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Abstract001

LLMs face privacy risks in handling sensitive002
data. To ensure privacy, researchers use dif-003
ferential privacy (DP) to provide protection by004
adding noise during LLM training. However,005
users may be hesitant to share complete data006
with LLMs . Researchers follow local DP to007
sanitize the text on the user side and feed non-008
sensitive text to LLMs. The sanitization usually009
uses a fixed non-sensitive token list or a fixed010
noise distribution, which induces the risk of011
being attacked or semantic distortion. We ar-012
gue that the token’s protection level should be013
adaptively adjusted according to its semantic-014
based information to balance the privacy-utility015
trade-off. In this paper, we propose DYNTEXT,016
an LDP-based Dynamic Text sanitization for017
privacy-preserving LLM inference, which dy-018
namically constructs semantic-aware adjacency019
lists of sensitive tokens to sample non-sensitive020
tokens for perturbation. Specifically, DYN-021
TEXT first develops semantic-based density022
modeling under DP to extract each token’s023
density information. We propose token-level024
smoothing sensitivity by combining the idea025
of global sensitivity (GS) and local sensitivity026
(LS), which dynamically adjusts the noise scale027
to avoid excessive noise in GS and privacy leak-028
age in LS. Then, we dynamically construct an029
adjacency list for each sensitive token based030
on its semantic density information. Finally,031
we apply the replacement mechanism to sam-032
ple non-sensitive, semantically similar tokens033
from the adjacency list to replace sensitive to-034
kens. Experiments show that DYNTEXT ex-035
cels strong baselines on three datasets.036

1 Introduction037

LLMs demonstrated exceptional capabilities in038

NLP tasks, particularly with closed-source LLMs039

like GPT-4 (Open, 2023) that exclusively provide040

online inference services. However, directly sub-041

mitting text containing sensitive information to042

those LLMs poses significant privacy risks (Huang043

et al., 2023). To ensure privacy protection, A prov- 044

able theoretical guarantee is crucial. DP (Dwork 045

et al., 2014) formally defines and quantifies privacy. 046

Consequently, most researchers apply DP to LLMs 047

to safeguard privacy (Edemacu and Wu, 2024). 048

To achieve DP, methods like DP-SGD (Abadi 049

et al., 2016) and PATE (Papernot et al., 2016), 050

mainly focus on adding calibrated noise to the 051

model or input representations during the train- 052

ing so that sensitive user data are hardly inferred 053

from the trained model. Users need to send their 054

data to LLMs for training under the DP framework 055

with noise. However, they may hesitate to share 056

their complete data due to privacy concerns, fearing 057

that LLMs may not be fully trustworthy or that an 058

intermediary eavesdropper could compromise sen- 059

sitive information (Lyu et al., 2020). To address the 060

above issues, LDP (Duchi et al., 2013) introduces a 061

new scenario with two phases: local processing and 062

LLM training/inference. Local processing occurs 063

on the user side, which can access and process the 064

private data to protect them. The protected data are 065

then transmitted to LLMs for training or inference. 066

Typically, these local processing methods gener- 067

ate perturbed text by replacing the tokens (e.g., 068

words or n-grams) in the private text with new non- 069

sensitive tokens (Feyisetan et al., 2019; Qu et al., 070

2021). Specifically, some methods (Feyisetan et al., 071

2020; Li et al., 2025) inject calibrated noise with 072

a DP guarantee into the original token embedding 073

(high-dimensional vector) to generate a noisy em- 074

bedding, then replace the original token with the 075

token closest to the noisy embedding. However, 076

token (i.e. text) embedding space is usually uneven 077

and irregular since the text signals are too sparse 078

and discrete to represent with dense embeddings 079

so well (Yaghoobzadeh and Schütze, 2016; Yin 080

and Shen, 2018). DP-required noises are totally 081

randomized within a regular distribution (i.e. Gaus- 082

sian or Laplace). Applying a DP required noises to 083

the original token embedding sometimes leads to 084

1



unexpected bias to damage the semantics.085

To avoid the above problem, researchers pro-086

pose replacing the original tokens by sampling new087

tokens from a pre-computed distribution. These088

methods, like SANTEXT+ (Yue et al., 2021) and089

CUSTEXT+ (Chen et al., 2023), leverage DP learn-090

ing methods to sequentially replace sensitive words091

in text with new words, which are sampled from a092

fixed word list carrying non-sensitive words simi-093

lar to the sensitive words. This approach samples094

the tokens from a fixed token list, where all candi-095

date tokens are similar to the sensitive tokens. This096

method is more reliable and interpretable, which097

avoids unexpected bias caused by noise, thereby098

enhancing the practicality of the text. However, the099

fixed token list introduces predictable replacement100

patterns, making it easier for attackers to exploit101

this regularity of information to infer the original102

sensitive information (Tong et al., 2024).103

To mitigate the above vulnerability for potential104

attacks (Song and Raghunathan, 2020), researchers105

introduce randomness in the non-sensitive tokens106

list to replace each sensitive token, avoiding po-107

tential attacks and strengthening defense against108

privacy threats (Tong et al., 2024; Fan et al.,109

2024). However, adding random perturbation to110

non-sensitive lists still has limitations. These meth-111

ods often apply perturbations with the same distri-112

bution to all tokens, ignoring the sensitivity of each113

token. For tokens with low semantic sensitivity,114

overly strict privacy protection mechanisms may115

lead to unnecessary semantic loss, thus affecting116

the quality of the generated perturbed text.117

To balance the privacy-utility trade-off, we ar-118

gue that sanitization should consider the token’s119

semantic-based information while maintaining anti-120

attack capabilities. So, we should integrate the121

token’s semantic-based information with its non-122

sensitive token list under privacy protection (i.e.123

DP), enhancing the quality of the perturbed text124

and adaptively adjusting the list to resist attacks.125

In this paper, we propose an LDP-based126

Dynamic Text (DYNTEXT)1 sanitization mecha-127

nism for privacy-preserving LLM inference, which128

dynamically builds a semantic-aware adjacency list129

of sensitive tokens to sample non-sensitive tokens130

for perturbation. The adjacency list satisfies DP131

and is customized to each token’s semantic den-132

sity, with smaller lists in high-density areas and133

1Our anonymous code is available at: anonymous.4open.
science/r/DYNTEXT-6A52

larger ones in low-density areas, which encourages 134

the sampling of high-density tokens and assigning 135

high noise to low-density tokens. Specifically, we 136

first develop a semantic-based density information 137

modeling module under DP to extract the density 138

information of each token in the embedding space. 139

This module employs the Gaussian noise to achieve 140

DP and a token-level smoothing sensitivity mecha- 141

nism by combining the idea of GS and LS to avoid 142

excessive noise in GS and privacy leakage in LS. 143

We then dynamically construct an adjacency list 144

for each sensitive token based on noisy semantic- 145

based density information, which adjusts the size 146

of each sensitive token’s non-sensitive adjacency 147

token list. This strategy effectively preserves se- 148

mantic information while resisting attacks. Finally, 149

we employ a sensitive token replacement to sample 150

non-sensitive similar tokens from the adjacency list 151

and replace the sensitive token for perturbation. 152

Our contributions are as follows: (1) We propose 153

DYNTEXT, an LDP-based dynamic text sanitiza- 154

tion mechanism that replaces sensitive tokens based 155

on semantic density, adaptively adjusting the pro- 156

tection level for a better privacy-utility trade-off. 157

(2) We design a DP-compliant semantic-aware dy- 158

namic adjacency list adjusted by token density in- 159

formation, promoting sampling from high-density 160

areas for semantic preservation and assigning high 161

noise to low-density areas for privacy protection. 162

(3) Experiments show that DYNTEXT excels in all 163

baselines and achieves SOTA on three datasets. 164

2 Related Work 165

2.1 Privacy Protection in LLMs 166

The privacy protection lifecycle of LLMs includes 167

training and inference phases. (1) Most of the pre- 168

vious work focuses on privacy protection during 169

training, where DP reduces privacy risks by adding 170

noise (Tholoniat et al., 2024; Wicker et al., 2024). 171

ANADP (Li et al., 2024) allocates noise and privacy 172

budgets based on the importance of the parameters. 173

(2) Current research is gradually focusing on pro- 174

tecting input privacy during inference, addressing 175

challenges through data anonymization (Yang et al., 176

2024) and text-to-text privatization (Li et al., 2025). 177

2.2 DP learning algorithm 178

DP implementations mainly use gradient or output 179

perturbation techniques. (1) Gradient perturbation 180

approaches modify training gradients. The DP- 181

SGD framework (Abadi et al., 2016) applies gradi- 182
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ent clipping followed by Gaussian noise injection183

to limit the influence of individual data points. Sub-184

sequent studies (Yue et al., 2023; Kurakin et al.,185

2023) refine these noise injection and clipping186

mechanisms to speed up convergence. Adaptive187

noise scheduling (Yang and Ma, 2024; Jiao et al.,188

2024) optimizes the approach by adjusting noise189

levels based on gradient sensitivity and selectively190

updating parameters to reduce noise accumulation.191

(2) Output perturbation such as PATE (Papernot192

et al., 2016; Yuan et al., 2024), which combines193

noisy labels from teacher models, and objective per-194

turbation methods (Pustozerova et al., 2023) inject195

noise into the loss function to affect gradients.196

2.3 Local Privacy Protection for LLMs197

Recent advancements in local privacy preservation198

for LLMs reveal trade-offs between security and199

practicality. LDP approaches ( MLDP (Feyisetan200

et al., 2020), SANTEXT+ (Yue et al., 2021)) in-201

troduce word/vector-level sanitization mechanisms202

that risk semantic distortion, while CUSTEXT+203

(Chen et al., 2023) improves output quality at po-204

tential privacy costs. SnD (Mai et al., 2024)’s de-205

noising pipelines reduce semantic distortion but206

introduce system complexity due to the need for207

additional model training. RANTEXT (Tong et al.,208

2024) applies LDP with dynamic random adja-209

cency lists and knowledge distillation to enhance210

privacy. The above methods struggle to balance the211

privacy-utility trade-off. In contrast, our approach212

dynamically adjusts privacy protection based on213

semantic-aware, achieving an effective balance.214

3 Preliminaries215

Definition 3.1 (ε-differential privacy(Dwork216

et al., 2014)). For a given privacy parameter ε ≥ 0,217

all pairs of adjacent inputs x, x′ ∈ X , and every218

possible output y ∈ Y , a randomized mechanism219

M is ε-differentially private (DP) if it holds that220

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eε. (1)221

4 Methods222

4.1 Overview223

Our proposed DYNTEXT consists of three mod-224

ules, as shown in Fig. 1: (1) Semantic-based Den-225

sity Information Modeling under DP (§4.2) ob-226

tains the semantic-based density information of227

each token in the embedding space while satisfy-228

ing DP; (2) Dynamic Construction of Adjacency229

List (§4.3) constructs an adjacency list with dy- 230

namically adjustable size based on the semantic- 231

based density information. The list contains a set 232

of non-sensitive tokens with semantics similar to 233

the target-sensitive token, serving as candidates for 234

replacing the target token; (3) Private Token Re- 235

placement via Similarity (§4.4) samples a new 236

token from the adaptive adjacency list considering 237

the similarity between the sensitive token and can- 238

didate tokens, and then replace the sensitive token 239

to generate the non-sensitive text. In summary, we 240

first obtain semantic-based density (§4.2), to con- 241

struct the adjacency list for sensitive tokens (§4.3), 242

and sample a non-sensitive token from that list to 243

replace the sensitive token (§4.4) to generate sani- 244

tized texts. The sanitized texts act as the input for 245

downstream text generation tasks. 246

4.2 Semantic-based Density Information 247

Modeling under DP 248

We model the semantic-based density informa- 249

tion of each token in the semantic embedding 250

space, which applies Gaussian noise to achieve DP 251

(§4.2.1) and token-level smooth sensitivity mecha- 252

nism to mitigate impacts of abnormal data (§4.2.2). 253

The density information is used to adjust the 254

privacy protection degree for different tokens (de- 255

tails in §4.3), aiming to enhance protection in low- 256

density areas while moderately relaxing it in high- 257

density areas, thereby improving the practicality of 258

the DP algorithm. This is because, as inspired by 259

TEM (Carvalho et al., 2023), low-density areas in 260

the embedding space typically correspond to rare 261

tokens with fewer semantically similar words. Rare 262

tokens are often sensitive because they have low en- 263

tropy, high information content, and are more likely 264

to represent entities. So, tokens in low-density ar- 265

eas are more vulnerable to privacy leakage and 266

thus more sensitive. In contrast, high-density areas 267

present lower privacy risks and sensitivity. 268

4.2.1 Density Calculation with Gaussian 269

Mechanism 270

We obtain the target tokens’ density information 271

and apply the Gaussian mechanism for protection. 272

Density Calculation. We compute density infor- 273

mation with three steps: (1) Semantic distance. 274

In the N -dimensional embedding space RN , we 275

first calculate the Euclidean distance between each 276

token t ∈ Vt and all tokens (including itself). Next, 277

we identify the K-th closest token tK to t and ob- 278
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Figure 1: Overview of DYNTEXT. Given a sensitive text, DYNTEXT sanitizes it through three modules, executed
sequentially: (1) Semantic-based Density Information Modeling under DP extracts each token’s semantic-based
density information in the embedding space and applies noise; (2) Dynamic Construction of Adjacency List
builds an adjacency list for each token based on this density information; (3) Finally, Private Token Replacement
via Similarity samples non-sensitive tokens from the adjacency list to replace sensitive tokens.

tain their distance as follows:279

d(t, tK) = ||ϕ(t)− ϕ(tK)||2, (2)280

where the function ϕ : Vt → RN , maps each token281

to a vector in embedding space. The parameter K282

represents the default size of the adjacent list for283

a token t ∈ Vt. (2) Density range. We calculate284

a threshold γ as the density range of tokens. For285

each token t ∈ Vt, we compute the semantic dis-286

tance d(t, tK); then, γ is defined as the average287

distance of tokens in Vt: γ = 1
|Vt|

∑
t∈Vt

d(t, tK).288

(3) Density information. We define the density289

information f(t) of token t as the number of tokens290

t̂ in token vocabulary Vt whose semantic distance291

to token t is less than or equal to the threshold γ:292

f(t) =
∣∣{t̂ ∈ Vt | d(t, t̂) ≤ γ}

∣∣ . (3)293

The f(t) reflects the number of neighboring tokens294

within a certain range around the target token t,295

making it a valuable measure of its density infor-296

mation in the embedding space. The threshold γ297

controls the range of the local neighborhood, en-298

suring that only tokens semantically close enough299

to the target token are considered in the density cal-300

culation, thereby defining the “local dense area”.301

Gaussian Mechanism. To prevent density infor-302

mation from leaking information (i.e. semantic den-303

sity) of sensitive tokens, we add calibrated Gaus-304

sian noise (Bu et al., 2020) to the density infor-305

mation f(t) of the token t ∈ Vt to satisfy DP, as306

F (t) = f(t) +N (0, σ2
d). It satisfies (εd, δ)−DP307

for εd ≥ 0, where N (0, σ2
d) represents Gaussian308

noise with mean 0 and variance σ2
d. The variance309

of Gaussian noise σ2
d is determined by the privacy310

budget parameter εd and the sensitivity ∆f : 311

σ2
d =

2(∆f)2 ln(1.25/δ)

ε2d
. (4) 312

4.2.2 Token-Level Smooth Sensitivity 313

Mechanism 314

To reduce noise amplitude and mitigate privacy 315

leaks from sensitivity fluctuations, we propose the 316

token-level smooth sensitivity for more stable and 317

controlled noise addition at the token level. 318

Existing methods mainly determine the noise 319

scale via global and local sensitivity. GS (Iooss and 320

Lemaître, 2015) represents the maximum change 321

of the query function, which takes input data and re- 322

turns statistical information, across all possible in- 323

puts.LS (Nguyen et al., 2024) measures the change 324

based on the specific data. During density calcu- 325

lation, for any token t, density information f(t) 326

of token t acts as the query function f here (as 327

shown in Eq. 3). The local sensitivity LSf (t) of 328

the query function f is defined as: LSf (t) = 329

maxt̂∈Cr(t) |f(t) − f(t̂)|, where t̂ ∈ Cr(t) is a 330

token in the adjacency list of t. The global sensi- 331

tivity GSf is defined as: GSf = maxt(LSf (t)). 332

However, both of the above sensitivities have their 333

limitations. GS is based on the worst-case estimate 334

across all possible input tokens, often resulting in 335

excessive noise due to its conservatism. In contrast, 336

LS dynamically adjusts the noise amplitude based 337

on the information of each input token. However, 338

this also means that the noise amplitude itself could 339

potentially leak the privacy of the input token, and 340

LS alone cannot satisfy the requirements of DP2. 341

2When noise is adjusted based on a token’s LS, high sensi-
tivity leads to larger noise amplitudes. If an attacker detects
these changes, they could infer the token’s local characteristics,
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Hence, we propose a token-level smooth sensitiv-342

ity mechanism that combines global and local sensi-343

tivity ideas at the token level. We use a “smoothed”344

approximation of LS to adjust the noise scale and345

prevent leaks of sensitive information. Specifically,346

we use the β-smooth sensitivity Sf,β(t) (defined in347

Eq. 5) when adding noise to the token t’s density348

information. For a token t ∈ Vt, t’s adjacent token349

t̂ ∈ Cr(t), Sf,β(t) has two parts:350

• LSf (t̂) represents the LS of t̂.351

• e−βd(t,t̂) is an exponential decay function,352

where d(t, t̂) is the Euclidean distance (Eq. 2)353

between adjacent tokens. β is defined as354
εd

2 log(2/δ) , controlling the impact of distance.355

With Eq. 5, the LS is smoothed: (1) for each token356

t̂ ∈ Cr(t), its local sensitivity LSf (t̂) is scaled357

using the exponential decay function e−βd(t,t̂) ; (2)358

the scaled maximum value maxt̂∈Cr(t)(LSf (t̂) ·359

e−βd(t,t̂)) is selected as the smooth sensitivity360

Sf,β(t) of the target token t:361

Sf,β(t) = max
t̂∈Cr(t)

(LSf (t̂) · e−βd(t,t̂)). (5)362

As the distance d(t, t̂) between adjacent tokens363

increases, the decay function e−βd(t,t̂) decreases364

rapidly, thereby lowering the value of LSf (t̂) ·365

e−βd(t,t̂). Since Sf,β(t) is the maximum value of366

LSf (t̂) · e−βd(t,t̂), tokens closer to the target token367

are more likely to contribute to the maximum value368

than distant tokens. So, Sf,β(t) is more sensitive to369

changes in closer tokens, allowing it to better pre-370

serve semantic features while avoiding excessive371

interference. Additionally, a larger β accelerates372

the decay of e−βd(t,t̂), emphasizing neighboring373

tokens while reducing the influence of distant ones;374

conversely, a smaller β slows the decay of e−βd(t,t̂),375

allowing distant tokens to contribute more, thereby376

enhancing privacy protection.377

The benefit of the above method is twofold: (1)378

Compared to GS, our proposed smooth sensitivity379

incorporates LS to dynamically adjust the noise380

amplitude for each input token, reducing the noise381

amplitude and thus improving the model perfor-382

mance. (2) Compared to LS, our proposed smooth383

sensitivity mitigates the fluctuations in the sensi-384

tivity of individual data, weakening the impact of385

potentially exposing privacy. For instance, density information
may reveal the token’s location in the embedding space.

outliers, thereby ensuring that the sensitivity sat- 386

isfies DP. Since the smooth sensitivity calculation 387

of the target token t incorporates LS of all adja- 388

cent tokens, the adjacent token t̂ at the peak3 in 389

the LS may significantly influence and potentially 390

improve the sensitivity of t. This operation actually 391

smoothes the sensitivity peak of t̂ in disguise and 392

reduces the fluctuation of single data. 393

4.3 Dynamic Construction of Adjacency List 394

To better preserve token semantics while generating 395

non-privacy text, we use the noisy semantic density 396

to dynamically construct token adjacency lists. 397

4.3.1 Adjacency List Construction 398

We construct an adaptive-size adjacency list for 399

each token t. Given a token t ∈ Vt, the adjacency 400

list Cr(t) consists of kt tokens nearest to t con- 401

sidering the Euclidean distance in the embedding 402

space: Cr(t) = {t1, t2, · · · , tkt}, where kt denotes 403

the size of the token t’s adjacency list. Note that 404

Cr(t) always contains at least token t itself. 405

4.3.2 Dynamic Adjacency List Using Noisy 406

Semantic Density 407

To achieve fine-grained control over the adjacency 408

list, we leverage the noisy semantic density ob- 409

tained by DP-based semantic density information 410

modeling to dynamically adjust each token’s ad- 411

jacency list size. The motivation stems from the 412

limitations of existing studies, which either set a 413

fixed adjacency list size (Yue et al., 2021; Chen 414

et al., 2023) or apply a uniform noise distribution 415

on all tokens (Tong et al., 2024) to determine the 416

range of the adjacency list. However, for tokens 417

with higher density (i.e. lower semantic sensitiv- 418

ity), enforcing the same strict privacy protection 419

may result in unnecessary semantic loss. There- 420

fore, to preserve the token’s semantic information 421

as much as possible, we aim to adjust the size of 422

the adjacency list based on the token’s sensitivity. 423

Specifically, we dynamically determine the size 424

of the adjacency list of a token based on its density 425

information. The process consists of two steps: 426

Step 1: Density Normalization. We apply a 427

Min-Max normalization (Henderi et al., 2021) to 428

the noisy density information F (t) of token t, en- 429

suring that the normalized value F̂ (t) falls within 430

[0, 1], thereby adjusting the adjacency list size on 431

3The occurrence of a peak means that the LS of a token is
significantly higher than that of other adjacent tokens.
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a unified scale. Fmin and Fmax represent the mini-432

mum and maximum values of the density informa-433

tion for all tokens in the embedding space.434

F̂ (t) =
F (t)− Fmin

Fmax − Fmin
, (6)435

Min-max normalization linearly scales data, pre-436

serving its relative proportions. It retains the origi-437

nal distribution shape and statistical properties.438

Step 2: Dynamic Scaling of Adjacency Lists.439

We use the normalized density information F̂ (t)440

to scale the adjacency list size. With a default441

hyperparameter K as the maximum size, we obtain442

the adjacency list size kt for token t as:443

kt = max
(
1,
⌊
(1− F̂ (t))K

⌋)
. (7)444

Eq. 7 ensures that when F̂ (t) is close to 0 (low den-445

sity), kt approaches K, creating a larger adjacency446

list; and when F̂ (t) is close to 1 (high density), kt447

approaches 1, resulting in a smaller adjacency list.448

According to Eq. 7, the size of a token’s ad-449

jacency list is inversely proportional to its noisy450

density information, enabling dynamic adjustment451

based on semantic density. Specifically, tokens452

with higher density have lower sensitivity (See §4.2453

for analysis), resulting in a smaller adjacency list454

where the included tokens are semantically closer455

to the target token. This increases the likelihood of456

sampling closer tokens, effectively preserving the457

target token’s semantic information. In contrast,458

tokens with lower density have higher sensitivity,459

resulting in a larger adjacency list that includes460

more tokens farther in semantic distance from the461

target token, thereby enhancing privacy protection.462

4.4 Private Token Replacement via Similarity463

For each sensitive token, we replace it with a per-464

turbed non-sensitive token sampled from its adja-465

cency list under DP protection. To achieve this,466

we design a replacement mechanism that integrates467

the exponential mechanism (McSherry and Talwar,468

2007), ensuring the LDP guarantee while account-469

ing for semantic relevance. We introduce similarity-470

based scoring to determine the probability of select-471

ing a replacement token from the adjacency list.472

Similarity-based Score. We design a scoring473

function u(·) for the replacement mechanism M(·).474

The goal is to assign higher scores to candidate to-475

kens that exhibit greater semantic similarity to the476

target token, thereby increasing their probability477

of being sampled. Thus, we use the negative Eu- 478

clidean distance and normalize it to the range [0, 1]. 479

Specifically, for a token t ∈ Vt and its candidate to- 480

ken t̂ ∈ Cr(t), we first compute the Euclidean dis- 481

tance d(t, t̂) to measure their semantic distance and 482

define the scoring function as: u(t, t̂) = 1− d(t,t̂)
dmax

, 483

where dmax represents the semantic distance be- 484

tween token t and the farthest token tkt in its ad- 485

jacency list as: dmax = d(t, tkt). Since d(t, t̂) ≤ 486

dmax, it follows that 0 ≤ d(t,t̂)
dmax

≤ 1. Consequently, 487

we can deduce: 0 ≤ u(t, t̂) ≤ 1,∆u = 1. 488

Replacement Mechanism. Given the privacy 489

budget parameter εr of the replacement module, for 490

the input token t ∈ Vt, the probability (McSherry 491

and Talwar, 2007) of the replacement mechanism 492

M(·) outputting the candidate token t̂ ∈ Cr(t) is: 493

Pr[M(t) = t̂] = softmax(
εr · u(t, t̂)

2∆u
)

=
exp( εr·u(t,t̂)2∆u )∑

ti∈Cr(t)
exp( εr·u(t,ti)2∆u )

(8) 494

The replacement mechanism leverages the scor- 495

ing function u(t, t̂) to prioritize candidate tokens 496

with higher semantic similarity in the adjacency list 497

obtained in (§4.3), ensuring that tokens with closer 498

tokens have a greater probability of being sampled. 499

At the same time, the intensity of privacy protection 500

can be flexibly controlled by adjusting the privacy 501

budget εr. A higher privacy budget leads the mech- 502

anism to favor candidate tokens closer in semantics 503

to the target token, while a lower budget increases 504

randomness to strengthen privacy protection. We 505

prove that the replacement mechanism satisfies εr- 506

DP, with the detailed proof provided in the APP. A. 507

5 Experiments 508

5.1 Experimental Settings 509

Datasets. For open-ended text generation tasks, 510

we use three widely-used NLP datasets: IMDb, 20 511

Newsgroups, and PubMedQA (details in App. B). 512

Baselines. We use two non-DP methods as refer- 513

ences: GPT-4, continues the original private text us- 514

ing GPT-4 without privacy protection. Vicuna-7b, 515

continues the original private text using the local 516

model Vicuna-7b (Chiang et al., 2023). We use 517

four types of DP-based sanitization mechanisms 518

to obtain the sanitized text, followed by text gen- 519

eration with GPT-4: FBDD (Feyisetan et al., 2020) 520

adds noise to token embeddings and replaces the 521

6



Method IMDb 20 Newsgroups PubMedQA
MAUVE Coherence MAUVE Coherence MAUVE Coherence

GPT-4 0.258 0.599 0.228 0.601 0.315 0.737
Vicuna-7B 0.094 0.023 0.180 0.406 0.230 0.609

ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

FBDD 0.049 0.074 0.062 0.169 0.169 0.172 0.056 0.040 0.043 0.159 0.156 0.157 0.092 0.096 0.078 0.352 0.351 0.352
SANTEXT+ 0.205 0.228 0.236 0.403 0.463 0.550 0.115 0.102 0.135 0.373 0.418 0.494 0.219 0.230 0.238 0.595 0.676 0.726
CUSTEXT+ 0.225 0.252 0.197 0.588 0.580 0.550 0.153 0.171 0.152 0.557 0.562 0.562 0.183 0.224 0.219 0.693 0.698 0.703
RANTEXT 0.038 0.047 0.054 0.113 0.125 0.128 0.030 0.040 0.047 0.095 0.125 0.132 0.010 0.010 0.010 0.127 0.142 0.151
DYNTEXT 0.241 0.254 0.242 0.589 0.590 0.590 0.183 0.180 0.158 0.578 0.579 0.579 0.271 0.289 0.341 0.727 0.728 0.732

Table 1: Comparing the performance of all methods on open text generation tasks with different privacy budgets
(ε = 1, 2, 3) on three datasets, evaluated using MAUVE and Coherence metrics. The best results are highlighted in
bold. Our improvements are significant under the t-test with p < 0.05 (See details in App. E).

Method
IMDb 20 Newsgroups PubMed QA

MAUVE Coherence MAUVE Coherence MAUVE Coherence

ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

w/o smooth 0.241 0.248 0.242 0.589 0.589 0.585 0.158 0.124 0.157 0.295 0.294 0.295 0.269 0.287 0.299 0.726 0.726 0.729
w/o dynamic adj. list 0.235 0.248 0.240 0.586 0.587 0.589 0.156 0.139 0.155 0.294 0.294 0.292 0.246 0.287 0.254 0.726 0.728 0.727

w/o replacement 0.241 0.247 0.241 0.582 0.587 0.589 0.172 0.164 0.125 0.293 0.293 0.292 0.264 0.258 0.325 0.722 0.724 0.722
DYNTEXT 0.241 0.254 0.242 0.589 0.590 0.590 0.183 0.180 0.158 0.578 0.579 0.579 0.271 0.289 0.341 0.727 0.728 0.732

Table 2: Ablation results on DYNTEXT. w/o indicates that we remove a specific module or an approach from our
full model. The best results are highlighted in bold.

token with the token closest to the noisy embed-522

ding. SANTEXT+ (Yue et al., 2021) applies the ex-523

ponential mechanism to replace each token with a524

semantically similar one from the embedding space.525

CUSTEXT+ (Chen et al., 2023) uses a fixed set of ad-526

jacent candidates and the exponential mechanism527

for replacement. RANTEXT (Tong et al., 2024) ap-528

plies Laplace noise (Kotz et al., 2012) to introduce529

randomness into the non-sensitive token list and530

uses the exponential mechanism for replacement.531

Metrics. Following (Tong et al., 2024), we eval-532

uate the quality of the generated text with (see533

App. C for details): 1) MAUVE (Pillutla et al., 2021);534

2) Coherence.535

Details of implementation in App.D.536

5.2 Overall Performance537

Tab. 1 compares the continued text quality per-538

formance of all baselines across three benchmark539

datasets under different privacy budgets. Across540

all datasets, DYNTEXT consistently outperforms DP-541

based baselines in both MAUVE and Coherence,542

demonstrating superior text quality even under low543

privacy budgets. Specifically, (1) GPT-4 typically544

represents the upper bound of performance, as it545

directly accesses the original private text. Its gen-546

erated text quality generally surpasses that of the547

local model Vicuna. (2) Despite the DP perturba-548

tion applied to the prompts, DYNTEXT generates text549

that closely approximates the quality of GPT-4. (3)550

In the PubmedQA dataset, focused on the medi-551

cal privacy domain, DYNTEXT performs exception- 552

ally well, achieving significant improvements over 553

other baseline methods. This demonstrates that 554

DYNTEXT excels in the privacy domain as well. 555

5.3 Ablation Study 556

Tab. 2 presents the ablation studies of DYNTEXT. 557

The ablation results show that the full DYNTEXT 558

consistently outperforms all other configurations, 559

validating the effectiveness of each module. (1) 560

w/o smooth uses GS instead of token-level smooth 561

sensitivity (§ 4.2). The performance drops signifi- 562

cantly on the 20 Newsgroups, indicating that using 563

GS when there is abnormal data may introduce ex- 564

cessive noise, leading to poor performance. (2) w/o 565

dynamic adj. list uses a fixed adjacency list of 566

size 2
K instead of dynamically adjusting the adja- 567

cency list size based density information (§ 4.3). 568

The performance is significantly reduced, highlight- 569

ing the effectiveness of the dynamic adjacency list 570

in preserving semantics. (3) w/o replacement 571

adds noise directly to the original token embed- 572

ding, then finds the token closest to the noisy em- 573

bedding in the dynamic adjacency list to replace 574

the original token, instead of using the replacement 575

mechanism (§ 4.4). The decline in results confirms 576

that the replacement mechanism effectively sam- 577

ples semantically closer tokens while ensuring DP. 578

5.4 Analysis Study of Anti-attack 579

To evaluate the anti-attack capability of each 580

method under different privacy budgets, we con- 581
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Method IMDb 20 Newsgroups PubMedQA
ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3 ε = 1 ε = 2 ε = 3

SANTEXT+ 0.97143 0.97143 0.97143 0.01136 0.04735 0.18939 0.02667 0.11000 0.25556
CUSTEXT+ 0.39778 0.38778 0.37333 0.31439 0.32955 0.36237 0.27333 0.26333 0.27111
RANTEXT 0.00243 0.01160 0.02439 0.00000 0.00192 0.00637 0.00000 0.00333 0.00222
DYNTEXT 0.00008 0.00008 0.00007 0.00000 0.00010 0.00009 0.00000 0.00001 0.00002

Table 3: Comparing the attack success rates (rats) of input inference attacks under different methods with different
privacy budgets (ε = 1, 2, 3) on three datasets. Bold text denotes the best attack resistance.

Figure 2: The cosine similarity between the replace-
ment token and the original token in GloVe embedding
obtained by different baselines with DP budgets.

duct input inference attack (Yue et al., 2021) ex-582

periments on three datasets and compute the attack583

success rate rats. In this attack, the adversary uses584

a pre-trained BERT model to recover the original585

private text from the perturbed text by masking586

and predicting each token. The attack is successful587

if the prediction matches the original token. The588

results in Tab. 3 show that DYNTEXT outperforms589

other baselines in privacy protection against input590

inference attacks, with rats approaching 0. More-591

over, DYNTEXT maintains high stability as the pri-592

vacy budget increases, unlike other baselines that593

rise significantly. This demonstrates DYNTEXT’s ro-594

bust and stable privacy protection capabilities.595

5.5 Analysis Study of Token Similarity596

To reflect the semantic loss caused by replacing597

sensitive tokens among different methods, we com-598

pare the similarity between the replacement tokens599

obtained by each method and the original token.600

Specifically, we measure the cosine similarity (Xia601

et al., 2015) between the original token and its re-602

placement in the GloVe embedding (Pennington603

et al., 2014). As shown in Fig. 2: (1) For the same604

privacy budget ε, DYNTEXT achieves the highest co-605

sine similarity, indicating minimal semantic loss.606

(2) As ε decreases, all methods show a decline607

in similarity, reflecting higher semantic loss with608

stronger privacy protection. (3) FBDD and Rantext609

show notably low cosine similarity, indicating that610

methods introduce significant semantic deviation.611

(a) High-density area. (b) Low-density area.

Figure 3: The original token distribution and the replace-
ment token distribution of DYNTEXT and RANTEXT
samples in different density areas.

5.6 Distribution in Different Density Areas 612

We plot the token distribution of Origin and the 613

sampling distributions of RANTEXT and DYNTEXT in 614

different density areas. First, we reduce the high- 615

dimensional space to three dimensions. Using Eq.3, 616

we extract tokens from both high- and low-density 617

areas and randomly sample some as original to- 618

kens. Then, we apply the sanitization mechanism 619

to generate replacement tokens. From Fig.3, we 620

observe: (1) In high-density (low-sensitivity) areas, 621

DYNTEXT closely resembles Origin, preserving se- 622

mantics well while in low-density (high-sensitivity) 623

areas, semantic deviation increases, enhancing pri- 624

vacy. (2) RANTEXT matches DYNTEXT in low-density 625

areas but diverges in high-density areas, suggesting 626

that RANTEXT applies the same privacy strategy to 627

all tokens, leading to unnecessary semantic loss. 628

6 Conclusion 629

In summary, we proposed DYNTEXT to sanitize 630

text for privacy-preserving LLM inference. DYN- 631

TEXT extracts token density using semantic-based 632

density information modeling under DP; then dy- 633

namically constructs the adjacency list of each to- 634

ken based on the density information to adaptively 635

adjust the protection level; finally, samples non- 636

private tokens from the list through a replacement 637

mechanism to replace sensitive tokens. Experi- 638

ments show that DYNTEXT achieves SOTA per- 639

formance in balancing the privacy-utility trade-off. 640
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7 Limitations641

In our study, several limitations warrant attention.642

Firstly, the current method has been exclusively643

validated within the context of single-language text644

continuation tasks. Considering that state-of-the-645

art models for other tasks, such as multilingual646

processing, machine translation, or text summa-647

rization, often incorporate complex components,648

substantial further research is necessary to adapt649

our model for these applications. In future work,650

we intend to extend DYNTEXT to new domains651

beyond text generation, including optimization for652

these intricate components, to enhance its versatil-653

ity and performance across diverse scenarios.654

Secondly, due to the current method’s reliance on655

internal semantic information, it has not fully lever-656

aged external knowledge bases, contextual data, or657

external retrieval mechanisms to augment semantic658

understanding. This limitation may result in in-659

adequate identification and protection of sensitive660

information in complex scenarios, a prevalent chal-661

lenge in this field. To address this issue, we plan662

to explore the integration of multi-source informa-663

tion into the privacy protection mechanism, aiming664

to further balance the trade-off between semantic665

retention and privacy safeguarding.666

8 Ethical Considerations667

We have rigorously proven through theoretical anal-668

ysis that our method DYNTEXT satisfies DP guar-669

antees and has demonstrated strong empirical secu-670

rity through adversarial attack experiments. How-671

ever, residual theoretical risks of malicious ex-672

ploitation still exist, particularly when processing673

sensitive medical or legal documents. Despite our674

experiments indicating nearly zero successful at-675

tacks, real-world adversaries may utilize unfore-676

seen attack vectors. Consequently, for high-stakes677

applications such as healthcare or legal advice, we678

recommend augmenting our method with human679

reviews to ensure that outputs adhere to ethical and680

safety standards. We propose that users consider681

our method as a robust initial defense mechanism,682

complementing it with additional security measures683

to establish a comprehensive protection system. Fu-684

ture research will focus on further enhancements685

to mitigate these residual risks.686
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A εr-DP Proof for the Replacement 916

Mechanism 917

We need to prove that, given a privacy parameter r 918

0, for any two adjacent input tokens t, t ∈ Vt and 919

output token t̂ ∈ Cr(t) ∧ Cr(t
′), their probability 920

ratio satisfies: 921

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
≤ eεr . (9) 922

According to the probability formula Eq. 8 of the 923

replacement mechanism, we expand the probability 924

ratio: 925

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
=

exp
(

εr ·u(t,t̂)
2∆u

)
∑

ti∈Cr(t)
exp

(
εr ·u(t,ti)

2∆u

)
exp

(
εr ·u(t′,t̂)

2∆u

)
∑

ti∈Cr(t′) exp
(

εr ·u(t′,ti)
2∆u

)
.

(10) 926

Because of 0 ≤ u(t, t̂) ≤ 1, 0 ≤ u(t′, t̂) ≤ 1 and 927

∆u = 1, it can be further deduced that: 928

exp
(
εr·u(t,t̂)
2∆u

)
exp

(
εr·u(t′,t̂)

2∆u

) = exp
( εr
2∆u

(u(t, t̂)− u(t′, t̂))
)

≤ exp
(εr
2

)
.

(11) 929

We use the maximum-minimum ratio inequality to 930

analyze the change in the denominator. Assump- 931

tions: (1) The smallest softmax normalization term 932

in Cr(t) corresponds to exp
(
εr·umin(t)

2

)
. (2) The 933

largest softmax normalization term in Cr(t
′) corre- 934

sponds to exp
(
εr·umax(t′

2

)
. Therefore: 935

∑
ti∈Cr(t′)

exp

(
εr · u(t′, ti)

2

)

≤|Cr(t
′)| · exp

(
εr · umax(t

′)

2

)
,

(12) 936
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Dataset
MAUNE Coherence

ε=1 ε=2 ε=3 ε=1 ε=2 ε=3

IMDb 1.78e-10 1.24e-02 8.08e-22 1.62e-37 8.22e-06 6.09e-19
20 Newsgroups 1.09e-16 1.79e-04 6.31e-06 4.61e-13 3.93e-10 1.28e-12

PubMedQA 1.65e-20 1.42e-24 1.31e-31 1.46e-35 4.95e-26 6.23e-03

Table 4: Statistical significance test results (p-values) across privacy budgets ε for MAUNE and Coherence metrics.
All p-values < 0.05 confirm significant improvements over baselines.

∑
ti∈Cr(t)

exp

(
εr · u(t, ti)

2

)
≥ exp

(
εr · umin(t)

2

)
.

(13)937

Thereby, it can be further deduced that:938 ∑
ti∈Cr(t′)

exp
(
εr·u(t′,ti)

2

)
∑

ti∈Cr(t)
exp

(
εr·u(t,ti)

2

)
≤|Cr(t

′)| · exp
(
εr(umax(t

′)− umin(t))

2

)
≤|Cr(t

′)|e
εr
2 .

(14)939

By combining the changes in both the numerator940

and denominator, we obtain:941

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
≤ e

εr
2 · |Cr(t

′)|e
εr
2 = |Cr(t

′)|eεr .

(15)942

Since in DYNTEXT, the size of the adjacency list943

|Cr(t
′)| is a finite constant (at most K), the replace-944

ment mechanism satisfies εr-DP. It can be proved945

Pr[M(t) = t̂]

Pr[M(t′) = t̂]
≤ eεr . (16)946

So the replacement mechanism satisfies εr-DP.947

B Details of Datasets948

For open-ended text generation tasks, we em-949

ploy three benchmark corpora comprising distinct950

scales and domains: (a) The IMDb dataset4 (3,000951

samples) provides movie review texts for binary952

sentiment analysis; (b) 20 Newsgroups5 contains953

1,766 documents across 20 thematic categories954

for multi-class news classification and (c) Pub-955

MedQA6 (1,000 expert-annotated instances) sup-956

ports biomedical question answering using research957

abstracts.958
4https://huggingface.co/datasets/shubnandi/

imdb_small
5https://huggingface.co/datasets/aihpi/20_

newsgroups_demo
6https://huggingface.co/datasets/knowledgator/

PubmedQA

C Details of Metrics 959

Following previous works of open-ended text gen- 960

eration (Welleck et al., 2019; Xu et al., 2022; Tong 961

et al., 2023), we use the first 50 tokens of the arti- 962

cles referred to as the raw document Doc, which 963

requires privacy protection. We use the continu- 964

ation writing of Doc, referred to as Gen, which 965

consists of 100 tokens. Tokens are counted by the 966

tokenization scheme of GPT-2 (Lagler et al., 2013). 967

Following (Tong et al., 2024), we use two metrics 968

to evaluate the quality of the generated text in the 969

open-ended generation task: 970

1) MAUVE (Pillutla et al., 2021): It is used to 971

assess the similarity between text generated by a 972

language model and human-authored target contin- 973

uation text. 974

2) Coherence: It calculates the cosine similarity 975

between the text and the continuation. 976

COH(Doc,Gen) =
SimCSE(Doc) · SimCSE(Gen)

|SimCSE(Doc)| · |SimCSE(Gen)|
(17) 977

where SimCSE(x) ∈ Rd denotes the sentence 978

embedding vector of x generated by the SimCSE 979

model (Gao et al., 2021). 980

D Details of Implementation 981

The total privacy budget of DYNTEXT is ε = 982

εd + εr. The privacy budget parameter εd defaults 983

to 0.5. Following Custext, we default K to 20. 984

For black-box inference, we use GPT-4 (OpenAI, 985

2023a) to generate continuation text with the tem- 986

perature parameter set to 0.5. Correspondingly, 987

the token vocabulary Vt of GPT-4 is cl100k_base 988

(OpenAI, 2023c). For the embedding function 989

ϕ(·), we select text-embedding-ada-002 (OpenAI, 990

2023b), which utilizes the same token vocabulary 991

cl100k_base with GPT-4. 992

E Significance Test Results 993

We conduct the t-test (Bartlett, 1937) to examine 994

whether the improvements of our method are sig- 995

nificant. The p values in Tab. 4 are all smaller 996
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than 0.05, demonstrating the significance of our997

improvements.998
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