversaries with Vadd.

Subtractive adaptive adversaries We say that adaptive
adversary V is subtractive, if for every S ∈ X ∗, we
have V (S) ⊂ S. We denote the class of all subtractive
adaptive adversaries with Vsub.

In the presence of an adversary, a learner A does not have
direct access to an i.i.d. generated sample S ∼ pm from
ground-truth distribution p ∈ C, but only indirect access via
a manipulated sample V (S).

In general, we can not hope to approximate the ground-
truth distribution p to a total variation distance up to any
ε > 0, but rather, we have to figure in the budget of the
adversary. The budget of an adversary is some function
budget : X ∗X∗

×N → [0, 1] and models their manipulation
capabilities.

In cases, where the power of the adversary amounts to either
adding or deleting instances, but not changing instances in
any other way, the budget amounts to the edit distance. In
general, the budget for an adaptive additive adversary is thus
defined by:

budgetadd : X ∗X∗
× N → [0, 1] is defined by:

budgetadd(V,m) = sup
S∈Xm

|V (S)| − |S|
m

.

Similarly, the budget for a subtractive adversary is defined

3Adaptive adversaries may also make use knowledge of the
underlying sample generating distribution p. We omit this option
for simplicity. Indeed, our main result is slightly stronger than
stated: we show that adversaries that do not make use of knowledge
of p suffice to prevent learning.

by

budgetsub(V,m) = sup
S∈Xm

|S| − |V (S)|
m

.

In this work, we only consider adversaries that have fixed
budgets and furthermore that those budgets are constant.
In particular, we will assume, that for both subtractive and
additive adversaries V , for all m ∈ N and all S1, S2 ∈ Xm

we have |V (S1)| = |V (S2)|. Furthermore, we assume that
for every adversary V there is a constant budget(V ) = η,
such that for every m ∈ N:

ηm− 1 < m · budget(V,m) ≤ ηm.

We can now define robust PAC learning with respect to a
specific adaptive adversary.

Definition 3.2 (adaptive α-robust with respect to adversary
V ). Let α ≥ 1. A class of distributions C is adaptively α-
robustly learnable w.r.t. adversary V , if there exists a learner
A and a sample complexity function mV,α

C : (0, 1)2 → N,
such that for every p ∈ C, every ε, δ ∈ (0, 1) and every
sample size m ≥ mV,α

C (ε, δ) with probability 1− δ,

dTV(A(V (S)), p) ≤ α · budget(V ) + ε.

If a class C is not α-robustly learnable with respect to adver-
sary V , we say that V is a universal α-adversary for C, as
every learner for C fails against V .

In general, learners want to defend against more than one
potential adversary, since a priori, they may not know the
adversary’s strategy. Thus in the next definition we define
learnability with respect to a class of adversaries. One can
also think of this as a strengthening of the adversary, as here
the learner needs to choose the learning rule first, and the
adversary can adapt their strategy to the selected learning
rule.

Definition 3.3. Let α ≥ 1. A class of distributions C is adap-
tively α-robustly learnable w.r.t. a class of adversaries V , if
there exists a learner A and a sample complexity function
mV,α

C : (0, 1)2 → N, such that for every p ∈ C and every
V ∈ V and every ε, δ ∈ (0, 1) and every m ≥ mV,α

C (ε, δ),
with probability 1− δ,

dTV(A(V (S)), p) ≤ α · budget(V ) + ε.

We say a class C is adaptively additively α-robustly learn-
able if C is α-robustly learnable with respect to the class of
adversaries Vadd. We say a class C is adaptively subtrac-
tively α-robustly learnable if C is α-robustly learnable with
respect to the class of adversaries Vsub.
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4. A realizable class with an adaptive
adversary

In this section, we formally introduce the main result of this
paper: there are classes of distributions which are learnable
in the realizable case but not learnable in the presence of
either adaptive additive or adaptive subtractive adversaries.
Since learnability in the realizable setting also implies learn-
ability with an oblivious additive adversary (Ben-David
et al., 2023), this result also implies a separation between
learnability with respect to oblivious and adaptive adver-
saries in the additive case.

In this section, we give the formal statement of the main
result (Theorem 4.1). We also describe Theorem 4.1’s sub-
ject distribution class Cg , and argue it is realizably learnable.
Finally, we introduce a subtractive adversary Vsub,η for the
class. In subsequent sections we will use this adversary to
prove the remaining parts of Theorem 4.1, which we now
state.

Theorem 4.1. For every superlinear function g : R → R,
there is class Cg , such that

• Cg is realizably learnable with sample complexity
mre

Cg
(ε, δ) ≤ log

(
1
δ

)
g
(
1
ε

)
• For every α ≥ 1, Cg is not adaptively additive α-

robustly learnable. Moreover, for every α ≥ 1, there is
an adaptive additive adversary Vadd, that is a universal
α-adversary for Cg .

• For every α ≥ 1, Cg is not adaptively subtractively
α-robustly learnable. Moreover, for every α ≥ 1, there
is an adaptive subtractive adversary Vsub, that is a
universal α-adversary for Cg .

Introducing class Cg . Theorem 4.1 uses the class Cg from
Ben-David et al. (2023) that was used to show a separation
between realizable and agnostic learning.4

For this let {Bi ⊂ N : Bi is finite} be an enumeration of
all finite subsets indexed by i ∈ N. Now for constants
j, k ∈ N, we define the following distribution as a mixture
of two point masses δ(0,0) and δ(i,j) centered at (0, 0) and
(i, j) respectively, and a uniform distribution over the set Bi

denoted by UBi
:

pi,j,k =(
1− 1

j

)
δ(0,0) +

(
1

j
− 1

k

)
UBi×{2j+1} +

1

k
δ(i,2j+2).

Now for a function g : N → N, we define the class

Cg = {pi,j,g(j) : i ∈ N, j ∈ N}.
4This class is denoted Qg in (Ben-David et al., 2023).

Cg is realizably learnable. We first note that this class
is realizably learnable, using results from Ben-David et al.
(2023).

Lemma 4.2 (Claim 3.2 from Ben-David et al. (2023)). For
every monotone function g : N → N, the class Cg is learn-
able with sample complexity

mre
Cg
(ε, δ) ≤ log

(
1

δ

)
g

(
1

ε

)
.

The realizable learner is based on the idea, that for every dis-
tribution the learner only needs to observe a unique indicator
bit in order to perfectly identify the distribution.

Subtractive adversary Vsub,η for Cg We will now intro-
duce a subtractive adversary Vsub,η for Cg . The properties of
this adversary will then be used in later sections of the paper
to show that Cg is neither adaptive additive nor adaptive
subtractive robustly learnable.

For a sample S, we partition S into the non-indicators
constants(S) = {(0, 0) ∈ S} and odds(S) = {(o, 2j +
1) ∈ S : o, j ∈ N} and indicators ind(S) = {(i, 2j + 2) ∈
S : i, j ∈ N}, i.e. S = constants(S) ·∪ odds(S) ·∪
ind(S). We further denote non-indicators noind(S) =
constants(S) ∪ odds(S). Note that S, constants(S),
odds(S), noind(S), and ind(S) are all multisets and thus
repetitions of elements are counted.

We now define the subtractive adversary Vsub,η : X ∗ → X ∗

as the adversary that removes from S as many elements
belonging to ind(S) as possible while meeting the budget
constraint budget(Vsub,η) ≤ η. If there are no elements in
ind(S) left to remove, Vsub,η chooses to remove elements
randomly to match the budget. Formally,

Vsub,η(S) =



choose(noind(S), (1− η)|S|)
, if |ind(S)| ≤ η|S|

noind(S) ∪
choose(ind(S), |ind(S)| − η|S|)

, if |ind(S)| > η|S|

,

where choose(S, n) is the random variable, which selects
a uniformly chosen random subset S′ ⊂ S of size n. It
is easy to see that Vsub,η is a subtractive adversary with
budgetsub(Vsub,η) = η.

In the following section, we introduce the notion of an
adversary successfully confusing samples generated from
members of Cg to show that an adversary is a universal α-
adversary. We then show that for every α ≥ 1, there exists
η ∈ (0, 1), such that Vsub,η satisfies this notion, and hence
is indeed a universal α-adversary for Cg . We then also show
that this condition implies that Cg is not adaptive additive
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α-robustly learnable (Section 6). Moreover, using the same
condition, we show that for every α ≥ 1, there exists a
universal additive α-adversary for Cg (Section 7). The proof
of Theorem 4.1 can be found in Section 7 at the end of the
paper.

5. General technique for showing distribution
classes cannot be learned adaptively

In this section, we will show a general lower bound for
learning in the presence of adaptive adversaries. We intro-
duce the notion of an adversary V or a pair of adversaries
(V1, V1) successfully confusing samples generated from a
class C and show that this condition is sufficient to show a
class C cannot be learned in the presence of adversary V
(or pair of adversaries (V1, V2), respectively). Essentially,
the result shows that if adversaries can make samples from
certain random distributions defined over C sufficiently in-
distinguishable, the adversary can also fool any learner. To
state the definition of successfuly confusing a C-generated
sample, we introduce some notation.

For a distribution Q over a class of distributions C, let |Q|m
denote the distribution over Xm that results from first sam-
pling q ∼ Q and then S ∼ qm. Furthermore, let supp(Q)
denote the support of Q. In the following we will pick
distributions p ∈ C and Q ∈ ∆(C) such that for every
q ∈ supp(Q) the total variation distances dTV(p, q) are
upper bounded by some constant.

If for such distributions p and Q there are adaptive adver-
saries V1, V2 that can make the sample distributions V1(p

m)
and V2(|Q|m) sufficiently hard to distringuish, then the class
C is not robustly learnable with respect to {V1, V2}. To show
this, we introduce the following notion:

Definition 5.1. Let C be a class of distributions. We say a
pair of adversaries (V1, V2) successfully (γ, ζ)-confuses C-
generated samples of size m if there is a distribution p ∈ C
and a meta-distribution Q ∈ ∆(C) with

• for all q ∈ supp(Q) we have dTV(p, q) > γ

• dTV (V1(|Q|m), V2(p
m)) < ζ.

If V1 = V2, we also say V1 successfully (γ, ζ)-confuses
C-generated samples of size m.

Successful adversaries have large γ and small ζ. We now
state the main theorem of this section which shows that if
adversaries successfully confuse C-generated samples for
every size m, then C is not robustly learnable with respect
to those adversaries.

Theorem 5.2. Let C be a class of distributions and
V ⊃ {V1, V2} a set of adaptive adversaries with budgets

budget(V1) = η1 and budget(V2) = η2. Let γ′, ζ ∈ (0, 1)
and define

γ = 2αmax {η1, η2}+ 2γ′.

If for every m ∈ N the pair of adversaries (V1, V2) success-
fully (γ, ζ)-confuses C-generated samples of size m, then C
is not α-robustly learnable with respect to V .

Furthermore, if V1 = V2, then V1 is a universal α-adversary
for C.

We show this result by the following lemma which makes
the same claim for a fixed sample size m.

Lemma 5.3. Let C be a class of distributions, let A be a
learner and (V1, V2) a pair of adversaries that successfully
(γ, ζ)-confuses C-generated samples of size m.

Then for every learner A, there is r ∈ C, such that

PS∼rm

[
dTV(A(V1(S)), r) >

γ

2

]
≥ 1

2
− ζ

2

or

PS∼rm

[
dTV(A(V2(S)), r) >

γ

2

]
≥ 1

2
− ζ

2
.

Lemma 5.3 is a corollary of a result of Ben-David & Lechner
(2025), which makes the connection between the indistin-
guishability of the sample distributions |Q|m and pm, and
hardness of learning. For completeness, we include the full
proof of Lemma 5.3 in Appendix A.1, but we note that it
follows the exact same argument as the proof of the cited
result.

Lemma 5.4 (Lemma 4 of Ben-David & Lechner (2025)).
Let C1, C2 be such that for all q ∈ C1 and all p ∈ C2, we have
dTV(p, q) > γ. If there is a distribution Q over C1 and p ∈
C2 such that for ζ ∈ (0, 1/2) we have dTV(|Q|m, pm) < ζ,
then for ever learner A, there is r ∈ C1 ∪ C2, such that

PS∼rm

[
dTV(A(S), r) >

γ

2

]
≥ 1

2
− ζ

2
.

The proof of both Lemma 5.3 and Theorem 5.2 can be found
in the appendix. Furthermore, in Appendix B we give an
example which illustrates how these lemmas can be applied.
A similar intuition to that example is used in the next section
to show that Vsub,η successfully confuses Cg .

5.1. Vsub,η is universal adversary for Cg

In this subsection we show that for every α ≥ 1 there is
η ∈ (0, 1), such that Vsub,η is a universal α-adversary for
Cg (recall the constructions of these objects as described
in Section 4). We will first show that Vsub,η successfully
confuses Cg-generated samples and then apply Theorem 5.2.
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Lemma 5.5. For every α ≥ 1, there is η, γ′ ∈ (0, 1), such
that for the subtractive adversary Vsub,η the following holds:
For every m ≥ 1 there are distributions p ∈ Cg and Q ∈
∆(Cg) such that

• for every q ∈ supp(Q):

dTV(p, q) ≥ 4α · budget(Vsub,η) + 4γ′

• dTV(Vsub,η(p
m), Vsub,η(|Q|m)) ≤ 1

8 .

Proof sketch. We first note that for p = pi,j,k where |Bi| =
22

n

is arbitrary and Di,n,j,k = {pi′,j,k : Bi′ ⊂ Bi : |Bi′ | =
2n}, we have that for every q ∈ Di,n,j,k

dTV(p, q) ≥
(
1

j
− 1

k

)
dTV(UBi×2j , UBi′×2j)

≥ 1

2

(
1

j
− 1

k

)
.

Furthermore, consider Q = UDi,n,j.k
. We note that the

distributions Vsub,η(p
m) and Vsub,η(|Q|m) are both distri-

butions over multisets S′ = constants(S′) ∪ odds(S′) ∪
ind(S′). We further note that the distributions of the
count of each of those subsets are the same for both
S′ ∼ Vsub,η(p

m) and S′ ∼ Vsub,η(|Q|m). Furthermore,
since all elements of constants(S′) are the same, we also
have that the probability distributions of constants(S′) are
the same for both S′ ∼ Vsub,η(p

m) and S′ ∼ Vsub,η(|Q|m).
We also observe that the distributions for odds(S′) condi-
tioned on S′ ∼ Vsub,η(p

m) and S′ ∼ Vsub,η(|Q|m) are the
same, if odds(S′) does not contain any repeated elements.
Lastly, we note that while the indicators of samples from p
and samples from Q differ, the adversary Vsub,η deletes all
these elements, if |ind(S)| does not exceed η|S|.

Taking all of these observations together, we can bound
the total variation distance in terms of repeating elements
in odds(S) and the probability that |ind(S)| exceeds the
budget of the adversary.

dTV(Vsub,η(p
m), Vsub,η(|Q|m))

≤ PS∼pm [odds(S) contains repeated elements]
+ PS∼|Q|m [odds(S) contains repeated elements]
+ PS∼pm [|ind(S)| > η|S|]
+ PS∼|Q|m [|ind(S)| > η|S|].

The first two terms can each be upper bounded by 1 −(
1− m

2n

)m
using the birthday paradox. The last two terms

can each be upper bounded by

PS∼pm [|ind(S)| > η|S|] + PS∼|Q|m [|ind(S)| > η|S|]

≤ 2 · PX∼Binom(m,
1

k
)
[
X − E[X] ≥ ηm− m

k

]
,

≤ 2 exp

(
−
2(ηm− m

k )
2

m

)
using Hoeffding’s inequality.

Since we are considering distributions in Cg, we note that
the distributions Di,n,j,k need to be of the form Di,n,j,g(j).
We now want to argue that for appropriate choices of j and
η (both independent of m), as well as for n given m, the
inequalities of the theorem are satisfied. First, we note that
since g grows faster than linear, for every constant c > 1
it is possible to pick j in such a way that it satisfies the
inequality

g(j) ≥ 40cαj.

Given such j, we then pick η = c
g(j) and γ′ = α

g(j) . This
ensures, that for every n ∈ N and every q ∈ Di,n.j,g(j), we
get

dTV(p, q) ≥
1

2

(
1

j
− 1

g(j)

)
= 4αη + 4γ′.

Now, let us choose c >
√

5g(j)2

2 + 1. Then, for every

m ≥ 1 ≥ 5g(j)2

2(c−1)2 , if we choose n ≥ m
1−(1− 1

32 )
1/m , we get

dTV(Vsub,η(p
m), Vsub,η(|Q|m))

≤ 2 exp

(
−2m

(
c− 1

g(j)

)2
)

+ 2
(
1−

(
1− m

2n

)m)
≤ 1

8
.

The full proof with all the calculations can be found in the
appendix.

6. Subtractive versus additive adaptive
adversaries

In this section, we will show that unlike in the oblivious case,
additive and subtractive adaptive adversaries are closely re-
lated. In particular, we show that if there is a universal
subtractive adversary Vsub that successfully (γ, ζ)-confuses
C-generated samples of size m, then there is a pair of addi-
tive adversaries (Vadd,pm , Vadd,|Q|m) that also successfully
(γ, ζ)-confuses C-generated samples of size m.

7
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Theorem 6.1. Let C be a class of distributions. Let Vsub

be an adaptive subtractive adversary. Let ζ ∈ (0, 1) be a
constant, p ∈ C a distribution, and Q a distribution over
elements in C such that dTV (Vsub(|Q|m), Vsub(p

m)) < ζ.
Then there are additive adversaries Vadd,pm and Vadd,|Q|m

with dTV(Vadd,pm(|Q|m), Vadd,|Q|m(pm)) < ζ. Further-
more, if Vsub has a fixed constant budget of η < 1

2 , then
both Vadd,|Q|m and Vadd,pm have fixed constant budgets of
no more than η.

In other words, we argue that, if there is an element
p ∈ C and a meta distribution Q over C that can
be made hard to distinguish by a subtractive adver-
sary Vsub, i.e., dTV(Vsub(|Q|m), Vsub(p

m)) < ζ, then
this adversary can be used to construct additive ad-
versaries Vadd,|Q|m and Vadd,pm , such that the result-
ing additive sample distributions are equally close, i.e.,
dTV((Vadd,|Q|m(pm), Vadd,pm(|Q|m)) < ζ.

Proof sketch. While adversaries act on samples drawn from
two different distributions to make the manipulated sample
distributions close, we will first give an illustration in terms
of manipulating simple point-sets Spm ∼ pm and S|Q|m ∼
|Q|m.

Roughly speaking, a successful subtractive adversary can
remove part of the first sample Spm and part of the sec-
ond sample S|Q|m to leave behind a common set Score =
Vsub(Spm) = Vsub(S|Q|m) ⊂ Spm ∩ S|Q|m . We can view
the generative process of Spm to be a sample Score com-
bined with a sample Spm \Score, and the generative process
of S|Q|m to be a sample Score combined with a sample
from S|Q|m \ Score. Hence to confuse the learner, the ad-
ditive adversaries just needs to add the “opposite piece,”
i.e., Vadd,Qm is mapping Spm = Score ∪ (Spm \ Score) to
Score∪ (Spm \Score)∪ (S|Q|m \Score) and Vadd,pm is map-
ping SQm = Score∪(SQm\Score) to Score∪(SQm\Score)∪
(Spm \ Score). Thus, if a pair of samples Spm and S|Q|m

could be made indistinguishable by a subtractive adversary
Vsub, then they can also be made indistinguishable by a pair
of adversaries Vadd,|Q|m and Vadd,pm .

Now we want to lift this intuition from samples to a more
rigorous discussion of distributions. We note that if the
subtractive adversary Vsub is successfully confusing distri-
butions pm and |Q|m, then there is a distribution pcore of
common sets Score ∼ pcore that is close to both Vsub(p

m)
and Vsub(|Q|m) in total variation distance. Now, due to
Vsub(p

m) and pcore being close, most samples in Spm ∼ pm

can successfully be generated in an alternative way by first
sampling Score ∼ pcore and then reversing the subtractive
adversary Vsub to generate Spm = Score ∪ (Sp \ Score) =
V −1
sub,pm(Score). In order to successfully reverse Vsub we

also need access to a prior distribution that generated the
input samples for the adversary Vsub. If we have a prior

distribution pm, we can define V −1
sub,pm(Score) as the con-

ditional distribution of S, given Vsub(S) = Score, i.e., for
every measurable subset B ⊂ X :

PS∼V −1
sub,pm

(Score)
[S ∈ B] =

PS∼pm [S ∈ B|Vsub(S) = Score].

Similarly, we can make the same observations for |Q|m and
define the reversed adversary V −1

sub,|Q|m equivalently. The
additive adversaries Vadd,|Q|m and Vadd,pm are now defined
by

Vadd,|Q|m(S) = V −1
sub,|Q|m(Vsub(S)) ∪ (S \ Vsub(S))

and

Vadd,pm(S) = V −1
sub,pm(Vsub(S)) ∪ (S \ Vsub(S)).

Now, since both Vsub(p
m) and Vsub(|Q|m) are close to

pcore, the distributions Vadd,|Q|m(pm) and Vadd,pm(|Q|m)
are both close in TV-distance to the distribution of samples

Vadd,|Q|m(Score) ∪ Vadd,pm(Score) \ Score,

where Score ∼ pcore. In particular, the only difference
between Vadd,|Q|m(pm) and Vadd,pm(|Q|m) can be under-
stood as differences in the sampling of Score, as given
Score, the distribution of additional samples is the same in
both cases. Thus, dTV(Vadd,|Q|m(pm), Vadd,pm(|Q|m)) ≤
dTV(Vsub(p

m), Vsub(|Q|m)) < ζ.

This intuition is made rigorous in the full proof of Theo-
rem 6.1 in the appendix.

As a corollary of the above theorem, we can state a simple
condition for a class C and a subtractive adversary Vsub, that
implies hardness for both adaptive additive and adaptive
subtractive robust learning.

Corollary 6.2. Let C be a class of distributions and Vsub

be an adaptive subtractive adversary with a budget with
budgetsub(Vsub) = η. If there are constants 0 < γ′, ζ < 1,
such that for every m ∈ N, the adversary Vsub successfully
(2αη + 2γ′)-confuses C-generated samples of size m, then
C is neither adaptively subtractive α-robustly learnable, nor
adaptively additive α-robustly learnable.

Proof. This corollary directly follows from Theorem 6.1
and Theorem 5.2.

Corollary 6.3. For every α > 1, the class Cg is not adap-
tively α-robustly learnable.

Proof. This corollary follows directly from Corollary 6.2
and Lemma 5.5.

8



On the Learnability of Distribution Classes with Adaptive Adversaries

While this already shows a separation between adaptive and
oblivious additive robustness, before finally proving Theo-
rem 4.1, we first need to show the existence of a universal
adaptive additive adversary.

7. Universal Additive Adversaries
In this section, address the existence of universal adaptive
additive adversaries. We know from Theorem 5.2 that if
a single adaptive subtractive adversary Vsub successfully
confuses C-generated samples of all sizes, then Vsub is a
universal adversary for C. Moreover, we have seen in The-
orem 6.1 that the existence of such a single subtractive
adversary also implies the existence of a pair of adaptive
additive adversaries that successfully confuses C-generated
examples and thus also shows that C is not adaptively addi-
tively learnable. However, these results do not yet show the
existence of a universal adaptive additive adversary for C.
In the following theorem, we will show that the existence of
a subtractive adversary Vsub that successfully confuses C-
generated samples also implies the existence of an adaptive
additive universal adversary for C, albeit one with a higher
budget than Vsub.

Theorem 7.1. Let C be a class of distributions. Let Vsub be a
adaptive subtractive adversary. Let ζ ∈ (0, 1) be a constant,
p ∈ C a distribution and Q a distribution over elements
in C such that: dTV(Vsub(|Q|m), Vsub(p

m)) < ζ. Then
for every k ∈ N there is an adaptive additive adversary
Vadd,k with dTV(Vadd,k(|Q|m), Vadd,k(p

m)) < ζ + 1
k+1 .

Furthermore, if Vsub has a fixed constant budget of η < 2
k ,

then Vadd,k has a fixed constant budget of no more than kη.

Proof sketch. Given a subtractive adversary Vsub as before,
the additive adversary obtains new samples by first applying
Vsub to obtain a subset S′ = Vsub(S) ⊂ S. We then again
use the reverse mappings V −1

sub,pm and V −1
sub,|Q|m to obtain

new sample points. However, now, in contrast to the previ-
ous theorem, the idea is not to apply V −1

sub,pm or V −1
sub,|Q|m

just once for their respective distribution. Instead, the ad-
versary makes use of both of these mappings a randomized
number of times. That is, the adversary Vadd,k picks a num-
ber u from {0, 1, . . . , k} uniformly at random. Then, for
every i ∈ [k] it generates a sample S′′

i = V −1
sub,pm(S′) if

i ≤ u and S′′
i = V −1

sub,|Q|m(S′) otherwise. All newly ob-
tained samples are then concatenated with the original S to
produce the output sample

S′′ = S′ ∪ (S \ S′) ∪ (S′′
1 \ S′) ∪ · · · ∪ (S′′

k \ S′).

Now consider the number of different subsamples within
this concatenation that are generated by V −1

sub,pm(S′). This
number is u+1 if the initial sample S was generated by S ∼
pm = V −1

sub,pm(S′) and this number is u if the initial sample

S was generated by S ∼ |Q|m = V −1
sub,|Q|m(S′). The result-

ing total variation distance dTV(Vadd,k(|Q|m), Vadd,k(p
m))

is thus upper bounded by

dTV(Vadd,k(|Q|m), Vadd,k(p
m))

≤ dTV(Vsub(|Q|m), Vsub(p
m))

+ dTV(U{0,1,...,k}, U{1,...,k,k+1})

= ζ +
1

k + 1
.

The full proof can be found in the appendix.

As a result we obtain the following corollary.

Corollary 7.2. Let C be a class of distributions and Vsub

be an adaptive subtractive adversary with constant budget
budgetsub(Vsub) = η. If there are constants 0 < γ, ζ < 1

2 ,
such that for every m ∈ N, Vsub successfully (4αη+4γ′, ζ)-
confuses C-generated samples of size m, then there is a
universal additive α-adversary Vadd,2 for C.

Proof. This corollary directly follows from Theorem 7.1
and Theorem 5.2.

7.1. Proof of Theorem 4.1

We can now prove the main theorem of this paper, Theo-
rem 4.1. A separation between the power of adaptive and
oblivious additive adversaries follows as a corollary.

Proof. From Lemma 4.2 we know that Cg is realizably
learnable with sample complexity function mre

Cg
(ε, δ) ≤

log
(
1
δ

)
g
(
1
ε

)
. From Lemma 5.5 and Corollary 6.2, we can

infer that for every α ≥ 1 there is a universal subtractive
adversary Vsub,η with budget η, such that for every m ∈ N,
Vsub,η is successfully (4αη + 4γ′, ζ)-confusing Cg gener-
ated examples of size m. Finally, from Corollary 7.2, we
get that the above implies that there is a adaptive additive
adversary that has budget 2η and is a universal α-adversary
for Cg .

Since it has been shown that classes that are realizably learn-
able are also learnable in the oblivious additive 3-robust
case, this result shows a separation between learnability be-
tween adaptive additive and oblivious additive learnability.

Corollary 7.3. There is a class C that is (obliviously) ad-
ditive 3-robustly learnable, but for every α ≥ 1, Cg is not
adaptively additive α-robustly learnable.

Proof. This result follows directly from Theorem 4.1 and
Theorem 1.5 of Ben-David et al. (2023).
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A. Proofs
A.1. Proof of Lemma 5.3

Proof. By definition of (γ, ζ)-confusion of C-generated samples of size m, there are distributions p ∈ C and |Q| ∈ ∆(C),
such that

• for every q ∈ supp(Q), we have dTV(p, q) > γ and

• dTV(V1(|Q|m), V2(p
m)) < ζ.

Assume by way of contradiction that there is a learner A such that for every r ∈ C,

PS∼rm

[
dTV(A(V1(S)), r) >

γ

2

]
<

1

2
− ζ

2

and
PS∼rm

[
dTV(A(V2(S)), r) >

γ

2

]
<

1

2
− ζ

2
.

In particular, this means that for p ∈ C, we have

PS∼pm

[
dTV(A(V1(S)), p) ≤

γ

2

]
≥ 1−

(
1

2
− ζ

2

)
=

1

2
+

ζ

2

and

PS∼pm

[
dTV(A(V2(S)), p) ≤

γ

2

]
≥ 1−

(
1

2
− ζ

2

)
=

1

2
+

ζ

2
. (1)

We note that for any p1, p2 with dTV(p1, p2) < d and any predicate F , we have

Px∼p2
[F (x)]− d ≤ Px∼p1

[F (x)] ≤ Px∼p2
[F (x)] + d.

Thus, for meta-distribution Q with dTV(V1(|Q|m), V2(p
m))] < ζ we have,

PS∼|Q|m
[
dTV(A(V1(S)), p) ≤

γ

2

]
≥ PS∼pm

[
dTV(A(V2(S)), p) ≤

γ

2

]
− ζ ≥(1)

1

2
+

ζ

2
− ζ =

1

2
− ζ

2
. (2)

Furthermore, we have

max
q∈supp(Q)

PS∼qm

[
dTV(A(V1(S)), p) ≤

γ

2

]
≥ Pq∼QPS∼qm

[
dTV(A(V1(S)), p) ≤

γ

2

]
=Definition of |Q|m PS∼|Q|m

[
dTV(A(V1(S)), p) ≤

γ

2

]
≥(2)

1

2
− ζ

2
. (3)

Let
qmax = arg max

q∈supp(Q)
PS∼qm

[
dTV(A(V1(S)), p) ≤

γ

2

]
.

Recall that, for every q ∈ supp(Q), we have dTV(p, q) > γ. Thus triangle inequality yields

dTV(A(V1(S)), qmax) + dTV(A(V1(S)), p) > γ.

Thus, dTV(A(V1(S), p)) ≤ γ
2 implies dTV(A(V1(S), qmax)) >

γ
2 , yielding,

PS∼qmax

[
dTV(A(V1(S)), qmax) >

γ

2

]
≥ PS∼qmax

[
dTV(A(V1(S)), p) ≤

γ

2

]
≥(3)

1

2
− ζ

2
.

This contradicts our assumption on A, which proves the claim.

12
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A.2. Proof of Theorem 5.2

Proof. Assume by way of contradiction that there was a successful α-robust learner A with sample complexity mC for C
with respect to V ⊃ {V1, V2}.

Let

δ = min

{
1− ζ

2
, δ′
}

and
ε = min{γ′, ε′ − αmax{η1, η2}}.

Furthermore, let m = mV,α
C (ε, δ).

According to the assumptions of the theorem, we know that the pair (V1, V2) successfully (γ, ζ)-confuses C-generated
samples of size m with

γ = 2α ·max{η1, η2}+ 2γ.

Now consider

α · η1 + ε = α · η1 + γ′

≤ γ

2
.

With the same argument, we have α · η2 + ε ≤ γ
2 . Now using Lemma 5.3, we can infer that there is a distribution r ∈ C

such that either

PS∼rm [dTV(A(V1(S)), r) > α · η1 + ε]

≥ PS∼rm

[
dTV(A(V1(S)), r) >

γ

2

]
≥ 1

2
− ζ

2
= δ.

or

PS∼rm [dTV(A(V2(S)), r) > α · η2 + ε]

≥ PS∼rm [dTV(A(V2(S)), r) >
γ

2
]

≥ 1

2
− ζ

2
= δ.

This is a contradiction to the assumption that A is a α-robust learner of C with respect to V with sample complexity mV,α
C .

Furthermore, if V1 = V2, then V1 is a universal α-adversary.

A.3. Proof of Lemma 5.5

Proof. We will start by making observations for the adversary Vsub,η for arbitrary η > 0, and later discuss how to choose η
for a given α. Similarly, we first start by making observations for general n, i, j, k ∈ N and then discuss appropriate choices
for these numbers.

We first note that for p = pi,j,k with |Bi| = 22
n

and Di,n,j,k = {pi′,j,k : Bi′ ⊂ Bi : |Bi′ | = 2n}, we have that for every
q ∈ Di,n,j,k

dTV(p, q) ≥
(
1

j
− 1

k

)
dTV(UBi×2j , UBi′×2j)

≥ 1

2

(
1

j
− 1

k

)
.

Furthermore, consider Q = UDi,n,j,k
.

13
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We note that the distributions Vsub,η(p
m) and Vsub,η(|Q|m) are both distributions over multisets S′ = constants(S′) ∪

odds(S′)∪ indicators(S′). We note that for any two samples S′
a ∈ X ∗ and S′

b ∈ X ∗ by definitions of constants, odds, ind,
we have

S′
a ∩ S′

b =

(constants(S′
a) ∩ constants(S′

b)) ∪ (odds(S′
a) ∩ odds(S′

b)) ∪ (ind(S′
a) ∩ ind(S′

b)).

Where each of the three sets (constants(S′
a) ∩ constants(S′

b)), (odds(S
′
a) ∩ odds(S′

b)), (ind(S
′
a) ∩ ind(S′

b)) are pairwise
disjoint. We can thus write the total variation distance between Vsub,η(p

m) and Vsub,η(|Q|m) as

dTV(Vsub,η(p
m), Vsub,η(|Q|m))

= dTV(constants(Vsub,η(p
m)), constants(Vsub,η(|Q|m)))

+ dTV(odds(Vsub,η(p
m)), odds(Vsub,η(|Q|m)))

+ dTV(ind(Vsub,η(p
m)), ind(Vsub,η(|Q|m)))

For a distribution P ∈ ∆(X ∗) over sets, we define the distribution count(P ) ∈ ∆(N) by

∀B ⊂ N : count(P )(B) = PS∼P [|S| ∈ B].

We note that the distributions of the count of each of the subsets are the same for both Vsub,η(p
m) and Vsub,η(|Q|m). That

is,
dTV(count(constants (Vsub,η(p

m))), count(constants(Vsub,η(|Q|m)))) = 0,

dTV(count(odds(Vsub,η(p
m))), count(odds(Vsub,η(|Q|m)))) = 0,

and
dTV(count(indicators(Vsub,η(p

m))), count(indicators(Vsub,η(|Q|m))|) = 0.

Furthermore, for two different samples Sa and Sb, constants(Sa) = constants(Sb) if and only if |constants(Sa)| =
|constants(Sb)|. Thus,

dTV(constants(Vsub,η(p
m)), constants(Vsub,η(|Q|m))) = 0.

Furthermore,

PS′∼Vsub,η(pm)[odds(S
′)||odds(S′)| = l and there are no repeated elements in odds(S′)] =

PS′∼Vsub,η(|Q|m)[odds(S
′)||odds(S′)| = l and there are no repeated elements in odds(S′)],

since both |Q|m and pm give equal weights to all subsets of Bi the same size. Lastly, we note that while the indicator of
samples from p and samples from Q differ, the adversary Vsub,η deletes all these elements, if |indicators(S)| does not
exceed the budget-count.

Taking all of these observations together, we can bound the total variation distance in terms of repeating elements in odds(S)
and the probability that |ind(S)| exceeds the budget of the adversary.

dTV(Vsub,η(p
m), Vsub,η(|Q|m))

≤ dTV(constants(Vsub,η(p
m)), constants(Vsub,η(|Q|m)))

+ dTV(odds(Vsub,η(p
m)), odds(Vsub,η(|Q|m)))

+ dTV(ind(Vsub,η(p
m)), ind(Vsub,η(|Q|m)))

≤ PS∼pm [odds(S) contains repeated elements]
+ PS∼|Q|m [odds(S) contains repeated elements]
+ PS∼pm [|ind(S)| > η|S|]
+ PS∼|Q|m [|ind(S)| > η|S|].

14
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The first two terms can be bounded via a birthday paradox:

PS∼pm [odds(S) contains repeated elements] + PS∼|Q|m [odds(S) contains repeated elements] ≤ 2 ·
(
1−

(
1− m

2n

)m)
The last two terms can each be upper bounded in two ways. First, using Hoeffding’s inequality, we get

PS∼pm [|ind(S)| > η|S|] + PS∼|Q|m [|ind(S)| > η|S|] ≤ 2 · PX∼Binom(m, 1k )[X − E[X] ≥ ηm− m

k
]

≤ 2 · exp
(
−
2(ηm− m

k )
2

m

)
.

Since we are considering distributions in Cg, we note that the distributions Di,n,j,k need to be of the form Di,n,j,g(j). We
now want to argue that for appropriate choices of j and η (both independent of m), as well as for an appropriate choice of n
given m, the inequalities of the theorem are satisfied.

First, we note that since g grows faster than linear, for every constant c > 1 it is possible to pick j in such a way that it
satisfies the inequality

g(j) ≥ 40cαj.

Given such j, we then pick η = c
g(j) and γ′ = α

g(j) . This ensures, that for every n ∈ N and every q ∈ Di,n.j,g(j), we get

dTV(p, q) ≥
1

2

(
1

j
− 1

g(j)

)
≥ 1

2

(
40cα

g(j)
− 1

g(j)

)
>

8cα

g(j)

= 4αη + 4γ′.

Now, let us choose

c >

√
5g(j)2

2
+ 1.

Then, for every m ≥ 1 ≥ 5g(j)2

2(c−1)2 , if we choose n ≥ m

1−(1− 1
32 )

1/m , we get

dTV(Vsub,η(p
m), Vsub,η(|Q|m))

≤ 2 · exp

(
−
2(ηm− m

g(j) )
2

m

)
+ 2

(
1−

(
1− m

2n

)m)
≤ 2 · exp

(
−
2( c·mg(j) −

m
g(j) )

2

m

)
+ 2

(
1−

(
1− m

n

)m)

≤ 2 exp

(
−2m

(
c− 1

g(j)

)2
)

+ 2

1−

1− m
m(

1−(1− 1
32 )

1/m
)


m
≤ 2 · 1

32
+ 2 · 1

32

≤ 1

8
.
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A.4. Proof of Theorem 6.1

Proof. While in the main part of the paper, we often use the same notation for a random variable S ∼ pm and a specific
sample set S ∈ X ∗, in order to make this proof more formal, we will now distinguish between random variables S ∼ pm,
which we keep writing with capitalized notation and specific sample set s ∈ X ∗ for which we use non-capitalized notation.

We note, that since adversaries V are in general randomized, for every s ∈ X ∗, V (s) is a random variable with samples in
s′ ∈ X ∗. For every adversary V , let us denote the distribution of random variable V (s) by pV (s).

We note, that for a random variable S ∼ rm, the distribution of the random variable V (S) defined for every B ⊂ X ∗ by

pV,r(B) =

∫
s′∈B

∫
s∈X∗

dpV (s)(s
′)dr(s).

Accordingly, we have

dpV,r(s
′) =

∫
s∈X∗

dpV (s)(s
′)dr(s).

We now want to formally define the reverse mapping fV,r,s′ that, when given an input sample S′ ∼ V (S) with S ∼ rm,
outputs a sample S′′ ∼ rm. That is, roughly, fV,r,s′(s) = PS∼rm [S = s|V (S) = s′].

For a distribution r over X ∗ and an adversary V , let us consider the random function f−1
V,r that takes as input a sample

s′ ∈ X ∗ and outputs an element of X ∗ according to the probability distribution pV −1,r,s′ which for every B ⊂ X ∗ is defined
by

pV −1,r,s′(B) =

∫
s∈B

dpV (s)(s
′)dr(s)∫

S∈Xm dpV (s)(s′)dr(s)
.

Similarly,

dpV −1,r,s′(s
′′) =

dpV (s′′)(s
′)dr(s′′)∫

s∈Xm dpV (s)(s′)dr(s)
.

Thus, if we consider the random variable S′′ = f−1
V,r(V (S)) for some S ∼ r, we get S′′ ∼ r, as desired:

PS∼r[f
−1
V,r(V (S)) ∈ B′′] =

∫
s′′∈B′′

∫
s∈X∗

∫
s′∈X∗

dpV −1,r,s′(s
′′)dpV (s)(s

′)dr(s)

=

∫
s′′∈B′′

∫
s∈X∗

∫
s′∈X∗

dpV (s′′)(s
′)dr(s′′)∫

s′′′∈Xm dpV (s′′′)(s′)dr(s′′′)
dpV (s)(s

′)dr(s)

=

∫
s′′∈B′′

∫
s′∈X∗

∫
s∈X∗ dpV (s)(s

′)dr(s)dpV (s′′)(s
′)dr(s′′)∫

s′′′∈Xm dpV (s′′′)(s′)dr(s′′′)

=

∫
s′′∈B′′

∫
s′∈X∗

dpV (s′′)(s
′)dr(s′′)

∫
s∈X∗ dpV (s)(s

′)dr(s)∫
s′′′∈Xm dpV (s′′′)(s′)dr(s′′′)

=

∫
s′′∈B′′

∫
s′∈X∗

dpV (s′′)(s
′)dr(s′′)

=

∫
s′′∈B′′

dr(s′′)

= PS∼r[S ∈ B′′].

We note, that by the same argument, we can factorize r in the following way:

r(B) =

∫
s∈B

∫
s′∈X∗

dpV,r(s
′)dpV −1,r,s′(s).
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Now consider a subtractive adversary Vsub.Since it is subtractive adversary, we know that for every s ∈ Xm and every
s′ ∈ supp(pVsub(s) ⊂

⋃m
i=(1−b)m Xi, we have s′ ⊂ s.

In particular, this means that for every s ∈ Xm and every s′ ∈ supp(pVsub(s), we have s = s′ ∪ (s \ S′). Now let
f
\
V −1,r(s) = fV −1,r(s) \ s with the corresponding probability measure.

p
\
V −1,r,s(B) = pV −1,r,s(B

′),

where B′ = {s ∪ s′ : s′ ∈ B}.

Now consider the (randomized) additive adversary Vadd,r, defined by:

Vadd,r(s) = S ∪ f
\
V −1
sub ,r

(Vsub(s))).

Thus for the corresponding probability measure for the random variable Vadd,r(s) is defined by

pVadd,r(s)(B
′′′) =

∫
s′′′∈B′′′

∫
s′′∈X∗

∫
s′∈X∗

dpVsub(s)(s
′)dpV −1

sub,r,s′
(s′′)1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]

Furthermore, for every probability distribution q we have.

PS∼q[Vadd,r(S) ∈ B′′′]

=

∫
s′′′∈B′′′

∫
s∈X∗

dpVadd,r(s)(s
′′′)dq(s)

=

∫
s′′′∈B′′′

∫
s∈X∗

∫
s′∈X∗

∫
s′∈X∗

dpVsub(s)(s
′)dpV −1

sub,r,s′
(s′′)1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]dq(s)

=

∫
s′′′∈B′′′

∫
s∈X∗

∫
s′∈X∗

∫
s′∈X∗

1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]dpVsub,q(s
′)dpV −1,q,s′(s)dpV −1,r,s′(s

′′)

Now consider the additive adversaries Vadd,pm and Vadd,|Q|m .

dTV(Vadd,pm(|Q|m), Vadd,|Q|m(pm))

=
1

2

∫
s′′′∈X∗

∣∣∣∣∫
s∈Xm

dpVadd,pm (s′′′)d|Q|m(s)−
∫
s∈Xm

dpVadd,pm (s′′′)d|Q|m(s)

∣∣∣∣
=

1

2

∫
s′′′∈X∗

|
∫
s′∈X∗

∫
s∈Xm

∫
s′′∈X∗

1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]dpVsub,|Q|m(s′)dpV −1,|Q|m,s′(s)dpV −1,pm,s′(s
′′)

−
∫
s′∈X∗

∫
s∈X∗

∫
s′′′∈X∗

1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]dpVsub,pm(s′)dpV −1,|Q|m,s′(s)dpV −1,pm,s′(s
′′)|

=
1

2

∫
s′′′∈X∗

|
∫
s′∈X∗

|dpVsub,|Q|m(s′)− dpVsub,pm(s′))|

· |
∫
s∈Xm

∫
s′′∈X∗

1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]dpV −1,|Q|m,s′(s)dpV −1,pm,s′(s
′′)′|

=
1

2

∣∣∣∣∫
s′∈X∗

|dpVsub,|Q|m(s′)− dpVsub,pm(s′))

∣∣∣∣
·
∫
s′′′∈X∗

∣∣∣∣∫
s∈Xm

∫
s′′∈X∗

1[s′′′ = s′ ∪ (s \ s′) ∪ (s′′ \ s′)]dpV −1,|Q|m,s′(s)dpV −1,pm,s′(s
′′)

∣∣∣∣
≤ 1

2

∣∣∣∣∫
s′∈X∗

|dpVsub,|Q|m(s′)− dpVsub,pm(s′))

∣∣∣∣
= dTV(pVsub,pm , pVsub,|Q|m) ≤ ζ
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where we get the second to last step by noticing that the last three integrals are a conditional probability distribution of the
additive adversary outputting s′′′, conditioned on the subtractive adversary outputting s′. As such, these integrals equate to
1.

Furthermore, we note that if Vsub has a fixed constant budget with ηm− 1 < m · budgetsub(Vsub,m) ≤ ηm, then we have

budgetadd(Vadd,r,m) = sup
s∈Xm

|Vadd,r(s)| − |s|
|s|

≤ sup
s∈Xm

sup
s′:s′∈supp(pV (s))

sup

s′′:s′′∈supp

(
p
V

−1
sub,r

(s′)

) |s \ s′|+ |s′′| − |s|
|s|

≤ max

{
ηm− 1 + (m− (ηm− 1)) 1

1−η −m

m
,
ηm+ (m− ηm) 1

1−η −m

m

}

≤ max

{
η − 1 +

η +m− ηm

m(1− η)
, η

}
≤ max

{
η +

η

m(1− η)
, η

}
≤ η +

η

m− ηm
.

In particular, this means, that

m · budgetadd(Vadd,r,m) ≤ ηm+
η

(1− η)
.

We note that η
1−η is strictly monotonically increasing in η. Thus, for η < 1

2 we thus get,

m · budgetadd(Vadd,r,m) < ηm+
1
2
1
2

= ηm+ 1.

Thus, budgetadd(Vadd,r) ≤ η.

A.5. Proof of Theorem 7.1

Proof. Let u be a random variable that is uniformly distributed over [k+ 1] = {0, . . . , k}. Now let Vadd,k be defined by the
probability distribution

dpVadd,k(s)
(s′′) =

∫
s′∈X∗

dpVsub(s)(s
′)

· 1

k + 1

k∑
u=0

∫
s1∈X∗

· · ·
∫
sk∈X∗

(
Πk

i=0(1[u ≥ i]dpV −1
sub ,|Q|m,s′(si) + 1[u < i]dpV −1

sub ,p
m,s′(si))

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)]
.
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We now note that∫
s∈Xm

dpVadd,k(s)
(s′′)dpm(s) =

∫
s∈Xm

∫
s′∈X∗

dpVsub(s)(s
′)

· 1

k + 1

k∑
u=0

∫
S1∈X∗

· · ·
∫
Sk∈X∗

(
Πk

i=0(1[u ≥ i]dpV −1
sub ,|Q|m,S′(Si) + 1[u < i]dpV −1

sub ,p
m,S′(Si))

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)]

=

∫
s′∈X∗

dpVsub,pm
(s′)

∫
s∈X∗

dpVsub,pm,s′ (s)

· 1

k + 1

k∑
u=0

∫
S1∈X∗

· · ·
∫
Sk∈X∗

(
Πk

i=0(1[u ≥ i]dpV −1
sub ,|Q|m,s′(si) + 1[u < i]dpV −1

sub ,p
m,s′(si))

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)]
.

Similarly,∫
s∈Xm

dpVadd,k(s)
(s′′)dpm(s) =

∫
s′∈X∗

dpVsub,|Q|m (s′)

∫
s∈X∗

dpVsub,|Q|m,s′ (s)

· 1

k + 1

k∑
u=0

∫
s1∈X∗

· · ·
∫
sk∈X∗

(
Πk

i=0(1[u ≥ i]dpV −1
sub ,|Q|m,s′(si) + 1[u < i]dpV −1

sub ,p
m,s′(Si))

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)
.

]
We now note that

1

2

∫
s′∈X∗

∣∣∣∣dpVsub,pm (s)(s
′)−

∫
dpVsub(s),|Q|m(s′)

∣∣∣∣ ≤ ζ.

and

1

k + 1

k∑
u=0

∫
s∈X∗

dpVsub,|Q|m,s′ (s)

∫
s1∈X∗

· · ·
∫
sk∈X∗

(
Πk

i=0(1[u ≥ i]dpV −1
sub ,|Q|m,s′(si) + 1[u < i]dpV −1

sub ,p
m,s′(si))

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)
.

]

− 1

k + 1

k∑
u=0

∫
s∈X∗

dpVsub,pm,s′ (S)

∫
s1∈X∗

· · ·
∫
sk∈X∗

(
Πk

i=0(1[u ≥ i]dpV −1
sub ,|Q|m,s′(si) + 1[u < i]dpV −1

sub ,p
m,s′(si))

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)
.

]

=
1

k + 1

∫
s∈X∗

dpVsub,|Q|m,s′ (s)

∫
s1∈X∗

· · ·
∫
sk∈X∗

(
Πk

i=0(dpV −1
sub ,|Q|m,s′(si)

)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)
.

]

− 1

k + 1

∫
s∈X∗

dpVsub,pm,s′ (S)

∫
S1∈X∗

· · ·
∫
Sk∈X∗

(
Πk

i=0(dpV −1
sub ,p

m,s′(si)
)
· 1

[
s′′ = s′ ∪ (s \ s′) ∪

(
k⋃

i=1

(si \ s′)

)
.

]

≤ 1

k + 1
.
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This means that

dTV(Vadd,k(p
m), Vadd,k(|Q|m)) =

1

2

∫
s′′∈X∗

∣∣∣∣(∫ dpVadd,k(s)(s
′′)dpm(s)−

∫
dpVadd,k(s)(s

′′)d|Q|m(s)

)∣∣∣∣
≤ ζ + (1− ζ)

1

k + 1
.

Furthermore, we note that if Vsub has a fixed constant budget with ηm− 1 < m · budgetsub(Vsub,m) ≤ ηm, then we have

budgetadd(Vadd,k,m) = sup
s∈Xm

|Vadd,k(s)| − |s|
|s|

≤ max{
(ηm− 1) + (m− (ηm− 1)) + k

(
(m− (ηm− 1)) 1

1−η − (m− (ηm− 1)
)
−m

m
,

ηm+ (m− ηm) + k(m− ηm)
(

1
1−η − 1

)
−m

m
}

≤ max

{
kη +

kη

(1− η)m
, kη

}
≤ kη +

kη

(1− η)m

In particular, this means, that

m · budgetadd(Vadd,r,m) ≤ kηm+
kη

(1− η)
.

We note that η
1−η is strictly monotonically increasing in η. Thus, for η < 1

2k we thus get,

m · budgetadd(Vadd,r,m) < kηm+
1/2

1− 1/2k
< ηm+ 1.

Thus, budgetadd(Vadd,r) ≤ ηk.

B. Additional Example for Usefulness of Lemma 5.4
In this subsection we give a short illustration of why the lemmas in Section 5 can be helpful. We give a known example for
the hardness of PAC learning of distributions, which also fulfills the indistinguishability condition of Lemma 5.4.
Example B.1. Let X = N. Let ζ ∈ (0, 1). Furthermore, let p = UB for some set B ⊂ N with |B| = 2mm

1−(1−ζ)1/m

and let C = {UBi : Bi ⊂ B and |Bi| = 2−m|B|} and qi = UBi with indices i ∈ N. It is easy to see that for every
qi, we have dTV(p, qi) ≥ p(supp(p) \ supp(qi)) = |B|−2−m|B|

|B| = 1 − 2−m. However, if we consider the distribution
Q = UC′ , the distribution |Q|m generates a sample by first producing a distribution qi which is uniform over some random
subset set Bi ⊂ B with |Bi| = 2−m|B| and then sampling S ∼ qmi . Note that since Bi was selected uniformly at
random and qi = UBi , every point x ∈ B has the same probability of appearing in a sample S ∼ |Q|m. Similarly, every
point x ∈ B has the same probability of appearing in a sample S′ ∼ pm. Thus, pm and |Q|m cannot be distinguished
from samples with no repeating elements. While samples from |Q|m are much more likely to contain repeated elements
(as the subset Bi from which they are selected is much smaller than the set B), the likelihood of repeated elements
appearing in S ∼ |Q|m is still very small. In particular, the probability of there being repeated instances in S ∼ qmi is

upper bounded by 1−
(
1− 1

2−m|B|

)
· · · · ·

(
1− m−1

2−m|B|

)
< 1−

(
1− m

2−m|B|

)m
= 1−

1− m

2−m

(
2mm

1−(1−ζ)1/m

)
m

=

1− (1− ζ)1/m)m = ζ by the birthday problem. Thus, the probability of distinguishing |Q|m from pm can be arbitrarily
small, i.e., dTV(p

m, |Q|m) < ζ despite the large TV-distance between p and every qi. This suffices to show that any learner
A there exists q ∈ C ∪ {p} such that A will not succeed to output a distribution with dTV(A(S), q) < 1

2 − 2−m−1 on more
than 1

2 − ζ
2 of the proportion of samples S ∼ qm.
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