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Abstract

The completeness axiom renders the explanation of a post-hoc XAI method only locally
faithful to the model, i.e. for a single decision. For the trustworthy application of XAI, in
particular for high-stake decisions, a more global model understanding is required. Recently,
concept-based methods have been proposed, which are however not guaranteed to be bound
to the actual model reasoning. To circumvent this problem, we propose Multi-dimensional
Concept Discovery (MCD) as an extension of previous approaches that fulfills a completeness
relation on the level of concepts. Our method starts from general linear subspaces as con-
cepts and does neither require reinforcing concept interpretability nor re-training of model
parts. We propose sparse subspace clustering to discover improved concepts and fully lever-
age the potential of multi-dimensional subspaces. MCD offers two complementary analysis
tools for concepts in input space: (1) concept activation maps, that show where a concept is
expressed within a sample, allowing for concept characterization through prototypical sam-
ples, and (2) concept relevance heatmaps, that decompose the model decision into concept
contributions. Both tools together enable a detailed understanding of the model reasoning,
which is guaranteed to relate to the model via a completeness relation. This paves the way
towards more trustworthy concept-based XAI. We empirically demonstrate the superiority
of MCD against more constrained concept definitions.

1 Introduction

Explainable AI (XAI) allows to peek insight the black box of inherently complex deep learning models. Local

interpretability methods are particular valuable, as they measure attributions for an individual instance,
which are easily comprehensible for any kind of end-users, see (Covert et al., 2021; Lundberg & Lee, 2017;
Montavon et al., 2018; Samek et al., 2021) for reviews. For example, local methods make a prediction
interpretable on the level of single images or individual bank customers for an image or credit risk classifier,
respectively. Importantly, the commonly employed completeness axiom (attributions sum up to the model
prediction) ensures a meaningful interpretation of attributions (Lundberg & Lee, 2017; Sundararajan et al.,
2017). However, to actually comprehend the model reasoning we require a global model understanding,
which reliably explains the model behavior across multiple instances (e.g. a group of female vs. male bank
customers). We stress that it is not viable to require an end-user to aggregate local attributions into common
model features (concepts). Such a procedure is prone to human confirmation bias and it is not clear how
the imagined concepts align with the actual model reasoning. This urges for novel local and concept-based

interpretability methods, which allow to understand shared model structures (used across multiple samples)
for an individual instance. This idea was first formalized by Kim et al. (2018) and further developed by
ACE (Ghorbani et al., 2019) and its successors (Yeh et al., 2020; Zhang et al., 2021). Crucially, our work (1)
re-introduces completeness within the context of concept-based explanations. Thereby, concepts obtained
within our multi-dimensional concept discovery (MCD) scheme are locally and globally interpretable in terms
of a well-defined completeness decomposition. We outline the benefits of MCD in the following paragraphs.

Novel concepts as multi-dimensional subspaces Indisputably, concept discovery in neural networks is
inherently linked to structures in intermediate feature layers. In Figure 1, we illustrate different approaches
to decompose the hidden feature space into meaningful concepts, which are mathematically formalized as
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Figure 1: We strive for the most general decomposition of the hidden feature space, spanned by the neurons
c1c1c1, c2c2c2, c3c3c3, into linear structures that form the concepts Ci. The most constrained approach is to identify
concepts with single neurons (D1), i.e. directions in feature space aligned with the neuron axes. If one
allows for an arbitrary rotations of the concept directions, one arrives at D2. Leaving aside the orthogonality
constraint, D3 allows concepts to form arbitrary directions is feature space. Finally, allowing concepts to
form multi-dimensional subspaces, we arrive at the most general approach D4. Previous concept-based
methods are based on D1, D2 and D3. We choose the most general approach D3, to discover concepts that
are true-to-the-model.

linear structures. The most constrained definition (left most panel, D1) is to directly identify concepts with
a neural directions (Bau et al., 2017). This means that a concept is a one-dimensional subspace which
aligns with the unit axes in feature space. A slightly more general definition is to use an arbitrary rotated
orthogonal one-dimensional decomposition of the feature space (D2). Such a concept decomposition can
be obtained via a principal component analysis (PCA) of the feature space (Zhang et al., 2021). Going
one step further, we disregard the orthogonality constraint and allow arbitrary directions in feature space
(D3) (Ghorbani et al., 2019; Kim et al., 2018; Yeh et al., 2020; Zhang et al., 2021). Thereby, we can
characterize related concepts which are linearly independent but not orthogonal (for example different parts
of an animal). Allowing for arbitrary multi-dimensional subspaces unfolds the most general definition of a
linear decomposition. Thus, this general approach enables true-to-the-model concepts as it allows to capture
any meaningful linear structure within the hidden feature layer (benefit 1 ).

Multi-dimensionality ensures concise explanations Concepts strive to organize the information about
the model reasoning in a concise and accessible manner. As previously outlined, aggregating many different
explanations into a comprehensive model understanding is a challenge for humans. Thus, it is desirable
to grasp the actual model reasoning with a limited number of concepts. Phrased differently, we want to
cover the relevant feature space with only a few concepts and avoid fragmentation into a large number of
low/one-dimensional subspaces. We formalize the relevant feature subspace based on its impact on the model
prediction. Via this intuition we can define a concept completeness score in Section 2.3, which measures the
fraction of model prediction jointly covered by all concepts. Intuitively, multi-dimensional concept subspaces
reach a certain level of completeness with a smaller number of concepts than one-dimensional concepts and
thus deliver more concise explanations (benefit 2 ).

Sparse subspace clustering for better concept discovery The principles of MCD do not rely on any
particular (clustering) algorithm for concept discovery. We argue in favor of clustering approaches that place
the fewest restrictions on the discovery process, in order to fully realize the promise of multi-dimensional
concepts. A clustering algorithm that fits the above objective extremely well is sparse subspace clustering
(SSC) (Elhamifar & Vidal, 2013), as it is tailored to discover otherwise unconstrained linear subspaces. Thus,
there is no need for additional measures to reinforce the interpretability of concepts. In contrast, previous
methods use techniques like superpixels in input space (Ghorbani et al., 2019) or regularizers to enforce
concept dissimilarity (Yeh et al., 2020) for this purpose. This potentially breaks the connection between
discovered concepts and the actual reasoning structures in feature space.

Concept decomposition To present the discovered concepts in a human-comprehensible form, it is custom
to visualize regions in input space in which the concept is activated. We assume that the activations in a
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Figure 2: Schematic illustration of the MCD framework for concept discovery. The lower left panel illus-
trates how the model is split into a representation and prediction mapping. Feature vectors are extracted
from the representation mapping of a sample. The upper left panel illustrates concept discovery method-
ology of MCD (Section 2.2). First, randomly choose and cluster a set of feature vectors {φφφ} from a selection
of samples (using any clustering algorithm). Second, construct subspace bases for all clusters Cl via PCA
(intrinsic dimension dl). The upper right panel corresponds to the construction of concept activation

maps and the lower right panel shows the construction of concept relevance heatmaps, both laid out in
Section 2.3.

hidden layer form a spatially resolved map of feature vectors (given e.g. for convolutional or transformer
models with skip-connections). We uniquely decompose each hidden feature vector into its concept parts
and measure the length of these parts to assess whether a particular concept is activated. Upsampling
these concept activations from hidden to input layer finally creates comprehensible concept activation maps

in input space. We now restrict to a high-level feature layer which is only succeeded by linear operations
(e.g. a linear classification head with global pooling). This enables to also uniquely decompose the model
prediction into concept parts and thereby define a concept relevance heatmap. Then, the relevances follow
a completeness relation (benefit 3 ), i.e. summing up the relevance from all concepts is guaranteed to equal
the final prediction. Concept relevance heatmaps show a spatially resolved decomposition of the model
prediction into concepts and show how indicative a particular concept instantiation is for the predicted class.
We stress, that the concept relevance heatmaps follow directly from the decomposition into concept parts
and do not invoke any additional XAI method nor retraining model parts. Thus, MCD can completely
capture the model reasoning solely in terms of linear operations on concept subspaces.

In summary, MCD is a consistent framework to discover true-to-the-model concepts, which are guaranteed to
rely on the actual model reasoning via the completeness relation. Visualizing activation maps and relevance
heatmaps for prototype samples offers the possibility to characterize concepts more closely. Thus, we see its
main utility of MCD in the domain of model understanding and certification. Concepts provide insights into
model behavior that generalize across samples and are therefore a valuable tool for systematic investigations
of spurious correlations (model biases) (Lapuschkin et al., 2019; Palatnik de Sousa et al., 2021; Weber et al.,
2021), as well as for scientific discovery (Blücher et al., 2020; Hägele et al., 2020; McGrath et al., 2021;
Šarčević et al., 2022), where the model serves as proxy for the unknown relationships in the data.

2 Multi-dimensional Concept Discovery (MCD)

We organize this methodological section into three parts: First, we introduce our novel concept definition.
Second, we describe practical concept discovery procedures that align with this definition. Most prominently,
we introduce SSC but also elaborate on possible alternatives. Third, we introduce a concept decomposition

3



Under review as submission to TMLR

and discuss how to construct local and global concept importance that fulfill a concept completeness relation.
Figure 2 presents a schematic summary of our MCD framework.

2.1 Concept definition

Concepts are inherently tied to the hidden representations of intermediate feature layers. In Figure 1, we
illustrate the structures that concepts could possibly form in hidden feature space: from single directions
(D1-D3) to linear subspaces (D4). MCD opts for the most general structure, i.e., arbitrarily orientated
multi-dimensional linear subspaces. Note, that exploring even more general structures, such as concepts as
sub-manifolds in feature space, is an interesting idea. However, these do not allow for a decomposition of
the feature vector and hence do not lead to a completeness property, which is central to the definition of
concept relevance maps (see Section 2.3).

We start out with a user-specified set of samples S for which we aim to discover concepts. The sample
selection S is unrestricted: the user can decide for class-specific samples/concepts or use all training samples
to obtain completely class-unspecific concepts. Next, we split the model f into two parts, f = g ◦ h, where
h is the mapping to a hidden feature layer, which is mapped to the prediction by g. Our definition then
relies on all hidden representations h(α) ∈ R

H×W ×F of the input samples α ∈ S (height H, width W and
number of features F , see upper left panel in Figure 2). We spatially deconstruct the feature maps h(α)
and obtain a feature vector1 φφφα

xy ∈ R
F for each location (x, y) ∈ {1, . . . , H} × {1, . . . , W}. We now strive to

identify concepts as (linear) structures in this F -dimensional feature space and pose no additional restrictions
(one-dimensionality and/or orthogonality) on the structure to the subspaces.

Definition 1. We define a concept Cl as a dl dimensional linear subspace in the F -dimensional feature

space, spanned by the basis vectors cccl
j,

Cl = span
({

cccl
j |j = 1, . . . , dl

})

. (1)

In particular, the dimensionality dl can vary among the concepts l = 1, . . . , nc. We denote the number of
concepts as nc and assume without loss of generality that their subspaces are pairwise disjoint.2 In particular,
our concept definition does not require orthogonal subspaces. Further, we do not require the nc concepts
Cl to cover the whole feature space. However, for the decomposition in Section 2.3, we need a set of all cccl

js
that spans the entire feature space. For this purpose, we define Cnc+1 to be the orthogonal complement of
the subspace spanned by all concepts, i.e., Cnc+1 = span(C1, . . . , Cnc)⊥.

2.2 Concept Discovery

Typically, concept discovery, i.e., obtaining concepts as defined by Equation (1), can be subdivided into two
steps: First, cluster a user-defined set of feature vectors {φφφα

x,y} (usually sourced from the initial samples S)
and second, identify a representative basis for each concept cluster (lower left panel in Figure 2).

Clustering feature vectors In principle, any clustering method can be considered to discover concept
clusters in feature space. This includes well-established baselines such as k-means clustering or PCA. Both
have previously been proposed in (Zhang et al., 2021) to identify one-dimensional subspaces. However, k-
means does not incorporate any information about the final objective to identify linear subspaces as opposed
to general clusters and PCA is restricted to orthogonal, one-dimensional subspaces.

We therefore propose a dedicated approach for this particular purpose and draw on the rich body of literature
on sparse subspace clustering (SSC) (You et al., 2016a; Soltanolkotabi & Candes, 2012; You et al., 2016b;
Elhamifar & Vidal, 2013). As nicely laid out in (Elhamifar & Vidal, 2013), SSC is ideally suited to identify
clusters of linear subspaces and provides a number of advantages over standard clustering algorithms, which
are directly applied to the data: SSC does not take advantage of the spatial proximity of the data, it can be
implemented robustly against noise and outliers and does not require specifying the cluster dimensionalities
in advance.

1Vectors are denoted lower-case bold (φφφ ∈ R
F ).

2This assumption was never violated in our experiments, but it could be enforced by removing the intersection between the
subspaces from both and considering it as a separate concept.
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The various clustering algorithm mentioned above give rise to different MCD flavors:

• MCD-SSC For SSC, the concept discovery can be divided into two phases: Identifying a concept-
determining self-representation and applying spectral clustering. We provide technical details on
the particular subspace algorithm in Appendix A.

• MCD-kmeans As a simple baseline, we consider k-means clustering directly applied to the features.
Like SSC, it leads to multi-dimensional and in general non-orthogonal subspaces. However, the
clustering algorithm does not include any information about the linear subspaces as desired clustering
target.

• MCD-PCA Finally, we consider PCA applied to the features directly. This corresponds to the
concept discovery algorithm considered by ICE (Zhang et al., 2021). Note, that this approach
already encompasses the basis identification step and directly leads to one-dimensional, orthogonal
subspaces by construction.

Constructing concept bases Irrespective of the chosen clustering algorithm, we have now identified clus-
ters C1, . . . , Cnc , which contain all feature vectors φφφα

x,y from the training set. Next, we strive to characterize
each concept via a subspace basis rather than its cluster members. To this end, we aim to identify a basis
Cl that robustly covers all samples in Cl. Here, we apply principal component analysis (PCA) and deter-
mine the intrinsic dimension dl of the subspace using a heuristic proposed by Fukunaga & Olsen (1971) and
implemented by Bac et al. (2021). The PCA components up to the intrinsic dimension dl then serve as a
basis vectors cccl

j for the subspace Cl.

Even though this leads to a slightly simpler interpretation, we will not assume that two different subspaces Cl

and Cm are orthogonal, as general subspace clustering algorithms do not enforce this. This could be enforced
through the use of dedicated orthogonal subspace clustering methods (Rahmani & Atia, 2017a), however,
at the potential cost of slightly sub-optimal subspace clusters (Rahmani & Atia, 2017b). Alternatively, this
could be implemented by sequentially rotating each identified subspace into the orthogonal complement of
its predecessors. The latter leads to the last MCD flavor:

• MCD-SSC-orth Here, we devise a post-hoc adaptation of the MCD-SSC approach to explore the
impact of orthogonal subspaces. We construct these subspaces in an iterative fashion. Starting
with an empty set, we explore the effect of adding one of the subspaces discovered by MCD-SSC
by considering adding the subspace rotated into the orthogonal complement of the span of the
subspaces in the set so far. Then, we select the candidate subspace that leads to the largest increase
in completeness, as defined in the following paragraph.

2.3 Concept decomposition

Now, we discuss how new features vectors {φφφα
x,y} (obtained from a test set sample α) and the weights of the

final linear classifier layer can be analyzed via a decomposition in terms of previously discovered concepts Cl.
To this end, we propose concept activation maps, concept relevance heatmaps and a global concept relevance

score.

Concept activation maps quantify the activation of a chosen concept at a certain spatial location in
the input space of a sample α. For this purpose, we decompose the feature vectors {φφφα

x,y} into its concept
contributions.

Since the union of all concepts (including the orthogonal complement) forms a basis for the entire feature
space, we can uniquely decompose any feature vector φφφ as

φφφ =
nc+1
∑

l=1

dl

∑

i=1

φl
iccc

l
i ≡

nc+1
∑

l=1

φφφl . (2)
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For a fixed sample α, we normalize φφφ such that the maximum length across all elements of the feature layer
is 1, i.e., maxx,y|φφφα

x,y|. Now, one can interpret |φφφl| as a measure for the extent to which a certain concept is
expressed in the given feature vector. Performing this step for every feature vector φφφα

x,y within a sample α
leads to a concept activation map whose spatial dimensions match those of the feature layer. For CNNs, we
follow the example of Selvaraju et al. (2020) and compute the corresponding concept activation map in input
space by bilinear upsampling in the spatial dimensions. Our concept activation maps extend the concept
visualization of Zhang et al. (2021) to multi-dimensional concepts (upper right panel in Figure 2). For the
final explanation, we also use them to characterize a concept in terms of prototypical examples. Here, we
sort test set samples by maxx,y|φφφα

x,y| and choose the top-k samples as concept prototypes.

We stress, that our methodology is applicable beyond CNNs. In particular, one can decompose feature
representations of any model based on MCD. However, the prerequisite for showing concept (activation)
maps in input space is the locality of the trained model, i.e., the ability to associate locations in feature and
input space. Whereas this locality is built in as an inductive bias into convolutional architectures, it also
emerges for vision transformer models during training, as manifested for example in localized attention maps
(Caron et al., 2021). To the best of our knowledge, we show the first concept-based explanations for a vision
transformer model in Section 4, where we modify the upsampling to account for the model’s tokenization
procedure.

Concept relevance heatmaps and completeness relation As a general requirement, any concept-based
XAI method should quantify the relevance of a concept in terms of its impact on the classification decision.
To this end, we specialize to the last hidden layer, which is only followed by linear operations (e.g. mean
pooling and a linear classification head). We discuss the broad class of models to which this applies in the
last paragraph of this section and empirically in Section 4. Now, for a given class, the weight vector www ∈ ❘F

linearly connects the final F -dimensional feature space with the scalar class-prediction. As before, φφφ ∈ ❘F

corresponds to a (potentially spatially pooled) feature vector in this very layer (see Figure 2 lower right
panel).

First, we are interested local (per-sample) concept relevance. For this, we can decompose the class logit
under consideration, φφφ · www + b, up to the bias term b, as

φφφ · www =
nc+1
∑

l=1

φφφl · www ≡

nc+1
∑

l=1

rl . (3)

We start by discussing the case where the class logit for sample α is obtained as 1
W H

∑

x,y φφφα
xy · www, i.e. after

global average pooling. First, we use the feature vector φφφα ∈ ❘F after pooling. Then, the decomposition
above defines a local concept relevance rl = φφφl · www. Aggregating relevances rl from all concepts recovers the
class logit prediction (up to the bias term), and thus, Equation (3) defines a completeness relation. 3

4 Second, we apply Equation (3) to the feature vectors φφφα
xy before pooling. This leads to a relevance heatmap

rl
xy that has the same spatial dimension as the feature layer. Importantly, rl

xy reduces to rl after spatial
pooling. As for the concept activation maps, we use spatial upsampling to map rl

xy back to the input
space and obtain concept relevance heatmaps. Since upsampling preserves the completeness relation, these
decompose the local relevance maps rx,z = 1

W H
φφφα

xy · www used by Zhou et al. (2016) (commonly referred to as
class activation maps (CAMs)) into concept contributions.

Global relevance and completeness score Next, we establish a global (model-wide) concept relevance
score. Recall, that all cccl

j defined above represent a basis for the feature space ❘F . Hence, we can directly

3In the special case of one-dimensional concepts, rl reduces to the local concept relevance in (Zhang et al., 2021).
4We briefly comment on the remaining commonly desired Shapley axioms Lundberg & Lee (2017). The local concept

relevance trivially fulfills them, since it is built on a linear additive model. Formally, the hidden activation φα of a given sample
α are segmented into concept contributions/unique features φl

α. Thus, the value function corresponding to the underlying
Shapley values is given by vα(S) =

∑

l∈S
φl

α · w (linear in φl) for S ⊆ {1, . . . , nc + 1}.

6



Under review as submission to TMLR

decompose the weight vector www into (analogously to Equation (2))

www =
nc+1
∑

l=1

dl

∑

i=1

wl
iccc

l
i ≡

nc+1
∑

l=1

wwwl , (4)

where wwwl =
∑dl

i=1 wl
iccc

l
i and by construction, wwwl · wwwnc+1 = 0 for l = 1, . . . nc. In this case, we have

|www|2 = |wwwnc+1|2 + |

nc
∑

l=1

wwwl|2 =
nc+1
∑

l=1

|wwwl|2 +
nc

∑

l,k=1,l 6=k

|wwwl||wwwk| cos(∠(wwwl,wwwk)) (5)

The first equality allows us to define

η({Cl}) = 1 − |wwwnc+1|2/|www|2 (6)

as a completeness score (fraction of www which is explained by all concepts {C1, . . . , Cnc}) with respect to
a given class. To the best of our knowledge, we are the first to introduce a concept completeness score
directly based on model parameters. Previous work (Yeh et al., 2020) defined a related measure based on
model accuracy. Note, that for an orthonormal basis the second term in Equation (5) (cosine) disappears.
Then |wwwl|/|www| can be directly interpreted as (global) concept relevances, which sum up to the previous
completeness score over all concepts. Further, the angles in Equation (5) are lower- and upper-bounded
by the corresponding minimal or maximal principal angles5 between the two corresponding subspaces, i.e.,
θkl

min ≡ minmθkl
m ≤ ∠(wwwk,wwwl) ≤ maxmθkl

m ≡ θkl
max. This means we can lower- and upper-bound |www|2 by

nc+1
∑

l

|wwwl|2 +
nc

∑

l,k=1,l 6=k

|wwwl||wwwk| cos(θlk
max) ≤ |www|2 ≤

nc+1
∑

l

|wwwl|2 +
nc

∑

l,k=1,l 6=k

|wwwl||wwwk| cos(θlk
min) . (7)

Obviously, lower and upper bound coincide in the case of orthogonal subspaces. This implies, that the |wwwl|
are also informative in the non-orthogonal case, provided the principal angles between the different subspaces
are given. This highlights the intricate connection between (global) relevances and the geometry in feature
space, i.e., the relative orientation of the concept spaces (specified via principal angles between pairs).

Finally, we briefly comment on the applicability of our approach for local and global concept relevances via
Equation (3) and Equation (4). In the form described above it can be used for any model with a linear layer
as final layer, potentially preceded by a global pooling layer, if one aims to spatially resolve the relevances
instead of considering only pooled feature vectors. This latter category covers a broad range of modern CNN
architectures such as ResNets, Inception-based model but also vision transformers, that do not base their
prediction on a CLS token, such as Swin transformers (Liu et al., 2021). We envision, that our approach is
even applicable, in approximate form, to other feature layers apart from the final hidden layer if one locally
approximates the remainder of the model by a linear model, similarly as it is done by Ribeiro et al. (2016)
or by Selvaraju et al. (2020) to generalize (Zhou et al., 2016).

3 Related Work

ACE (Ghorbani et al., 2019) uses a superpixel segmentation algorithm and k-means clustering to identify
class-specific concept candidates for TCAV (Kim et al., 2018). The concept discovery scheme of ACE
has several shortcomings: The segmentation into candidate concept patches is model-independent and thus,
segments are not necessarily meaningful as perceived by the model. To enable clustering of intermediate CNN
activations, segments are resized and mean padded to the original input shape. This leads to artificial, off-
manifold samples with potentially distorted aspect ratios and discards the overall scale information. Finally,
ACE relies on multiple heuristics to discard segments/clusters both before and after k-means clustering. In
contrast, MCD is coherently based on hidden model representations without relying on additional pre- or

5A formal definition of principal angles is given in Appendix B.
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post-processing. Similar limitations apply to methods that rely on ACE-discovered labeled concepts, like
(Li et al., 2021), which uses Shapley values for concept importance, and (Wu et al., 2020), which occludes
particular neurons for neuron-wise relevances and transforms them into concept importances via concept
classification. Recently, Crabbé & van der Schaar (2022) proposed a generalization of TCAV by invoking the
kernel trick, which generalizes the concept definition towards non-linear structures. However, unlike MCD,
it does not allow quantifying the relevance of a concept towards the model prediction and can only verify
predefined concepts instead of discovering them.

ICE (Zhang et al., 2021) defines concepts as directions in feature space. Technically, this is achieved via
dimensionality reduction techniques applied to concatenated flattened feature maps. ICE measures the im-
portance of its class-wise concepts using TCAV. Interestingly, ICE introduces the notion of a concept weight,
which is analogous to our concept relevances on the logit layer. However, they do not consider spatially re-
solved concept relevance heatmaps and only address the special case of single-dimensional subspaces. Given
these restrictions, ICE can be seen as a special realization of the MCD framework, which uses dimensionality
reduction methods like PCA as clustering algorithms. Other methods learn concept vectors and a mapping
to feature space either for all classes simultaneously (ConceptSHAP (Yeh et al., 2020)) or for each class
separately (MACE (Kumar et al., 2021), PACE (Kamakshi et al., 2021)). ConceptShap, MACE and PACE
all use additional regularizers to enforce concept dissimilarity. In contrast, MCD restricts the concept dis-
covery process as little as possible. Importantly, each method above defines a custom measure for concept
importance, which is based on approximations of the original model. In contrast, the local and global con-
cept relevance within MCD are solely based on the original model parameters. Other approaches (Chormai
et al., 2022) use a concept definition similar to ours, but use information from external attribution methods
as well as orthogonality constraints to restrict the discovered concepts, whereas MCD works without such
restrictions.

There is a complementary line of work of frameworks that try to identify concepts associated with particular
neurons in hidden CNN representations, in conjunction with (Bau et al., 2017) or without (Achtibat et al.,
2022) special concept-annotated datasets. Network Dissection (Bau et al., 2017) investigates the alignment of
human-understandable concepts and particular single hidden features (neurons). Net2vec (Fong & Vedaldi,
2018) extended this by allowing concepts to be represented by combinations of neurons.

Lastly, there is a line of research that constructs inherently interpretable concept models by design with
(Koh et al., 2020; Radenovic et al., 2022) or without relying on concept annotations (Chen et al., 2019). Our
approach is best comparable with (Chen et al., 2019), as both can be reduced to a linear model operating on
concepts that can be characterized via prototypes. We stress the essential difference, that our approach does
not require retraining (with special training objectives) but is an interpretable reformulation of the original
model.

4 Results

We carry out our experiments on ImageNet (Deng et al., 2009). As model architectures, we consider ResNet
models (He et al., 2016) using original weights as provided by torchvision and updated weights as provided by
timm (Wightman, 2019) with an improved training procedure (Wightman et al., 2021). We also present re-
sults for a swin vision transformer (Liu et al., 2021), again using weights provided by timm (SwinS3base224).
In the following, we will refer to these models as ResNet50, ResNet50v2 and, Swin-T, respectively. We base
most of our experiments on images from a diverse selection of ten ImageNet classes, which roughly align
with CIFAR10 classes6

4.1 Completeness arithmetic

First, we provide a concrete example for an MCD explanation and showcase its completeness relation intro-
duced in Section 2.3 (benefit 3 ). To this end, Figure 3 shows an MCD-SSC explanation of a ResNet50v2
prediction for a sample of the police van class in ImageNet. The number of concepts was chosen such that the

6namely (airliner, beach wagon, hummingbird, siamese cat, ox, golden retriever, tailed frog, zebra, container ship, police
van)
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Table 1: Summary of concept discovery methods considered in this work.

Method Multi-dim.
Arbitrary

orientation

MCD-SSC ✓ ✓

MCD-SSC-ortho ✓ ✗

MCD-kmeans ✓ ✓

ICE/MCD-PCA (Zhang et al., 2021) ✗ ✗

ACE (Ghorbani et al., 2019) ✗ ✓

completeness measure in Equation (6) reaches η = 0.5. The three information components of the explanation
all provide complementary information:
(1) Concept relevance heatmaps decompose the local relevance maps into a sum of concept-specific relevance
heatmaps according to the completeness relation Equation (3). They show the alignment of a feature vector
component φφφl associated with concept Cl and the weight vector of a specific class. Roughly speaking, this
alignment indicates how typical the network perceives the particular instantiation of the concept for the class
under consideration. Applying mean pooling leads to a corresponding decomposition of the class logit under
consideration (up to the bias term) into contributions corresponding to different concepts. The completeness
relation on the level of concept relevance heatmaps as well on the level of logits represents a unique feature of
the MCD framework. Interestingly, for the explanation in Figure 3, only the orthogonal complement concept
contributes negatively to the class logit. The contributions of the first two concepts clearly dominate the
class logit.
(2) Concept activation maps stem from a decomposition of the feature vectors into a sum of vectors coming
from different, distinct concept subspaces, see Equation (2). Their non-negative score show how much a
particular feature vector aligns with a specific concept subspace. These maps help to identify input regions
where the concept is highly expressed. We color-code concept activation maps as a transparent overlay
over the image where transparent regions indicate high activation. To guide the eye, we also include a
yellow(white) contour line at a threshold value of 0.5(0.4).
As a sanity check, we compute the Pearson correlation coefficient between the positive part of each concept
relevance map and each concept activation map for MCD-SSC and ResNet50v2. Among all test set samples,
we find a mean correlation of 0.45 for the concepts of the CIFAR10 classes. This confirms that concept
relevance is high in sample areas where the respective concept is strongly activated.
(3) Concept prototypes allow characterizing a concept subspace through examples. Here, we display the
concept activation maps of three test set samples that show the highest activation with the given concept.
In many cases, an intuitive meaning of a concept can be inferred most easily from these samples and numer-
ous previous approaches present concepts in this way (Zhang et al., 2021; Achtibat et al., 2022; Yeh et al.,
2020). In case of the explanation in Figure 3, this could be windows/livery, livery, blue lights, building, tires
(and the orthogonal complement covering mainly the background). In addition, we also indicate the global
concept relevances for the different concepts according to Equation (4).
In summary, the sample in Figure 3, is classified as a police van mainly due to its windows/livery, which are
perceived as typical for the class by the network and are also the most relevant concept for the class globally.
Further, all other concepts are expressed in the sample and contribute positively, except for the orthogonal
complement.

4.2 Empirical evaluation

We compare the the MCD flavors and previous methods listed in Table 1 in terms of (1) true-to-the-modelness
(benefit 1 ) and (2) conciseness (benefit 2 ) of the explanations. We base our evaluation on the CIFAR10 classes
mentioned above, and work with the ResNet50v2 model, for which we extract concepts from the last hidden
layer. For all methods within the MCD framework, we fix the number of concepts in a class-dependent way
such that we reach a completeness score of η = 0.5.
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Figure 3: Completeness relation for the police van class in ImageNet. Concepts are discovered via MCD-SSC
for ResNet50v2. The number of concepts is chosen such that the completeness score reaches η = 0.5. We
distinguish between local (sample-specific) and global properties (characterizing a set of samples). Locally,
we consider concept relevance maps, which quantify the spatially resolved contribution of a concept to the
prediction. These satisfy a completeness relation, as explicitly shown in the first line. Concept activation

maps provide complementary information and indicate how much a concept is activated depending on the
spatial location in the sample. Globally, the overall relevance of a particular concept is quantified by the
global relevance scores. Finally, we also present concept prototypes (concept activation maps of the most
strongly activated samples) to characterize a particular concept.

4.2.1 Comparing true-to-the-modelness via concept flipping
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Figure 4: Left: Concepts are flipped one at a time in descending order of local concept importance/TCAV
score, respectively. We measure the decline in model accuracy and show the mean accuracy across CIFAR10
classes against the fraction of deleted pixels. Meaningful concept discovery and quantification methods are
supposed to show a sharp decline in this figure, but the decline should not happen after flipping only a single
concept (i.e. the whole object). Right: Qualitative comparison between hard concept assignments.

In order to compare the methods in Table 1 in terms of true-to-the-modelness, we invoke the Smallest
Destroying Concepts (SDC) benchmark as proposed in (Ghorbani et al., 2019) and (Wu et al., 2020). For
concepts that reflect the model’s actual reasoning structure in feature space and true-to-the-model concept
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relevance scores, SDC should show a sharp decline of the model accuracy with the number of flipped concepts.
Here, we already mention the trivial solution for the sharpest decline, which is assigning the whole object to
a single concept and provides little insight into the model behavior.

We obtain concept masks, i.e. hard concept assignments, in input space by taking the argmax of the corre-
sponding concept activation maps over all concepts including the orthogonal complement. After the argmax
operation, we disregard the orthogonal complement, i.e., we do not remove it during the SDC experiments.
For each concept mask we obtain local relevance scores by pooling the corresponding concept relevance
heatmaps over the respective regions. This provides concept masks in input space which are ordered ac-
cording to their importance. ACE does not provide a measure of per-sample concept relevance. Therefore,
we revert to the order of their (global) TCAV scores after discarding concepts where statistical testing in
comparison to random input samples fails to stay below p = 0.05. To provide a qualitative impression of
the concept relevance heatmaps across methods, we show them together with concept activation maps for
selected samples in Figures 6 to 8.

To evaluate SDC, we subsequently remove concepts, as represented by the corresponding segments, in order
of their sample-wise (local) relevance starting from high to low. To inpaint the removed segments, we use a
classical imputation algorithm (Bertalmio et al., 2001), which leads to comparably realistic imputed images.
Thus, the model is evaluated on-manifold in contrast to imputing with gray patches as often done in the
literature. For similar reasons, we avoid the Smallest Sufficient Concepts (SSC) benchmark, which would
require high-quality imputation algorithms to avoid evaluating the model far from the data manifold.

In the left panel of Figure 4, we show the results of the SDC experiment. In contrast to previous studies
(Ghorbani et al., 2019; Wu et al., 2020), we report the model performance depending on the fraction of oc-
cluded pixels, which is essential for comparability since the segment size varies between different approaches.
In order to show a meaningful average of the samples across all classes we flip only as many concepts as are
present for the class with minimum number of concepts nc. As mentioned above, a meaningful concept dis-
covery and quantification method should show a sharp decline in this figure, but the full decline of the score
should not happen after flipping only a single concept (covering the whole object). We observe the latter for
ICE/MCD-PCA and MCD-SCC-ortho, both of which rely on orthogonal concepts. We hypothesize that this
behavior relates to the greedy way these orthogonal subspaces are constructed. In particular, ICE/MCD-
PCA only detects a single relevant and expressive concept, as the accuracy curve stagnates after flipping
the first concept. Among the remaining algorithms, MCD-SSC shows the strongest decline as compared to
MCD-kmeans and ACE. In Figure 4 (right panel), we also show hard concept assignments for an example
image of the golden retriever class, which form the basis of the concept flipping experiment described above.
These visually support the findings of the concept flipping experiment. Most approaches only discover a
single concept for the dog (apart from a potential genuine background concept). MCD-SCC shows the most
finegrained decomposition. This trend is also supported by the average subspace dimension dl as stated in
Table 2.

To summarize the results of the concept flipping experiment, our general MCD definition leads to concepts
that are most true-to-the-model, as the two unconstrained MCD flavors (MCD-SSC and MCD-kmeans),
show the steepest descent among all methods without reverting to the non-informative solution of a single
relevant concept.

4.2.2 Conciseness of explanations

In Section 1, we describe why it is desirable, to explain the model reasoning with as few meaningful concepts
as completely as possible, i.e. to deliver concise concept explanations. Similarly to the above section, there
is a trivial solution to extremely concise concepts for the ImageNet classification task, which is to relate
a major part of feature space to a single concept of high dimensionality. Therefore, we characterize the
conciseness of concept explanations not only by the number of concepts nc that is required to reach a certain
completeness score, but also by average subspace dimension dl. Additionally, we evaluate the mean (scaled)
Grassmann distance ∆kl

c , as defined in Equation (10), between all concept pairs (k, l) within one class c to

11



Under review as submission to TMLR

Table 2: Summary of concept discovery methods considered in this work in comparison to prior work from
Zhang et al. (2021) (ICE/MCD-PCA) and Ghorbani et al. (2019) (ACE). We measure average subspace
dimension dl and the number of concepts nc that is required to reach a completeness score of η = 0.5
for ResNet50v2 on the CIFAR10 classes. A small number of relevant concepts nc is desirable, since this
summarizes the complete model into an accessible and meaningful format. Here, multi-dimensional concepts
have an advantage. Additionally, we evaluate the mean (scaled) Grassmann distance ∆kl

c , see Equation (10),
between all concept pairs (k, l) within one class c to quantify the distinctness between concepts. The visual
inspection is based on prototypes of the basketball, golden retriever and airliner class concepts in Figures 9
to 11. Medium broad and distinct concepts are the most informative.

Method mean(dl) mean(nc) mean(∆kl
c ) Visual inspection

MCD-SSC 44.2 4.8 1.19 medium broad

MCD-SSC-ortho 44.2 4.8 1.57 only one broad (rest narrow)

MCD-kmeans 74.7 2.7 0.83 very broad

ICE/MCD-PCA 1 146.7 1.57 only one broad (rest narrow)

ACE 1 n.a. n.a. medium broad

quantify how dissimilar two concepts are.7 In summary, we argue that concepts should be concise (small nc),
but dissect the feature space into meaningful building blocks of model reasoning. While the latter is difficult
to quantify, we argue that there is a trade-off between (1) covering feature space with very few concepts of
high dimensionality and potentially small distance vs. (2) dissecting it into a high number of concepts with
small dimensionality (extreme case: one-dimensional). To support this reasoning, we also inspect the visual
impression of concepts for a selection of classes.

We list the number of concepts nc that is required to reach a completeness score of η = 0.5 for ResNet50v2 on
the CIFAR10 classes and dl in Table 2. To provide a visual comparison of the concepts discovered by these
methods, we show concept activation maps of prototypes for basketball, golden retriever and airliner class
in ImageNet in Figures 9 to 11 and judge how broad they appear in input space. MCD-kmeans discovers
the smallest number of concepts with the highest mean concept dimensionality of 74.7 and the smallest
inter-concept distance (mean(∆kl

c ) = 0.83) among all methods. We argue that this is reflected in the visual
appearance of the concept prototypes, which are visually broad and difficult to distinguish. MCD-SSC
discovers on average 4.8 concepts with a smaller mean concept dimensionality of 44.2. Visually, concepts
seem medium broad and are easier to distinguish in input space than for MCD-kmeans, which is reflected in
a higher inter-concept distance. When requiring orthogonality mean(∆kl

c ) = π/2 = 1.57, like for MCD-SSC-
ortho and ICE, we see that only one concept appears medium broad in input space while all others are almost
not activated. We argue, that the orthogonality constraint hinders the concepts to reflect a natural similarity
between certain concepts. This aligns with the conclusions drawn from the SDC benchmark. Most notably,
to achieve a comparable model faithfulness (completeness score of η = 0.5) 30 times more one-dimensional
ICE concepts than multi-dimensional MCD concepts are required, meaning this method delivers concept
explanations that are not concise. Intuitively, a single concept is split up into several concepts, which is
also reflected in their weak activation on test set samples. Lastly, the visual impression of ACE concepts
is fixed by the choice of the superpixel algorithm. While ACE concepts are all one-dimensional, they do
not provide a mechanism to quantify how complete they are, thus we cannot quantify nc required to reach
a completeness of 50%. As an overall summary, MCD-SSC is superior in dissecting the feature space into
enclosed and meaningful concepts.

7We use a scaled version of the original Grassmann distance that aggregates the principle angles (in radian) between two
subspaces, for which 0 ≤ ∆kl

c ≤ π. Two special cases are ∆kl
c = 0 meaning subspace bases vectors are perfectly aligned, and

∆kl
c = π/2, meaning they are orthogonal.
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4.3 Use case: MCD concepts reveal differences in classification strategies between model
architectures and training procedures

Finally, we showcase how MCD can unravel different classification strategies depending on the model archi-
tecture (ResNet50 vs. Swin-T) and the training strategies (ResNet50 vs. ResNet50v2). The test accuracies
for the subset of CIFAR10-classes are 0.80 (ResNet50), 0.84 (ResNet50v2) and 0.86 (Swin-T). Here, we
focus on MCD-SCC and, as before, restrict ourselves to concepts in the last hidden feature layer. First,
we compare the discovered concepts between the models by the activation maps of concept prototypes for
the beach wagon class of ImageNet in Figure 5. We fix the number of concepts to nc = 5. For Swin-T,
we only apply a spatial upsampling of the concept activation maps from the feature to the input space to
14 × 14 in order to account for the 16 × 16 patch tokenization. We find that ResNet50 concepts, which could
roughly be identified as (car body, windows, car roof, wheels, street), are more narrow than the expression
of Swin-T and ResNet50v2 concepts. The latter are related to broader views of the car, such as concepts (1,
2, 4) for ResNet50v2 and concepts (1, 3) for Swin-T. Interestingly, ResNet50v2 concepts reach a much lower
completeness score of η = 0.49 than ResNet50 (η = 0.89) and Swin-T (η = 0.84) for fixed nc = 5. In Figure 5
we show the relation between the total concept space dimensionality, the number of concepts nc and the
completeness score η across the CIFAR10-classes. Even for nc = 30, the ResNet50v2 concepts have a lower η
than those of the ResNet50 for nc = 3, although the former covers already a much larger part of the concept
space. These observations support the statement that feature space of the ResNet50v2 exhibits comparably
richer structure than Resnet50. This is an interesting difference in the character of the feature space as a
consequence of two different training procedures for the same architecture, revealed by MCD-SSC concepts.
Interestingly, the dependence of η on nc for the concepts between two models with different architectures,
ResNet50 and Swin-T, is quite similar. This also aligns with the visual appearance of the concepts.
To summarize, Swin-T and ResNet50 build on broader and more versatile concepts. In comparison,
ResNet50v2 builds more narrow and thus specific concepts for its classification strategy. These broad con-
cepts are not unexpected for a transformer architecture like Swin-T with coarse self-attention windows, but
a rather surprising finding for ResNet50 in comparison to ResNet50v2.
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Figure 5: Left: Mean concept space completeness score ν for the CIFAR10 classes across architectures
against the dimensionality of the union of all concept subspaces

∑

l dl. The number of concepts can be
inferred from the points on the line where the first point on each line corresponds to nc = 3 and the last
one to nc = 30. ResNet50v2 shows a much lower completeness score at roughly the same nc and

∑

l dl as
ResNet50. The feature space dimensionality is F = 2048 for ResNet50(v2) and F = 768 for Swin-T. Right:
We show MCD-SSC concept activation maps for concept prototypes for ResNet50, ResNet50v2 and Swin-T
and the beach wagon class in ImageNet. We fixed the number of concepts to nc = 5. In this way, ResNet50v2
reaches η = 0.49, ResNet50 η = 0.89 and Swin-T η = 0.84. Each row shows a single concept and is titled by
its global concept importance. The last row shows the orthogonal complement of the concept space.
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5 Summary and Discussion

In this work, we put forward MCD, a general framework for concept discovery based on the hidden repre-
sentation of a trained deep neural network. Unlike prior work in the field, we propose a general concept
definition (incorporating previous approaches) as multi-dimensional linear subspaces without restricting to
single directions or enforcing orthogonality between subspaces. We use concept activation maps to visualize
concepts in input space. Considering the final hidden layer representation, we can reformulate the original
model as a linear classifier acting on linear concept subspaces without the need to retrain with a special
objective. This leads to a completeness relation, i.e., a natural decomposition of class logits into contribu-
tions corresponding to specific concepts and allows to resolve their spatial importance in terms of concept
relevance heatmaps. As a particularly suited realization of our framework, we put forward MCD-SCC, which
relies on sparse subspace clustering for concept discovery. Based on qualitative and quantitative insights, we
show the superiority of MCD-SCC over other MCD flavors that build on traditional clustering algorithms.

We showcase the ability of MCD via discriminating between hidden representations obtained from different
model architectures and training strategies. This paves the way towards further novel use-cases for MCD
concepts such as gaining insights in the natural sciences, e.g., identifying sub-classes of cancerous cells in
histopathology or summarizing model behavior beyond single examples and thereby systematically discover
model biases. Code to reproduce our experiments is publicly available at https://anonymous.4open.

science/r/MCD-XAI.
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A SSC Algorithmic Details

Concept-determining self-representation We compute sparse self-representations R for a random sub-
collection of n ≤ N ·H ·W feature vectors {φφφα

xy} sampled from S. Here, the term self-representation refers to
a coefficient matrix that expresses each sample as a linear combination of all other samples. More specifically,
using the notation from (Elhamifar & Vidal, 2013), given the feature vectors Φ = [φφφ1, . . . ,φφφn] ∈ R

F ×n, we
identify a sparse coefficient matrix RRR = [rrr1, . . . , rrrn] ∈ R

n×n such that

φφφj = Φrrrj where rii = 0. (8)

The particular kind of sparsity constraints that are imposed on Equation (8) and how it is optimized depends
on the chosen SSC algorithm. Here, we use elastic net subspace clustering (You et al., 2016a), which is robust
against noise and scales well for large sample sizes. In all our experiments, we fix the hyperparameter γ,
which balances sparsity vs. robustness, to γ = 10. We confirmed that the results are not sensitive to
variation of this parameter over a range of values from 5 to 50. As computation time for SSC is dependent
on this parameter, we chose γ such that this is minimized.

We remove outliers based on the ℓ1-norm as in (Soltanolkotabi & Candes, 2012), where we empirically fix
the percentile threshold to 0.75 and re-fit the sparse self-representation for the remaining elements.

Another scalable alternative to the elastic net clustering is orthogonal matching pursuit (OMP)(You et al.,
2016b), which is, however, not robust against noise and does not allow for outlier removal via thresholding.
Finally, the original sparse subspace clustering method from (Elhamifar & Vidal, 2013) is robust against
noise and outliers but does not scale to large datasets. The particular robustness and scalability properties
make elastic net subspace clustering (with thresholding) an ideal choice for the first step of our concept
discovery method.

Spectral clustering In a second step, we perform spectral clustering with the affinity matrix W = |R|+|RT |,
which encodes the similarity of two feature vectors according to their self-representations. We determine the
number of clusters nc either via the largest gap in the spectrum of the Laplacian (Von Luxburg, 2007) or
use a predetermined value. This step assigns every input feature φφφi to a particular cluster C1, . . . , Cnc

or to
the set of outliers.

B Characterizing relation between subspaces by principal angles

In this section, we briefly review the definition of principal angles, which can be used to characterize the rela-
tion between two linear subspaces. The principal angles θAB

i (Jordan, 1875) (i = 1, . . . , min(dim A, dim B))
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between two linear subspaces A, B, are defined recursively via

cos θAB
i = max

aaa∈A,bbb∈B

aaaT bbb
|aaa||bbb| =: aaaT

i
bbbi

|aaa||bbbi| , (9)

where the maximum is taken subject to the orthogonality constraints aaaTaaaj = 0 and bbbTbbbj = 0 for j =
1, . . . , i − 1.

To quantify the similarity between two subspaces A and B, we use a scaled version of their Grassmann
distance Hamm (2008), which is defined as,

∆AB = 1/
√

min(dim A, dim B)
√

(θAB
1 )2 + . . . + (θAB

min(dim A,dim B))
2 . (10)

This allows comparing the similarity of concepts within a given class or across classes regardless of the
concept subspaces’ dimensionality.

C Qualitative results

For a qualitative comparison between of the concept activation maps and relevance heatmaps between the
methods in Section 4.2, we provide results for selected samples in Figures 6 to 8. In Figures 9 to 11 we show
the respective concept prototypes for all concept discovery approaches.

18



Under review as submission to TMLR

+ + + +

+ + + +

+ + +

+ + + ++ +

M
C

D
-S

S
C

M
C

D
-S

S
C

-o
rt

h
o

+ + + +

+ + + +

+ + +

+ + + ++ +

} =

=

M
C

D
-k

m
e
a
n

s
IC

E
A

C
E

4.78

concept space complement

Figure 6: Concept heatmaps and activation maps for ResNet50v2 and a randomly chosen sample from the
basketball class in ImageNet. The number of concepts is chosen such that the completeness score reaches
η = 0.5. Concepts are ordered from left to right according to global concept relevance. Concept heatmaps
are titled by the pooled local concept relevance that sums to the prediction logit minus the bias. For ICE,
we only show the first six out of 105 and for ACE the first six out of 25 concepts.
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Figure 7: Concept heatmaps and activation maps for ResNet50v2 and a randomly chosen sample from the
golden retriever class in ImageNet. The number of concepts is chosen such that the completeness score
reaches η = 0.5. Concepts are ordered from left to right according to global concept relevance. Concept
heatmaps are titled by the pooled local concept relevance that sums to the prediction logit minus the bias.
For ICE, we only show the first six out of 142 and for ACE the first six out of 25 concepts.
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Figure 8: Concept heatmaps and activation maps for ResNet50v2 and a randomly chosen sample from the
airliner class in ImageNet. The number of concepts is chosen such that the completeness score reaches
η = 0.5. Concepts are ordered from left to right according to global concept relevance. Concept heatmaps
are titled by the pooled local concept relevance that sums to the prediction logit minus the bias. For ICE,
we only show the first seven out of 141 and for ACE the first seven out of 25 concepts.
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MCD-SSC MCD-SSC-ortho MCD-kmeans

ICE ACE

Figure 9: Concept activation maps for concept prototypes for basketball class of ImageNet. The last row
shows prototype for the complement, except for ACE, where no complement exists. For ICE, we only show
the first six out of 105 and for ACE the first six out of 25 concepts.
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MCD-SSC MCD-SSC-ortho MCD-kmeans

ICE ACE

Figure 10: Concept activation maps for concept prototypes for golden retriever class of ImageNet. The last
row shows prototype for the complement, except for ACE, where no complement exists. For ICE, we only
show the first six out of 142 and for ACE the first six out of 25 concepts.
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MCD-SSC MCD-SSC-ortho MCD-kmeans

ICE ACE

Figure 11: Concept activation maps for concept prototypes for airliner class of ImageNet. The last row
shows prototype for the complement, except for ACE, where no complement exists. For ICE, we only show
the first seven out of 141 and for ACE the first seven out of 25 concepts.
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