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ABSTRACT

The function of constructing the hierarchy of objects is important to the visual
process of the human brain. Previous studies have successfully adopted capsule
networks to decompose the digits and faces into parts in an unsupervised man-
ner to investigate the similar perception mechanism of neural networks. However,
their descriptions are restricted to the 2D space, limiting their capacities to imi-
tate the intrinsic 3D perception ability of humans. In this paper, we propose an
Inverse Graphics Capsule Network (IGC-Net) to learn the hierarchical 3D repre-
sentations from large-scale unlabeled images. The core of IGC-Net is a new type
of capsule, named graphics capsule, which represents 3D primitives with inter-
pretable parameters in computer graphics (CG), including depth, albedo, and 3D
pose. Specifically, IGC-Net first decomposes the objects into a set of semantic-
consistent parts and then assembles them to the object-level descriptions to build
the hierarchy. The learned graphics capsules reveal how the neural networks, ori-
ented at visual perception, understand objects as a hierarchy of 3D models. Be-
sides, the discovered parts can be deployed to the unsupervised face segmentation
task to evaluate the semantic consistency of our method. Moreover, the part-level
descriptions with explicit physical meanings give an insight into the face analysis
that originally runs in a black box, such as the importance of shape and texture
for face recognition. Experiments on CelebA, BP4D, and Multi-PIE validate the
effectiveness of our method.

1 INTRODUCTION

A path toward autonomous machine intelligence (LeCun, 2022) is to enable machines to have
human-like perception and learning abilities. As humans, by only observing the objects, we can
easily decompose them into a set of part-level components and construct their hierarchy even though
we have never seen these objects before. This phenomenon is supported by the psychological studies
that the visual process of the human brain is related to the construction of the hierarchical structural
descriptions (Marr, [2010; |Hintonl [1979; Marr & Nishihara, [1978; [Singh & Hoffman, 2001). To
investigate the similar perception mechanism of neural networks, previous studies (Kosiorek et al.,
2019; |Yu et al.l [2022) incorporate the capsule networks, which are designed to present the hierar-
chy of objects and describe each entity with interpretable parameters. After observing a large-scale
of unlabeled images, these methods successfully decompose the digits (Kosiorek et al., |2019) or
faces (Yu et al.| 2022) into a set of parts, which gives an insight into how the neural networks un-
derstand the objects. However, their representations are limited in the 2D space. Specifically, these
methods follow the analysis-by-synthesis strategy in model training and try to reconstruct the image
by the decomposed parts. Since the parts are represented by 2D templates, the reconstruction be-
comes estimating the affine transformations to warp the templates and put them in the right places,
which is just like painting with stickers. This strategy performs well when the objects are intrinsi-
cally 2D, like handwritten digits and frontal faces, but has difficulty in interpreting 3D objects in the
real world, especially when we want a view-independent representation like humans (Biederman,
1987).

How to represent the perceived objects has been the core area of research in computer vision (Pog-
gio & Edelman, [1990; |Biederman & Gerhardstein, [1993). One of the most popular theories is the
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Marr theory (Marr & Nishiharal [1978], Marr, 2010). He believed that the purpose of the vision is to
build the descriptions of shapes and positions of things from the images and construct hierarchical
3D representations of objects for recognition. In this paper, we try to materialize Marr’s theory and
propose an Inverse Graphics Capsule Network (IGC-Net), whose primitive is a new type of capsule
(graphics capsule) that is defined by computer graphics (CG), to learn the hierarchical 3D repre-
sentations from large-scale unlabeled images. Figure [I]shows an overview of the proposed method.
Specifically, the hierarchy of the objects is described with the part capsules and the object capsules,
where each capsule contains a set of interpretable parameters with explicit physical meanings, in-
cluding depth, albedo, and pose. During training, the input image is first encoded to a global shape
and albedo embeddings, which are sent to a decomposition module to get the spatially-decoupled
part-level graphics capsules. Then, these capsules are decoded by a shared capsule decoder to get
explicit 3D descriptions of parts. Afterward, the parts are assembled by their depth to generate the
object capsules as the object-centered representations, naturally constructing the part-object hierar-
chy. Finally, the 3D objects embedded in the object capsules are illuminated, posed, and rendered to
fit the input image, following the analysis-by-synthesis manner. When an IGC-Net is well trained,
the learned graphics capsules naturally build hierarchical 3D representations.
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Figure 1: Overview of the Inverse Graphics Capsule Network (IGC-Net). The input image is first
encoded to global shape and albedo embeddings and then sent to a decomposition module to get the
spatially-decoupled part-level graphics capsules. Afterward, these capsules are decoded to get the
explicit 3D descriptions of parts, which are assembled by their depth to generate the object capsules
as object-centered representations. Finally, the object capsules are illuminated, posed, and rendered
to fit the input image. After training, the learned graphics capsules naturally build hierarchical 3D
representations.

We apply IGC-Net to human faces, which have been widely used to investigate human vision sys-
tem (Tanaka & Simonyil,2016) due to the similar topology structures and complicated appearances.
Thanks to the capacity of the 3D descriptions, IGC-Net successfully builds the hierarchy of in-the-
wild faces that are captured under varied illuminations and poses, while the previous work equipped
with 2D representations can only tackle frontal faces under controlled environment. We deploy
IGC-Net to the unsupervised face segmentation task, where the silhouettes of the discovered parts
are regarded as segment maps. Besides, since the graphics capsule provides each part with explicit
graphics descriptions, we further apply it to interpretable face analysis to uncover the mechanism of
neural networks when recognizing faces.

The main contributions of this paper are summarized as:

* This paper proposes an Inverse Graphics Capsule Network (IGC-Net) to learn the hierarchi-
cal 3D representations from large-scaled unlabeled images. The learned graphics capsules
in the network provide an insight into how the neural networks, oriented at visual percep-
tion, understand objects as a hierarchy of 3D models.

* A Graphics Decomposition Module (GDM) is proposed for part-level decomposition,
which incorporates shape and albedo information as cues to ensure that each part capsule
represents a semantic consistent part of objects.
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* We execute the interpretable face analysis based on the part-level 3D descriptions of graph-
ics capsules. Besides, the silhouettes of 3D parts are deployed to the unsupervised face
segmentation task. Experiments on CelebA, BP4D, and Multi-PIE show the effectiveness
of our method.

2 RELATED WORK

Capsule Network. The connections of the human brain are thought to be sparse and hierarchi-
cal (Barrett, [2012; |Bodegard et al., 2001; Jadskeldinen et al. 2022} |Georgopoulos et al., [1986),
which inspire the design of capsule networks to present the objects with dynamic parse trees. Given
inputs, capsule networks (Hinton et al., 2011; Sabour et al., |2017; Hinton et al.| 2018; [Kosiorek:
et al., 2019} |Sabour et al.| 2021} |Yu et al.| [2022) will encode the images to a set of low-level cap-
sules, which describe the local entities of the objects, and then assemble them into higher-level
capsules to describe more complicated entities. The parameters of capsules are usually with explicit
meanings, which enables the interpretability of neural networks. Recently, some capsule networks
have been proposed to explore the hierarchy of objects. SCAE (Kosiorek et al., 2019) proposes to
describe the objects with a set of visualizable templates through unsupervised learning. However,
SCAE can only handle simple 2D objects like digits. HP-Capsule (Yu et al.| [2022) extends SCAE
to tackle human faces, which proposes subpart-level capsules and uses the compositions of subparts
to present the variance of pose and appearance. Due to the limitation of 2D representations, HP-
Capsule can only tackle faces with small poses. Sabour et al. (Sabour et al.,[2021) propose to apply
the capsule network for human bodies, but it needs optical flow as additional information to separate
the parts. In this paper, we propose a new type of capsule (graphics capsule) to learn the hierarchical
3D representations from unlabeled images.

Unsupervised Part Segmentation. Our work is related to unsupervised face segmentation. Several
methods have been proposed for this challenging task. DFF (Collins et al., 2018]) proposes to use
non-negative matrix factorization upon the CNN features to discover semantics, but it needs to opti-
mize the whole dataset during inference. Choudhury et al. (Choudhury et al.l 2021)) follow a similar
idea, which uses k-means to cluster the features obtained by a pre-trained network. SCOPS (Hung
et al., 2019) and Liu et al. (Liu et al., 2021) propose to constrain the invariance of images between
TPS transformation. However, their methods rely on the concentration loss to separate parts, lead-
ing to the similar silhouettes of different parts. HP-Capsule (Yu et al.l 2022)) proposes a bottom-up
schedule to aggregate parts from subparts. The parts of the HP-Capsule rely on the learning of
subpart-part relations, which is unstable when tackling faces with large poses. Compared with these
methods, our IGC-Net can provide interpretable 3D representations of the parts, which are with
salient semantics and keep semantic consistency across the in-the-wild faces with various poses.

Unsupervised 3D Face Reconstruction. Learning to recover the 3D face from 2D monocular im-
ages has been studied for years. Following the analysis-by-synthesis strategy, many methods (Tran
& Liu, 2018; Zhou et al., 2019; (Chen et al., [2020; [Deng et al.,|2019) propose to estimate the param-
eters of the 3D Morphable Model (Paysan et al|2009), which describes the faces with a uniformed
topology pre-defined by humans. Recently, several works (Wu et al.| [2020; Zhang et al.| 2021}
2022) have been proposed to only use the symmetric character of faces to learn the 3D face recon-
struction. Under the graphics decomposition, these methods achieve promising results. Inspired by
them, we propose the graphics capsule to learn the hierarchical 3D representations from images,
which provides an insight into how the neural networks understand the objects as a hierarchy.

3 METHOD

Based on previous explorations in capsule networks (Kosiorek et al.,2019j|Yu et al.,|2022), our goal
is to explore a system that can build hierarchical 3D representations of objects through browsing
images and apply it on human faces to validate its effectiveness. Specifically, we aim to learn the
part-object hierarchy of faces in an unsupervised manner, where each part is represented by a set
of interpretable CG parameters, including shape, albedo, 3D poses, etc. In the following sections,
we will introduce the graphics capsule and the overview of the network in Section 3.1} the graphics
decomposition module that is used to build hierarchy in Section [3.2] and the loss functions that
enable unsupervised learning in Section
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3.1 OVERVIEW

To learn a hierarchical 3D representation from unlabeled images, we propose an Inverse Graphics
Capsule Network (IGC-Net), whose capsules are composed of interpretable CG descriptions, in-
cluding a depth map D, an albedo map A and 3D pose parameters p. Our IGC-Net is applied to
human faces, which have been widely used to investigate the human vision system due to their sim-
ilar topology structures and complicated appearances. The overview of IGC-Net is shown in Figure
Following a bottom-up schedule, a CNN-based image encoder first encodes the input image I
into the shape and the albedo embeddings f and f,:

fs, fa = ImageEncoder(I). (1

Then a Graphics Decomposition Module (GDM) is employed to decompose the global embeddings
into a set of part-level embeddings, which can be further decoded into interpretable graphics cap-
sules:

{éiv "'7é{sw}v {é<11" éM} = GDM(.fsa .fa)7

- €4

{D,', A}, p,'} = GraphicsDecoder(€y", €;"),

s ' 7a
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where €7 is the shape embedding of the mth part, €] is the corresponding albedo embedding, M
is the number of part capsules, and O} : {D;}l, AL, pgl} is a graphics capsule that describes a
part with depth, albedo, and 3D pose. Afterward, the part capsules are assembled according to their
depth to generate the global object capsule:

V7n(i7 ]) = 1m:arg max(DJ(4,5))>

1

D,=) V"oD}' A=) V"OA} p,= Mzmpgz
where V" is the visibility map of the mth part capsule at the position (i,7), © is the element-
wise production, and ©, : {D,, A,,p,} is the object capsule. During assembly, a capsule is
visible at (4, j) only when its depth is higher than the others. The part-level depth and albedo
maps are multiplied with their visibility maps and aggregated as one, respectively, and the object
pose is the average of part poses. In the object capsule, both the depth D, and albedo A, are
defined in the canonical space, and the pose p, is used to project the 3D object to the image plane.
Finally, by estimating the lighting [ with another network, the recovered image Iis generated by the
differentiable rendering A:

3)

I=A(D,A,p,l). 4)
When training IGC-Net, we can minimize the distance between the input image I and the recon-

structed image I following the analysis-by-synthesis strategy, so that the network parameters can be
learned in an unsupervised manner.

3.2 GRAPHICS DECOMPOSITION MODULE

Humans can decompose an object into a set of parts and construct a hierarchy by just observation.
To realize this ability in neural networks, we propose the Graphics Decomposition Module (GDM)
to decompose the global embedding of the image into a set of semantic-consistent parts. The illus-
tration of GDM is shown in Figure [2]

Taking shape decomposition as an example, GDM maintains M shape basis { W} as the implicit
part templates. Given the global embeddings f, extracted in Eqn.|[I} GDM performs cross attention
between the global embedding and the basis to get M disentangled D dimensional embeddings:

el'=fW" m=1 ..M. (5)
To further reduce the entanglement between {e”"} and generate independent part-level embeddings,
an M-way one-hot attention vector is generated for each of the D dimensions, by deploying that
only one embedding can preserve its value and the others are set to 0 at each dimension. This
dimension attention is formulated as:

éT = e;” ® M[m,:],

M. g = hard,softmax([el(d) eQ(d), eM(d)]), (6)

s(d), e e €
)

hard_softmax(e) = = 06 onehot(

> eld)

> eld)
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Figure 2: Tllustration of the Graphics Decomposition Module (GDM). GDM is proposed to ensure
that each part capsule presents a semantic consistent part of objects.

where M/« p is the attention matrix, whose mth row is M, . and dth column is M, 4, el*(d)
is the dth dimension of the embedding e, onehot(-) is the one-hot operation, and 7" is the final
part-level shape embedding. The same pipeline is applied to the albedo embeddings, where the only
difference is that the attention M is copied from the shape embeddings, which ensures that the shape
and the albedo information are decomposed synchronously.

By incorporating both shape and albedo information as cues, GDM successfully decomposes parts
from objects under varied poses and appearances, ensuring that each part capsule represents a
semantic-consistent part.

3.3 LOSSES AND REGULARIZATIONS

When training IGC-Net with unlabelled images, we employ the following constraints to learn the
hierarchical 3D representations effectively:

Reconstruction. We adopt the negative log-likelihood loss (Wu et al.,2020) to measure the distance
between the original image I and the reconstructed image I:

1 1 V2AI—-1] 1 1 V2|, — I
»Crec = A7 In eXp————"" — In exp ——1P 1 s @)
DR v i D Do b o
where () is for normalization and ¢ € R¥*W is the confidence map estimated by a network to

present the symmetric probability of each position in I, Iy, is the image reconstructed with the
flipped albedo and shape.

Semantic consistency. In GDM, shape embedding is used as the cue for part decomposition. To
improve the semantic consistency across samples, we employ a contrastive loss on the shape em-
bedding €7" of each capsule, which is formulated as:

m7(b) .

B M - exples

Loontra == D log m.(®) %ﬁ/ X m®) i)/

bmim=1  DigpexDles  ces T 300 D exples T ey T)

where B is the batch size, M is the number of part capsules, é{;‘” is the shape embedding of the jth

part that belongs to the ith sample. L.+, maximizes the shape similarity between the same capsule

across the samples and minimizes the similarity across different capsules. 7 is the hyperparameter
utilized to control the discrimination across the negative pairs.

e/ oy

; (8)

Sparsity. To prevent the network from collapsing to use one capsule to describe the whole objects,
we employ the spatial sparsity constraint on the visible regions V™ of part capsules:

£sparse = Std(z ‘/Z;)a (9)
2%
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where std(-) calculates the standard deviation, V;" is the visibility map of the mth capsule at the
position (i, 7).

Background seperation. The prerequisite for unsupervised part discovery is separating foreground
and background so that the network can focus on the objects. To achieve that, previous works
incorporate the salient maps or the ground-truth foreground masks during training. Instead, we use
a specific part capsule to model the background. Note that the graphics capsule can recover the 3D
information of the objects without any annotation, the foreground map can be easily estimated by
setting a threshold to the depth:

Lyy=||VY ~V|, V=1p, ., (10)

where V%9 is the visibility map of the part capsule that is used for background estimation, V is the
external region of the object, D, is the depth of the object, and ~ is the threshold for locating the
external region.

The final loss functions to train IGC-Net are combined as:
ﬁcontra = Erec + )\contra‘ccontra + )\sparsecsparse + )\bgﬂbga (1 l)

where Acontra, Asparse and Ayg are the hyper-parameters to balance different loss functions.

4 EXPERIMENTS

Implement Details. The image encoder, the capsule decoder, and the lighting module of IGC-
Net are composed of convolutional neural networks. We set the number of the part-level graphics
capsules M = 6, where one of them is used to model the background. Following unsup3d (Wu et al.,
2020), we also incorporate the perceptual loss to improve the reconstruction results. Besides, the
hyper-parameters for loss combination are set to be Acontra = 107°, Asparse = 1071, Ay = 1071,
For optimization, we use the Adam optimizer (Kingma & Bal, 2014) with 10~* learning rate to train
the networks on a GeForce RTX 3090 for 60 epochs.

Datasets. Following the recent study for the unsupervised face part discovery (Yu et al., [2022),
we evaluate IGC-Net on BP4D (Zhang et al., |2014) and Multi-PIE (Gross et al., [2010). Both of
these two datasets are captured in the controlled environment. To further validate the capability
of tackling the images under real-world scenarios, we also adopt the CelebA (Liu et al., | 2015) for
experiments, which contains over 200K in-the-wild images of real human faces. In the experiments,
BP4D and CelebA are used to evaluate the unsupervised face segmentation and Multi-PIE is used
for the interpretable face analysis.

4.1 THE DISCOVERED FACE HIERARCHY

Thanks to the 3D representations embedded in the graphics capsules, IGC-Net successfully builds
the hierarchy of in-the-wild faces that are captured under varied illuminations and poses, shown
in Figure [3] By incorporating shape and albedo information as cues, the face images are naturally
decomposed into six semantic-consistent parts: background, eyes, mouth, forehead, nose, and cheek,
without any human supervision. Each part is described with a specific graphics capsule, which is
composed of a set of interpretable parameters including pose, view-independent shape, and view-
independent albedo. These parts are assembled by their depth to generate the object capsules as the
object-centered representations, building a bottom-up face hierarchy.

4.2 INTERPRETABLE FACE ANALYSIS

The graphics capsules learned by IGC-Net provide the face hierarchy with explicit graphics descrip-
tions, which is a feasible way to the interpretable face analysis. In this section, we apply it to the
recognition task to uncover the mechanism of neural networks when recognizing faces. Besides, the
graphics part-level descriptions can be used for face manipulation.

Face Recognition. To show the potential of IGC-Net for interpretable analysis, we design an exper-
iment to explore which part-level graphics capsule is crucial for face recognition and which compo-
nent of the capsule is more important, the shape or the albedo. Specifically, we assign the part-level
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Figure 3: Illustration of the discovered face hierarchy with 3D descriptions. By incorporating shape
and albedo information as cues, IGC-Net decomposes the images into six parts: background, eyes,
mouth, forehead, nose, and cheek.

shape embeddings {€"} and albedo embeddings {€*} with trainable scalar {w!"} and {w!"} as the
attention weights. The weight parameters {w™é™} are sent to a linear classifier for face recognition.
After training with L1 penalization for sparsity, the attention weights of part capsules are shown in
Figure[d] It can be seen that the eyes are the most important regions for recognition, followed by the
nose, forehead, cheek, and mouth. The work of Williford et al. (Williford et al.,2020)) also shows the
similar phenomenon. Besides, by averaging the parts, we can see that the albedo is more important
than the shape for face recognition.

0.20
0.20 M shape M albedo
0.15
0.15 0.13
0.11 0.11 0.11
0.09
0.10 0.08
0.05 I 0.03 I 0.03
0.00

eyes mouth forehead nose cheek
Figure 4: The importance of part-level graphics capsules for face recognition. On average, the
albedo is more crucial than the shape when recognizing faces. The albedo of the eyes is the most
important component and the shape of the nose is more important than the shape of other parts.

=}

Face Manipulation. Since IGC-Net provides view-independent part-level descriptions, we apply
it for local face manipulation, which helps us to further understand the structure of faces. Figure 3]
shows the shape-manipulated faces after replacing one part-level shape embedding with the corre-
sponding target part. Figure[f]shows the albedo-manipulated faces. It can be seen that the edit of the
albedo can be easily observed by humans, while the edit of the shape needs to be carefully identified.

Target Reconstruction Eyes Mouth Forehead Nose Cheek

Figure 5: The results of our IGC-Net for local shape-based face manipulation. The red boxes high-
light the variations, which show that the appearance of the faces changes slightly with the shape.
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Target Reconstruction Mouth Forehead Nose

Figure 6: The results of our IGC-Net for local albedo-based face manipulation. The edit of the

albedo can be easily observed.

i6l66 6
LR R
-HIGIE
PEEPE (GRG0

Figure 7: The qualitative comparison of un- Figure 8: The qualitative comparison of un-
supervised face segmentation on CelebA. supervised face segmentation on BP4D.

4.3 UNSUPERVISED FACE SEGMENTATION

To execute the quantitative and qualitative evaluation, we treat the silhouettes of parts as segment
maps and apply them to the unsupervised face segmentation task. Note that there is no ground
truth for the unsupervised part-level segmentation, the key of this task is to evaluate the semantic
consistency of the parsing manners. The following experiments show the superiority of our method.

Baselines. Learning to segment the face parts from the unlabeled images is a challenging task as
parts are difficult to be described by math. In this paper, we compare our method with the state-of-art
methods for unsupervised face segmentation, including DFF (Collins et al, 2018)), SCOPS
and HP-Capsule 2022). To discover the semantic parts, DFF proposes to
execute the non-negative matrix upon the CNN features, which need to optimize the whole dataset
to get the segment results. SCOPS proposes a framework with the concentration loss to constrain the
invariance of images between TPS transformation. However, due to the lack of effective constraints,
their results tend to assign similar silhouettes to different parts. HP-Capsule proposes a bottom-up
schedule to aggregate parts from subparts, whose parts are described with interpretable parameters.
However, their descriptions are defined in the 2D space, limiting their capacity to tackle faces with
large poses.

Quantatitive Comparison. Following the previous work 2022), we utilize the Normal-
ized Mean Error (NME) of the landmarks predicted by segment maps to evaluate the quality of the
parsing manners. Specifically, NMEj, treats the centroid of the segment maps as landmarks and
uses linear mapping to convert them to human-annotated landmarks. NMEpy, incorporates a shal-
low network to directly predict the landmarks from the segment maps. Table [T] and Table [2] show
the quantitative comparison results on CelebA and BP4D, which validate the effectiveness of our
method.

Qualitative Comparison. The qualitative comparison results are shown in Figure [7]and Figure 8]
It can be seen that our method performs better than other methods. The results of DFF can not suc-
cessfully separate the foreground and the background. As for SCOPS, due to the lack of effective
constraints, the segment maps of SCOPS are with some ambiguity, where the organs with salient se-
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NMEL (%) and NMEpy, (%) use the land-

marks estimated from the segment maps to
evaluate the semantic consistency of parts. :

METHOD NME;, NMEp,

DFF 22.78 27.27 Figure 9: The qualitative ablation study on
SCOPS 18.72 23.69 CelebA. It can be seen that the semantic consis-
HP-Capsule 21.25 25.27 tency will be damaged without the one-hot op-
IGC-Net (ours) 11.84 18.88 eration in GDM (see Eqn. @) and the L.onira

(see Eqn. [8) is important for discovering parts
with salient semantics.

Table 3: The quantitative ablation study
on CelebA. The results show the impor-
tance of the one-hot operation in GDM
METHOD NME;, NMEpy, and the semantic constraint L ontrq-

DFF 18.85 12.26
SCOPS 910 674 One-Hot  Leontra | NMEL

Table 2: The quantitative comparison of un-
supervised face segmentation on BP4D.

HP-Capsule 8.81 6.10 y v }2'}12
IGC-Net (ours) 6.35 4.32 v y 11.84

mantics are assigned to different parts for different samples. For example, SCOPS sometimes takes
the right eye as the green part while sometimes splitting it from the middle. The segment bound-
aries of HP-Capsule are clearer than DFF and SCOPS. However, limited by their 2D descriptions,
HP-Capsule fails on the faces with large poses while our method performs well on these challenging
samples.

4.4 ABLATION STUDIES

The basis of building the hierarchy of objects is to learn the parts with explicit semantics and keep
the semantic consistency across different samples. In this section, we perform the ablation study to
show the importance of the one-hot operation in the GDM (see Eqn.[3.2)) and the semantic constraint
Lecontra (see Eqn.[8) for discovering meaningful parts. Figure[Q]shows the qualitative ablation study
on CelebA. In the second row of Figure 0] it can be seen that, without the one-hot operation to
prevent the information leakage of different parts, the semantic consistency across samples will be
damaged. The third row of Figure |§| shows that the contrastive semantic constraint L.,y ¢yq 1S im-
portant for the discovery of parts with salient semantics. Without such constraint, the segmentation
of the important organs such as the eyes will have ambiguity. These conclusions are also validated
by the quantitative ablation study shown in Table [3]

5 CONCLUSION AND DISCUSSION

In this paper, we propose the IGC-Net to learn the hierarchical 3D representations from large-scale
unlabeled in-the-wild images, whose primitive is the graphics capsule that contains the 3D repre-
sentations with explicit meanings. By combining depth and albedo information as cues, IGC-Net
successfully decomposes the objects into a set of part-level graphics capsules and constructs the
hierarchy of objects by assembling the part-level capsules into object-level capsules. IGC-Net re-
veals how the neural networks, oriented at visual perception, understand objects as a hierarchy of
3D models. Besides, the part-level graphics descriptions can be used for unsupervised face segmen-
tation and interpretable face analysis. Experiments on CelebA, BP4D, and Multi-PIE validate the
effectiveness and the interpretability of our methods.
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