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ABSTRACT

Decoder-only large language models (LLMs) have recently demonstrated impres-1

sive capabilities in text generation and reasoning. Nonetheless, they have limited2

applications in simultaneous machine translation (SiMT), currently dominated by3

encoder-decoder transformers. This study demonstrates that, after fine-tuning on a4

small dataset comprising causally aligned source and target sentence pairs, a pre-5

trained open-source LLM can control input segmentation directly by generating a6

special "wait" token. This obviates the need for a separate policy and enables the7

LLM to perform English-German and English-Russian SiMT tasks with BLEU8

scores that are comparable to those of specific state-of-the-art baselines. We also9

evaluated closed-source models such as GPT-4, which displayed encouraging re-10

sults in performing the SiMT task without prior training (zero-shot), indicating a11

promising avenue for enhancing future SiMT systems.12

1 INTRODUCTION13

Unlike conventional sequential translation, in which the target text is produced after the end of14

the corresponding source sentence (or long phrase), in simultaneous machine translation (SiMT)15

the target text is produced with minimal delay, aiming for the best listener experience expected16

from professional conference interpreters. While recent years have seen tremendous progress in17

sentence-based machine translation, mainstream adoption of SiMT systems requires solving a range18

of technical problems. Perhaps the most important of them is that, much like human conference in-19

terpreters, SiMT systems must make optimal decisions about when (rather than how) to translate. In20

particular, naively translating each source word immediately results in compromised target quality,21

given that the meaning of a source word often makes sense only in the context of later words. And22

while waiting until the end of a sentence might seem a viable solution, in practice it would introduce23

unacceptable delays between the source and target message. Consequently, the development of an24

effective SiMT system necessitates striking a balance between these two opposite scenarios.25

Existing approaches to maintaining an optimal quality-latency tradeoff in SiMT, conventionally26

called policies, fall into two broad categories: fixed and adaptive. The policy’s role is to signal27

to a separately trained translation model when to produce a partial translation (aka WRITE action28

(Gu et al., 2017)) based of the partial input; at other times the input, which represents either text29

chunks from an upstream ASR system (in cascade SiMT systems) or speech embeddings (in end-30

to-end systems), is just read in (READ action). While with a fixed policy (Dalvi et al., 2018; Ma31

et al., 2019a; Elbayad et al., 2020; Zhang & Feng, 2021), the decision to output translation is based32

on a simple heuristic, an adaptive policy (Arivazhagan et al., 2019; Ma et al., 2019b; Zhang &33

Feng, 2022) can be implemented as a separately trained model, for example an agent trained with34

reinforcement learning (RL) (Gu et al., 2017; Satija & Pineau, 2016).35

To the best of our knowledge, state-of-the-art SiMT systems use encoder-decoder transformer ar-36

chitectures in a sequence-to-sequence paradigm. However, as of writing this paper the largest – and37

generally most expressive – language models are causal decoder-only architectures. We wanted to38

explore the utility of such models for SiMT tasks, focusing on the English-German and English-39

Russian language pairs, and specifically if they can be harnessed with minimal engineering effort.40

Inspired by the recent success of LLMs – in particular their agential capabilities (Nascimento et al.,41

2023; Wang et al., 2023a;c) – here we propose TRANSLLAMA, a policy-free SiMT system, in which42

an off-the-shelf pre-trained decoder-only LLM is fine-tuned on a dataset of causally aligned source43
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LLM (Llama2)

<s>[INST]  <<SYS>> You are a professional … <</SYS>>  Translate this text: I like to [/INST]

<WAIT> generated?Yes: READ action

Generates tokens until new full word or <WAIT>

source
(audio stream)

ASR (Whisper)
Recognizes words from the audio stream 

and adds them to the buffer Word buffer

1

2

3 No: WRITE action
Update the prompt with a new source word and 

the newly generated target word

<s>[INST]  <<SYS>> You are a professional … <</SYS>>  Translate this text: I like to have [/INST] Ich

Update the prompt with a new source word from the buffer

4

“Ich”

Figure 1: Model overview. The source audio stream is processed with an ASR model (1), which
saves each recognized word into the buffer. The initial prompt (2) is built with k source words
(k = 3 in this example). When the buffer has 3 words, the initial prompt is fed into the LLM,
which generates output tokens until either a <WAIT> token or a full word is generated ("Ich" in this
example). Then the prompt is updated with a new input ("have") and target ("Ich") word (WRITE
action). Finally, the updated prompt (4) is fed back into the LLM. If <WAIT> is generated, the
prompt is only updated with a new source word from the buffer (READ action).

and target sentences. The causality of the source is guaranteed by inserting one or more <WAIT>44

tokens into the target sentence to ensure that target content words never appear earlier than their clos-45

est equivalents in the source. We call our model policy-free, because as a result of fine-tuning on a46

causally aligned dataset the LLM becomes capable of deciding when to output translation and when47

to read in more of the source, without requiring a separate policy. At inference, the fine-tuned LLM48

is prompted with part of a source sentence concatenated with its corresponding (partial) translation49

and outputs one or more target tokens until either a full new word or a <WAIT> token is generated,50

which signals for more words to be read in. When extended with a off-the-shelf ASR model, in51

addition to text-to-text translation (T2TT), our system handles speech-to-speech translation (S2TT)52

tasks with quality (as measured by BLEU score (Papineni et al., 2002)) approaching that of some of53

the recently published baselines at comparable latencies.54

Our main contributions are as follows:55

1. We present the first system that leverages a decoder-only causal LLM for the SiMT task;56

2. We propose a way to fine-tune a pre-trained LLM with direct supervision on a dataset of57

causally aligned source-target sentence pairs;58

3. We demonstrate that an LLM can perform both simultaneous translation and input segmen-59

tation without a separate policy, with performance approaching or exceeding state of the60

art.61

The rest of the paper is structured as follows. Section 2 offers a brief overview of most recent SiMT62

literature. In Section 3 we detail our system’s architecture, fine-tuning data preparation and training63

procedure. In Section 4 we showcase its performance on en-de and en-ru language directions.64

We conclude with Section 5 in which we discuss the limitations and directions for future work.65

2 RELATED WORK66

SiMT systems aim to deliver the best translation quality, usually measured with BLEU score (Pap-67

ineni et al., 2002), while keeping its latency at an acceptable level. This quality-latency trade-off is68

controlled by the "policy", which decides when to translate (i.e. perform a WRITE action) and when69

to receive more input (i.e. perform a READ action). The various policies described in the literature70

can be broadly categorized into fixed and adaptive (Zhang et al., 2020). Fixed policies (e.g, wait-k71
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(Ma et al., 2019a)) are simple rules that determine the timing and order of WRITE and READ ac-72

tions irrespective of the context. Early SiMT systems used chunk-based approaches (Fügen et al.,73

2007; Bangalore et al., 2012; Yarmohammadi et al., 2013; Sridhar et al., 2013), in which the input is74

split into sub-sentence phrases and translated independently of the previous chunk’s context, which75

compromised translation quality. Attempting to overcome this limitation, Dalvi et al. (2018) pro-76

posed an incremental decoding approach, in which chunk translations incorporate previous context77

encapsulated by an RNN’s hidden states. They showed that coupled with a simple segmentation78

strategy, their approach outperformed existing state of the art. On the other hand, adaptive policies79

(e.g. wait-if rules (Cho & Esipova, 2016)) make READ/WRITE actions more flexibly by taking ac-80

count of the partial source and/or target. Adaptive policies can be implemented as separately trained81

agents (e.g. with reinforcement learning) (Grissom II et al., 2014; Gu et al., 2017; Satija & Pineau,82

2016; Alinejad et al., 2018). In such policies, READ/WRITE actions can be taken based on attention83

Raffel et al. (2017); Chiu & Raffel (2018); Arivazhagan et al. (2019); Ma et al. (2020b), or stability84

of the model’s outputs over n steps (so-called local agreement (Liu et al., 2020a; Ko et al., 2023;85

Polák et al., 2022)). More recent studies have also explored training the policy with binary search86

Guo et al. (2023) aiming to maximize the gain in translation quality per each token read, or cast the87

problem of deciding when to translate as a hidden Markov transformer Zhang & Feng (2023), in88

which hidden events correspond to the times at which to output translation.89

Another promising line of work, related to the present study, aims to fine-tune encoder-decoder90

transformers, such as mBART (Liu et al., 2020b), originally pre-trained for sentence-level transla-91

tion, for the SiMT task. For example, Fukuda et al. (2023); Kano et al. (2022) utilized fine-tuning92

on prefix-alignment data and Zhang et al. (2020) on meaningful units, achieving compelling perfor-93

mance on some language pairs.94

Distinct from these approaches, we propose to fine-tune a large langauge model for the SiMT task95

on a dataset of causally aligned source-target sentence pairs, which we describe below.96

3 METHOD97

Although the LLMs we consider in this paper are designed to process only text input, we add an98

ASR stage to enable it to also perform S2TT mode. Thus, we follow a cascaded approach shown in99

Fig. 1.100

Causal alignment. Training SiMT models, including optimal segmentation policies, with direct101

supervision has remained a challenge (Guo et al., 2023) due to at least three reasons: (1) word102

order inconsistencies between the source and target, (2) omissions of words from the target that103

were present in the source, and/or (3) additions of words to the target not explicitly present in104

the source, making it difficult to establish unambiguous correspondences between each source and105

target words. This is less of a problem for offline translation models, because they are trained with106

direct supervision on pairs of complete source and target sentences, and both during training and107

inference the entire source context is revealed. However, it is not immediately clear how to use108

direct supervision for the SiMT task, in which the model must begin translation based on partial109

context. Nevertheless, we believe that direct supervision for the SiMT task is possible and propose a110

way to accomplish that with a causally aligned dataset. In such a dataset, a target word never appears111

before its corresponding (when such correspondence can be established) source word in time, which112

is defined as the number of words from the sentence start. In other words, in a causally aligned113

source-target sentence pair, source words are guaranteed to be causal relative to their corresponding114

target words. We illustrate this in Fig. 2.115

Note that the causal alignment is not always perfect: due to the word length mismatch between the116

source and target, not all all source words will have a corresponding target word, and vice versa, not117

every target word will have a corresponding word in the source. However, as we demonstrate below,118

fine-tuning an LLM on such a causally aligned dataset enables it to achieve results comparable to119

some state-of-the-art baselines.120

In order to causally align the source and target, we split each sentence using the word_tokenize121

function from the nltk package (Bird et al., 2009), treating punctuation marks as "words", then find122

the best correspondences between the source and target words with SimAlign (Jalili Sabet et al.,123

2020), and finally insert as many <WAIT> tokens into the target as appropriate. If after alignment124
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en ru en ru en de en de
1 They Они They Они 1 He Er He Er
2 live живут live живут 2 took befreite took @
3 in глубоко in @ 3 one uns one @
4 the в the @ 4 of von of @
5 depths конголезских depths глубоко 5 the einer the @
6 of джунглях of в 6 worst der worst @
7 the , the @ 7 scourges schlimmsten scourges @
8 Congolese где Congolese конголезских 8 of Geißeln of @
9 jungle сложно jungle джунглях 9 mankind der mankind @
10 and проводить and , 10 away Menschheit away befreite
11 it исследования it где 11 from . from @
12 has . has @ 12 us us uns
13 been been @ 13 . . von
14 very very @ 14 ▁▁ einer
15 difficult difficult сложно 15 ▁▁ der
16 to to проводить 16 ▁▁ schlimmsten
17 study study исследования 17 ▁▁ Geißeln
18 them them @ 18 ▁▁ der
19 . . . 19 ▁▁ Menschheit

20 ▁▁ .

original causally aligned original causally aligned

Figure 2: Causality-preserving alignment. Two examples are shown: for en-ru (left) and en-de
(right). If time is defined as the number of words from the beginning of the sentence, before align-
ment, some target words appear earlier than their corresponding English equivalents in the source.
By inserting <WAIT> tokens (shown as "@"), we can shift those target words into the future, thereby
achieving causality for every content word. "_ _" are fillers added at the end of the source sentence
if neccesary to match its length with that of the target.

the target becomes longer than the source due to added <WAIT> tokens, we pad the source at the125

end with filler strings ensuring that the aligned source and target sentences have the same num-126

ber of "words". These filler strings are only used for convenient batching and are dropped before127

tokenization.128

Supervised Fine-Tuning. We fine-tune the LLAMA-2 13B and and 70B models (Touvron et al.,129

2023) 1 to optimize the following objective:130

LT2TT = −
|y|∑
t=1

log p(yt|y<t, x≤t) (1)

where yt is the next target token, y<t are previously generated (and committed) tokens and x≤t and131

the partial source tokens revealed up to the time step t. Following (Touvron et al., 2023), we zero132

out the loss on tokens corresponding the to system message and source, only backpropagating on133

the target tokens.134

We use batches of prompt-response pairs collated in the following way. Before tokenization, each135

aligned sentence-target pair selected from the causally aligned dataset is trimmed from the right to136

leave first l words, where l ∼ U(1, L) and L is the full length of the causally aligned source-target137

pair. After trimming, all the <WAIT> tokens except the last one (if present) are dropped, because138

they are never plugged back into the input and only serve the purpose of signaling for more words139

1We found that the LLAMA-2-CHAT variants (both 13B and 70B), when fine-tuned on our causally aligned
dataset performed slightly, but consistently, worse than LLAMA-2, and we report the results for the latter model
only.
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to be read in. Likewise, we drop all the fillers (if present) from the source. Finally, the system140

message, trimmed source and trimmed target are joined into the prompt (as shown in Fig. 4) and141

tokenized. Because there is no <WAIT> token in the LLAMA 2 tokenizer, we use 0 (which originally142

corresponds to the <UNK> token). Thus, the model is fine-tuned to either output the next token of143

a word or <WAIT>, if the partial source does not contain sufficient information needed to predict144

translation.145

To save memory, we loaded the the base model in 4-bit precision. This allowed us to fine-tune146

LLAMA 2 70B on one NVIDIA A100 80GB device. We fine-tune the base model with LoRA (Hu147

et al., 2022) with r = 16 and α = 32 for 3 epochs with a batch size of 25 and gradient accu-148

mulation of 4 steps. We save model checkpoints every 10 steps and select the one with the lowest149

validation loss for inference. For optimization, we used the paged_adamw_32bit optimizer with150

default parameters, and a learning rate schedule with a linear warm-up of 10 steps up to 0.00005,151

followed by a cosine decay. For parameter-efficient training, as well as for inference, we used the152

transformers2 library.153

Inference. At inference, given a prompt (Fig. 4) comprised of a system message, partial source and154

previously committed partial target, the LLM greedily generates one or more next tokens. We use155

modified wait-k (Ma et al., 2019a), in which WRITE actions are only allowed when the length of156

the PARTIAL_SOURCE is equal or greater than k. Since k controls the tradeoff between quality157

and latency, we report results for different values of k. After a full new word – which may consist of158

several tokens – is generated, the prompt is updated by appending a new source word to the partial159

source and the newly generated word to the partial target. This process is repeated until the LLM160

generates the <EOS> token. All the generation parameters were at default, except top_p which we161

set to 0.7. We did not use beam search during generation.162

PARTIAL_SOURCE PARTIAL_TARGET Prediction
I <WAIT>
I like �
I like to � l�bl�
I like to have � l�bl� <WAIT>
I like to have tea � l�bl� pit~
I like to have tea � l�bl� pit~ qa�
I like to have tea in the � l�bl� pit~ qa� <WAIT>
I like to have tea in the morning. � l�bl� pit~ qa� po
I like to have tea in the morning. � l�bl� pit~ qa� po utram.
I like to have tea in the morning. � l�bl� pit~ qa� po utram. <EOS>

Figure 3: An illustration of the inference process for the en-ru language pair. Assuming k = 1,
given the prompt with one source and zero target words, the model first outputs <WAIT>, which
signals for the next source word to be read in. At the next step, the model generates the first target
word (�), which is plugged into the prompt at the next step. This process continues until <EOS> is
generated.

After all the source words have been revealed, the input is no longer partial and no new words are163

added to it, but the generation process continues until <EOS>. Importantly, if the model generates164

the <WAIT> token, a new source word is read in, but the <WAIT> token itself is not appended to165

the partial target. We illustrate the inference process in Fig. 3 and Algorithm 1.166

Prompt structure. We follow a similar prompt structure as in Touvron et al. (2023) (Fig. 4). For167

the SYSTEM_MESSAGE we used the following text: "You are a professional conference interpreter.168

Given an English text you translate it into {TARGET_LANGUAGE} as accurately and as concisely169

as possible, NEVER adding comments of your own. You output translation when the information170

available in the source is unambiguous, otherwise you output the wait token ({WAIT_TOKEN}),171

not flanked by anything else. It’s important that you get this right.". We note that while the system172

message is only necessary in zero-shot SiMT scenarios – which we discuss below – for consistency173

we still kept it in all the experiments reported here, including those involving supervised fine-tuning.174

2https://huggingface.co/docs/transformers/installation

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Inference process

partial_target = []
k = WAIT_K

while True:
partial_source = SOURCE[:k]
prompt = " ".join([SYS_MSG, partial_source, partial_target])

# generate until next full word, or <EOS> or <WAIT>
next_word = model.generate(prompt)

if next_word == "<EOS>":
break # finish sentence

elif next_word == "<WAIT>":
k += 1 # READ action

else:
partial_target.append(next_word) # WRITE action
k += 1

<s>[INST]
<<SYS>>

[SYSTEM_MESSAGE]
<</SYS>>
Translate this text: PARTIAL_SOURCE [/INST] PARTIAL_TARGET

Figure 4: Prompt structure.

Automatic speech recognition. Given that the LLMs are designed to process text input, to enable175

S2TT we first need to extract text from input audio, for which we use Whisper 3 (Radford et al.,176

2023). Specifically, for each READ action, a new segment of audio, lasting 200 ms, is added to any177

previously read audio chunks and then processed by Whisper. This method of fixed audio windowing178

often results in partially clipped words. To address this, we discard the last word predicted by179

Whisper during each READ action unless the entire source audio has been read in. We note that180

this approach to online ASR is somewhat naive and has room for improvement – as indicated by a181

roughly 1 BLEU point decrease due to ASR-related errors (Fig. 9). Since our main objective was182

to assess the capability of LLMs to perform SiMT tasks, we leave exploring ways to decrease ASR183

errors to future work.184

4 RESULTS185

Data. For supervised fine-tuning (SFT), validation and testing, we used MuST-C v2.0 (Di Gangi186

et al., 2019) for English-to-German (en-de) and English-to-Russian (en-ru) translation direction.187

We randomly selected 4000 sentences for training and 100 sentences for validation. However, since188

it is possible that the dataset that LLAMA2 was pre-trained on and MuST-C v2.0 (including its vali-189

dation and test set) might have overlapping content, we also compiled another test set, which we call190

NEW-TED-2023. This test set has a similar content type (TED talks) and follows the same format191

as the original MuST-C v2.0, but only includes talks posted after February 2023. The dataset has192

two parts: 102 source-target pairs for en-de and 102 for en-ru language pair. Unless indicated193

otherwise, we report the results obtained on this test set.194

T2TT. We first analyzed the T2TT performance or our approach on the MuST-C dataset v2.0195

(Di Gangi et al., 2019). To get a sense for the quality-latency tradeoff, we plot BLEU scores against196

several different values of k (because k is the only way to control the translation latency). The197

3We used whisper-large-v2.
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Figure 5: Dependence of latency and quality on k (top panels) and quality-latency tradeoff curves
(bottom panels) for the T2TT mode on the MuST-C v2.0 dataset. For reference, dashed lines indi-
cated GPT-4’s sentence-level (i.e. with k set to the sentence length) BLEU scores: black for en-de
and red for en-ru.

Fukuda et al.
(2023)

Llama-70b
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Figure 6: S2TT performance of SFT LLAMA-
2 and two recently published models on the
en-de language pair on TED-TST-2023. See
also Appendix C.1.

gpt-3.5-turbo-0613 Llama-13b-hf-chat Llama-70b-hf-chat gpt-4-0613

5
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BL
EU

Fukuda et al. (2023)

Figure 7: Zero-shot S2TT performance or our
approach compared with GPT-3.5 and GPT-4 on
the en-de language pair on TED-TST-2023.

results, shown in Fig. 5, suggest that the LLM’s size is a major factor determining the translation198

quality.199

S2TT. We next test fine-tuned LLMs and compare them with two recently published S2TT baselines200

(Fukuda et al., 2023; Papi et al., 2023) as well as to OpenAI’s GPT-3.5 and GPT-4 (in zero-shot201

mode). To ensure as fair a comparison as possible, we ensured that average lagging (AL) of all of202

the models below approximately 2000 ms. For Llama-2 models we set k = 5 (the other models’203

settings are listed in Appendix D). The boxplots in Figs. 6, 7 and throughout are drawn based on204

data from 10 evaluation runs of the same model with the same parameters on sentence pairs sampled205

with replacement from TED-TST-2023. The results show a degradation of translation quality by206

approximately 1 BLEU score point compared to T2TT mode, which is to be expected due to ASR207

errors (Fig. 9).208
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Figure 8: After fine-tuning, LLAMA-2 gen-
erates <WAIT> tokens predominantly after
function words (especially articles and prepo-
sitions).
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Figure 9: Performance decrease due to ASR-
related errors. In T2TT mode, Llama2-70b
performs by about 1 BLEU score point better
than the the same model on the same data in
S2TT mode.

k w/ <WAIT> w/o <WAIT>

1 15.23 14.88
2 17.17 15.66

(a)

k w/ <WAIT> w/o <WAIT>

1 14.76 10.80
2 14.97 11.94
4 17.42 15.67

(b)

k w/ <WAIT> w/o <WAIT>

1 17.17 4.64
2 16.83 7.84
4 19.24 14.80

(c)

Table 1: Removing the instruction to generate or suppressing the <WAIT> token degrades perfor-
mance. The numbers indicate BLEU scores on TED-TST-2023 (en-de) in T2TT mode for GPT-4
(a), supervised fine-tuned Llama-2-13b-hf (b) and Llama-2-70b-hf (c).

Zero-shot T2TT. Can the LLMs perform the SiMT task zero-shot, that is without any prior fine-209

tuning? To answer this question, we used LLMs that have been fine-tuned with RLHF for instruc-210

tion following: open-source LLAMA2-CHAT, as well as GPT-3.5 (gpt-3.5-turbo-0613) and211

GPT-4 (gpt-4-0613), which were among the strongest closed-source LLMs available at the time212

of writing this paper. In general, with the notable exception of GPT-4, zero-shot performance was213

poor. Inspection of the translations revealed that the models consistently failed to follow the prompt214

instruction, specifically, (1) generating output in English rather than the target language, (2) adding215

expressly prohibited explanatory comments, (3) restating or summarizing the task, or (4) explain-216

ing the reason for adding <WAIT> tokens). GPT-4 was surprisingly good, performing better than217

the supervised fine-tuned LLAMA2-70B, and we speculate that the performance of GPT-3.5 and218

GPT-4 could be further improved with SFT 4, more sophisticated generation strategies and prompt219

engineering.220

Importance of wait tokens. To evaluate the utility of <WAIT> tokens, we conduct two ablation221

experiments. In the first experiment we consider a zero-shot translation scenario in which GPT-4222

was not instructed to use <WAIT> tokens. In the second experiment, we suppress the generation223

of <WAIT> tokens in supervised fine-tuned LLMs. The results, as indicated in Table 1, reveal that224

GPT-4 demonstrates marginally inferior performance when k ∈ {1, 2}5 when not instructed about225

<WAIT> tokens. However, it is important to note that in a zero-shot context, the GPT-3.5 and GPT-226

4 seldom generated <WAIT> tokens (almost never for k > 2). Therefore, the directive to employ227

these tokens only exhibited a discernible impact for smaller values of k. By contrast, in the SFT228

scenario, suppressing <WAIT> tokens led to significantly decreased performance for both the 13229

and 70B versions of LLAMA-2 (Table 1 (b, c)).230

To gain insight into where LLAMA-2 tended to insert the <WAIT> token, we plot the distribution231

of words after which the SFT models generated this token. Fig. 8 shows that most of the time the232

model generated <WAIT> after function words – which makes sense – rather than content words,233

indicating that it had learned to choose appropriately between READ and WRITE actions.234

4SFT was not available for GPT-3.5 and GPT-4 at the time of writing this paper.
5We did not investigate the role of <WAIT> tokens for k > 2, because GPT-4 almost never generates them

for those values of k.
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5 CONCLUSION AND FUTURE DIRECTIONS235

We have shown that with minimal fine-tuning and without resorting to sophisticated training tech-236

niques (e.g. checkpoint averaging (Fukuda et al., 2023)), an off-the-shelf pre-trained LLM can per-237

form simultaneous translation and achieve encouraging results that rival some of the recent SiMT238

models. This opens interesting directions to be explored in future work, such as multilingual fine-239

tuning, self-instruct (Wang et al., 2023b) and human preference tuning (Ouyang et al., 2022).240

There are several reasons to believe that we are far from unlocking the full potential of LLMs241

for SiMT. First, we followed the practice – standard in the SiMT literature – of evaluating the242

model on individual sentences randomly sampled from continuous prose. However, many (if not243

the majority of) short sentences are ambiguous when taken out of context. Even human conference244

interpreters routinely prepare for an upcoming translation job, studying relevant materials, which245

means that they do not have to translate sentences taken out of context. For this reason, we believe246

that the most straightforward way to boost the performance of future LLM-based SiMT systems is to247

insert background information into the prompt. Second, the big difference in zero-shot performance248

between GPT-3.5 and GPT-4 suggests that size is likely the biggest factor determining the model’s249

translation quality, and that further gains can be achieved once SFT becomes available for these250

closed-source models.251

In conclusion, we note that there are several performance bottlenecks that must be addressed be-252

fore our approach can be deployed for simultaneous translation in the real world. As we show in253

Appendix E, these bottlenecks result from a long system message, which is often longer than the254

source sentence itself, as well as delays introduced by the ASR sybsystem and weight quantization.255

We believe that these issues are not prohibitive. Specifically, instead of using a separate ASR model,256

future work might follow an end-to-end approach similar to Fathullah et al. (2023), in which in-257

stead of being converted into text with an separate ASR model, the audio is directly mapped into258

the LLM’s embedding space, reducing the system’s overall latency. Efficient quantization schemes,259

faster algorithms and hardware support for low bit-width arithmetic are also promising directions.260

Finally, because LLAMA-2 was trained predominantly on English text, its tokenizer represents En-261

glish more efficiently than other languages. That is, fewer tokens on average are needed to encode a262

text in English than a text of the same length (in characters) in another, less represented, language.263

Thus, future LLMs pre-trained on a linguistically more balanced dataset, might be slightly faster at264

inference.265
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A SUPPLEMENTARY RESULTS FOR THE S2TT TASK458
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Figure 10: Dependence of latency and quality on k (top panels) and quality-latency tradeoff curves
(bottom panels) for the S2TT mode on the NEW-TED-2023 dataset. For reference, dashed lines
indicated GPT-4’s sentence-level (i.e. with k set to the sentence length) BLEU scores: black for
en-de and red for en-ru.

B ENGLISH-RUSSIAN S2TT TASK (k = 5)459
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Figure 11: S2TT en-ru performance of our method on TED-TST-2023. Left panel: supervised
fine-tuned LLAMA-2. Right panel: zero-shot S2TT performance of LLAMA-2-CHAT. All the runs
were on TED-TST-2023, with k = 5 to ensure AL around 2000 ms. Each of the boxplots is drawn
based on data from 10 evaluation runs on sentences randomly sampled with replacement from the
test set.
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Figure 12: Average lagging in S2TT mode for the English-Russian language pair. Left panel: su-
pervised fine-tuned LLAMA-2. Right panel: zero-shot S2TT performance of LLAMA-2-CHAT. All
the runs were on TED-TST-2023, with k = 5 to ensure AL around 2000 ms. Each of the boxplots
is drawn based on data from 10 evaluation runs on sentences randomly sampled with replacement
from the test set.

C ADDITIONAL PERFORMANCE DATA FOR THE S2TT TASK460

C.1 ENGLISH-GERMAN461

Here we report additional comparisons including latency performance measured using several differ-462

ent metrics, including Average Lagging (AL) (Ma et al., 2019a), Length Adaptive Average Lagging463

(LAAL) (Papi et al., 2022), Average Proportion (AP) (Cho & Esipova, 2016) and Differentiable464

Average Lagging (DAL) (Cherry & Foster, 2019).465

System BLEU LAAL AL AP DAL

gpt-3.5-turbo-0613 (zero-shot) 2.08 (0.24) 2637.11 (252.79) 2574.98 (230.95) 0.35 (0.0) 2477.55 (146.26)

gpt-4-0613 (zero-shot) 21.82 (2.81) 2448.86 (74.74) 1998.63 (110.91) 0.94 (0.03) 2813.47 (69.48)

Llama-70b-hf (SFT) 18.41 (1.4) 2107.57 (59.68) 1619.64 (76.47) 0.84 (0.02) 2454.72 (67.84)

Llama-13b-hf (SFT) 17.07 (0.68) 2358.89 (34.11) 1880.76 (61.77) 0.88 (0.02) 2735.34 (40.88)

Papi et al. (2023) 17.01 (1.0) 2295.72 (41.54) 1867.1 (148.69) 0.77 (0.01) 3251.38 (139.12)

Fukuda et al. (2023) 21.08 (1.41) 2005.39 (71.04) 1397.33 (85.74) 0.9 (0.01) 3066.15 (122.01)

Table 2: Mean performance metrics of Llama-2 (SFT) compared to some recent S2TT systems and
GPT-3.5 and GPT-4 (zero-shot). Then mean and standard deviation (in brackets) are computed over
10 runs of the same model on 102 source-target pairs sampled with replacement from TED-TST-
2023.

C.2 ENGLISH-RUSSIAN466

System BLEU LAAL AL AP DAL

gpt-3.5-turbo-0613 (zero-shot) 0.14 (0.1) 2876.85 (240.03) 2861.22 (245.91) 0.28 (0.04) 2661.22 (231.0)

gpt-4-0613 (zero-shot) 16.86 (2.27) 2022.81 (20.3) 1584.38 (91.81) 0.82 (0.04) 2390.11 (23.65)

Llama-70b-hf (SFT) 20.96 (1.71) 2252.75 (49.77) 1937.76 (62.75) 0.9 (0.08) 2676.56 (62.11)

Llama-13b-hf (SFT) 16.9 (1.52) 2238.6 (48.38) 1917.46 (90.38) 0.87 (0.03) 2641.01 (45.73)

Table 3: Mean performance metrics of Llama-2 (SFT) compared to some recent S2TT systems and
GPT-3.5 and GPT-4 (zero-shot). Then mean and standard deviation (in brackets) are computed over
10 runs of the same model on 102 source-target pairs sampled with replacement from TED-TST-
2023.
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D PARAMETERS USED FOR COMPARISONS WITH BASELINES ON THE S2ST467

EN-DE TASK468

Papi et al. (2023)469

We used the open-source implementation of the model6. The evaluations were run in SimulEval7470

(Ma et al., 2020a) with the following parameters:471

472

extract-attn-from-layer 5473

frame-num 2474

attn-threshold 0.25475

speech-segment-factor 8476

Fukuda et al. (2023)477

The source code for the model and weights were obtained on request from the authors. The478

evaluations were run in SimulEval with the following parameters:479

480

source-segment-size 950481

la-n 2482

beam 5483

sacrebleu-tokenizer 13a484

We chose these parameters aiming to maximize the BLEU score while keeping AL approximately485

below 2000 ms.486

6https://github.com/hlt-mt/FBK-fairseq/tree/master/fbk_works
7https://github.com/facebookresearch/SimulEval
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E INFERENCE WALL TIME COMPARISONS487

Here we compare real-time factors of our model in different sizes and compare them with those488

of the selected baselines and GPT-4. Real-time factor is the ratio of the amount of time taken to489

process source audio to the length of the source audio itself 8. We note that removing the system490

message from the prompt speeds up inference with no noticeable drop in quality for supervised491

fine-tuned models. Loading our model’s weights with 16-bit (instead of 4-bit) quantization further492

accelerates inference. Finally, we observe that the use of ASR in S2TT mode substantially reduces493

system speed. An end-to-end implementation, directly converting raw source audio into the LLM’s494

embedding space, could potentially alleviate this performance bottleneck.495

model mode quantization system message size, bn param. RTF
Ours T2TT 16-bit no 13 1.7
Ours T2TT 4-bit no 13 2.2
Ours T2TT 16-bit yes 13 2.9
Ours T2TT 4-bit yes 13 4.2
Ours S2TT 16-bit no 13 5.9
Ours S2TT 4-bit no 13 7.6
Ours S2TT 16-bit yes 13 8.0
Ours S2TT 4-bit yes 13 9.3
Ours T2TT 4-bit no 70 14.6
Ours T2TT 4-bit yes 70 20.2
Ours S2TT 4-bit no 70 15.3
Ours S2TT 4-bit yes 70 23.9
GPT-4 T2TT unknown yes unknown 1.5
GPT-4 S2TT unknown yes unknown 4.8
Fukuda et al. (2023) S2TT 16-bit N/A 1.04 0.7
Papi et al. (2023) S2TT 16-bit N/A 0.176 1.4

Table 4: Inference wall time comparisons for our model and selected baselines on en-de. Real-
time factor (RTF) less than one means the model is faster than real time.

8For T2TT mode, the source audio transcripts were fed directly in the LLM. The RTF was calculated based
on the known length of the audio corresponding to the source transcripts and the time to complete translation
of that text.
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F EXAMPLES OF TRANSLATION496

en-de497

Source: But in Antarctica, some scientists who are normally pretty levelheaded are getting a little498

bit freaked out, I would say, is a fair definition, about the lowest level ever, at this point in the year,499

of sea ice.500

TransLLaMa: Aber in der Antarktis, einige Wissenschaftler, die normalerweise recht nüchtern sind,501

werden ein wenig verängstigt, würde ich sagen, ist eine gerechte Definition über den niedrigsten502

Stand, den wir jemals zu diesem Zeitpunkt im Jahr von Meereis hatten.503

Back translation: But in Antarctica, some scientists who are normally quite sober are getting a little504

frightened, I would say, is a fair definition of the lowest level we’ve ever had of sea ice at this point505

in the year.506

Source: I remember when there were so many fossil fuel delegates in Madrid, but by the time we507

got to Glasgow a year and a half ago, the delegates from the fossil fuel companies made up a larger508

group than the largest national delegation.509

TransLLaMa: Ich erinnere mich an die Zeit, als es so viele Delegierte der fossilen Brennstoffind-510

ustrie in Madrid gab, aber als wir ein Jahr und ein halbes später in Glasgow waren, machten die511

Delegierten der fossilen Brennstoffunternehmen eine größere Gruppe aus als die größte nationale512

Delegation.513

Back translation: I remember when there were so many fossil fuel industry delegates in Madrid, but514

when we were in Glasgow a year and a half later, the fossil fuel company delegates made up a larger515

group than the largest national delegation.516

Source: And I’m a really positive person, so it’s actually difficult to say this, but the way we do517

philanthropy right now, the way we’ve done it for decades, is broken.518

TransLLaMa: Ich bin eine sehr positive Person, also ist es für mich eigentlich schwierig, das zu519

sagen, aber die Art und Weise, wie wir Philanthropie betreiben, die Art und Weise, wie wir es seit520

Jahrzehnten betreiben, ist kaputt.521

Back translation: I’m a very positive person, so it’s actually hard for me to say this, but the way we522

do philanthropy, the way we’ve done it for decades, is broken.523

Source: Work norms, of course, differ around the world, but we replicated our original American524

result in South Korea, which is known by the numbers to be one of the hardest-working countries in525

the OECD, and in France, which is known for other strengths.526

TransLLaMa: Natürlich unterscheiden sich die Arbeitsnormen in der Welt, aber wir konnten unser527

ursprüngliches Ergebnis in den USA in Südkorea wiederholen, das bekannt ist als eines der härtesten528

arbeitenden Länder in der OECD, und in Frankreich, das für andere Stärken bekannt ist.529

Back translation: Of course, labor standards vary around the world, but we were able to replicate530

our original result in the US in South Korea, known as one of the hardest working countries in the531

OECD, and in France, known for other strengths.532

en-ru533

Source: A few years ago, I called for toothpaste from my hotel room, and it was delivered to me by534

a robot.535

TransLLaMa: Neskol~ko let nazad � poprosila zubnu� pastu iz moego nomera v536

otele i ona byla dostavlena mne robotom.537

Back translation: A few years ago I asked for toothpaste from my hotel room and it was delivered538

to me by robot.539

Source: It conducted the first quantum video call, and it launched the first drone that can carry a540

passenger in air.541
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TransLLaMa: Ona provela pervu� video-konferenci� s ispol~zovaniem kvantovyh542

tehnologi� i zapustila pervy� bespilotny� samolet, sposobny� perevozit~ pas-543

sa�ira v vozduhe.544

Back translation: She held the first video conference using quantum technology and launched the545

first unmanned aircraft capable of carrying a passenger in the air.546

Source: And it’s really gratifying to hear from people like Raymond who are using the technology547

we are building, and others, for so many wonderful things.548

TransLLaMa: I �to de�stvitel~no pri�tno slyxat~ ot l�de�, kak Ra�mond, koto-549

rye ispol~zu�t tehnologii, kotorye my sozda�m, i drugie, dl� takih zameqa-550

tel~nyh vewe�.551
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